m\GE EVALUATION 
 TtST TARGET (MT-3) 
 
 7 
 
 A 
 
 O 
 
 ¥/ 
 
 
 t^ 
 
 f/j 
 
 
 1.0 
 
 I.I 
 
 *"IIIIM IM 
 S IM iiiii'z^ 
 
 !^ 
 
 IM 
 
 114 
 
 2.0 
 
 1.8 
 
 
 1.25 
 
 1.4 
 
 1.6 
 
 
 ^ 
 
 6" — 
 
 
 ► 
 
 % 
 
 <^ 
 
 /}. 
 
 4. 
 
 ^ 
 
 'c>l 
 
 e 
 
 /^ 
 
 ^# .1 
 
 '^s 
 
 
 % 
 
 ^ 
 
 ^ 
 
 O^A 
 
 Photographic 
 
 Sciences 
 Corporation 
 
 23 WEST MAtN STREET 
 
 WEBSTER, NY. 14580 
 
 (716) 872-4503 
 
<" c^^ 
 
 
 ? 
 
 CIHM/ICMH 
 
 Microfiche 
 
 Series. 
 
 CIHM/ICMH 
 Collection de 
 microfiches. 
 
 Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques 
 
 '^ 
 
 iOAT 
 
 I 
 
Technical and Bibliographic Notes/Notes techniques et bibiiographiques 
 
 The Institute has attempted to obtain the best 
 original jopy available for filming. Features of this 
 copy which may be bibliographical / unique, 
 which may alter any of the images in the 
 reproduction, or which may significantly change 
 the usual method of filming, are checked below. 
 
 L'Instltut a microfilme le meilleur exemplaire 
 qu'il lui a ete possible de se procurer. Les details 
 OB cet exemplaice qui sont peut-^tre uniques du 
 point de vue bibliographique, qui peuvent modifier 
 une image reproduite. cu qui peuvent exiger une 
 modification dans la m^thcde normale de filmage 
 sont indiqu^s ci-dessous. 
 
 D 
 
 Coloured covers/ 
 Couverture de couleur 
 
 □ Coloured pages/ 
 Pages de couleur 
 
 □ 
 
 Covers damaged/ 
 Couverture endommagee 
 
 □ Pages damaged/ 
 Pages erdommagees 
 
 I \ Covers restored and/or laminated/ 
 I I Couverture restaur^e et/ou pelliculde 
 
 D 
 
 Pages restored and/or laminated/ 
 Pages restaurees et/ou pelliculees 
 
 p Cover title missing/ 
 
 L_ J Le titre de couverture manque 
 
 Pages discoloured, stained or foxed/ 
 ^lJ Pages d6colorees, tachet^es ou piquees 
 
 D 
 
 Coloured maps/ 
 
 Cartes giographiques an couleur 
 
 □ Pages detached/ 
 Pages detachees 
 
 D 
 
 Coloured ink (i.e. other than blue or black)/ 
 Encre de couleur (i.e. autre oue bleue ou noire) 
 
 v/ 
 
 Showthrough/ 
 Transparence 
 
 n 
 
 Coloured plates and/or illustrations/ 
 Planches et/ou illustrations en couleur 
 
 □ Quality of pri 
 Qualite in^ga 
 
 nt varies/ 
 6gale de I'impression 
 
 n 
 
 n 
 
 Bound with other material/ 
 Rali^ avsc d'autres documents 
 
 Tight binding may cause shadows or distortion 
 along interior margin/ 
 
 Lareliure serree peut causer de I'ombre ou de la 
 distorsion lo long de la marge interieure 
 
 Blank leaves added during restoration may 
 appear within the text. Whenever possible, these 
 have been omitted from filming/ 
 II se peut que certaines pages blanches ajout^es 
 lors dune restauration apparaissent dans la texte, 
 mais, lorsque cela dtait possible, ces pages n'ont 
 pas m film^es. 
 
 □ Includes supplementary 
 Comprend du materiel s 
 
 r~~] Only edition available/ 
 
 n 
 
 material/ 
 supplementaire 
 
 Seule Edition disponible 
 
 Pages wholly or ^iartially obscured by errata 
 slips, tissues, etc., have been refilmed to 
 ensure the best possib<e image/ 
 Les pages totalement ou partiellement 
 obscurcies par un feuillet d'errata. une pelure. 
 etc.. cnt ^t6 film^es d nouveau de facon a 
 obtenir la meilleure <mage possible. 
 
 Q 
 
 Additional comments:/ 
 Commentaires supplementaires: 
 
 Various pagings. 
 
 This item is filmed at the reduction ratio checked below/ 
 
 Ce document est filmd au taux de reduction indiqud ci-dessous. 
 
 10X 14X 18X 22X 
 
 26X 
 
 30X 
 
 
 
 J— 
 
 
 
 
 J 
 
 
 
 
 
 J 
 
 
 
 
 
 12X 
 
 16X 
 
 20X 
 
 24X 
 
 28X 
 
 32X 
 
Th« copy filmed here has been reproduced thanks 
 to the generosity of: 
 
 New Brunswicl( l\Auseum 
 Saint John 
 
 L'exempiaire fltm6 fut reproduit grdce it 
 g^nirositi de: 
 
 New Brunswick IVIuseum 
 Saint John 
 
 The images appearing here are ;he best quality 
 possible considering the condition and legibility 
 of the original copy and in keeping with the 
 filming contract specifications. 
 
 Original copies in printed paper covers are filmed 
 beginning with tha front cover and ending on 
 the last page with a printed or illustrated impres- 
 sion, or the back cover when appropriate. All 
 other original copies are filmed beginning on the 
 first page with a printed or illustrated impres- 
 sion, and ending on the last page with a printed 
 or illustrated iiy?pression. 
 
 The last recorded frame on each microfiche 
 shall contain the symbol ^^ (meaning "CON- 
 TINUED"), or the symbol y (meaning "END"), 
 whichever applies. 
 
 Maps, plates, charts, etc., may be filmed at 
 different reduction ratios. Those too large to be 
 entirely included in one exposure are filmed 
 beginning in the upper left hand corner, left to 
 right and top to Lottom, as many frames as 
 required. The following diagrams illustrate the 
 method: 
 
 Lea images suivantes ont 6x6 reproduites avec le 
 plus grand soin. compte tanu de la condition et 
 de la nettet6 de l'exempiaire film^, et an 
 conformity avec les conditions du contrat de 
 filmage. 
 
 Les sxemplaires originaux dont la couverture an 
 papier est iniprimde sont film^s an commenpant 
 par le premier plat at en terminant soit par la 
 derni^re page qui comporte une empreinta 
 d'imprnssion ou d'illustration, soit par le second 
 plat, salon le cas. Tous les autres sxemplaires 
 originaux sont filmds en commen^ant par la 
 premiere page qui cdmporte una empreinte 
 d'impression ou d'illustration et an terminant par 
 la dernidre page qui comporte une telle 
 empreirte. 
 
 Un des symboles suivants apparaitra &ur la 
 derniAre image de cheque microfiche, salon le 
 cas: le symbole — *> signifie "A SUIVRE", le 
 symbols V signifie "FIN ". 
 
 Les cartes, planches, tableaux, etc., peuvant §tre 
 filmte A des taux de rMuction diff^rents. 
 Lorsque le document est trop grand pour Atre 
 reproduit en un seul cliche, il est film6 A partir 
 de I'angle sup^rieur gauche, de gauche d droite, 
 et de haut en bas, en prenant le nombre 
 d''mages n^cessaire. Las diagrammes suivants 
 illustrent la m^thode. 
 
 1 
 
 2 
 
 3 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 I 
 
♦ 
 
sng if 
 
 I? IB IS A ^ S ^ I^ 
 
 OH 
 
 THEORETICAL AND PRACTICAL 
 
 I 
 
 c^ 
 
 li.ir|jf^fji0j^ 
 
 SUnVLVi ; 
 
 I 
 
 TO WHICH IS ADDEt 
 
 GIVEN IN THE WORIT, 
 
 With all the xNecessary tables. 
 
 Br 
 
 ALEXANDER MONRO, 
 
 LAND SURVEYOR. 
 
 PICTOU, N0VA-SC0TL\: 
 
 ftlnm hj Gcldert & Pattsrsoii, Eastern Chronicle Off!.?, 
 
 . Por the Aiitbor, 
 
 WDCCCXLIT, 
 

 
 the 
 
 I 
 
DEDICATION. 
 
 TO THE 
 
 HON. AMOS EDWIN BOTSFORD, 
 
 Membeu ok Her Majesty's Legislative Council, 
 
 Memleu op the Board op Education, 
 
 Lieutenant-Coeonel, 
 
 &c. &c. 
 Si.1, — 
 
 Of tl,e .ncrits of tlie following Ti-eatiso it is not 
 
 for „,e to judge. That poiut „,u.t he left to the cleci i™ "f 
 
 .n.partK,l reader. I „,„j, however, be permitted to ex- 
 
 1 -.,n,y r,^re.thatitis„ot n.ore worthy of your patrt 
 
 . tc U to one ,0 whose .nhul the urgent necessity which ex- 
 
 L^l vl.;™ „ •'" "f '""" ""^-^ «o,ue„.ly s„.ges"a 
 
 .K-ut:,W ■'■":'"=" "'° '■'^"'■^"f ■ho public, and 
 
 ■I , . r •,• '"■"'-•""^'"S^ in <""■ Courts of Law,-to one 
 
 o,,e lanuhar a„|ua,n.ance with the subjec: discussed, af! 
 
 1^,1 M "'",?"'"■'"""' "■"' "■" "■"'* "«<="• '^ "<" »lt"SC l,or 
 
 u u , y „, notae, and favourab.e accep.ance,-to one from 
 
 'Mioni „s numerous in.i.erfcctious are sure to meet n-ith 
 
 mos parental in.lu,ge,,ce.-and to one whose pa.",:.;' 
 
 coLua of the „b,cun.y, and want of personal or relative ia- 
 
r 
 
 ir 
 
 DEOrCATIOW. 
 
 fluenre on the part of the author, it might otherwise bo ex- 
 posed, 
 
 Oihor considerations have likewise induced mo to solicit 
 the honour ofdedicating to yon this, my first attempt at au- 
 thorsh.]). I wa,^ e.vcecdingiy desirous to avail myself of this 
 opportunity puhliely to express my grateful sense of tho 
 courtesy, kindness, and attention, which you have so gene- 
 rously oxtMidcd towards the humble author of the following 
 work, ever since he had first the happiness of being intro- 
 duced to your notice. ]Jc assured, Honoured Sir, I am not 
 ungrateful. Your name will ever be associated in my 
 recollection with the most lively emotions of esteem and 
 respect. 
 
 lieside.s, the countenance and cncoura-emcnt which you 
 have uniformly extended to the industrious and enterprising 
 youth, and the interest which you have ever manifested in 
 tlie cause of Education, and in every movement in which tho 
 prosperity of British North America is involved, justly en- 
 title you to this public expression of grateful approval. 
 
 Hopuig- that tho work itself may not altogether disappoint 
 your exj)ectation,-hoping even that it may meet with some 
 degree of approbation,~.and praying that you may be Ion- 
 spared to enjoy the confidence and respectful esteem of thoso 
 wJio may be honoured with your acquaintancc,~an(l to wit- 
 »ess w.th delight tho rapid progress of intoHectual improve- 
 ment, unci tiie growing prosperity of your native country. 
 I remain, Sir, 
 
 With nmch esteem and respect, 
 Your Most Obedient, 
 
 And Very Humble Servant, 
 
 ^ ,, ,. ALEXANDER MONRO. 
 
 liRv De \ erf«, N. B., October, 1844, 
 
'"% 
 
 iso bo ex* 
 
 to solicit 
 ipt at au- 
 Llfofthis 
 sc of tho 
 so gone- 
 rullowing 
 ng intro- 
 I am not 
 d in my 
 eein and 
 
 lich you 
 jrprising 
 fosted in 
 'hich tlio 
 ustly en- 
 val. 
 
 sappoint 
 ith somo 
 be long 
 ofthoso 
 [1 to wil- 
 nprovo- 
 Lintry. 
 
 
 TOTHKL.vxD«:uvi.:vousormt.T,.sn.vouru 
 
 AMERICA. 
 
 GE.VTLnMEX, 
 
 .ho following TrJle'rih' "'"''• ''''"''"^'" ""' ' '*'"'"• 
 ence, !,„v.„vcr, I cSf" r, , '"""'• '''" ™'"-<-M.cri- 
 
 ^<'" very we,, l r,^' 7,:7 r'"'', "^ ""'■' "''■'■'' '— • 
 work, upo„ „„,, .«1,:\ '",;'';«'^ "''»l"«' <'-«n,i„, 
 Lm,l Surveying _„;,",?, "!" l""-i>o^*'=« <"' Colonial 
 
 --.raein.; of,),,-; „';,'"' '" ""■■ '""""'"• '"^'■"S. "■"'i 
 -nts of i,,o p,,.,;, ,I:-'«™; of I.and.,_,„o £pr.n. 
 
 -tood by,,,,, Colo,, i, V r«"""^'^' ""'■"'■'"'>■'"'"' '"•'■'"- 
 investigation of ZLuorT-''" ' '""'" B'""" ■'>» 
 •he reaso,,,, of.,, ,°':';'''»'t'l^v tl"M.or,>.al„f „-,,,„,, 
 
 '- -:^iiy «n,,c,. o" ' f , "'" 'n ,'","•' "'■ "■" "-■'^ '"»^ 
 
 worl< a„ ,1,0 TalivT'n " *"' ='"'' '"' "'<' <■"<' o'' tho 
 
 ' have ,ho H'o„;:";.';t; '^" "'■'"'■"' '"'^I'"-'- 
 ^*cntIonicn, 
 
 Vour Obodirnc, 
 
 And Very Humble Servant. 
 
 JBayDeVcrt. Nn ,, /^^^^'-'^•^™^i^ -MONRO, 
 '-'t.,, ,>, 1^,, October, 16 ij. 
 
 I 
 
til 
 
 
 o 
 
 I 
 
 TlIR xnn 
 
 the nieasin 
 
 n('f'0|)£arIoi 
 
 tlir extcnsi 
 
 of hndic.?. 
 
 tiulc, distill 
 
 Its of baflio- 
 
 Respcotii 
 
 liavc Ijooii ( 
 
 Kjryptians t 
 
 inotry. Ti 
 
 their landm 
 
 tlioir houiK 
 
 origin of L 
 
 Achiilo.s ': 
 that the P:.r. 
 and tlie eart 
 ledge of tlie 
 ^'"rodotu: 
 to he the SI 
 war up 0)1 ] 
 reported to ] 
 tlivided the 
 lotinent, for 
 Aristotle h 
 
 ii 
 
PHE/'ACK. 
 
 — "" » 
 
 T 
 
 '"-• v„.svrn.,r.l ofl,,c K,„-th, or cf Land. .„ i,, ,,,,i„,,^:^ 
 
 Kl ;• " "'',''''"' '" "'" ""='•'■■''"■<""'=•" of tl.n ,na...i. 
 
 .1.S of l,n,l,c.s on or „c,il' llic earth's si.rfa.'o 
 
 Rc.,pccli„g ,1,0 oris^, of this „,,.:„„„, ,-„;,„„ i,,,. 
 
 have heen entertained. The ancients n^ree in .min ■ t t e 
 
 J.,,-p.,an, the cre<„t of heln. .he earhe;; .^^::::ZZ 
 
 lo.., , he annual overflowings „f the Nih, ,Iis,n,Ci„.. 
 
 on-h,n.h„arl„ren.,ere.nt necessary fre^nentlv to '^t 
 
 X^^t::^i:^-r~- "^- -^ "•--- 
 
 tlnt'the'rlT";.'"'' " M..hen,ati,.ian ef Greece, inf„r,„s „,, 
 
 m tiieeaith. Moses .sevensaid to hnvcac,,„ire,l „ l<„,„v- 
 l«lg of the se,e„ee, ,vhen he reside,! a. the l^vptia t 't 
 
 enor;;' '"'"'"'"' "'" ■^''" "f S' .m.,. This King is 
 
 1 fide, , '■"■'; "'"•■'■■*""'' ''■^'J'l" •'-'' C-'.-.!^, and ,„ have 
 ''>"lod the hind among his suhjeets, tjivin- to e.ch tn •,! 
 
 .Ar,stotIe has attributed its origin to the Egyptian priests. 
 
viii 
 
 W 
 
 Hi 
 
 PBRFACC. 
 
 who nw„, ,co>u,.oa f,.„,„ .he .„.,„, h.U .,.„„ , ,.„„„ 
 
 TJjc antiquity of this soionco nCToviU sn-.in ..: » 
 
 r« uie o..s.^ of Land and Marino Sui vovin- ThMt. ,i- 
 nil tie (nlcuhtinn. ;,. V • • '^"'^•'^'"o- -^ ncy direct 
 \nude fhn . I >^'^Viivat.on and Astronomy. Thcv 
 
 ocean, and the Minnr t^ . ^'^^■^''■^" ^''^ P'-^^'^lcs. 
 
 rho .ul.jeot of ,ho p,-o,,o„t tre..i.e i, /.™,; ,%.„e,„-„. 
 i'ns constitutes on«> of thn m«.-. • ^- ^t^ym^. 
 
 branches of tlm M !l '^nportant and useful 
 
 dill of ti. f ^^^.^'^'"f ^'«^- 'i^ho Surveyor, in the dis- 
 1 To ^^'•"^^•^^''^"^^' ^'"ti^^> ^i'-ects hi. attention ' 
 
 Ji- 10 the tracing and measurement of lines: 
 
 m1 ''V'", '''I'm'"'"" "'■'" ''»^""l'"i« "Pon« plan or 
 
 .hr';„, ":;'"", ° """ "'r' "■"■" '■^^"'""''" "«"■-"" 
 
 ™,e rf hi ' '■'='"•■"■'"'••'<' "''J-^"^ «i'lm.<'.' near ,ho 
 
 h^!h. , "P"'-" »"».-to ...csun, their distances a,.I 
 
 ;usht..-to a=.crta,„ .ho van,,;ion of ,ho compa.,,,-.ho la- 
 
 mu a,,,, lo„.i.,.d„ „f p„.,i„,„,^^ __,^^, • - 
 
 - o loh,...,.o „„, o,.lj' the boumlarie, c • an onlin,.,-y ^ :;' 
 
 but also of coast, and harhour.,,_„r .o ?ivc a corroc. rlDro* 
 
 =o„.a„„„ ,.,-.hc i„„,„ali.ic., of the earth'. JC "'""" 
 
 Anions the ancicn..,. Arohin,edc,and Tan.agli, inade coi- 
 
pnirACK. 
 
 nidcral)!( 
 
 ix 
 
 progress in evolving the pritirlnlea bv whi^^K 
 are dct*innincd Tho r *" '"'P'''* oy «nich areas 
 
 .00 much ;;: iio::,,'"' ,. r;z:^> - - f 7-. - -een 
 
 1. St, I more just ,„ ii, „pp|ica,i„„ ,„ ,, ,j,:,. /'""'' 
 American Colonies W„<,d.L„„d Survey ,!» nftl', i "' 
 
 For th,s re„so„ „.,„ o/'^: „: Lef;::!: d"; ""'"• ^• 
 
 whh which I have „,e,, arcs,, s„i.ed X ,lhf r^'lh? 
 
 vmces. I he necessity f„r so.ne „orI< on thesninec. ada r; 
 to our condition, appear, to mo to bo trrea. 2: ' 
 
 Fron, the frec,uency with which disp^e , t, t L'^'f'"'- 
 are introduced into our Courts of Lav fcr I r- ""''"'' 
 «ic.ent that son.o .-.e.uaintance wi^"l!:d t: ;;• rj:!^: 
 
 tlio i.gal profession. Scarcely less necessary i, an ,c 
 
 ri::rr:' ;,;:;:— 'rrir^r '■----- 
 
 o.,,ht to have son,e Unowi^e 7 :t.':Zr7 :tX 
 tie aequanuance with Land Surveying would hav. , 
 
 .nany an individual from minors liticaZ I ^"^ 
 
 only his property has been sauntfd ,:,;',:""" ""i 
 
 ■mnd disturbcl, and strife and contonti „ t'pr d thrCh !: 
 commun tv. Im')rcs=!Pr1 xviti. . i ' l"^eaa tnrough the 
 
 <Icrlako Ihofollowtng treatise, which I now offer to the ac- 
 
PREFACE. 
 
 cq,l„„«of„„,„,]„l.,o,«jn,Mic. H„„-n,rIhavc.uc..cc,ln,l 
 .t .» no, fur ,„e t,. ,lot=mn„o. Ti,o ,leci.i„„ i, u.ft , , , .l 
 u,l,,„e„. .,f ,1.0 ,li»c-,i„,;..a.i„, .cder. I l,ave on , o 
 mark ,„ condu.Mun, .l,.t I make „o „reten.i„,„ to our ,V, r 
 Sreat uo-ura-y of .„,„p„,iti„,, „■ , ,,,,, ,„e,3eUe , • fe 
 -lonug u.y ,ncauu,s intolligil,!., r have arrived at the .u - 
 not of my ainijition on this point. 
 ^VwCrun3lvick, Oetoher, !811. 
 
C'Oi\TEr>TS, 
 
 Befinial Fractions, . . _ 
 
 Kxtraction of the Square Root, 
 
 GKOMETRY^Definitions, 
 Contractions, - _ _ _ 
 
 Explanation of Signs, - . _ 
 Geometrical Problems, 
 Concerning Scales of Equal Parts, 
 Logarithms, - . _ _' 
 
 Trigonometry, _ . _ 
 
 Mensuration of Heights and Distances, 
 
 l^ANo SuRvEYmG-Instrument employed, 
 L-sc of the Chain, . . . _ ' 
 
 Circiimferentor, - . . 
 
 Theodolite, - . . 
 
 S3 r*rotractor, 
 
 Field Book, --.."" 
 
 Variation of the Compass, 
 Running of Lines, - _ _ 
 
 Mensuration of Land, - _ 
 Division of Land, - , 
 
 Location of Land, - _ _ 
 
 ApPENDix-Demonstration of Problen.s, ' 
 1 romiscuous Probleins, 
 Levelling, - - . 
 
 33 
 
 33 
 
 PAGE. 
 1 
 
 9 
 11 
 16 
 17 
 20 
 29 
 31 
 452 
 50 
 54 
 61 
 66 
 69 
 70 
 71 
 74 
 85 
 98 
 117 
 128 
 IS!) 
 153 
 17;> 
 
4 
 
 Xll 
 
 M 
 
 CONTEXTg. 
 
 PXrrZ. 
 
 msc>:r.r.AJ.Eotrs^Re-e8tablish^cntoflost boundaries, 176 
 I- acts concerning Magnetiiim, . . . ,-- 
 
 Meridian Lines, 
 Concluding Hemarks, 
 
 179 
 180 
 
 I: 
 
itiaries, 176 
 
 - 177 
 179 
 
 - ISO 
 
 DECIMAL FRACTIONS. 
 
 IHE TERM FractioiV, literally denotes something broken 
 
 To form a distinct conception of the nature of fraction's 
 employed in calculations, let the Student suppose any object 
 or quantity broken, or divided, into several equal parts. Any 
 number of these parts, considered in their relation to tho 
 whole objector quantity, constitutes a fraction. 
 
 A fraction is expressed by two numbers, placed the one 
 
 above the other, with a line between them, thus: — . 
 
 5 
 
 The figure below the line (5), called the denominator, ex- 
 presses the number of equal parts into which any obje;'t or 
 quantity is supposed to be livided; and the figure above the 
 line (3), called the numerator, specifies the number of these 
 parts which the fraction represents. 
 
 Decimal Fractions are such as he . e for their dunomin.i- 
 tors, 10, or some multiple of 10, that is, 10 multiplied into 
 itself a certain number of times, as 100, 1,000, 10,000.. ix.c. 
 
 Expressed in the common form, they appear thus: — ~ 
 1 000 ^^' wecimal form, the denominator, btini? etisi' 
 
— r- 
 
 
 CI 
 
 DECIMAL FRACTIONS, 
 
 ly ascertained, is omitted; and its pKace is supplied hy a dot 
 or decimal point, (.) prefixed to the numerator, thus: .3, 
 .15, .261, &c. 
 
 To ascertain the denominator of a decimal fraction, it is 
 only necessary to write doAvn as many cyphers as there are 
 iigures in the fraction; and then to place the figure 1 before 
 them. 
 
 Cyphers on the riglit hand of decimal fractions, do not 
 ailect their value; but every cypher on the left hand dimi- 
 nishes their value tenfold. * 
 
 The value of figures in decimals as in whole numbers is 
 determined by their position. The following table, in which 
 fhe figures on the left hand of the decimal point are Avholc 
 numbers, and those on the right are decimals, will illustrate 
 the influence of position in determining their value: — 
 
 
 
 Integers 
 
 
 
 
 
 
 Deci 
 
 mals 
 
 
 
 8 
 
 1 
 
 3 4 
 
 1^ 
 
 4 
 
 6 . 
 
 4 
 
 1 
 
 ^*0 
 
 3 
 
 5 
 
 7 
 
 
 X 
 
 H H 
 
 ffi 
 
 H 
 
 g 
 
 H 
 
 ffi 
 
 H 
 
 »^ 
 
 X 
 
 Is: 
 
 o 
 
 3 
 
 5 
 
 ST 
 
 housand: 
 ens of T 
 
 5 
 
 o 
 57 
 
 2 
 
 
 2 
 
 Cm 
 
 c 
 
 c 
 
 2 
 
 O 
 
 
 
 c 
 
 -T" \J* 
 
 
 
 
 
 J. 
 
 r^ 
 
 cc 
 
 c 
 
 ^ 
 
 
 •-» 
 
 o 
 
 
 
 
 
 \f 
 
 7J 
 
 p 
 
 
 
 
 H^ 
 
 <ri 
 
 
 
 
 
 
 
 &. 
 
 X 
 
 
 
 
 
 
 
 
 
 
 
 
 O-d 
 
 
 
 — 
 
 
 
 
 
 
 
 
 !Z 
 
 zz^ 
 
 
 
 
 ^' 
 
 
 
 
 
 
 
 
 
 
 
 •11 
 
 
 
 
 
 
 
 
 
 or. 
 
 
 
 S 
 
 
 
 
 
 
 
 
 
 "■• 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 'Jk 
 
 
 
 
 
 
 
 
 
 
 
 The notation and numeration of decimals will be obvious 
 from the following examples: — 
 
 4. 7 signifies four, and seven tenth parts. 
 
 47 " four tenth parts, and seven hundredth parts, 
 
 or 47 hundredth parts. 
 • 047 " fom- lumdredth parts, and seven thousandth 
 ])arts. or 47 thousandth parts. 
 4.07 " four, siufl seven hundredth i>urts. 
 
 4.O07 '• i'our and seven thousandth parts. 
 
1 by a dot 
 thus: .3, 
 
 tion, it is 
 
 tliere are 
 
 3 1 before 
 
 s, do not 
 md diiTii- 
 
 iiiribcrs is 
 in which 
 ire Avholc 
 illustrate 
 
 Z^ECIMAL TRACTIONS ( 
 
 ADDITION. 
 
 RULE. 
 
 Place the figure? dh-ectly underneath'those of the same va- 
 lue, whether they be mixed numbers, or pure decimals, pay- 
 ini]f particular attention to the separating points. These 
 should always appear in a direct line, one under another. 
 Then add as in whole numbers. 
 
 EXAMPLES. 
 
 1. Add 2.81, 5.50, 1.6, 4.334, 6.3431, together. 
 
 2.81 
 5.50 
 1.6 
 4.334 
 6.2431 
 
 
 
 
 
 *&ns. 20.4871. 
 
 
 7 
 
 2. 
 
 Add4. 28,3. 2187, .0024,342.501, .223, and 1 .2324101 
 
 5 
 
 together. 
 
 
 X 
 
 )^ 
 
 
 
 4.28 
 
 
 *— • 
 
 
 
 3.2187 
 
 r. 
 
 
 
 
 n02-4 
 
 H> 
 
 3. 
 
 
 
 842.501 
 
 tr 
 
 7j 
 
 % 
 
 
 .223 
 
 c 
 
 
 i 
 
 
 1.2324101 
 
 'Mns. 351.4375101. 
 
 obvious 
 
 th })arts, 
 )usandth 
 
 SUBTRACTION. 
 
 RtTLE. 
 
 Place the figures as directed in Addition, then deduct as 
 in wJiole numbers. 
 
 EXAMPLES* 
 
 ! From 28.4 take 24.35. 
 
 28.4 
 24.35 
 
 *^ns, 4.05. 
 
DECIMAL FRACTIONS, 
 
 2. From 70,38 take .829. 
 
 70.38 
 .829 
 
 *fins. 69.551. 
 MULTIPLICATION. 
 
 KULE. 
 
 m^frtn h. T ."''; P""" "^ "^ "^^"y PJ^<^^« for <^eci. 
 
 r toTh r Tf th "' " ''"^ are decimals in both Fao- 
 
 ductSt^ 1 T "'" ""' ^^ "^^"y %»»-^« ^" the pro. 
 
 prcfo- ' r^' "' '^' '"'^ '^^"^^^^^ «WJy the defect by 
 prehAing cyphers on the left hand. * 
 
 EXAMPLES. 
 
 1. Multiply 3.141592 by 52.7438. 
 
 3.141592 
 52.7438 
 
 25189736 
 9424776 
 
 12566368 
 21991144 
 6283184 
 15707960 
 
 ^ns. 165.6995001296, 
 2. Multiply .15 by .3. 
 
 .15 
 
 t^ns. .045 
 
 DIVISION. 
 
 RULE. 
 
 Divide as in whole numbers, annexing cyphers to the di- 
 vidend when necessary, observing that the divisor and nl 
 tienc musi together contahi as many decimal figures "as are 
 
 M 
 
numbers. 
 3 for deci- 
 both Fao- 
 i the pro- 
 defect by 
 
 DKCIMAL FRACTIONS. 5 
 
 tontained in the dividend. If at the conclusion of the work 
 the divisor and quotient do not contain as many decimal 
 figures as are contained in the dividend, the deficiency must 
 be supplied by prefixing cyphers to the quotient. 
 
 EXAMPLES. 
 
 1 . Divide 66 , 993548 by 27 . 4. 
 
 87. 4)66. 99354»(2. 44602 w3ns. 
 548 
 
 1219 
 1096 
 
 1233 
 1696 
 
 1375 
 1370 
 
 548 
 548 
 
 «. Divide .45695 by 12.5. 
 
 13.5).45695Qa{.0S6ii56»an». 
 375 
 
 819 
 750 
 
 695 
 635 
 
 700 
 625 
 
 ^50 
 760 
 
ft 
 
 m 
 
 f 
 
 
 ' 
 
 W W ? 
 
 I 
 
 <. 
 
 f 
 
 ® J^ECIMAL FRACTIONS. 
 
 REDUCTION. 
 
 To reduce a Vulgar Fraction to a Decimal of the same value. 
 
 RULE. 
 
 Annex cyphers to the numerator, and .livide hv the Ao 
 
 EXAMPLES. 
 8 
 
 1. Reduce — to a Decimal Fraction. 
 4 
 
 4)3.00 
 
 . 75 ^ns. 
 5 
 2. Reduce _ to a Decimal Fraction. 
 64 
 
 64)5. 00(. 078125. ^W5. 
 
 448 
 
 520 
 512 
 
 80, &c. 
 Every quantity may be considered as a fraction of a lar^ 
 
 ger quantity of the sam. kind; as an inch is the 1 of afoot, 
 
 a pole or perch is 1 of a rood, or -i- of an acre! ^c, and 
 
 may be reduced to a decimal fraction by the preceding rule, 
 observmg that the given quantity is the numerator ff the 
 fractK>n and the number of that denomination contained in 
 the higher denomination is its denominator. 
 
 EXAMPLES. 
 
 1. Reduce 9 inches to the decimal of a foot 
 In this example 9 is the numerator, and 12,'the number of 
 inches in a foot, is the denominator; thus : -. Tho opera- 
 tion is as follows ;— ^^ 
 
 1^)9.00 
 
 . 75 dnsi 
 
 M 
 
DECIMAL fractions/ 7 
 
 2. Reduce 20 perches to the decimal of an acre. 
 
 In this example 20 is the numemtor, and 160, the number 
 
 of perches in an acre, is the denominator. Then 
 
 160)20. 0(. 125 Ans. 
 160 
 
 400 
 S20 
 
 800 
 800 
 
 When the given quantity is of different denominations, 
 reduce them to the lowest denomination for a numerator. 
 The number of the same denomination contained in the in- 
 teger will be the denominator. Then proceed as above. 
 
 KXAMPX.ES. 
 
 1. Reduce 1 rood 14 perches to the decimal of an acre. 
 
 r. p. 
 1 14 
 40 
 
 rr,, , ^, H perches, Numerator. 
 
 Then 160)54.0(.3375 w2n». 
 
 48 
 
 600 
 480 
 
 1200 
 1120 
 
 800 
 800 
 
 2. Reduce 21 min. 54 sec. to the decimal of ft dejiree. 
 
 21' 54" 
 60 
 
 60 
 
 3600) 1 31 4. 0(. 365 .^n*: 
 1080 
 
 13M Numerator. 60 
 
 60 
 
 %wQ JDtuoiiiinator* 
 
 23400 
 21600 
 
 18000 
 18000 
 
3 
 
 
 ! 
 
 DECIMAL PRACTIOKS, 
 
 To determine the value of a Decimal. 
 
 KVLZ. 
 
 Multiply the decimal by the numhpr «<• 
 inferior denomination contaTned r^h! /'"' '^ ^^' "^^* 
 in the product as many pllce' for d '"T' ^^'"^'"^ ««* 
 hand, as tho given decfm^rc J«ts o ".t' '^ *'' ^'^'^ 
 gures on the left hand of thp .W , • ^ ^^"'^ «>• fi" 
 ger number, xvhile the fi^ur.?'T ?"'"* ^'" ^« «» '"de- 
 cimals. Then muldnfv Z^^ 'f ' ^'^"^ ^^'" ^^ de- 
 parts c.mtained in tKLinl?"'' '^ ^^^ ""-'^er of 
 off as bef,re. Pro e d" h tuUtt^ ^"^' "^^^ 
 tlenomination. ^ " '' ^^^"^^^ to the lowest 
 
 EXAMPLES. 
 
 i What is the value of .6 of 
 
 an acre? 
 
 • 6 
 4 
 
 r. p. 
 ^ins. 2 16. 
 
 2.4 
 40 
 
 16.0 
 
 «. What is the value of. 175 of a Pound? 
 
 9, d. 
 
 *^ns, s 6 
 
 -175 
 20 
 
 3.500 
 12 
 
 6.000 
 
 «• What is the value of .« of a degree? 
 
 .42 
 60 
 
 25.20 
 60 
 
 vJA*. 25' 13' 
 
 13.00 
 
^f the next 
 pointing off 
 J the right 
 gure or fi- 
 56 an inte- 
 viH be de- 
 lumber of 
 and point 
 the lowest 
 
 THE EXTRACTION OF THE SQUARE ROOT. 
 
 The Square Root of any number is the quantity or num- 
 ber, which, when squared or mulfiplied by itself, will yield 
 the given number as its product. Thu.s, 4 is the square 
 root of 16, as 4 squared or multiplied by itself will yield 16 
 aa it3 product. 16 is also the square of 4. 
 
 To Extract the Square Root. 
 
 RULE, 
 
 Point the given number into periods of two figures each, 
 beginning at the units place; then find the {greatest number 
 the square of which shall be equal to or les than the first 
 period, or the quantity before the first point towards the ^eft 
 band. Place that number in the quotient. Write the square 
 of that number under the first period, and subtract. To the 
 remainder bring down the second period, and call the whole 
 quantity the resolvend. On the left hand of the resolvend 
 write the double of the figure placed in the quotient, 
 after the manner of a divisor. Enquire how often this 
 divisor is contained in the resolvend, omitting the figure in 
 the units place of the resolvend. Write that number in the 
 quotient and also on the right hand of the divisor. Multiply 
 this divisor by the figure last placed in the quotient, and sub- 
 tract the product from the resolvend. To the remainder 
 bring down the third period for a new resolvend. To the 
 last divisor add the figure last placed in the quotient and 
 write the sum on the left hand of the resolvend. Then pro- 
 ceed as before until all the periods are brought down. The 
 quotient will be the square root required. 
 
 iVofe.— When there is a remainder at the termination of 
 the process after the last period has been brought down the 
 operation may i,e continued at pleasure by annexing periods 
 of cyphers for the formation of new resolvends: remember- 
 ing always that all Inu figures placed in the quotient after 
 the annexation of the first period of cyphers, are decimals. 
 
10 
 
 ■ if 
 
 THE EXTRACTION OF THE 
 EXAMPLES. 
 
 i' VVhat is the square root of the 5 
 
 S«ll/ABE HOOT. 
 
 square numl>cr i(H5 ^ 
 20.35 (45 ^ns. 
 16 
 
 35)425 
 425 
 
 2. What is the 
 
 square root of 22071 204.? 
 
 22.07.12.04 (4608 »^,w. 
 10 
 
 86)607 
 6 516 
 
 929)!)II> 
 9 8361 
 
 9388) 75104 
 75104 
 
 ^Vhat is the square root of 180000000? 
 1.80.00.00.00 (13416 ^rw. 
 
 23) 80 
 8 69 
 
 264)1100 
 4 1056 
 
 2681) 4400 
 I 2681 
 
 26826)1 71 900~ 
 160956 
 
 10944 
 
 
'"■^ 
 
 GEOMETRY. 
 
 DEFINITIONS, 
 
 1. Geometry is that science which treats of the proper- 
 ties and rehitions of inagnitu(le.s. 
 
 2. A Point is that Avhich has posi^ion, but not inafrnifiule. 
 
 3. A Line id that which 1ms lengtJi, without brcadtu or 
 
 thickness. 
 
 ^' B- — The extremities of a line are points. 
 
 4. A Straight or Right Line is the shortest line which 
 can be drawn betweeen two points, 
 
 5. Every line which is neither strai<rht nor composed of 
 «trai<,'ht lines is a Curve Line; as A B. (Fig. ].) 
 
 6. A Si'PERFiciEs or Surface is that which has lengnh 
 and breadth, without thickness; as A B C D. ( Fig. i.) 
 
 ". Convexity, when applied in reference to a curve line, 
 •lenotes its exterior or outward part; as A B C; and Con- 
 cavity, its interior or inner part; as D E F. {Fie:, 3.) 
 
 S. An Angle is the inclination of two sirai<,dit lim s to- 
 ward each other, which meet in a point; as A B C. (Fig-, 
 i.) The point in which the straight lines meet is called the 
 <in-i^uhr point. 
 
 JSate.-AVhcn an angle is expressed by three letters, ihe 
 tetter denotinj; the annular point is alwavs placed in the jrud- 
 (lit, between the other two; as A B C. *An unule. however. 
 
13 
 
 I 
 
 GEOMETRY. 
 
 is frequently expressed by one letter, which in the figure ia 
 always placed at the angular point; as B. ^Fig 5 ) 
 
 9 When a straight line, standing on another straight line, 
 makes the adjacent angles equal to each other, each of the 
 angles ,s called a right angle; and the straight line whch 
 Tt^. 60 ''"'''' "" '' '''''' ^ Jyendicul^t 
 
 10. A Mixed Angle is an angle formed by one straight 
 line and one curved Ime. (Fig 7 ) « J»"djgnc 
 
 gie '' (^'^'o'r '^''''' '' '^'' ''^''*' ^' ^''' '^''" " ''^^' ^- 
 
 13. A Figure is that which is enclosed by one or more 
 boundaries. Two straight lines cannot enclose a space! 
 1 he space contained within the boundary, or boundaries ia 
 called the area of the Figure. '"^nes, la 
 
 14 A Circle is a plane figure contained by one line, 
 which IS called the circumference, and is such that all straight 
 Imes drawn xrora a certain point within the figure to the 5r. 
 cumference are equal to one another. This point is called 
 the c../.e of the circle. Thus A B C D E, ijthe circumfe- 
 rence, and F, the centre; and the lines F A, F C, F D, and 
 t iL, are all equal to each other, (Fig. 10.) 
 
 15, A Diameter of a circle is a straight line drawn through 
 tlie^centre, and terminated both ways by the circumferenct^j 
 
 16, A Radius or Semidiameter is a straight line drawn 
 from the centre, and terminated by the circumference; as F A 
 
 17, An Arc or Arch of a circle is any part of its circum^ 
 ference; as C D. The chord of an arc Is the straight "e 
 whicii joins Its extremities; as C « D. 
 
 18 A Semicircle is the figure contained by a diameter 
 and the part of the circumference cut off by ii. (Fig in 
 
 10 The circumference of every circle is supposed to be 
 a yided into 3 equal parts, called Degrees; eacdi degree ^ 
 
 ZT' ? '-^ ''^'''''''' ^"^^ '' -i--^! parts, callfd M ! 
 ^'UTEs; each minute into 60 cquul parts, called seconds; and 
 
 1 angle. 
 
I the figure is 
 r. 5.) 
 
 straight line, 
 
 each of the 
 
 ^t line which 
 
 ^endicular to 
 
 one straight 
 
 than a right 
 
 n a right an- 
 
 iie or more 
 se a space, 
 undaries, ia 
 
 ^y one line, 
 t all straight 
 3 to the cir- 
 nt is called 
 e circumfe- 
 , F D, and 
 
 m\ through 
 liuiferencej 
 
 ine drawn 
 3e;asF A. 
 its circuin- 
 raxght line 
 
 diameter, 
 {Fig. 11,) 
 
 3sed to be 
 
 degree ig 
 
 ailed Mi- 
 
 ff 
 
 f'KOMETRV. jy 
 
 .0 „„ ir ,i,<.,-<.,b>-.. „ „i,vi,., „,. „ p„,, .,,. „ ,,„,, 
 
 cr,l,e,l <„,„, ,l,e ver.c;. of „„y „„^,„ ,„ ;„ „,^ ^ 
 
 be.- of degree.,. ,„,„„,«, &e., contained in ,l,c arc of .1,^, 
 ••.rcle, ,„.ercep.e,l between the line, forming the angle, i, he 
 measure of that angh.. Thus in the figure at definition R 
 
 ho number of degree., minutes, &c., containe,! in the arc 
 ^ U, IS the measure of the angle C F D. 
 
 I 20 I^^'^ALL^i^ or Collateral Lines are lines equi-dis- 
 J tant from each other in all their parts, or lines which, being 
 . .n the same plane and produced ever so far both way. wiU 
 never meet. • ' 
 
 \ bytatr,;:::."" """"" '-' "■■'- -'-^ - "<-<-«'' 
 
 22. MixT,L.»EA.. F,o„BEs are those which are bounded 
 partly by straight and partly hy curved lines. 
 
 23 Thilaterai. Figures or Triancrs ,re those 
 which are contained by three straight lines 
 
 24. (JcADRiLATERAL FiouRE, arc thosc wlfich arc bound- 
 ed by four straight lines. 
 
 25. Mur,TiLATERAr. FiouREs or P„,.vgom are those 
 which are bounded by more that four straight lines 4T 
 .ure of five sides is .sometimes called a ittg:; olsf," 
 sides .Hexago,,, &c. If their si.lcs are all e.,mil they a ' 
 
 .lulil'-^X^. I:;^-™" -'-»'"'■'■•■••-'.- -e. 
 A B is called the t." ™i cT'Z"'"'' '" V- "' ■'''"• -''" 
 
 angle 
 
 nbt 
 
 SO. An Obtuse- 
 
 usf anfflo. 
 
 (P 
 
 ANGLED Trj^n 
 
 lil\ 
 
 Ui.) 
 
 J>erpen(licular. 
 i-r.K is that whioh h 
 
 as an 
 
'I 
 
 ; *i^ : 
 
 ^1^ 
 
 f4 
 
 GEOMETRT. 
 
 31. An Acute-angled Triangle is that uhich has thre« 
 acute angles. (Fi^. 17.) ^^^** 
 
 32 Of four^sided figures, a square is that which has all 
 sfl equal, and all it. angles right angles. (Fig , V" 
 
 34. A Rhombus is that which has all its sides equal, hut 
 
 •t« an^Ues are not right angles. (Fig. 20 ) ^ ' ■" 
 
 35.. A Rhomboid is that which has its opposite sides equal 
 
 («^. ily"'" '"""'""''*'' """"^^ °™ ^■•'"'^'^ T„.„..„„». 
 
 _37. A srraishtn„c, joining the opposite point., or angle, 
 of a quudnlatoral %„rc, is called a D,Aoo^ „ 
 
 Sr.a.e^thanr.vo'Ag ft al "te "i,t ^ /" f ^ """ «'''? '' '' 
 
 o'"^ aiij^fcs, ir IS said to be rc-entraiit. 
 
 ';'• ;^"^ ^^^•^ f ^ yocXa\no^.,l figure n:ay be called the base 
 >1.K 1 he angular point, opposite to the base of a triangle 
 
 40. -rHE Altitude of any triangle or parallelogram, i« a 
 
 I J 'it 
 
 POSTULATES. 
 
 1- Let it be granted that a right line .na.v be drawn from 
 any one point to any other point; 
 
 9. That a terminated straight line may be produced or 
 '-•ont.nucd in a straight line at pleasure; and 
 
 »i.h any radiu,,. '' "" "'"" ""'' """■<•■ ->* 
 
 ^ withou 
 
 I in the t 
 
 7 t5. A 
 
 ' or inon 
 
 '' 7.. A 
 
 ^ 
 
ch has rhre« 
 
 ^hich has all 
 
 i^ig. 18.) 
 
 has all itt« 
 ' all equal. 
 
 equal, bur 
 
 sides equal 
 r its angles 
 
 an inclined 
 5 are paral- 
 
 lAPEZIUMfr. 
 
 or angle* 
 
 s less thair 
 when it 't» 
 drant. 
 
 1 the BASE. 
 
 a triangle. 
 
 called the 
 
 grarn, it) a 
 side upon 
 
 iwn trom 
 duced or 
 It re. and 
 
 OEOMETRT, jj 
 
 AXIOMS. 
 
 2. If equals be added to equals the wholes are equal 
 equal ''" ''"'" '"" ^^"^^^' ^^« ---nders are 
 
 4. If equals be added to unequals, the wholes are unequal 
 ^^^5.^ If^equals be ta.en fro. unequals, the re.aindrar. 
 
 r^"^:""^ ""'' ''''''' ^' ''^ -- *^-^' are equal 
 
 ro Le™X:.''^' ^" '^"'^^^ ^^ ^^^ -- ^^-^' - equal 
 
 role'Sf '''''''' ^^^"'^ '" ^^^ -- ^P- - equal 
 9. The whole is greater than its part. 
 0. All nght angles are equal to one another, 
 i. 1 wo straight lines cannot be drawn throimh th« 
 
 , A rrr Explanation of Terms. 
 
 <e ; of I '^ '" ' *'"'^ ^^''^ ^^^«'«^« evident by a pro- 
 T f ^"'^;«»'"g called demonstration. ^ ^ 
 
 '■ ^*''^'"''"»'- -mark n.Uo .p„„ ,«■„. preceding 
 
J'^ 
 
 .k 
 
 18 
 
 GEOMETRY, 
 
 proposition or propositions, for the purpose of illustrating 
 their connexion, their restriction, their extension, or the 
 nmnner of their application, 
 
 S, An Investigation is a process employed for the (lisc(,- 
 very of unknown truths, 
 
 J». The Cow.s/rMc^jon of a fiirure is an operation in which 
 lines are drawn and points determined, according to certain 
 specified conditions. 
 
 10, The Data, or Premises of n proposition, are the majj- 
 nitudes, quantities, relations, and conditions stated oririven. 
 from which ne^v relations, &c., arc to be deduced, or' from 
 which a figure is to be constructed. 
 
 signifies 
 
 Contractions employed in the following part or this 
 
 Work. 
 Problem. 
 
 Geometry, Geometrical, 
 Trigonometry, Trigonometrical, 
 Logarithm, Logarithmic. 
 Euclid. 
 Theorem. 
 Hypotenuse. 
 Perpendicular, 
 Mensuration. 
 Division. 
 Location, 
 Tangent. 
 Secant, 
 Natural. 
 Scholium, 
 Radius. 
 Appendix. 
 Amplitude. 
 
 Difference of Jjatitude. 
 Departure. 
 Example. 
 
 Prob. 
 
 Geo. 
 
 Trig. 
 
 Leg. 
 
 Euc. 
 
 Theo. 
 
 Hyp. 
 
 Per. 
 
 Men. 
 
 Div. 
 
 tiOC. 
 
 Tan. 
 
 Sec. 
 
 Nat. 
 
 Scho. 
 
 Rad. 
 
 App. 
 
 Amp. 
 
 Diff. Lat. 
 
 Dep. 
 
 (C 
 
 ( 
 
 (( 
 cc 
 
 Si 
 
 (( 
 a 
 
 cc 
 
 (C 
 
 cc 
 
 (( 
 
 
 'fir 
 
 Ch. 
 
 (I 
 
 Ch 
 
 un. 
 
^nsion, or the 
 
 for the disco- 
 
 I 
 
 
 GEOMETRV. 
 
 ^^ signifies 
 / er ^s. 
 
 tO", 3(y, 20" '' 
 
 Link. 
 
 Ang-le or Angles. 
 
 Triangle. 
 
 11 
 
 S 20<^ W. 
 
 ^ _.^^6...^, xiuny minutes, 
 I wenty seconds. 
 South, Twenty degrees West. 
 
 PART or THIfl 
 
 
 ^ Explanation op Signs. 
 
 Thus A = B "ills h,! , " "''""'' "'■ '"■ ^'"'='' ™'"''. 
 sentccl by B. ' *" ••"""'"y °'- magnilude repr,,- 
 
 'he quantities between which' it r„,. ""'"='"es that 
 
 «e.her, and the vvhoinin ".'''' '^ '''' "'''''''l «»- 
 
 o-antitie, between ;v;;::h?ir;red'T„'!v:: ;- °; ••'•' 
 
 ~— (read minus) is the siJ<rn «r „, u. 
 that the latter of the uT ^ subtraction. It denotes 
 
 - '^. .0 he .:c:rzr r„r r;^;:f '; t-'- 
 
 e<i by the let't^Aabol 1";,""" "' "" "-"'"y «P-se„,: 
 ler B. "^^ "'" 1"="""^ --epresented by the let- 
 
 each other; and he wL,!. 'I'r'' "" '" '« multiplied i„,„ 
 whieh re,,„ ,., f™, uhei * ,h 7'""" *"'""'' "'« I»-»''"« 
 A X B XCde„:e;,hTp:duc^wH'T''"'r^'''' ''''■"'''■•- 
 ing .he quantity r„pro3„me,l bv I ' T""' '''"'"" '™'"P'>- 
 bythe letter B, a, dthTL{ ,■ '""""'''^ '*''"<'''''' 
 <l""...ityrepre,;„,"t,!!; C ™ '""'"'"'"'' "«''"' l-^ ">« 
 
 -r- is the sign of division r* - 
 
 the two quantities betw:;" wh h'T''''. '''''' '''' '«"»-• «*' 
 
 <^-' by the latter, and he "^ot '' ^''^''^ '^' ^« ^^ ^'^•- 
 ' ^''^ ''^^'•^ expression denotes the quo- 
 
 
 ^ 
 
IB 
 
 OEOMETRF. 
 
 ..;^i 
 
 ii 
 
 i II 
 
 ^t 
 
 
 m 
 
 ■ -I'l 
 
 t.ent ^vli,ch will result from the division of the former quan- 
 tity by the latter, thus A ~ B indicates that the quantity re- 
 presented r>y A, is to be divided by the quantity represented 
 by C. Divjsion is also frequently expressed in the form of 
 a fraction, by writing the quantity to be divided above the 
 quantity by which it Is. to be divided, with a line between 
 
 them; thus — expresses the quotient of A divided by B. 
 
 : :: : is the sign of Proportion. Thus, A: B:: C- D 
 denotes that A bears the same proportion to B, which C 
 beai-s to D, and is read thus, as A is to B so is C to D. 
 
 A= denotes the square described on a line A. If the line 
 IS expressed by tAvo letters, A B, then the square described 
 upon It IS denoted by the sign A B^. 
 
 The principal signs employed in Algebra are the same 
 with those exi,lained above. It may be observed, however, 
 that Algebraists generaUy employ the small letters of the al- 
 phabct in their calculations. Instead of X the sign of multi- 
 plication, a dot ( . ) is frequently employed in Algebra, or the 
 letters are written together without any sign between them. 
 1 hus aXb,a.b, and 06, all express the product of a mul- 
 a-\-b — c 
 
 tiplied by b, 
 
 ax 
 
 expresses the quotient which re- 
 
 sults from the division of the excess of the sum of a added 
 to 6 above c, by a multiplied into x. It is read thu.^, a plui 
 6 minus c, divided by a multiplied by x. 
 
 x = a~{-b — c shews that the quantity represented by x is 
 equa. to the excess of tlie sum of a added to b above c. It 
 IS read x equal to a plus b minus c. 
 
 y is called the radioal sign, and. denotes that some root 
 
 of the quantity before which it is placed is to be extracted. 
 
 1 hus, Va denotes the square root of a. Wa denotes the 
 
 cube root of a. Instead of the radical sign, a fraction is 
 
 aom.etime.s employed; thus, ffi denotes the square root of a.. 
 <?' denotes the cube root of the square of a. 
 
 ■Si 
 
ceCMlTRT, 
 
 V» 
 
 former quan- 
 e quantity re- 
 y represented 
 n the form of 
 led above the 
 line between 
 
 nded by B. 
 
 i: B:: C: D 
 B, which C 
 C toD. 
 
 If the line 
 ire described 
 
 re the same 
 ed, however, 
 ;ers of the al- 
 ygnof multi- 
 Igebra, or the 
 3twccn thenx. 
 ict of « mul- 
 
 ■0 
 
 Positive or affirmative quantities are those which aro to be 
 i<<ded, or which have the sign -f before them. 
 
 Negative quantities are those which have the sign - be- 
 fore them. 
 
 A co-efficient is a letter or number prefixed to any quanti- 
 ty into which it is to be multiplied. In the expressions ax. 
 Sx, a and 3 are the co-eificient^ of x. When a quantity ap- 
 pears without any co-efficient unity or 1 is understood as 
 being its co-efticient. 
 
 A Vinculum is a line drawn over several quantities, for 
 
 ihe purpose of collecting them into one, Thus a -f 6 X e 
 denotes that the compound quantity « -|- 6 is to be multiplied 
 by «, So in like manner V ab -\- c^ denotes the square roof 
 of the compound quantity ab -\- c=. Instead of the vincu- 
 lum, parentheses are frequently employed, thus (a-\-b)X <^ 
 or (a -\- b) c. 
 
 A quantity without any sign prefixed to it is a positirc 
 quantity, th^ sign + being understood as placed before it. 
 
 sVl 
 
 'r.i 
 
 I 
 
 It which re- 
 
 n of rt added 
 thu9, a plui 
 
 cnted by a; is 
 above c. It 
 
 It some root 
 
 >e extracted. 
 
 denotes the 
 
 a fraction is 
 
 re root of a 
 
GEOMETfilCAL PROBLEMS, 
 
 fVhi 
 
 PROBLEM I, 
 
 To binect a right line A B, (^Fig. 23.) 
 From A and B, as centres, with any distance A6, Ba .roa,-- 
 er than hal the line A B. describe two arcs, c a Ln/cZ 
 cutting each other zn c and d. Through the points of inter- 
 section . and rf, draw the line, . . d, cutling A B in . 
 I hen \e =; eh. 
 
 PROBLEM II. 
 
 To raise a perpendicular from a given point C, in « ^<v.n 
 right line A C. {Fig. 24.) 
 
 CASE i. 
 
 When the point C is at the end of the line. 
 From aay point a, out of the lino with the radiu, «C 
 araw the arc c C b, cutting A C in b; from the point of n.^ 
 tersect.oni, through the central point «, draw the .straight 
 fine /. a c, cutting the arc c C b iu e; join c C and it wdl be 
 the perpendicular required. 
 
 CASE II. 
 
 iVhm the point is near the middle of the line. 
 
 ""i ^ke the points a and b, (Fie ^b > ,» ^«,.oj i- . 
 
 </, \^ig, -.0,; dt equal distances 
 
GEOMETRY. 
 
 21 
 
 froni C, and from them as centres, with jiny radius greater 
 than aC, describe arcs cutting each other in n; then draw h 
 straight line from C, through n and it will be the perpendi- 
 cular required. 
 
 IMS, 
 
 ^a great - 
 and c b d. 
 s of inter- 
 A B in e. 
 
 I a ec'ven 
 
 PROBLEM III. 
 
 From a given point D, (F/g-. 2G,) to let fall a perpendicular 
 on a given right line A B. 
 
 CASE I. 
 
 IVhen the given point is nearly opposite to the middle of 
 
 the line. 
 
 On D, as a centre with a radius sufficiently great de- 
 scribe an arc intersecting the line A B in m and n; then on 
 m and n, as centres, with a radius greater than half of m n, 
 fiesciibe arcs cutting each other in C: then draw a straight 
 line through the points C and D, intersecting A B m e; the 
 line e D is the perpendicular required. 
 
 CASE II. 
 
 IVhen the given point is nearly opposite the end of the line. 
 Draw a straight line from D, {Fig. 27,) to any point wi in 
 The line A B; bisect the line D m; from the point of bisec- 
 tion n, with a radius n m, or fi D describe the arc D C f« 
 intersecting A B in C; then join D C and the line of junc- 
 tion will be the perpendicular required. 
 
 n 
 
 dins rtC. 
 
 It of in- 
 straight 
 will be 
 
 stances 
 
 PROBLEM IV. 
 
 .i/ a given point A, (Fig. 28,) in a gi>:^n line A B, to make 
 an angle equal to a given angle E. 
 From the point E, with any radius describe an arc meet- 
 ing the lines containing the angle E in a and h; with the same 
 radius on the ])oint A as a centre describe the arc c d: apply 
 !he distance a b on the former arc f. the arc c d, from d to c; 
 then through the points Ac draw the line A D, which will 
 form an angle with the line A B, equal to the angle at E. 
 
^ 
 
 •EOMKTar. 
 PROBLEM V. 
 
 To Hra. a .trm.kt line through a ,i,en point parallel to a 
 
 ^'ven s'-aighl lijic. 
 l,M A (Fig. .29,) bo the given point nn,l n r ,1. ■ 
 
 Fron, the point A draw a stmij;ht line meeting the li„„ 
 
 t ar.rra'T.^'i'o'c' "t" t •■""" - -' ■- -^ -' ^" 
 
 I 
 
 PROBLEM Vf 
 f.ct At (Rff. 30,) be the given .straight line 
 
 A C a„U C B td' h '«;';: r Bc'^wi,;?™,,'""'' ""' """ 
 quired. oure A B c will be the triangle re^ 
 
 M 
 
 PROBLEM VII 
 
 Vo construct a triangle, the sides of y^hich may he eaual to 
 
 three g^.en straight lines A, B, and C. /i^. T ' 
 I-'ay ofl'astrai'^ht lino DP « i '^ 
 
 -aigh. ,i„e, aI'Ld a^fere'lwtr: °',""' ^'™" 
 'o another of the, iven line. B, descHh "'a:e™rET°' 
 
 .iv„';:'trhT^r:;;'eTa*^L'r''a,iL":"^''"^ - "f--' 
 
 PROBLEM VIII 
 "" ^'^ ^^'"^ -^ ^-- '^ D perpendicular and equal to 
 
 |i:K; 
 
OEOMKTnr, 
 
 e« 
 
 parallel to a 
 
 3 C the given 
 
 'ing the lino 
 I angle D A K 
 straight line 
 o the straight 
 
 straight line. 
 
 t 
 
 ^ B dejcril>e 
 
 'aw the lines 
 
 triangle re«- 
 
 ' be equal to 
 Fig. SI.) 
 
 f the given 
 idius equal 
 To/n E as a 
 ven line C, 
 ; then join 
 luired. 
 two of the 
 
 d equal to 
 
 A B: tli<..n from the points A and I) with the di.stanco A B 
 or A D, describe arcs intersecting each other in E Draw 
 the lines D E an.l B E, and the figure ABED will Ih- thf, 
 «qui,re required. 
 
 PHOBLKM IX.. 
 
 I ToJinJa third line proportional to ttoo given straight lims 
 
 I A and B. {Fig. 33.) 
 
 I Froui any point C, draw two straight lines, tHe one C D 
 
 -equal u> A, iho other C E equal to B running any ang:e;. 
 .|.nnD E: produce C D and C E; lay oif D F equal to B. 
 or C E, then draw F K paraMel to I) E, meeting C E pro- 
 duced .n .., the line E K will be a third proportLnal. ' 
 
 PROBLEM X. 
 
 To find a fourth proportional to three given right line, A .. 
 B, and C. {Fig. 34 ), 
 Draw two straight linos D R, and D F fonnin. an> an^r 
 K Bl, upon the line D E lay off D G equal to A, and GE 
 
 jojn G H: from the point E, draw E F parallel to G II 
 meeting the line D F in F; then H F will be a fourth pro: 
 portional to the lines A, B, and C.f ^ 
 
 PROBLEM XL 
 
 To find a mean proportional between ttoo given strairht line. 
 A and B. (Fig. 35). 
 Draw any right line C D, on itlay off C P := A and P D ^. 
 
 I {.e tru.„.le C F K. according to Euc^;" , 'r d • ^.' " r v' 
 J^. K; '^at according to th. construction CD ~ k u' H r ' ^.^^ 
 a|=K; therefore A : B : : B • E K " " ^ 
 
 ^ut --r<ling to tho;co„Btr«ction of the' F 
 J^' I. -~ K. and I) U =^ C; therefore A: B: : C 
 
 of ihR sidosol'sh* 
 
 <ng to the 'construction "of'therTg^rV. D "'i'!i', 
 
 Hi! 
 
 hi 
 
• I) 
 
 <i4 
 
 CiEOMRTRV. 
 
 B. Bisect C D in o, and with o C o,- o I) ns i-ndiiis, de- 
 scribe the semicircle C F D. Again from the; point 1', draw 
 V F perpendicular to C D: P F will bo a mean proportional 
 between A and B: i. e., C P (A) : P F :: 1» F : P D (B). 
 {Enc. vi. 13.) 
 
 PROBLEM XII. 
 
 Ma given point D, (Fig. 36,) to make an angle eiiual to a 
 given rectilineal angle A B C. 
 From the points B and D, as ccMitres, describe two arcs, 
 a b, and m n; make m n=ab; then throiiirh the points D, «, 
 draw the straight Ymv. D R, and through the points I), m, 
 draw the straight line D F: the angle K D F will be oqual 
 to the anirle ABC. 
 
 PROBLEM XIII. 
 
 To make an angle of any proposed number of degrees. 
 Draw any straight line A B, {Fig. 37,) take the first 60 
 degrees from the scale of chords,* and with this distance as 
 a radius, describe the arc ,n n. From the same s-ale, take 
 the chord of the proposed number of degrees and apply it to 
 the arc from n to m; then from the point A draw the line A 
 C through thp noint w, the angle CAB will be the angle 
 required. 
 
 r ^' ^' u'L*'*^ proposed angle exceed 90 degrees, lav oft- 
 first one half, and then the other: e. g. if the pi^oposed nnm- 
 ber of degree be 130, from the point n, towards m, lav off 
 iirst 6.5 , to 0, then trom o, towards m lay off 65° more,' and 
 It will give the measure of an angle of 130^ 
 
 To Jim 
 
 Fron 
 
 the arc 
 
 Then t 
 
 chords 
 
 the anjj 
 
 N. H 
 gre«.'s V 
 inents. 
 
 To bise 
 
 Froir 
 arc A ] 
 scribe a 
 C n, dri 
 A C B, 
 
 i insc 
 
 Divid 
 number 
 'M'lrcle n 
 inoasurt 
 fho poii 
 re nee, f 
 polygon 
 
 A line of chords, adapted to 90 o , or the fourth part of 
 circ e. IS commonly put upon the plain scale, which will befoun 
 n almost every portable case of Mathem.ntical Instrument^ 
 
 To desc 
 be r 
 
GEOMETRY. 
 
 lib 
 
 radius, dv- 
 nt I*, dinw 
 roportional 
 : P D (H). 
 
 equal fo a 
 
 two arcs, 
 oints D, w, 
 lints J), m, 
 II be oqual 
 
 legreeit. 
 
 lio first 60 
 listaiire as 
 ■■"ale, tako 
 apply it to 
 the line A 
 the anerle 
 
 es, lay oft' 
 osed npm- 
 m, lay off 
 more, and 
 
 1 
 
 PROBLEM XIV. 
 To find the number of degrees contained in any given angle 
 
 CAB. {Fig, 37). 
 From the angular point A, with the chord ot'GO^ descrihf 
 the arc m n, intersecting the lines A C and A B, in m aiut n. 
 Then take the distance m n, and apply it to the same line of 
 chords and it will show the number of degrees contained in 
 the angFe CAB. 
 
 N. B. If the distance m n exceed 90*^, the number of de- 
 grees which it contains must be ascertained bv two measure- 
 ments. 
 
 PROBLEM XV. 
 
 To bisect a give\. angle A C B, (Fig, 38,) i. e., to divide il 
 into two equal parts. 
 From the angular point C, with any jUstance describe the 
 arc A B, and from the points A, B, with any distance de- 
 scribe arcs cutting each other in n; then through the points 
 C n, draw the straight line C n, and it will bisect the angle 
 A C B, as was required. 
 
 PROBLEM XVI. 
 
 To inscribe, in a given circle, a regular polygon of any pm^ 
 posed number (5,) of sides. 
 Divide 360 (the number of degrees in a circle,) by the 
 [number of sides, (5,) and at the centre O (Fi^; 39,) of the 
 ■circle make an angle A B, the number of degrees in the 
 f measure of which shall be ecjual to the quotient, (72;) join 
 Uhc points A B, and apply the chord A B to the circumfe- 
 rence, the number of times that there are to be sides to the 
 polygon, (5j) and they will form the figure reciuired. 
 
 part of a 
 II be foun<} 
 
 lent?. 
 
 PROBLEM XVII. 
 
 To describe a parallelogram lohose area and perimeter shall 
 M be respectively eoual to the area and perimeter of 
 a given triangle \ Bi^. (Fig. 40.) 
 Produce A B to D, making B D = B C. Bisect A D in fcJ, 
 
 G 
 
 y^-^-^J^: 
 
I 
 
 iii 
 
 OEOVIETRT, 
 
 and draw IJ F parallel to A C. With the radius A E, and' 
 centre A, (lescrihe a eircle intersecting B F in ^r, then join 
 A G. Hiseet A C in H, and draw H F parallel to A G. 
 The parallelogram A G F H will be equal to the triangle 
 A B C, both in area and perimeter. 
 
 PROBLEM XA'in. 
 
 To dr.sr.rihe. a circle about a triangle A B C (^Vg*. 41.) 
 
 Binect the line* A C by the perpendicular D E: bisect also 1 
 the li?ie C B by the perj)endiciilar F G, intersecting the por- i 
 pendicular D E in H. On H, the point of intersection, as 1 
 a cfintrc; with any of the distances H A, H B, or H C, as a ^ 
 radius describe the circle ABC, passing through the points 
 A, B, and C, and it will be the circle required. 
 
 PROBLEM XIX. 
 
 V'o ronatmrt a triangle that shall he equal to a g-iren trapc- 
 zi^im ABC D. (Fig. 4^i). 
 Draw the diagonal D B, and niakc; C E parallel to it, 1 
 meeting the sid(; A B ,»roduccd in E. Join the points D, E, 1 
 and A D E will be the triangle recjiiired. 
 
 PROBLEM XX, 
 
 To describe a triangle that shall be equal to a given recti- 
 lineal figure A B C D E A. {Fig. 43.) 
 Produce the side A R both ways. Join D B^ and from C | 
 draw C G parallel to D B. Join alsA D A, and through K 
 draw E F parallel to D A. Then join D G, and D F, 
 and the triangle F I) G will be equal to the figure A B C 1) 
 E A. 
 
 PROBLEM XXL 
 
 To draxc a square equal to a given Rectangular Parallelo-^ 
 gram Mi CD. {Fig. 14.) ^ 
 
 Produce the line D A. und on the part thus produced, lay -gfor the mos 
 
 off the dis 
 on G, as t 
 DF. Pr 
 area is eq 
 
 To discri 
 
 Take ai 
 On A and 
 scribe circ 
 On the lin 
 the anguh 
 or D B, d 
 circles in t 
 as was re(i 
 
 To descril 
 A B, at 
 {Fig. 4(j 
 
 On the t 
 diameters 
 V and G, 
 the extrem 
 irUerscctioi 
 bisect the t 
 lar to iti 
 fected in F 
 in the righi 
 be placed i 
 passing thi 
 [conjugate i 
 G A F in 
 I' D s, and 
 
 'U'hf'n tl\<! Ifjrtn hue f employ 
 
 I't'tK a strain-ht !i»e i« •.tlvvuT* lu, 
 
 iilt'd, 
 
 Hiut'sst t!i»' contrary i^ e\j»tc 
 
 fetnl , 
 
 Mr accurao 
 
f .' 
 
 '^i 
 
 .s A E, and 
 , then join 
 el to A G. 
 ;ie triangle 
 
 (Fig, 41.) 
 
 : bisect also 
 ng the por- 
 rsection, as 
 r H C, as a 
 k the points 
 
 ;iven trape- 
 
 rallel to it, 
 oints D, K, 
 
 ^iven recti- 
 
 and froni (.' 
 through E 
 and D V. 
 
 re A BCD 
 
 r Vuralhlo- 
 
 •oduced, lay 
 
 i« •.iKvuT* in,' 
 
 GEOMETRr. IJ7 
 
 ofTthe distance A B from A; biseet the whole line in (;, find 
 on G, as a centre with the radius G D describe a semicircle 
 I) F. Produce B A to F; A F is the side of a square whose 
 area is equal to the Rectangle A C. 
 
 PROBLEM XXII. 
 
 To describe three equal circles ivhich shall touch, withotU in- 
 tersecting each other. 
 Take any straig^it line A B, (Fig. 45,) and bisect it in D : 
 On A and B as centres, Avith the distance A D, or D B, de- 
 scribe circles, and they will touch each other in the point D. 
 On the line A B, draw an equilateral triangle A B C. On 
 the angular point C, as a centre with the same distance A D 
 or D B, describe another circle, and it will touch the other 
 circles in the points E and F, and will also be equal to them, 
 as was required. 
 
 PROBLEM XXill. 
 
 To describe an ellipse, the transverse diameter or major axis 
 A B, and the conjugate diameter or minor axis C D 
 (Fig. 4(i,) being given. 
 
 On the transverse axis A B, describe two circles of such 
 diameters that while they intersect each other in the points 
 F and G, they will also pass through the points A and B, 
 the extremities of the transverse axis: through the points of 
 intersection F and G, draw the straight line O P which will 
 l>isect the transverse axis A B in E, and also be perpendicu- 
 lar to it.. On O P lay off the conjugate diameter C D bi- 
 sected in E by the transverse axis A B; then find two points 
 HI the right line O P such that if one foot of the compasse* 
 jbe placed in them successively, the other will describe arcs 
 |passu.g through the points C and D, the extremities of the 
 jconjugate axis C D, and also touch the circles G B F and 
 |(i A F in the points r, s, t, u. Draw the arcs t* C r, and 
 HJ D s, and a figure will be tbrmed sufficiently near an ellipse 
 Jfor the mo«t of practical purposes. Where greater nicety 
 pr accuracy is required the following method may be adopt- 
 
 I 
 
 
 v'^ 
 
 ■I 1*1 
 
 
■i^ 
 
 GEOMETRY. 
 
 I ^ 
 
 m- 
 
 Another method to describe an Ellipse. 
 
 Draw the transverse and conjugate axis A B, C D, {Fig. 
 47,) bisecting each other perpendicularly, then with half th»^ 
 longest diameter as a radius and centre C, describe arcs 
 cutting A B in F, G; the points F, G, will be the foci of the 
 ellipse. Then take two pins and fasten a thread upon them 
 in such a way that when the thread is stretched the dis- 
 tances between the pins shall be equal to the length of the 
 transverse axis A B. Fasten the pins in the foci F, G, then 
 by moving a pin or pencil round within the thread and keep- 
 ing the thread always stretched by it, a curve will be traced 
 out forming the ellipse required. 
 
 PROBI \U XXIV. 
 
 To project lines of Chords, Signs, Tangents, Secants, ^'C, 
 
 to any Radius. 
 
 On the line A B, (Fig. 48,) describe the semicircle A D B, 
 Upon the centre C, erect the perpendiculr.r C D, continued 
 at pleasure to F; through B draw B E parallel to C F, and 
 consequently perpendicular to A B; and draw the right line 
 D B. Divide the quadrant D B into 9 equal parts, and with 
 one foot of the compasses in B, and the distances B 10, B 20, 
 B 30, Stc, on the curve line B D transfer them to the right 
 line D B, and it will be a Lvne op Chords. 
 
 From the points 10, 20, 30, &c., on the arc B D draw a line 
 parallel to D C, and it will divide the radius C B into a line 
 OF Sines, reckoning from C to B, or of "Versed Sines, if 
 reckoned from B to C. 
 
 From the centre C through the several divisions of 
 quadrants D B, viz: 10, 20, 30, Stc, draw right lines, until 
 they meet the line B E, and it will be a line op Tangents. 
 
 Transfer the distances between the centre C and the di- 
 visions on the line of Tangents to the line D F, and it will 
 give a LINE OF Secants which nmst be numbered from D 
 to F. 
 
 In the figure the divisions are only given to every tcntli 
 degree; but by subdividing each of the 9 divisions, we niav 
 
 'i'lvo a ii 
 -rt;e.s; a: 
 'i'lve sea 
 
 Scales 
 fiiiniatur( 
 known m 
 "'•ale an,si 
 A ijl bf la 
 ■1^ iiivator 
 
 llicll he f; 
 
 '-Pf't'ified 
 
 ti'iucd oni 
 
 fiif'la.st (Ii 
 
 i first or pr 
 
 ;«*is the first 
 
 i'arts. ']'] 
 
 ^0. -10, &.CV 
 
 .4, &,c.; or 
 
 than the s 
 
 they may r 
 
 Will stand 1 
 
 .? Of scales 
 
 Ipery case 
 
 C* ''Jiles of e( 
 ^ f equal pa 
 |d into Urn 
 pressing the 
 #ided on th? 
 * usually cl 
 **t the letter 
 laces of fig 
 
 determined j 
 ide. 
 
 The most 
 inches, or 
 
 ^'J having o 
 
C D, (Fig. 
 nth half thr 
 ;scribe arcs 
 B foci of the 
 1 upon them 
 led the dis- 
 ngth of tho 
 i F, G, then 
 id and keep- 
 ill be traced 
 
 kcanls, fyc, 
 
 ircle A D B, 
 ), continued 
 to C F, and 
 tie right line 
 rts, and with 
 5 B 10, B 20, 
 to the right 
 
 ) draw a line 
 I into a LINE 
 SD Sines, if 
 
 iions of i, 
 t lines, until 
 Tangents, 
 and the di- 
 ', and it will 
 ered from D 
 
 every tentli 
 ons, we mav 
 
 GEOMETRY. 
 
 C<,xcERN-,s„ Soles op E,ial P„.ts. 
 
 fCiil-s of pq,j„| p„rts am nothino- more fh„. 
 
 ™n,a..„, e,„p,„,„., r,. laying doC;™':"''"-^ '" 
 
 Known measure ,„■ chains, var,l fee, &e , L "' 
 
 -«le .uiswering to one el ,in „„ / '^ '"'" ™ ""' 
 
 ' -■'.•..,.■ number of par s in „° teh " "'""'^ " ™»"'"- - 
 ""•'«! <.nw,.r,l i„ ,he"a^ ' " ■• T'- "^ """* P""'' ''« ■•"- 
 
 '"-on.Hn,arvaiv^:itt,c "/;'""' r'r^^ 
 
 '•'■< fh<. first line has liPm ,. *• ™ ^' 2. 3, 4, &c., as far 
 
 i«-. T,,;, :,!::,;" :" ":t:' "'" "^ " ^""'^ '"■«-' 
 
 ».J., .., an., .„e„ ..e'^n^-.tt:; 'S I~ /"; ^«- 
 "• «-c.i or fhey may represent 100 oflO Snn Tor, . ' ' ' 
 
 •■•ale; of equaloar ,""■"""'""' »'•« '<> l« '"und 
 
 o.;..a«a, pX '•::":■;;: ,:;'s™' -'« -'%' '^ « -'^ 
 
 e'l into lines comn encinn^ w!. ..' ^ °"^ ''^^ ^'^ ^''^^^J- 
 
 ^i'Jecl on that scale or 11^^^. T '"^'"^ "" '"^^ ^''^ ^'" 
 fc usually changed in to a I'ine of hf f ^'^^ "P^'^^ '"- 
 
 It the letter C When thl ^''"^'' '''^''^ oommences 
 
 i-s of figures t^Ce if triro'^rf "' ^^'^^^ 
 etermined accurately hv th. V " '^' P'"^*' '""^ ^^ 
 
 ^^^ ately by the diagonal scale on the opposite 
 
 1 The most useftil scales for « «J,... 
 
 inches, one of who e si •7"'''''' ''' '^"'^^ «^ ^2 or 
 ''^''-'ingonthe t;^^^^^^^^^^ '/ -'^ ^'- other convex. 
 
 ^ ^'tk th divisions and subdivisions 
 
^0 
 
 GEOMETRY. 
 
 marked on the edges, nnd continued to the end of the t^calo. 
 On the centre Avill be found the numbers 20 and 40, 25 and 
 50, &,c., distinctly marked. (See Plate.) 
 
 By means of the scale of equal parts it is easy to measure 
 any line laid down upon a plan if we only know the scale 
 by which the plan has been drawn, and also to lay down any 
 distance upon any giver, scale. 
 
f the BC.alo. 
 40, Q 5 and 
 
 to measure 
 iW the scale 
 y down any 
 
-H- 
 
 I i i 
 
 &P 
 
 v,'-~- 
 
 2^ 
 
 -^ 
 ^ 
 
 Pi 
 
 I I 
 
 
 ^ 
 
 S2 
 
 :- I 
 
J J- 
 
 LOGARITPMS. 
 
 .1. 
 
 About the end of the sixteenth century and the bopfinningf 
 of the seventeenth, several Mathematicians began to con- 
 eider by what means they might simplify the arifhmetic^il 
 operations of multiplication, division, and the exLraction ot 
 roots, which formed no inconsider.ible obstacles to the im- 
 provement of those branches of knowledge; in the prosecu- 
 tion of which tedious calculations were indispensable. For 
 abridf'ing these calculations several ingenious expedient* 
 were suggested. Of these by far the most complete, was 
 the system of numbers called Logarilhms, invented by John 
 Napier, Baron of Merchis^on, in Scotland, and afterwards 
 improved and extended by Mr. Briggs, and others; forming, 
 doubtless, one of the happiest and most useful contrivance!*, 
 of modern times. 
 
 Let two series of numbers be formed, the one in geome- 
 trical progression, whose first term is unity or one, and the 
 common ratio, 2; and the other in arithmetical progression, 
 whose first term is 0, and the common difference 1, thus:— ^ 
 Geo. Prog. Jlrith. Prop;. 
 
 1 
 
 2 1 
 
 4 2 
 
 8 S 
 
 16 , A 
 
 82 5 
 
 64 .6 
 
 J 28 7 
 
 256, &.C., . S. &c. 
 
 .m 
 
•rilaM 
 
 4fi 
 
 I 
 
 32 
 
 LOGARITHMS, 
 
 The t.nm ,n the arithmetical series will l,e the lo.ar.th.ns 
 of the corresporuhng terms in the geometrical series; that is 
 .s he loganthm of I, and 1 is the logarithm of,, J ^Z 
 the logarithm of 4, and 3 is the logarithm of 8, &<• ' 
 
 s«mrf?V'"'T' ^'•'^'" ^ "^«^»««t''^ inspection,' that the 
 sum of he logarithms of any two nu.nbers i.i the fo.e.oin. 
 ser.es, .s ec^ual to the product of the numbei-.s themsSv "^ 
 f^ or exan,ple the product of 4 multiplied by 32 is 1 28. Now 
 he number m the arithnietical series coiTesponding to the 
 ei-m 4 ,n the geometi-ical series, or in othe'r words 
 oganthm of 4 is 2. In like manner the logarithin of V] is 
 ^' Again 2 added to 5 is equal to 7, and the term in the 
 
 I'lTr'tol '"'"'u "°''''^'^P'^»<l'»g ^o 7 in the arithmetical 
 series ,s 128, or the product of 4 multiplied by 32. In lik. 
 manner it is evident that the difference of the logarithms of 
 any vvomunbers^ ^elogai-ithm of the quotient arising from 
 the divisioii of the one nuinber by the other 
 
 From these statenients it appears that multiplication of 
 natura. numbers ca.i be effected by the addition of their 
 logarithms and that division of natural nmnbers may be ef- 
 tected by the subtraction of their logarithms " ' 
 
 In the logarithmic tables usualy employed the series in 
 geometrical progression is 
 
 h 10, 100, 1,000, J 0,000, &c„ 
 and the corresponding series in a.-ithmeticul progi-ession is 
 
 0, 1, 2, 3, 4, &c., 
 that is the logarithm of 1 is 0, the logai-ithm of 10 is 1, the 
 logarithm of 100 is 2, and so on. 
 
 The logarithms of the terms of the progression 1. 10,100, 
 
 »,000, &c bemg thus determined; in order to find the logar- 
 
 thms of the numbers between 1 and 10, and between 10 and 
 
 100, ice, we must conceive a g,-eat number of geometrical 
 
 means to be interposed between each two adjoining ter.iis of 
 
 mearb!f"^'T'^'""' -ries, and as many arhhmetical 
 means betvveen the corresponding tenns of the arithmetical 
 ^er,es. Then as the terms of the arithmetical series 0, 1. 2 
 
 !;nn!*:^'^ ^^^^^^''^^^^^ ^^^^^ coricspondin^ terms of th. 
 geometrical series 1, H 
 
 100, 1,000, &c., the 
 
 jnterposed 
 
LOGARITHMS. 
 
 Sfl 
 
 terms of the former will also be the logarithms of the cor- 
 responding interposed terms of the latter. 
 
 The integral part of any logarithm, usually called its »n- 
 dex or characteristic , is always less by 1, than the number 
 of integers of which the natural number consists. In thr 
 logarithm of a decimal i* '^ the integral part also, or the in- 
 dex, which determines tht, distance of the first significant 
 figure from the decimal point. Thus, the logarithm of the 
 
 Nat. Num. 2651 . 
 265.1 
 26.51 
 2.651 
 .2651 
 .02651 
 .002651 
 
 IS 
 
 .S. 423410 
 
 2.423410 
 
 1.423410 
 
 0.423410 
 
 •1.423410 or 9.423410 
 
 ■2.423410 or 8.423410 
 
 •3.423410 or 7.423410, &c. 
 
 N. B. The Negative sign ( — ) is frequently written over 
 
 the index, instead of before it; thus, 1.423410. 
 
 series m 
 
 EXPLAN.\TION OF THE TaBLE OP LOGARITHMS OP NuMBERS. 
 
 I. Tojind the logarithm of any whole number, under 100 
 
 On the first page of the logarithmic Table, in the column 
 marked N, or No. look for the given number; immediately 
 to the right of it and in the same line with it, in the column 
 marked Log. you will find the logarithm sought, with its 
 proper index prefixed. Thus, the logarithm of 63 is 1 . 799- 
 341 ; and the log. of 74 is 1 . 869232. 
 
 n. Tojind the logarithm of any whole number between 100 
 
 and 1 ,000. 
 
 Fnd the given number in the left hand column marked N, 
 or No. and immediately opposite to it in the column marked 
 at the top and bottom you will find the decimal part of the 
 logarithm, to which prefix the proper index and you have 
 the logarithm required. Thus, the log. of 364 is 2.561101, 
 and the log. of 333 is 2 . 522444. 
 
 III. 10 find the logarithm of any number consisting of four 
 
 figures. 
 
 Find the first three figures as before, and opposite to it iu 
 
 r" 
 
54 
 
 l-OrjAUrTHM.*. 
 
 .,' f 
 
 ! ri' 
 
 .»! 
 
 niarkwl I). „r DifV Z^, '""'«'"'"""' '•"I"'"", 
 
 -ho ,Iiff,.„.„,.., b«^';.i ;:'!"' '"' "*,'"" '"ff"™'-. .ha. i, 
 
 '^■- '■ - -y .h:;:r ,;',:'^;:;.:: ;^.;;"""-^)- ,Mu„ip„ 
 
 (riiros a.s are pontahid in tl,„ '■ ■ "' '""">' «" 
 
 quired. * "^'iAta ^\iii by the Log. re- 
 
 Kv. Required the Log. of 36548. 
 
 quired. "= i-5028Gi, the logarithm re- 
 
 ». - aiiy j;;,:!!: f-^-^. -j'-^ ««. of ,,,„ , ,„. „^ „^ 
 
 "aw ol'lhc rcnminilor. '""' '° "''" I to tl,e unit 
 
 ■V. To Ma ae U,. of a Vulgar Fra.,Un, or „/„„.,„, 
 
 number, 
 
 o.ot':i;':;:;'S::™''''''' "" " '^-"""'' ">" "■- p™- 
 
 V. ToMUme natural nu.,^,r corresponding ,o a ,f,en 
 
 t( "ithm 
 *'Ook for tJie jriven ^ mr u r 
 
 'he o.-s„c( i,„M.i,i„., ,i,. ' ""^ '" "'" '"'I'-"- It vou fin.) ■ 
 
 lett hand of the page mafked \, 
 
I^.OOARITIIMS. 
 
 .11? 
 
 6r No. TUni i{ thr index of the iriven Los?, be los-i than .% 
 cutotr froi,. thori-lit haiul of the iiuiribcr ': ..,d nn many 
 fif,'uro.^ as the index \h h>.ss than 3, the rigun . . c.it off uill 
 he deeimals and the reniaiiuh'r a Nat. No. or Nut. Nos. 
 Thus, if the Nat. No. eorrespoitdinir to the logurithin -2 S^Hi- 
 950 he required: the K.^.3i(i<>.50 being found in the taWes, 
 opposite to it in the left column is 21i2, and at the top and 
 bottom of the cohnnn in whieh it is found is 3, whieh, plaeed 
 nfter '212, gives 2)ilS: and since the iiuh-x 2 is hss bv 1 than 
 S, one figure is to be cutoff from the right hand as a'ch-eimaJ 
 wh.eh wdl give 312.3 a^ the Nat. No. corresponding to the 
 given h.g, 2.3-:J6950.. If however the in,h3x exceed 3, annex 
 Its many cyphers to the number found as the index exceeds* 
 •1, and you have the Nat. i\o. retjuired. 
 
 But if a Logarithm exactly corresponding to the siven 
 Log. cannot be found in the table, take; the Log.- next to the 
 given one an(J less than it: then take the .litferonce between 
 that arid the given Log., to which annex cvjihers and divide 
 it by the tabular difference found opposite to tliteLo-. which 
 you have taken iVom the table. Annex the quotient t.vthe 
 Nat. Nos. corresponding to the F.og. taken from the tabic 
 and place the decimal point wherever the index points c»ut 
 and you have the Nat.- No. required, For example :-To 
 find the Nat. No. corresponding to the Log. 4. 478309 • the 
 Log^nearest to it, and less than it, is 478^78, answering to 
 the Nat, No. .3008. The difference between 478278 and^he 
 g.ven I og. 478309 is 31 . By annexing cyphers to this num- 
 ber ai.d d.v.dmg by 145, the tab. diff. f„und opposite to th« 
 Log. 478278 you have for a quotient ,:3 +, JLu an led 
 o figures 300,3 mak,, 3008.132 +. 13nt the index 4 shows 
 hat th.^e can only be five places of whole numbers. Tul 
 decnnal ) mt bemg therefore placed after the fifth figure 
 .v.s3.^2.3-Ha 
 
 Jf the nmnber acquired is to consist altogether of decin.al 
 
 figures, the sn? 
 
 ne 
 
 method must be used to obt 
 
 Jiin it as direct- 
 
 od above; only observe, that 9 cyphers, less the index 
 »>4? prefixed to the No. found. Tb 
 
 are to 
 
 li 
 
 us, to find the decimui 
 
I:i. 
 
 11 . 
 
 .Sti 
 
 LOGARITHMS. 
 
 So. corrospomliiifr to the Log. 7.819083; look in th« Table 
 <"or th«' Log. 819083, nnd you will find the corrcHporulinf? 
 Nat. No. to he 6593 Now 9 cyphers les.s the inde.x 7, leave 
 two cyphers to he prefi.xed to the No. found, giving .00()59.S 
 HH the decimal number answering to the Log. 7.819083. 
 
 VI J. To find the Arithmetical complement of a L „nnthm. 
 The arithmetical complement of a Logarithm is the loga- 
 rithm of the recii)rocal of the corresijonding natural number, 
 or it is the number it wants of 10.000000 or 20.000000. To 
 find it, begin at the left hand and subtract every figure from 
 9 except the la.st significant figure, which is to be subtracted 
 tVom 10. If Uic index exceed 9 it is to be subtracted 
 from 19, or if it be negative, it is to be added to 9, and the 
 rest subtracted as bei;;re. In taking the sum of the Loga- 
 rithms, observe that for every arithmetical complement em- 
 ployed, 10 must be subtracted from the sum of the indices, in 
 order to obtain the proper index of the result. The arith- 
 metical comi)lement is frequently used in proportions, and 
 in trigonometrical calculations, to change subtractions into 
 additions. 
 
 iMDLTIPLICATION BY LOGAllITHMS. 
 
 RULE. 
 
 Add the Logarithms of the numbers to be multiplied and 
 Iheir sum will be the product in Logarithms. If there be 
 negative and affirmative indices, their difference, with the 
 proper sign prefixed will be the index of the Log. of the 
 product. If, in any consequence of either of the factors or 
 of both of them beinfe decimals, the index of the sum ex- 
 ceed 10, reject the 10, and the remainder will be the index 
 ^>f the Logarithm of the product. 
 
 EXAMPLES. 
 
 I. Required the product of 23.14 multiplied by 5 062 
 J he Log. of 23.14 is 1.364363 J' o*. 
 
 1 he Log. of 5.062 is 0.704322 
 
 Hroduct, 
 
 U7.134. 2.068685 Log. ofthe ^roduct. 
 
 A? 
 
 Log. ( 
 
 Log. o] 
 
 Quo. 
 
 Here 
 ▼isor i^ 
 
I in thn Tabh; 
 ^orrt'Mporulinjj 
 index 7, leav«; 
 iviiig .00()59.-{ 
 7.819083. 
 
 !» L- „anthm. 
 
 II is the loga- 
 urul number, 
 000000. To 
 y figure t'roin 
 )e Hubtraeted 
 e subtracted 
 to 9, and the 
 f the Loga- 
 pleinent oni- 
 ic indices, in 
 
 The arith- 
 ortion.s, and 
 'actions int(» 
 
 IMS. 
 
 iltiplied and 
 If there be 
 ;ej with the 
 Liog. of the 
 e factors or 
 lie sum ex- 
 5 the index 
 
 LOOtRITHMS. 
 
 37 
 
 y 3.06-2. 
 
 Product. 
 
 2. What is the continued product of 9. 9n»J, 597 16 and 
 081173." 
 
 The Log. of 3,002 is 0.. 591 ^287 or 0.50 1 -28" 
 1 he Log. of .':.:)7. IG i.s 2. 770091 or 2.776091 
 Tho Log. of .O.JM7.i i.s 2. 497938 or 8.4979.^8 
 
 Troduct, 73.3357 1.865316 1 .865316. rejecting 10 
 
 from the in«lex. , 
 
 DIVISION DY LOGARITIP'S. 
 
 RULE. 
 
 From tho Logarithm of the Dividend sub;. act th<^ Loga- 
 rithm of the Divi.sor, and the natural number answering to 
 the remainder will bo the Quotient required. 
 
 If tlic Log. of the divi.sor exceed the Log. of the divi- 
 dend, proceed as before until you come to the index. If the 
 decimal jiart of the Log. of the divisor exceed the decimal 
 part of the Log. of tiie dividend add 1 to the index of tlie 
 r.og. of the divi.sor. Change the .sign of the index of the 
 r.og. of tho <livi> ,.', add the indox of the Lo-. of ;he divi- 
 dend to it, and with its i)ropcr .«ign prelixcd it will be tho 
 index of the Log. of tho quotient; or, when the index of the 
 Log. of the divisor exceeds; the index of the Log. of the di- 
 vidend, borrow 10, and the remainder will be the index of 
 the Log, of the quotient. 
 
 EXAMPLES.. 
 
 1. Divide 4768.2 by 36 954. 
 Tho Log. of the dividend 4768.2 is 3.678.«J54 
 I he Log. of the divisor 36 . 954 is 1 . 567661 
 
 Quotient, 129.0307 
 
 2. Divide 4.6257 by .17608. 
 Log. of 4.6257 is jO^^ 665 177 0.665177 
 of .17603 is 1.245710 or 9.24.5710 
 
 2. 110693, Log. of Quo. 
 
 Log 
 
 Quo. 26.2704 1.419467 1.419467, Lo^. ofQuotient. 
 
 Here, in thr ^ st case, the J^ndex of the Log. of^ the di- 
 
 Ti8orischangeuf»om-~l,or l,to-j-l,or 1, and the index of 
 
I.0GARITH5fS« 
 
 the Log. of tho dividend, 0, being added to it gives Las the 
 index of tho result. In the second case, 10 is borrowed for 
 the nidex of the dividend, and the index of the divisor being 
 Hubtractcd from it leaves the same result. 
 
 3. Divide .19876 by ,0012345. 
 Log- of . 19876 isT.i>98329 or 9.298329 
 Log. of .0012345 is~3.091491 or 7.091491 
 
 Quo. l(U.O044 2.206833 2.206838. Log. of Quo ■ 
 
 Hero again, the index of the Log. of the divisor is chang- 
 ed fi-om - 3, to + 3, and this added to - 1, the index of the 
 dividend, gives -t 2, or 2, as the index of the Log. of the 
 Quotient. 
 
 RULE OF TF!IEE, OR PROPORTION BY LOGA- 
 RITHMS. 
 
 nuLE. 
 
 From the sitm of the logarithms of the second and third 
 terms, subtract the lo-jfarithm of tho first term; the remain- 
 der vviir be the logarithm of the fourth term: or, add the 
 amhmeticar complement of the first term to the lorarithins 
 of the second and third tc is, and the sum, after subtracting 
 10 from the index will b( he logarithm of the fourth term 
 
 In any Compound Proportion the term sought may be 
 fomid by subtracting tho sum of the logarithms of all those 
 tcrnis which, when multiplied into each other, are to form 
 the divisor, from the sum of the logarithms of all the term« 
 which, when multiplied into each other, form the dividend 
 »he remainder is the logarithm of the term required 
 
 Instead of subtracting one logarithm from another, yoo 
 may add the arithmetical complement of the subtrahend to 
 the logarithm of the n.inucnd, and reject 10 from the index 
 of the sum. 
 
 EXAMPLES, 
 
 SoiB 857 486 og* 2 55 259 Z l'""^' SSi^^a 
 jiui,, ^.ojozjj or Los:, 2.553259 
 
 To 1 a, 1483 
 
 1 095103 
 
 1.095108 
 
 I 
 
 \, 
 
BY LOGA: 
 
 rOGARITHMS. 
 
 8. ^ind a third proportional to 12.796 and 8.24718. 
 As 12.796 Arith. Coinn. 8.892926 
 
 3.24718 Log. 0-51I5C6 
 
 39 
 
 Is to 
 
 So is 3.24713 
 
 Log. 
 
 0,511506 
 
 '^° r,. fT\ 1.915938, third propor. 
 
 3. I* md a fourth proportional to the three numbers, 36 48 
 
 and 6Q. 
 
 Multiply 48 Log. 1.681241 
 by 66 Log. 1.819544 
 
 Divide the Pro. 3168 3-500785 
 
 l)y S6 Log. 1.556303 
 
 Quotient, 88 ,.944482, fourth proportional. 
 
 INVOLUTION BY LOGARITHMS. 
 
 nuLE. ' 
 Multiply the logarithm of the given number by the index 
 of the power, and the product will be the logarithm of the 
 f ower sought. 
 
 ga^TC l,v7„'"aSnn.f,'^'"'*' " \'>e^'''!'>^ "hose index is ne- 
 «ne, as the ind^KTlh^^Tj',''''^ as many cyphers less 
 
 EXAMPLES. 
 
 J. Required the^square or second power of 25.791. 
 25.791 Log. 1.411468 
 
 25.791 Index. g 
 
 665.175 
 
 2.822936 
 
 ^XlHr *'r "^"^'^ "' *^'^^ Po^^er of 30.7146. 
 30.7146 Log. 1.487345 
 
 30.7146 Index q 
 
 Cube, 28975.7 
 
 4.462035, Log. of Cube or Srd ptmer. 
 
■ 
 
 ) ! 
 
 ; i 
 
 w'. 
 
 i is v^i i-^ 
 
 40 
 
 LOGARITHMS. 
 
 5. Required the cube or third power of .008. 
 .008 Log. y. 903090 
 
 .008 
 
 Index 
 
 .000000512 77709270 
 
 Here, the index of the Log. multiplied by the index of 
 the power gives — 9, but as the number 2 is to be carried 
 from the decimal part of the Log. this reduces it to ~ 7, as 
 above. 
 
 4. Required the fifth power of .2. 
 
 .2 Log. 9.S01030 
 
 Index 6 
 
 .2 
 
 .00032 46.505150. 
 
 In this example the affirmative Log. for the decimal frac- 
 tion is used. The excess of the product of 10 multiplied by 
 5, the index of the power, above 46 the index of the Log. is 
 4. This number, less one, that is 3 is the number of cy- 
 phers which must be fixed to the natural quantity corres- 
 ponding to the Log. .301030. 
 
 EVOLUTION, OR THE EXTRACTION OF ROOTS 
 BY LOGARITHMS. 
 
 RULE. 
 
 Divide the Logarithm of the given number by the index 
 of the power, and the quotient is the root required. 
 
 Note l.—When the index of the logarithm is negative, 
 and the divisor is not exactly contained in it, increase the 
 index by the smallest number that will make it exactly di- 
 visible. Carry this l)orrowcd number as so many tens to the 
 left hand figure of the decimal part of the Logarithm. Then 
 proceed with the division as usual. 
 
 Note 2.— When alHnnative indices are used for the loga- 
 rithms of .decimal fnictions, prefix to the index of the Log. 
 a figure less by 1 than the index of the power; then divide 
 the whole by the index of the power. 
 
 EXAMPLES. 
 
 1. Required the square root of 365. 
 
 Index of the power 2)52,562293 Log. of 365. 
 
 The root required 1.281146 Log. of 19.105 ^fi». 
 
the index of 
 
 to be carried 
 
 it to — 7, as 
 
 [ecimal frae- 
 nultiplied by 
 f the Log. is 
 imber of cy- 
 ntity corres- 
 
 IF ROOTS 
 
 jy the index 
 red, 
 
 is negative, 
 increase the 
 t exactly di- 
 y tens to the 
 ;hmi. Then 
 
 'or the loga- 
 of the Log. 
 then divide 
 
 05 Jlnt, 
 
 LOOlRITHKfl, 41 
 
 5. Required the Cube Root of 12345. 
 
 Index of the power 3)4.091491 Log. of I2S45 
 
 1.363830 Log. of 23. 1116 the rwot 
 required, 
 
 9. Required the Cube_Rootof .000000512. 
 
 Index of the power 3)7.709270 Log. of .000000512 
 
 3. 903090 Lo^ of .008 the root re- 
 quired. 
 
 Here the index of the Log. is not exactly divisible by the 
 index of the Power. Two, the smallest figure rvhich will 
 render it exactly divisible, is added to it, making it 9. Thi« 
 two IS then carried forward as so many tens to the decimal 
 part of the Log. Say 3 is into 27, &c. 
 
 4. Required the fifth root of . 00032. 
 
 Index of the power 5)46.505150 Log. of .00032 
 
 9.301030 Log. of .2 the root re- 
 quired. 
 
 Here the affirmative index to the Log. of .00032 is t) to 
 which a figure less by 1 than the index of the power, that 
 « 5 — 1 = 4 is to be prefixed, making AQ as above. 
 
 Explanation op the^ Tables op Logarithmic Sines, 
 
 Tangents, &c. 
 From the manner in which Lines of Chords, Sines, Tan- 
 gents. &c., .-ire projected, {See Prob. 23 of Geometry,) it is. 
 evident that if the Radius consist of any number of equal 
 parts the Sine, Tangent, Secant, &c., of every arc described 
 on that Radius, bearing a determinate proportion to it, 
 must also consist of a determinate proportional number 
 of these equal parts. The computation of the number of 
 these parts in the Sines, Tangents, &c., contained in every 
 arc of the Quadrant, form Tables of Sines, Tangents, &c. 
 
 In this lorm thnv nm n..n^.i Tvr„f i o- ^n, ' 
 
 ---^. — ,„,!^vt iiatuiu! oincs, langents. So- 
 
 cants, &c., and the Logarithms of these numbers give u^ 
 1 ables ot Logarithmic Sines, Tangents, Secants, &c... 
 
& 
 
 s 
 
 41^ 
 
 LOQAUITHMS. 
 
 |! 
 
 I 
 
 To find the Logarithmic Sine, Tangent, ^e., of any num- 
 ber of Degrees and Minutes, 
 
 If the number of degrees given be less than 45, look for 
 them at the top of the page, then look for the number of 
 given minutes, in the left hand column; opposite to which, 
 in the column marked Sine, Tangent, &c., you will find the 
 Logarithmic Sine, Tangent, &c., of the arc proposed. 
 
 If the number of degrees exceed 45, and less than 90, look 
 for the given number of degrees at the bottom of the page, 
 and for the minutes in the right hand column ; opposite to 
 which, in the column marked at the foot, Sine, Tangent, 
 &c., you have the Logarithmic Sine, Tangent, &c., of the 
 arc of the specified number of degrees. 
 
 If the number of degrees exceed 90, take out the Loga- 
 rithmic Sine, Tangent, &c., of its supplement, that is of an 
 arc consisting of the number of degrees contained in the re- 
 mainder, wliicli will result from the subtraction of the given 
 number of degrees and minutes from 180''. 
 
 EXAMPLES. 
 
 Arcs. Sine. Co-Sine. Tangents. Co-Tang. Secant. 
 18° 15' 9.495772 9. 97758G 9.518185 10.481815 10.022414 
 64° 5^' 9.957040 9.627030 10.330009 9.66999110.372970 
 The Natural Sine for any number of degrees and minutes 
 will be found most readily from a Table of Natural Sines, 
 the arrangement and uses- of which must be sufliciently ob- 
 vious from the explanation e*" the Table of Logarithmic 
 Sines already given. When the Natural Sine and Co-sine 
 are known, the Natural Tangent, Secc-y^t, &c., are easily 
 calculated. 
 
 caiit. 
 
 EXAMPLES. 
 
 1. Required the Nat. Sine of an arc of 23"* 20'. 
 . 396080. 
 
 4. Required the Nat. Co-sine of an arc of 87^ 15'. ^n^ 
 047878. 
 
 ^n*. 
 
 V 
 
o 
 
 f any nutn- 
 
 15, look for 
 number of 
 e to which, 
 rvill find the 
 posed, 
 lan 90, look 
 r the page, 
 opposite to 
 !, Tangent, 
 &c., of the 
 
 TRIGONOMETRY 
 
 the Loga- 
 hat is of an 
 )d in the re- 
 [)f the given 
 
 PbAWE Trigonometrv treats of the relations sutwiBting- 
 between the sides and angles of plane triangles. The prin- 
 ftipal parts of a triangle are, the three sides and the three 
 angles. The main object of Plane Trigonometry is to give 
 rules by which, when some of these parta arc known, tb* 
 others may be determined. 
 
 Triangles are either right-angled or obliqut angled. Plane 
 Trigonometry is therefore very naturally divided into twa 
 parts. The first treats of right-angled triangles; and th« »«-, 
 cond, of oblique-angled triangles. 
 
 Paet I.. 
 OF RIGHT-ANGLED PLANE TRL\NGLES, 
 
 DEFINITIONS. 
 
 1. In a right-angled triangle the Hypotenuse is the sitl* 
 opposite to tlic right angle. 
 
 2. The Base is the side opposite to the vertical angle. 
 
 3. The Perjjcndicular is the side which forms a right an- 
 gle with the base. 
 
 Notej,— The base and perpendicular are sometimes called 
 
 Corq^ary. — in a right angled triangle, if one of the acute 
 angles is given the other angle is given also. 
 Dem^slration.— The three angles of any plane trianf?l» 
 
44 
 
 TBIOONOMKTRT. 
 
 If) 
 H 
 
 l»l H 
 
 1i ■ I 
 
 isl3^n ^h. .f •• N«^^> when one of the acute angles 
 IS known, the other is at once ascertained by subtractinir the 
 known angle from 90° and the remainder is^ the rnea "f e of 
 the other angle being the complement of the given angi; 
 
 a e of'fhpth^'"^'r"^'^'/"/ ^^« «f th^ Principal %nn 
 in/* r *^*'*' ^"^''^ ^^'^ «^ the three angles) beiL elven 
 
 and one of these given parts being a side! the other S 
 
 Sfth^oi^msfi::'^ '^ """^"^ easily iduced TromThe foC 
 
 CASE I. 
 
 t^hen a leg and the angle opposite to it, or when two sidet 
 are given, to find the other part: 
 
 rie^f^tTririh """^ f '^^ 'I ^. *^^ ^^^"^ «f ''' opposite an- 
 gle, so is any other side to the sine of its opposite aM^le- «nH 
 
 lots z'leV''' ^'"r' ^">; ^"^»« ^^^ to^^cs^«dt 
 
 •0 IS tlw sine of any other angle to its opposite side. 
 
 CASE 11. 
 
 IVhen the legs, that] is the sides about the right ahgle are 
 
 given, to find the angles and the hypotenuse : 
 J^heorem.-^As one of the given sides is to the other ffiven 
 
 Tn^'/?,'" "f'^'"' *^ '^^ tangent of the acute an^le ft the 
 end of the side at which the proportion commenced! 
 
 PROBLEM I. 
 
 Oiven the angles and hypotenuse of a right-angled plant 
 triangle to find the base and perpendicular : > 
 
 EXAMPLE. 
 
 In the triangle ABC, (Fig. 49,) right-angled at B, given 
 the angle at C, 55'^ 30', and the hypotenuse A C 121 yard.-^ 
 required the sides A B and B C. ' ' 
 
 According to the preceding corollary / C 56° 80' — / B 
 90^ === Z A =. S4« 30'. , , 
 
 To find the side A B. ' • i' 
 
 As radius, (/. e. the sine of ^ B,) = to 00000 
 
 Is to the side AC 121 ^ '^ == "oS 
 
 So IS the sine / C. fifio Qo' Z I^^i^ 
 
 To the perpendicular A B 99. 72 yds. =. 7^99871^ 
 
 .1! 
 
 1 
 
TRIGONOMETRT. 
 
 46 
 
 180". A right 
 ! must together 
 ! acute angles 
 mbtracting the 
 he rneasuie of 
 given angle. 
 >rincipal parts 
 ) being given, 
 le other partsi 
 )m the foilow- 
 
 vhcn ttoo sidet 
 
 i opposite an- 
 ite angle : and 
 >pposite side, 
 3 side. 
 
 J^hf ahgle are 
 •nuse : 
 
 le other given 
 e angle at the 
 3nced. 
 
 angled plant 
 
 ulitr : 
 
 % 
 
 >. 
 
 d at B, given 
 C 121 yards ^ 
 
 '80' — ^ B 
 
 0.00000 
 
 2 . 08278 
 9.91599 
 
 1.9987X i 
 
 Here we add the logarithms of the second and third term 
 of the proportion, and subtract the logarithm of the first 
 term from that sum. The remainder is the logarithm of tho 
 fourth term, or the answer. 
 
 To find the side C B. 
 
 As radius 10.00000 
 
 Is to hyp. A C 121 2.08278 
 
 So is sine / A 34° 30' 9.75312 
 
 To the base C B 68.54 yds. 1.83590. 
 
 PROBLEM 11. 
 Given the angles and one side, to find the hypotenuse and 
 
 the other side. 
 
 EXAMPLE. 
 
 In the right angled triangle ABC (Fig. 50,) right angled 
 at B, given the angle at A 85° 30', and the side A B 294 
 chains, required the base C B and the hypotenuse A C. 
 90° — / A 35° 30' = / C 54° 30'. 
 
 To find the hypotenuse A C. To find the base C B. 
 
 As sine Z C 54° 30' 9.91068 As sine / C 54° 30' 9 91068 
 Js to per A B 294 ch. 2.46834 Is to per. A B 294 ch. 2.46884 
 bo isradms 10.00000 So is sine /A 35° 30' 9.7639& 
 
 To hyp. AC 361. Ich. 2.55766 To C B 209.7 ch. 2.32161 
 
 PROBLEM III. 
 
 Given the hypotenuse and one side, to find the angles and 
 
 the other side. 
 
 EXAMPLE. 
 
 In the right angled triangle ABC, (Fig. 51,) right angled 
 at B, given the hypotenuse A C 3 chains and 50 links, and 
 the perpendicular A B 2 chains and 45 links; required tho 
 angles A and C, and the base B C. 
 
 To find the angle C. To find the side B C. 
 
 As hyp. A C 8.50 0.54407 As radius lo 00000 
 
 Is to radius ^ 10.00000 Is to hyp. A C 3.50 o:54407 
 
 oc IS sme a jj a. 45 0.3891 / So is sine /A 45° 35' 9.85386 
 
 f I 
 
 To sine ^ C 44° 25' 9.84510 To base B C 2.499 0.8979S 
 
ir 
 
 46 
 
 TRIOONOMETRY. 
 
 The hypotenuse may befoiind independently of the angles; 
 for, according to Euc. 
 
 = V A B (A B -f 
 
 BC 
 
 . 47. we have A C = VA B'-f-BC* 
 This latter form of expression 
 
 A B ^ 
 
 A C is by far the most convenient for logarhhmic calcula- 
 tion. 
 
 From the same property of aright angled triangle, viz: 
 that the square of the hypotenuse is equal to the sum of 
 the squares of the other two sido^ anyone of the two sidea 
 about the right angle may he found independently of the 
 angles, if the hypotenuse and the other side are given or as- 
 certained. For since A C^ = A 13^ + B C=, it follows that 
 B C^ = A C= - A B'=(A C + AB ). (A C - A B); and 
 therefore B C = V (A C + A B). (A C ^ A B), from 
 which expression B C is easily determined; or, Let H de- 
 note the hypotenuse; B, the base; and P, the perpendicular- 
 then, PP = B' -f- P2; and H= — B= = P'; and H^ — ps = B" 
 
 Part II. 
 
 OF OBLIQUE-ANGLED PLANE TRIANGLES. 
 
 In an oblique-angled plane triangle, a side and any other 
 two of the principal parts being given, the other principal 
 parts may be ascertained. 
 
 In every plane triangle the sum of the three interior angles 
 rs equal to two right angles, or to 180°. 
 
 Corollary 1. -.Two angles of any plane triangle being 
 given, the thn-d is also given; for it is the supplement of the 
 rtther two, and may be found by subtracting their sum from 
 
 Corollary ^.—Onc angle of any plane triangle being given, 
 the sum ot the other two is also given, and may be found by 
 subtracting the given angle from 180°. 
 
 The principles or rules by which unknown parts of ol>*. 
 Uque-angled triangles may be determined from those which 
 Are known, are evolved in the following theorems. 
 
TEIGONOMETRT. 
 
 47 
 
 CASE I. 
 
 re ffiven or as- 
 
 nterior angles 
 
 IFhcn a side and two angles, or when two sides and the 
 angle opposite to one of them, are given: 
 
 rAeorem.--Tlie sides of a plane triangle are to one an- 
 other as the sines oi their opposite angles, and vice versa, 
 
 CASE ir. 
 
 fVhcn two sides and the included angle are given: 
 
 TA^omn --The sum of any two sides of a plane triangle 
 IS to the dilirronco between then,, as the tangent of half th« 
 Ibmue ^' "l'I»>«'te angles is to tlie tangent of half their dif- 
 
 .SWio/mm --Having ascertained half the sum an.l half the 
 difference of tlu^ unknown angle., the angles are easilv de- 
 termined; for half the difll-rencS being added to half the sum 
 
 ?rn''.'^H-.r"'''" ""^^'^^ Hnd half tlfe difference subtracte™ 
 from half the sum gives the less.. 
 
 CASE HI. 
 
 When the three sides are given: 
 Theorem.~M the base of any plane triangle is to th« 
 «umof the other two skies, so is\he differ^.ce between 
 these tvvo sides to the difference between the segments into 
 which the base IS divided by a perpendicular let fall upon it 
 from the opposite angle. *^ 
 
 »SVAo/mm— Slaving obtained by the preceding theorem 
 half the d.flerence of the segments, the segments fheiST. 
 are easily found; for half the difference added to half the 
 '^^Zf^T I ^H^T' ^^'«'"?"t, and half the difference sub- 
 tracted from halt the sum gives the less.f 
 
 PROBLEM I. 
 
 Given the angles and one side of an oblique-angled. triofigU 
 to find the other sides. 
 
 EXAMPLE. 
 
 In the oblique-angled triangle A B C, (Fig. 52,) given th*. 
 angle at B 46^ 22', the angle at C 54= 15', and consequently 
 the angle at A 79- 23'; and the side B C 1 ch.. 35/: required^ 
 the sides A B and AC. 
 
 ^_* Tor the demonelratiou of these theorems, ae« the App«... 
 
41 TRIOONOMRTRT. 
 
 To find the side A B. To find the side A C. 
 
 As Sine / A 79° 23' 0.99250 As Sino / A 79° 28' 9.99250 
 .s to side li C 1.35 /. 2.13033 h to side B C 1.35 I. 2.13033 
 So is Sine Z C 54° 15' 9.90932 So is Sine / B 4G" 22' 9.«5960 
 
 To side A B lllJ /. 2.04715 To side A C 99.4 /. 1.99743 
 
 PROBLEM II. 
 
 Given ttco sides and an angle opposite to one of them, to 
 find the other angles and the remaining side. - 
 
 EXAMPLE. 
 
 In the oblifiuc-angled triangle ABC, (Fig. 53,) obtuse at 
 
 B, given the side A C S ch. 18 /. the side B C 1 cA. 95 ^ and 
 
 the angle at A 32° 40'; required the angles at B and C, and 
 
 the side A B. 
 
 To find the angle at B. To find the side A B. 
 
 As the side B C 195 /. 2.29003 As Sine / A 32° 40' 9.73219 
 h to Sine Z A 32° 40' 9.73219 Is to side B C 195 /. 2.2900.'5 
 So is side AC 318 /. 2.50242 So is Sine Z C 29° 9.68557 
 
 To Sine of Z B 61° 40' 9.94458 To side A B 175.1 1. 2.24341 
 
 But by the data, B is an obtuse angle. It is therefore the 
 
 eupplement of an angle of 61° 40', or 180° — 61° 40' = 118^ 
 
 ao'=ZB. 
 
 PROBLEM III. 
 
 Given two sides and the included angle to find the other 
 
 angles and the remaining side. 
 
 EXAMPLE. 
 
 In the triangle A B C, (F?;g-. 54,) given the side AC 
 919.95 I. the side xY B 500 /. and the included angle at A | 
 a6° 52'; required the angles at B and C, and the side B C. 
 To find the angles at B and C. 
 
 3.15227 
 
 2.62319 
 
 10.47716 
 
 A8AC + AB = 1419.95 
 IstoAC — AB = 419.95 
 So is Tan. i Z s B-t-C = 71°34' 
 
 To Tan. A Z 8 B — C 41° 35' 9.94808 
 
 Then 71° 34' + 41° 35' = 113° 9' = Z B; and 71° 34' ~ 41« 
 
 S5' = '29°59'=Z C. 
 
TRItiONOMETRY. 
 
 49 
 
 iide A C. 
 
 = 23' 9.99250 
 SrW, 2.1303S 
 IG" 22' 9.85960 
 
 ,4/. 1.99743 
 
 To find the side B C. 
 As Sine Z C 29^ 59' 9.69875 
 
 Is to side A B 500 /. 
 So is Sine ^ A 36"^ 52' 
 
 To side B C 000.26 
 
 2.69897 
 9.77811 
 
 2.77833 
 
 rie of them, to 
 
 <^ side. 
 
 53,) obtuse at 
 1 ch. 95 ^ and 
 B and C, and 
 
 side A B. , 
 
 32° 40' 9.73219 
 195 /. 2.2900.S 
 C 29*^ 9.68557 
 
 75.11.2.24.341 
 5 therefore the 
 6^40' = 118^ 
 
 find the other 
 
 the side A C 
 3d angle at A 
 ^e side B C. 
 
 3.15227 
 2.62319 
 0.47716 
 
 9.94808 
 I 71° 34' 
 
 — 41'' 
 
 PROBLEM IV. 
 
 Given the three sides of an oblique-angled plane triangle to 
 
 find the angles. 
 
 EXAMPLE. 
 
 In the triangle ABC, {Fig. 55,) given A B 5 c/i. 62/., 
 A C 8 ch., and B C 3 cA. 20 /.; required the angles. 
 
 To find the segments into xohich the base A C is divided by 
 a perpendicular D B let fall upon it from the opposite 
 angle B. 
 
 As the base A C 800 /. 2 . 90309 
 
 Is to A B + BC = 562-1-320 = 882 2.94546 
 
 So is A B — B C = 562 — 320 = 242 2 . 4261^ 
 
 77 -*<? ■'y 
 
 9, 
 
 To AD — DC 266.8 2.46756 
 
 Now i (A D -t D ( ) = 400, and i (A D — D C) = 133 . 4; 
 therefore 400 -f- 133 . 4 = 533 . 4 = A D greater segment, and 
 400 — 1 33 . 4 = 266 . 6 = D C less segnnent. 
 
 The segments of the base may also be obtained by the fol- 
 lowing rule : 
 
 From the sum of the squares of the two greatest sides 
 subtract the square of the least side, and divide the remain- 
 der by twice the greatest side-, the quotient will be the great- 
 est segment. 
 
 Thus: 
 
 AC 
 
 A C2 = 
 BC'^ = 
 
 BC2 = 
 
 A B2 = 
 
 640000 
 102400 
 
 742400 
 315844 
 
 Then A C = 800 
 DC = 266.6 
 
 AD 
 
 bSS. 
 
 i 
 
 (A C»4- B C^)— A b'= 426556 
 2 A C 1600 
 
 = 266, G=DX 
 
in 
 
 I' <!« 
 
 ■Si! 
 
 ^ 
 
 MEHSURAXrON OP HEIGHTS AND DISTAftCtS. 
 
 To find the angle at C. 
 As side BC 320 2.50515 
 
 IstoRad 10.00000 
 
 oo IS side D C 266.6 2.4258G 
 
 To Sine ^ C B D 56° 26' ! , 92071 
 Then 90'^ — 56" 26'= 33^^ 34' = / at C. 
 
 To find the anifle at A. 
 
 As side A B 562 2, 74973 
 
 IstoRad, 10.00000 
 
 bo IS side A D 533.4 2.72705 
 
 To Sine ^ A B D 71° 39' 9.97732 
 Then 90"— 7F S9'= 18° 21' = / A. 
 Lastly, / C B D 56° 26' -f- / A B D 71° 39'= 120° 5' = 
 
 MFiNSURATION OF HEIGHTS AND DISTANCES. 
 
 Any of the instrumei.^ts employed in surveying may be 
 nsedto determine lines and angles which are inaccessible. 
 h or determming vertical angles, the Quadrant is the least 
 expensive. It is the fourth part of a circle divided into de- 
 grees, Sec, and furnished with a plummet suspended from 
 the centre, and with sights fastened upon one of its radii. 
 
 PROBLEM 1. 
 At the distance of 3 ch. 10 I. (Fig. 56,) from a wall, and 
 on a level with its foundation, the angle of elevation is ob- 
 served to be 15° 40'j required the height of the wall. 
 As Sine Z C 74° 20' 9.98355 
 
 Is to the base A B 310 /. 2 49136 
 
 So IS Sine / A 15° 40' 9.43142 
 
 To height of wall B C 86 94 ^. 1 . 93923 
 
 P. .OBLEM. II. (Fig. 57.) 
 Standing on the top of a tower I3Gi feel in height, i 
 ob..erved a tree ut a distance on the plane, a straight line lo 
 
) DISTAliCtfi. 
 
 c. 
 
 2.50515 
 
 10.00000 
 
 2.4258G 
 
 9.92071 
 
 A. 
 
 2.74973 
 
 10.00000 
 
 2.72705 
 
 9.977S2 
 > 71° 39'= 120° 5' = 
 
 VD DISTANCES. 
 
 I surveying may be 
 ch fire inaccesaible. 
 Liadrant is the least 
 ■cle divided into de- 
 iet suspended from 
 ii: one of its radii. 
 
 ,) from a wall, and 
 of elevation is ob- 
 of the wall. 
 9.98355 
 2. 19136 
 9.43142 
 
 1 . 93923 
 
 57.) 
 
 i feel in height, 1 
 e, a straight line lo 
 
 MtNSURATION OP HEIGHTS AND DISTANCES. 
 
 l\ 
 
 which from the top of the tower makes with the wall an an- 
 gle of 67° 20'; required the distance of the tree from the bot- 
 ^ torn of the tower. 
 
 As Sine / A 22° 40' 9.58587 
 
 Is to the height of the wall 136.5/if, 2. 13513 
 So is Sine Z C 67° 20' 9.96509 
 
 To the distance A B 326.8^3?. 
 
 2..^;4^S5 
 
 PROBLEM III. 
 
 Wishing to know the breadth of a river, (Fig. 58,) I mea- 
 sured for a base a straight line, 250 links in length, close to 
 the bank. From each end of this base line I found the an- 
 gles subtended hy it and a tree at the brink of the river on 
 the opposite side to be respectively 53° and 79° 12'; required 
 the breadth of the river. 
 
 Lot a perpendicular fall on the base from the opposite 
 angle at A, the length of that perpendicular is the breadth 
 of the river. Firet find the length of the side A B. Now 
 we have / B 53°, and ^ C 79° 12', consequent! v ^ A is 47° 
 48' and the side B C 250 links. Then, 
 
 To find the length of the side A B: 
 
 As Sine Z A 47° 48' 9.86970 
 
 Is to side B C 250 I. 2.39794 
 
 So is Skie / C 79° 12' 9.99223 
 
 To side A B 33i .5 2.52047 
 
 Now we have the right-angled triangle B A D, in which 
 
 ;»re knovv-li the side A B 331.5 links and the angle at B 53° 
 
 Then As Rad. 10.00000 
 
 Is to side A B 331 . 5 ;. 2 52048 
 
 So is Sine / B 53° 9.90234 
 
 To sfdc A D 264 . 7 2 . 42282 
 
 The perpendicular breadth of the river accu.dingly in 
 
 iu.li. 
 
 PRORT.FIU 1X7 /I7»J~ rn V 
 
 Wishing tu Know the height of, and my distance from 
 an ol^ect apparently on a tevel with the place on which I 
 
1, 
 
 
 ■1 ^; 
 
 hi 
 
 MENSURATION OF HEIGHTS AND DISTANCES. 
 
 Stood, oti the opposite side of a river; and being unable 
 to mctisure backward on the same plane on account of the 
 immediate rise of the bank, I placed a mark at the place 
 on which I stood. I then measured a distance of 264 
 Imks up the ascendinnf ground in a straight direction from 
 the object. At this station it was evident that I was above 
 the level of the object. Looking through the sights of the 
 quadrant first to the mark at my first station, I found the 
 angle of depression (A E D) 42\ Looking in the same 
 way to the bottoni of the object, I found the angle of de- 
 pression (D h A) to be 27^ Directing the instrument in 
 like manner to the top of the object, the angle of depression 
 (D C F) was found to be 19°; required the height of the 
 object and the distance between it and the mark placed at 
 the first station. 
 
 Let fall the perpendicular D A on the straight line A B, 
 the angle at A will be a right angle. Find fu-st the length 
 of the sides A D and A E. 
 
 In the triangle A E D, right-angled at A, we have the hy- 
 potenuse D E 264 links, and the / E 42°; rnd consequently 
 the Z E D A 48°. 
 
 Therefore As Rad. 10.00000 
 
 Is to hyp. 264 /. 2.42160 
 
 So is Sine / E 42° 9.8.2551 
 
 To side AD 176.7 
 
 And As Rad. 
 
 is to hvp. 264 /. 
 
 So is Sine / A D E 48° 
 
 2.24711. 
 
 10.00000 
 2.42160 
 9.87107 
 
 To side A E 1 96 . 2 2 . 29267. 
 
 Find next the length of the line A B. Now we have in 
 the right-angled triangle ADB the side A D 176.7 L, 
 and the / B 27°, and consequently the / A D B 63°. 
 Therefore As Sine / B 27° 9 . 65704 
 
 Is to side A D 176.7/. 2.24711 
 So is Sine / A D B 63° 9 . 94C38 
 
 To side A B 346 . 7 /. 2 . 539i«5 
 We found before A E 196. 2 I., tind now find A B 346. 7 /., 
 
NCES. 
 
 MENSirnATlON OF HF.IGIITS AND DISTANCF.S. 
 
 .'>;i 
 
 being unable 
 ccount of the 
 at the place 
 tancc of 264 
 rection from 
 I was above 
 sights of the 
 I, I found the 
 in the same 
 angle of de- 
 istrunient in 
 )f depression 
 might of the 
 rk placed at 
 
 fht line A B, 
 it the length 
 
 have the hy- 
 ;onsequently 
 
 
 
 
 
 
 
 7 
 
 
 7. 
 
 
 we have 
 
 in 
 
 D 176.7 
 
 /., 
 
 3 63°. 
 
 
 B 346.7/., 
 
 therefore BE must be 1.50.5 /., vvhicii is the distance be- 
 tween the first station and the bottom of the object. 
 
 We have still to find the height of the object, or the lengtli 
 of the side C B. Draw C F parallel to A B, and because 
 D A ana C B are perpendicular to A B, they must be paral- 
 lel to each other; and because F C is parallel to A B, F A 
 and C B must be equal. Having already found the lengtli 
 of A D to be 176.7/. if we can ascertain the length of 
 ][) F, the length of F A, and consequently of C B will be 
 easily determined. Now in the triangle F D C riglit-angled 
 at F, we have the base F C = A B, which we h e found to 
 be 346. 7 /., and the angle at C 19°, and consequently the an- 
 gle F D C 71°, to find the side D F. 
 
 As Sine Z C D F 7P 9.97567 
 
 Is to side F Cor A B 346. 1 /. 2.53995 
 So is Sine / C 19<^ 9.51264 
 
 To .side DF 119.4 Z. 2.07692 
 
 It was before ascertained that A D is 176.7 /., and now 
 that D F is 119.4 / in length, A F must therefore be 57.3 /. 
 But A F and C B are equal: C B is therefore 57.3 /., which 
 is the height of the object. 
 
 The methods of ascertaining the heights and distances of 
 inaccessible objects are numerous, if, however, the stu- 
 dent fully comprehends the preceding examples, :^e will 
 have r.o difficulty in applying the principles of Trigonome- 
 try for the solution of any problem that may occur. 
 
 Wherever sufficient level space can be obtained, the fol- 
 lowing rule is applicable and expeditious: 
 
 Let the observer retire from the object until the angle o 
 elevation is 45°, the distance between the place of observa- 
 tion and the object is equal to the height of the object. But 
 if the object be inaccessible, let the observer find the point 
 at which the angle of elevation is 26° 34'. Having marked 
 the spot let him advance towards the object until he finds 
 the angle of elevation is 45°; or let him retire from it until 
 the angle is 18° 26', in either case the distance between the 
 first and second places of observation will be equal to the 
 height of the object. 
 
.*■ 
 
 m 
 
 I 
 
 t i, 
 
 LAND SURVEYlNrx. 
 
 INSTRUMENTS EMPLOYED, 
 I. The Chain. 
 
 The Chain is a measure consisting of a certain nunib«^r 
 pf links of strong iron wire, very generally employed in 
 surveying for the purpose of measuring lines or distances. 
 It is in length four poles, or sixty-six feet, or one hundred 
 links. A link is therefore 7.92 inche:5 long. Hence it is 
 easy to reduce any number of links to feet, and vice ver&a. 
 
 To assist in counting the number of links, when any dis- 
 tance does not amount to an exact number of chains, a'small 
 piece of brass, generally marked, is attached to the end of 
 every tenth link, dividing the chain into ten equal parts, 
 
 Instead of the chain, a half chain, or, as it is often called, 
 a two-pole chain is very frccjuently employed. For mea- 
 suring lines rji cleared level land, such as marshes, inter- 
 vales, &c., the whole chain or four-pole chair is the more 
 convenient. In British North America, however, for which 
 this treatise is principally designed, us a great part of the 
 business of a Surveyor consists in running lines, and making 
 surveys mi the forest, and on every variety of surface, the 
 half chain is generally to be preferred. The reason is obvi- 
 ous. It is much easier to keep a two-pole chain in a straight 
 and horizontal position, than one of t^vice its length. 
 
 By frequent use the rings which connect the links of tho 
 chain are apt to open, and thus the length of the chain is in- 
 creased. Before proceeding to measure any line, tho Sur- 
 veyor should therefore carefully examine and measure his 
 Cham. To this point too much attention cannct be paid. 
 
 Two chain-men or chain-bearers are generally employed 
 
 to Carrv tho. rha'in TTno" ♦*>"!»• ^"V"^'-l-^ r-. i -^-"-- 
 
 ^. — _„ii-.i, ^^}i,,, ti£vir v.-.rtriuiiiusa una Kirici com- 
 pliance with the directions of the Surveyor, the correctness 
 
LAND SURVEYING. 
 
 55 
 
 of ihe survey in a great measure dependg. Over their con- 
 duct therefore it is of great importance that he exercise n 
 careful supervision. 
 
 Before commencing the measurement of a stationary dis- 
 tance, an object easily seen is to be placed at one extremity 
 of the line to be measured. The hindmost chain-man then 
 takes up his position at the other extremity, holding the end 
 of the chain exactly at the end of the line. The other 
 cham-bearer being previously furnished with, and now car>- 
 rying ten pins, sharpened at one end, about ten inches in 
 length, if the surface to be measured is smooth, and about 
 eighteen inches in length if the surface be uneven, or if it 
 be 1,1 the woods, and holding the other end of the chain, 
 proceeds towards the object placed at the farthest extremity 
 of the line. It is now the duty of the hindmost chain-bear- 
 er to direct the course of the foremost. Having advanced 
 until the chain is stretcliQH, the latter is directed, if necessa- 
 ry, by the former to move to the right hand or to the iei\ 
 until he is in a direct line with the object toward which they 
 are advancing. When he covers that object from the sight 
 of the hindmost chain-bearer, the latter knows that he is in 
 the proper course, and with a motion of the hand, or other-, 
 wise, directs his companion to stick one of his pins exactly 
 at the end of the chain. Both chain-bearers then advance 
 simultaneously toward the object at the end of the line, un-, 
 til the hindmost arrives at the place where the pin was de- 
 posited, lie then directs the foremost chain-bearer as foi-s. 
 merly, and pulling up the pin carries it carefully with him. 
 Thus they proceed until either the whole line is measured 
 or until all the pins carried by the foremost chain-man are 
 exhau.«\d. In the former case, if the line do not contain 
 an exact number of chains, the distance between the last 
 pin and the object at the end of the line is measured in links. 
 The number of pins held by the hindmast chain-bearer ex- 
 presses the number of chains or half chains measured. This, 
 with the odd links (if any) added to it, is the length of the 
 line. lii iho hitter case, at the end of the first ten chAins, 
 the hindmost chain-man returns all the pins tatihe foremo^t,.^ 
 
 
.)(] 
 
 '\ 't 
 
 1% H 
 
 1 IS , :* 
 
 iii 
 
 lifl 
 
 n 
 
 w ''H 
 
 1 v 
 
 1 
 
 LAND SURVEVING, 
 
 a note of the transfer is taken, which is sometimes called 
 keepins; tally,— and the chain-bearers proceed as before, un- 
 til the whole line is measured. Then the number of trans- 
 fers, or tallies, each counting ten chains,-— the number of pins 
 held by the hindmost chain-bearer, counting each a chain, 
 and the number of odd links (if any) shew the length of the 
 line. 
 
 It must be very evident that, in a survey, much depends 
 upon the hindmost chain-bearer. Inaccuracies very fre- 
 quently occur in consequence of bad chaining. If, there- 
 fore, a Surveyor cannot procure, for a hindmost chain-bear- 
 er, an individual upon whom he can rely, he ought to act in 
 that capacity himself. This is another point on which he 
 cannot be too careful. 
 
 The surveyor will requi-e likewise to caution the chain- 
 bearers against losing any of their pins, and also to teach 
 them that inclined planes, such a^he sides of hills are to be 
 measured horizontally, and not along the incliiied plane. 
 This subject however, we will discuss more particularly 
 when we come to treat of the running of lines. 
 
 n. The Circumferentor. 
 
 This instrument is employed by surveyors for taking an- 
 gles. It consists of several parts : 
 
 1. A brass box, about five or six inches in diameter. 
 Within this box are; 1st, a brass graduated circle, the upper 
 surface of which is divided into 360 degrees, and numbered 
 10, 20, 30, &c., to .360. The bottom of the box is divi- 
 ded into four parts or quadrants, each of which is subdi- 
 vided into 90 degrees numbered from the meridian, each 
 way to the east and west points. And ^ndly. a steel pin in 
 the centre, called a centre pin or pivot, finely pointed, upon 
 which IS nicely balanced a needle, touched bv a loadstone, 
 which, when at rest, and when the box contahiing it is in a 
 horizontal position, always points in a North and South di- 
 rection nearly. To the bottom of this box is also attached 
 a Plidc, by means of which the nee.llo may be raised from 
 the centre pin, or pivot, to prevent the fine point of the jat- 
 
'*■,! 
 
 
 LAND St'RVETING. 
 
 57 
 
 mos called 
 before, un- 
 r of trans- 
 ber of pins 
 h a chain, 
 igth of the 
 
 h dependu 
 
 very fre- 
 
 If, there- 
 
 hain-bear- 
 
 it to act in 
 
 which he 
 
 the chain- 
 
 to teach 
 
 1 are to be 
 ed plane, 
 irticularly 
 
 aking an- 
 
 diameter. 
 the upper 
 lumbered 
 X is divi- 
 
 is subdi- 
 ian. each 
 el pin in 
 ted, upon 
 aadstone, 
 
 it is in a 
 South di- 
 
 attached 
 ied from 
 'the lat- 
 
 ter from being blunted when the instrument is carried from 
 one place to another. The box is also covered with a glass 
 lid to preserve the needle from being disturbed by wind or 
 injured by rain at the time of using. When the instrument 
 is to be carried from one place to another a brass lid or co- 
 ver is placed over the glass to protect it from accident. 
 
 •2. A brass index or ruler, about 11 or 12 inches in length, 
 to the ends of which, and perpendicular to it, sights are at- 
 tached, and to which the box above described is fastened by 
 screws. In each of these sights are two apertures, or slits, 
 the one above the other, and the one much wider than the 
 other. In one of the sights the wide slit is uppermost; in 
 the other, it is below. Through the widest of these aper- 
 tures is placed longitudinally, a horse hair or fine silk threa<I, 
 to assist in taking an observation with greater exactness. 
 
 3. Two levels at right angles to each other are attached 
 to the bottom of the instrument, by the aid of which it may 
 be readily levelled. 
 
 4. A ball and socket on which the instrument may be 
 placed, and by which, with the assistance of a screw, it may 
 easily be adjusted horizontally in any direction. The wholo 
 is supported, when used, by a conmion surveyor's staff. 
 
 , ^lh~Jr^^- levelling of instruments is generally done by 
 the Spirit Level or Magnetic Needle. '= ■^ J 
 
 By the former, as the Needle is subject to what is called 
 the dip, m consequence of which, there will be a difference 
 between an instrument levelled by the Spirit Level and ono 
 leveled by the Needle; hence, the latter way will be pre- 
 tcrab e, which is done by placing the instrument so that the 
 Needle will play freely and parallel to the bottom of the 
 Compass box. 
 
 III. The Theodolite. 
 The Theodolite is a complex, but most convenient 
 and valuable instrument. On account of its expense few 
 Surveyors in British North America are able or disposed to 
 purchase it. In consequence of its cnniplevity it is difficult 
 to give a description of it which would be at all intelligible, 
 without an inspection and examination of the instrument it- 
 
•If nil 
 
 58 
 
 LAND SURVEYING. 
 
 h m 
 
 self. The following remarks, however, may serve to give 
 some idea of its intricacy and importance. Its principal 
 parts are, 
 
 1. The Horizontal Limb.— This consists of two circular 
 plates, the upper or verniei plate, and the graduated limb. 
 The former moves freely above the latter, without actual 
 contact, and both have a horizontal motion about a vertical 
 axis, consisting of two parts, the one external, fixed to the 
 graduated limb, the other internal, fastened to the vernier 
 plate. 
 
 2. The VERNiERS.—These are short scales on the upper 
 plate, and on ofpposite sides of it, or 180° asunder. They 
 are minutely graduated, and so placed as to subdivide th'e 
 divisions of the lower plate into minutes. By the assistance 
 •of microscepes frequently placed over the verniers, the hal<^ 
 or even the fourth of a minute may be estimated. 
 
 3. The Parallel Plates, which serve for levelling the 
 instrument, and arc held together by a ball and socket. 
 
 4. Spirit Levels.— Two of these are placed at right an- 
 gles to each other, with adjusting screws on the plane of the 
 vernier plate, to determine Avhen the horizontal limb is truly 
 level, 
 
 5. A Compass or Circumperentor.— Thisis placed up- 
 on the vernier plate, and is very useful in pointing out the 
 meridional line, or the situation of the land. 
 
 6. The Vertical Arc and Telescope. The arc is 
 placed on a horizontal axis, the ends of which arc supported 
 by two frames. One side of it by means of a vernier, may 
 be read off to single minutes; the other side shews the differ- 
 vnce between the hypotenuse and the base of a right angled 
 triangle, or the number of links to be deducted from each 
 chain length to reduce hypotenusal to horizontal lines.— The 
 level, which is under and parallel to the telescope, is fasten- 
 «d to it at one end by a joint, and at the other end by a 
 screw, by which that end may he elevated or depressed. 
 There is also a screw at the jointed end for lateral adjust- 
 mont. By their assistance, the level may be placed parallel 
 *o fhe axis or line of collimution of the telescope. 
 
PH"* 
 
 LaKd surveying. 
 
 59 
 
 erve to give 
 ts principal 
 
 two circular 
 'uated limb, 
 hout actual 
 Lit a vertical 
 fixed to the 
 the vernier 
 
 n the upper 
 der. They 
 bdivide the 
 e assistancj* 
 !rs, the half 
 
 svelllng the 
 locket, 
 at right an- 
 planeof the 
 mb is truly 
 
 placed up* 
 ing out the 
 
 rhe arc is 
 ! supported 
 srnier, may 
 5 the differ* 
 ight angled 
 from each 
 nes. — The 
 5 is fasten- 
 end by a 
 depressed* 
 •al adjust- 
 ed parallel 
 
 By the Theodolite angles whether vertical or horizontal 
 may be measured with great accur.-icy. It will give the an- 
 gles of a field, and the bearing of any stationary distance 
 line from the meridian, in the b.wne manner in which these 
 may be obtained ty the Circumferentor, and Quartered Com- 
 pass. Before this insirument can be applied to practical 
 purposes with accuracy, its parts must be adjusted to each 
 other by means of the screws and levels. The first adjust- 
 ment is that of the line of collimation. The second places 
 the level utti. -hed to the telescope parallel to the rectified 
 line of collimation. The third makes the axis of the hori- 
 zontal limb truly vertical by means of the telescope level, 
 which is most to be depended upon. Then the levels on the 
 vernier plate ;,re adjusted jby thoir screws, so that their air 
 bubbles may remain stationary in the middle of their tubes, 
 while it makes a eomjjlete rev^' tion on its axis. When 
 these adjustments are perfect, tue vernier of the vertical arc 
 must be so set that its index will point to 0, or zero on the 
 arc, or else its deviation from zero must be marked and ap- 
 pli ed as an index error. 
 
 Several other instruments may be employed in measuring 
 surface, such as th(! Semicircle, Plane Table, and Cross 
 Staff, which do not require an extended notice. 
 
 The Semicircle may be employed for taking angles. It 
 will be observed, however, that in using this instrument 
 only one end of the index rests upon it. The number at' 
 degrees however^ marked by the other end may be obtaineti 
 from the end resting upon the semicircle, by substituting 
 181 for 1, 182 for 2, &c., proceeding onwards to 360. 
 
 The Plane Table may also bo employed for taking angles^ 
 and in numy r(jspects serves the purposes of a Theodolite or 
 Semicircle. It is indeed a very valuable instrument, but in 
 eonse(iuence of its clumsiness it is not at all adapted to the 
 .survey of wilderness land. 
 
 The Cross Staff is a very simple instrument, used princi- 
 pally tor laying off perpendiculars, or offsets, on or from a 
 
60 
 
 LAND SLRVEVrNG. 
 
 .1 
 'I 
 
 strai^'ht line. In measuring fields whore no obstructions 
 lie in the way, it is very useful. 
 
 The Protractor is an instrument for laying down and 
 measuring, with accuracy and despatch, angles upon paper, 
 by which the use of the line of chords is superseded. It is 
 principally emj)loyed in delineating or drawing a plan from 
 Field Notes. It is variously formed and constructed of dif- 
 ferent materials. It usually contains three concentric cir- 
 cles, at such distance from each other that figures may be 
 contained between them. The outward circle is numbered 
 from the right to theTleft hand, with 10, 20, 30, &c., to 180'^; 
 the middle circle is numbered in the same direction from 
 130^ to 360^; and the inner, from the upper edge both ways, 
 with 10, 20, 30, &e., to 90*^. 
 
 Instruments useful to a Land ??jRVEyoR. 
 
 A Case of good Pocket or Mathematical Instruments. 
 
 A Set of Feather-edged Plotting Scales. 
 
 Two or three Parallel Rulers. 
 
 A Cross Stafl^ 
 
 A Circumferentor. 
 
 A Sextant. 
 
 A Theodolite. 
 
 A Surveying Compass. 
 
 Measuring Chains. 
 
 A Spirit Level with a Telescope. 
 
 A Protractor. 
 
 A Quadrant. 
 
 A Copying-*^?iis3. 
 
 An Azimuth Compass. 
 
 In selecting Mathematical Instruments particular attention 
 should be paid to their co-aptation and adjustments. Reject 
 those whose principal parts are immovable, for they cannot, 
 at least without difficulty and expense, be rectified or ad- 
 justed. Whatever pains may have been bestowed upon their 
 original fr)nstruction, it need not bo fixpnctod that they will 
 continue as correct as when they came from the hand of /he 
 Mathemati' -d Instrument Maker. 
 
 1- 
 
ohstriictions 
 
 T down and 
 upon paper, 
 edcd. It is 
 a plan from 
 ucted of dif- 
 icentric cir- 
 ires may be 
 s numbered 
 ic, to 180'^; 
 cction from 
 both ways, 
 
 EVOR. 
 
 uments. 
 
 Si 
 
 land survktinq. 
 Use op the Chain. 
 
 «) 
 
 PROBLEM I. 
 
 To reduce half chains or two-pole chains and links to whole 
 or four-pole chains and links. 
 
 RULE I.. 
 
 If the given number of half or two-pole chains be even 
 divide it by 2, and the quotient with the given number oi 
 links annexed will be the number of chains and links re» 
 quired. 
 
 EXAMPLE. 
 
 In 18 half chains and 40 links how many chains and links (' 
 
 2)18 40 
 
 ch. 9 40 /. j3n«.. 
 
 RULE II.. 
 
 But if the given number of half chains be odd, divide as 
 before, and add the remainder which is equal to 50 links to 
 the given number of links, and it will give the number of 
 chuins and links required. 
 
 EXAMPLE. 
 
 In 15 half chains and 20 links, how many chains and 
 links ? 
 
 2)15 20 
 
 ch. 7 70 I. Am. 
 
 lar attention 
 Its. Reject 
 hey cannot, 
 ified or ad- 
 1 upon their 
 [It they will 
 hand of ^he 
 
 PROBLEM II. 
 
 To reduce chains md links to half or two-pole chains and 
 
 lii^s. 
 
 RULE. 
 
 Reduce the whole to links, and divide by 50; the quotient 
 will be the numberof half chains, and the remainder will bt 
 links. 
 
CI 
 
 LAKD SURVETING. 
 
 EXAMPI.F.. 
 
 InB ch. 8? /. how many half chains and links? 
 
 ch. I. 
 8' 82 
 100 
 
 50)882 /. 
 
 halfchs. 17 32/. Ans. 
 
 PROBLEM [II. 
 To reduce chains and links to perches and decimal p arts of 
 
 a perch. 
 
 RULE. 
 
 Write down the chains as whole numbers, and the links 
 as decimals; then multiply by 4, and the product will be the 
 number of perches and decimal parts of a perch. 
 
 ^f^^y^'~'^^^'' u^'^'''" ""S *'''" '""'^^ '^ obvious. As there are 
 100 Imks m a cham, a Imk i.^the hundredth part of a chain 
 By writing them with the decimal p.Mut before them, thev 
 become decimal parts of a chain, observing only that if the 
 number ot Imks do not exceed 9, a cypher must be writtea 
 before it, in order that it may express hundredth parts. 
 
 EXAMPLE. 
 
 In iO ch. 64 /.. how many perches? 
 
 ch. 
 
 10.64 
 4 
 
 In 
 
 41. b^ per. Ms. 
 
 PROBLEM IV. 
 
 To reduce half or txoo-pole chains and links to perches mid 
 decimal parts of a perch. 
 
 RULE. 
 
 Reduce the given number of half chains and links to 
 chams and links by Prob. I; thenreduce them tn n.v.h«- ...jd 
 docnnal parts of a perch by the preceding rule. ' 
 
LAND SURVETINC. 
 
 OS 
 
 EXAMPLE. 
 
 In 11 half chains and 21 links how many perches? 
 
 ch. 
 2)11 21 5.71 
 
 4 
 
 ch$. 5 71 I. 
 
 22.84 per. ^ns. 
 
 mal parts of 
 
 md the linlcji 
 t will be the 
 
 As there are 
 t of a chain, 
 them, they 
 f that it' the 
 It be written 
 h parts. 
 
 PROBLEM V. 
 
 To reduce perches and decimals of a perch to chains and 
 
 links. 
 
 RULE. 
 
 Divide by 4 so as ta have at least two places of decimals, 
 the whole numbers in the quotient will be chains, the first 
 two places of decimals will be links, and the remainder will 
 'be decimals of a link. 
 
 EXAMPCE. 
 
 In 22.32 perches how many chains and links.-' 
 
 chs. 5 58 /. ^ns. A *t 
 
 perches and 
 
 tid links to 
 perches and 
 
 PROBLEM VL 
 
 To reduce perches and decimals of a perch to half or two- 
 pole chains and links. 
 
 ■RULE^ 
 
 Divide the whole rumbers by 2, the quotient will be the 
 number of half cha,;us. To the remainder annex the deci- 
 mals and divide by 4, the quotient wiH be the number of 
 links. 
 
 EXAMPLE. 
 
 In 27. 52 perches how many half chains and links' 
 
 2)27. 
 
 half chs. 13.152 
 
 = 38 7. Ans. i3 half chs. 38 Y. 
 
«' 
 
 M 
 
 LAiro smvETiifo. 
 
 PROBLEM VII. 
 To reduce chains and links to feet and decimal part, of a 
 
 foot. 
 
 RULE. 
 
 Write down the chains as whole numbers, and the links 
 08 decimals; then multiply by the number of feet in a chain 
 and the product will be the number of feet and decimal parts 
 of a foot required. 
 
 EXAMPLE. 
 
 In 7 chs. and 21 /. how many feet and decimal parts of a 
 foot? ' 
 
 7 21 
 66 =/(?cf in a chain. 
 
 508.86//. Ms. 
 
 PROBLEM VIII. 
 To reduce feet and inches to chains and links, 
 
 nuLE. 
 ^ Reduce the inches to the decimal of a foot, and annex 
 It to the gnen number of feet, then divide by 66. Continue 
 the division by annexing cyphers to the dividend until you 
 have two places of decimals in the quotient. Then the 
 whole numbers in the quotient will be the chains, and the 
 decimals Avill be the links required, 
 
 EXAMPLE. 
 
 In SlOyjf. 6 in. how many chains and links.** 
 60 210.50 
 
 = 5 /•/., then ■ = 3 . 18 or 3 chs. 18 /. Jns, 
 
 12 
 
 66 
 
 u 
 
 PROBLEM IX. 
 To take a survey by the chain only. 
 
 EXAMPLE. 
 
 Let A B C D E A {Fig. CO,) be a field. It is required to 
 survey u and to lay off the angles with the chain onlv. 
 
r^ 
 
 -^ \ 
 
 LAND SlfRVEYi.ViJ. 
 
 65 
 
 nl parts of a 
 
 md the links 
 !t in a chain, 
 ecimal parts 
 
 al parts of a 
 
 links, 
 
 and annex 
 
 Continue 
 
 il until you 
 
 Then the 
 
 IS, and the 
 
 /. ^n». 
 
 cquired to 
 onlv. 
 
 RULE. 
 
 Commences mij r ngular point A, and on the straight 
 line A E n-enuro irom the point A own .'hain towards E, 
 and set up a ^ tJ,o or other niark exactly at the end of the 
 Irst chain rs at f in the same manner measure from the 
 point A in I. dire ' line towards 13, one chain, at the end of 
 which set up ^r,'.n . stake as at g. Then measure the dis- 
 tance het ween /and -, and enter the same in vour field 
 book. Proceed in the measurement of the line" A B, and 
 enter the result in your field hook. Measure the angle at li 
 as you measured the angle at A. Proceed in the same way 
 to measure ail the lines which enclose the field, an.l also the 
 nnglcs, ohservin- to take the external anijje at D. From 
 the rfcta whir-ii your field notes will afford, according to the 
 principles of Practical Geometry, already laid down in a 
 preceding part of this work, with the aid of a scale of equal 
 parts a figure may bo constructed in which the angles will 
 be hud off, and which will be a correct plan or map of the 
 hehJ Or : divide the field into three triangles A B D. 
 C B D, and A E D. Then measure the sides of the trian- 
 gles, in succession, and yon have data by which to construct 
 figures and lay .off the angles as before. 
 
 PROBLEM X. 
 To find the dist tnce of an inaccessible object by the chain 
 
 only. 
 Let A, (.^,;g-. 61,) be the position of an inaccessible object, 
 it IS required to determine its distance from the point B by 
 the chain only. '' 
 
 Place any conspicuous object for a mark at B, and from 
 It measure backwards in a straight line with A B, any con- 
 venient distance C. From B, at right angles and equal to 
 « ^, lay otl B E. Complete the square B E D C. Stand- 
 ing at D cause a pole to be set up ai F, the point in which 
 a straight Ime drawn from D to A would intersect B E 
 Measure the distance between E and F, the distance be- 
 tween I and B, will then also be known. Then, as the trU 
 
 "^^ 
 
tm;. 
 
 LAWD SUaVKYISG. 
 
 angles I) E r and A B F arc similar: As E F is t> E D. 
 so is F U to B A. 
 
 Note. — Tho above pro])ortion holds good in any paral- 
 lelogram. 
 
 Jlnother Method. 
 
 Let t][ie distance between A and B {Fig. G2,) represent 
 the width of a river, it is required to ascertain that distance 
 by the chain only. 
 
 Make A D perpendicular to A B. Bisect A D in C 
 Draw D E perpendicular to A D. Measure along the line 
 D E until you arrive at a point P2, in a direct line with C B.^ 
 The distance between Dand E vyill bg e(]ual to the disUnce 
 between A and B, the width of the river. 
 
 Because A C and C D are equal, and the angles at A and 
 
 D right angles, it is evident that the triangles ABC and 
 
 DEC are not only similar but equal, and therefore D E is 
 
 equal to A B. 
 
 Note. — Tt J not neceiisary that the station A should be ex- 
 actly on the brink of the river. It nuiy be taken at any con- 
 venient distance from it. Hiiving deter. (Uiunl the distance 
 between the station and tho inaccessible o])ject at the oppon 
 site vA2,ii of the river, measure carefully the distance be- 
 tween the station and the river's i)riid<. 'i'li .t distance being 
 iiubtracted from the whole distance, tho remainder will be 
 the breadth of the river. 
 
 r 
 
 
 I .. i, 
 
 i if 
 
 ^ > 
 
 Use op the ClRCUMPERV.yTOE. 
 
 To take field notes by the Circumfercnior. 
 
 1. By fore-sights. 
 
 Tiace the instrument at any angle A, (Fig. 03,) as your 
 first station; cause a otaff or ])ole to be erected perpendicuf 
 larly at the next angle B: having levelled the Circumferen- 
 tv)r, turn the flow^er-de-luce^ or nortii part of the box, to 
 your eye. Looking through the small aperture, or slit in 
 the sight, turn the index until you can see the staff at B, 
 through the large slit in the opposite sight, and until the 
 thread or hair which is in it divides or cuts that obicct; tli« 
 
i 
 
 LIWD St'RVEYINO. 
 
 67- 
 
 degrees pointed out by the south end uf tlic needle * n iir 
 shew the number of degrees by wliich the stationary line i« 
 distant from a north course, counting quite round witli the 
 sun. 
 
 Having entered the number of degrees, or tlie l)earing of 
 ihc line A 13 in your field book, measure the line, and insert 
 irs length in chains and links in the fiehl book likewise, un- 
 der the title "distance.'* 
 
 Being arrived now at your second station B, cause a pole 
 to be erected at the next angle C. Place the instrument in 
 ft horizontal positio". over the spot on which the object at B 
 stood. Direct the sights to the object at C, with the north 
 of the box to jour eye. When the instrument is in such a 
 position, that, looking through the signts the thread in the 
 large slit of the opposite sight exactly cuts the pole at C, 
 count your degrees to the south end of the needle, and Re- 
 gister them in your field book as before. Measure the line 
 B C, and make the necessary entry in your field book. Pro- 
 ceed thus from angle to angle, until you arrive at the place 
 of beginning, noiing as you proceed the names of the own- 
 ers of the contiguous lands, and the names of the roads, riv- 
 ers, &,c., which bound the lot, or intersect the i)oundarie8 
 >vhich you are runninir. 
 
 'i. By back a7id fore-sight ft. 
 Proceeding as directed above, before you leave tiie st:ition 
 at A, set up a stake or pole in the spot over m hich the cir- 
 cumferentor stood. Having arrived ?.t the second station 
 B, and levelled your instrument, with the south part of 
 the box to your eye, direct the sights to the obj(<ct at A. 
 When the thread hi the opposite sight cuts the object at A, 
 count the degrees to the south end of the needle. If both 
 
 ■ Some needles are pointed at the south end, and have a smalj 
 ring or croas at or near the north end; while others are pointed at 
 lM»th ends. The luttei kind i« to be preferred, as it enables iha 
 Purveyor to count the surplus numbers with greater accuracy. 
 Ihe iijscrlion of an agate i-ito the cap of the needle, that it may 
 rest on the pivot or centre pin, is a greai improvement, as it cauaei 
 Ujo needle .to move or play with greater beedjm. 
 
as 
 
 X.AND SURVEYING. 
 
 1 V 
 
 observat.ons have boon correct, the number of degrees will 
 b the same n, h the number reckoned at the first station 
 the direction oi the index bein- the same. Then direct the 
 81-hts to the next station, a.ul ,,roreod as formerly. At thi.s 
 fitat.on leave also an object, and when you arrive at the nexf 
 station C, })rocee<l in evory res})ort as at the station B. In 
 this manner proceed until you ret.n-n to the fir.t station. 
 
 hnv nr* rh * p''" ••^marked befo.-e that the brass ring in the 
 box ot the CircumbM-ontor is divided into 360\ It Ls num- 
 bered f.-om the North to the West 10, '20, 80, &c , to "qo- 
 from the North to the East, from the South to the West' 
 and i-om the South to the East in the sa.no nnumen ' 
 
 wards the iUisi, it is to be entered thus: N. 10^ E. 
 
 To find the number of degrees contained in any angle form^ 
 ed bxj the two adjacent lines that bound afield. 
 Place tiic instrun.ent on the angular point, and direct the 
 Sights aloiu, the lines or legs of the triangle. Note down 
 their respective bearings. The number of degrees marked 
 upon the brass ring between tiie points cut by the end of the 
 needle will be the measure of the angle required, 'JMius in 
 the angle A B C, (Fig. G4,) having placed the circun.ferontor 
 on B, and having directed the sights to A, the bearing is found 
 to be N. 30^ W. Then turning the instrument abcmt on its 
 ^und and directing the sights to C, the bearing is S. .55° W 
 1 he number of degrees on the brass ring between N 30^ W 
 and S 55^ W. is 95 ', which is tho measui-e of the Lnglc 
 A. a \j , 
 
 To measure an angle of altitude by the rircumferentor. 
 Let the glass lid l)e taken ofl; and the needle removed. 
 1 hen turn the instrument on one side with the stein of the m 
 ball in the notch of the socket, so that the circle may be per- i 
 pendicular to the plane of the hori/on. Having suspended | 
 a pkimmet from the centre pin, direct the sights to the top f 
 Of the object, and the complement of the number of degrees i 
 
 ip 
 
 All til 
 as nianj 
 
 Let tl 
 from ar 
 F A, F 
 triangle 
 it is evi' 
 this figi, 
 the figui 
 ■angles i 
 
 
^% 
 
 LAND SURVEtlNG. 
 
 69 
 
 ' degroea will 
 i first station, 
 lion direct the 
 crly. At thi8 
 ve at the next 
 itation B. In 
 ^t station. 
 S3 ring in the 
 '. It is num- 
 
 ', &('.., to 1)0°; 
 
 to the West, 
 .niiei-. 
 
 the cardinal 
 . When the 
 m in the field 
 (lie ])oints to 
 le North to- 
 E. 
 
 ' angle form^ 
 'field, 
 
 nd direct the 
 Note down 
 rees rnarkeJ 
 le end of tho 
 1, Thus, in 
 (MMuforentor 
 nx\^ is found 
 about on its 
 s S. 55° W.. 
 1 N. 30^ W, 
 f the tngle 
 
 iferentor. 
 
 removed, 
 item of the 
 nay be per- 
 \ suspended 
 s to the top 
 of degreea 
 
 A 
 .* 
 
 betiveen the thread of the plummet and that part of the in- 
 strument which is next your eye will be the angle of alti- 
 tude. 
 
 Use of the Theodolite. 
 To talce the angles of afield by the Theodolite. (Fig. 65.) 
 Set the instrument on some angular point of the field as at 
 A, then lay one end of the index to 3G0^, when the other end 
 ■•vill cut ISO'^; turn the whole about, until the part marked 
 •« SCO" is from you. Direct the sights from A to E, and 
 screw the instrument fast. Direct them then from A to B, 
 and the degree cut by the end of the index opposite to you 
 will be the quantity of the angle E A E; which note in your 
 field book, with the distance A B in chains and links. Pro- 
 ceed to the next station at B, and place the Theodolite on 
 the angular point, and unscrew it. Then lay the moveable 
 index so that it shall coincide with SCO and 180, with 180 
 next you as before, causing the thread or hair in the sight 
 to cut the object at A. Screw the instrument fast and di- 
 rect the sights to the object at C. The degree cut by the 
 end of the index opposite to you will be the quantity of the 
 angle A B C. Enter it in your field book, witli the distance 
 B C. Proceed thus from station to station, until you return 
 ■to the place of beginning, or first station. 
 
 LEMftfA. 
 
 All the angles of i ly polygon are together equal to twice 
 as many right . igles as the figure has sides, less four. 
 
 Let the poiy , >n hr, iajd ofi' into triangles by lines drawn 
 from ary assigiie(! ptat F within the figure, as by the lines 
 FA, F T], F C, &c. Now since the three angles of every 
 triangle nrr togeth r equal to two right angles, (Euc. i. S2,') 
 It is evi-. . - that the angles in all the triangles coatuined in 
 this figure must be eq-inl to twice as many right andes as 
 the figure 1 i^ side. But, according to Euc. i. IS, all the 
 ^gles atout ,J- point F are together qual '-four right 
 
70 
 
 Land SURVETINO. 
 
 f 
 
 5.1 
 
 I 
 
 angles. Therefore the remaining angles are equal to twice 
 as many right angles as the figure has sides, less four. If, 
 then, the angles of a field be correctly taken in any survey! 
 their sum will be equal to twice as many right angles, less 
 four, as there have been stations taken in making the survey. 
 
 Use op the Protiiactor. 
 To protract or draw a plan from a field book. 
 
 It is required to protract, or draw a plan from the follow- 
 ing notes in a field book: 
 
 Commencing at the point F, (Pig. 66,) running thence 
 K. 8 chains, thence N. 15° E. 8i chains, thence S. 80° E, 
 7i chains, thence S, 15° E. 7 chains and 90 links, thence 
 S. 20' W. 10 chains, thence N. 75° W. 8 chains and 45 
 links, to the firs^ station at F, or place of beginning. 
 
 Consider what part of your paper will suit best for the 
 first station, aa at F. Frem that point draw a meridional, 
 or a North and South line. Now from the field book it ap- 
 I>ears that the first course is due North, it is only necessary 
 that, on that line from F towards A, the given distance 8 
 chains be laid off, from a scale -qual parts. Lay now 
 your protractor on the meridior * lii. , so that the centre may 
 be cxa-tly on the point A. As jxt course is N. 15° E., 
 
 from the meridional Jine prick oflf towards the East or right 
 liand 15°, as ])()inted out by the chamfered edge of the pro- 
 tractor, Through this point from the point A, draw a 
 blank line A 13, formiii'r, of cmirse, with the meridional 
 line, an annfle of 15°. On that blank lino 4 ay oft' the given 
 distance 8^ chains to B. Next, through the point B draw 
 another meiidian parallel to the neridionai line F A. Lay 
 the centre of tiic ])rotractor on the ])oint B, .-tud prick off the 
 next course S. 80° E. Through that mark or dot fr)m B, 
 draw tlie blank line B C, on which lay ofl^'the given distance 
 7.i ciiains. Proceed in the same way until you have com- 
 pleted the figure. 
 
 Though it is the best way, in all protractions when the 
 .ionrses arc given, to draw meridians parallel to eacJj otJier 
 
LA^fD SHRVKTING. 
 
 7r 
 
 lal to twice 
 four. If,' 
 my survey, 
 ingles, less 
 the survey. 
 
 through every angle of the field, as above; yet where the 
 angle at each station is given, the centre of the protractor 
 may be placed on the extremity of the distances when laid 
 off, and the number of degrees contained in the given ano-le 
 pricked off for the direction of the next line.. 
 
 The method of using the Protractor is obvious, from the 
 nature and use of the Circumferentor and Theodolite. 
 
 ook, 
 
 the follow- 
 ing thence 
 ) S. 80° E, 
 ks, thence 
 ns and 45 
 
 est for the 
 leridional, 
 look it ap- 
 
 necessary 
 distance 8 
 
 Lay now 
 entre may 
 N. 15° E., 
 St or right 
 f the pro- 
 L, draw a 
 iioridional 
 
 the given 
 It B draw 
 ^ A. Lay 
 ick off the 
 )t fr')m B, 
 n distance 
 lavG coni- 
 
 Of the Field Book. 
 
 The accuracy of every survey, and the ease with which 
 plans may be drawn depend, to a great extent, on the man- 
 ner in which the field book is kept. The adoption of a con- 
 venient and perspicuous method of keeping field notes is 
 therefore a matter of great importance The subjoined form 
 is simple, concise, and plain. 
 
 JVo^^.—ln keeping the field book it is customarv and use- 
 ful, where the distance line crosses a brook, lake, &c., to 
 enter the same at the projjcr place by a line draAvn between 
 the respective entries, representing the course of such stream, 
 fccc, as between 35 and 40 in the 4th or N. W. course, and 
 between 40 and 45 in the last course, in the adjoining field 
 book, in which they are represented bv straight lines, in 
 consequence of the Printer iwt having lines of the proper 
 clirecticn. if 
 
 when the 
 ;ach otlier 
 

 i i 
 
 T* 
 
 land 8umveving. 
 Form of a Field Book. 
 
 3 
 
 38 ch 
 
 . to the place of be$;innin$r. 
 
 35 
 
 
 
 70 
 
 70 ch. and 7 /. 
 
 
 SO 
 
 
 • 
 
 C5 
 
 
 
 25 
 
 
 
 60 
 
 
 
 20 
 
 
 71 
 
 55 
 
 
 
 15 
 
 
 W 
 
 50 
 
 
 
 10 
 5 
 
 
 
 45 
 
 
 
 ■ 40 ch. 
 
 • 
 
 < 
 
 o 
 
 40 
 35 
 30 
 
 NarrowLake 
 
 Thence 
 
 N 50^ E 
 
 
 i 
 
 40 
 
 
 tJ 
 
 35 
 
 "Cross 
 
 ro 
 
 25 
 
 
 s 
 
 30 
 
 Lake 
 
 CO 
 
 o 
 
 20 
 
 
 ^ 
 
 25 
 
 
 tf 
 
 15 
 
 
 t^ 
 
 20 
 
 
 
 10 
 5 
 
 
 bo 
 o 
 
 15 
 
 10 
 
 
 
 
 Thence 
 
 S3^54'E 
 
 
 
 5 
 
 30 ch. 
 
 
 4 
 30 
 25 
 
 34 cA. 
 
 Thence 
 
 N45^W 
 
 
 i 
 
 30 
 
 
 i' 
 
 25 
 
 
 
 20 
 
 
 1 
 
 20 
 
 
 
 15 
 
 
 i 
 
 15 
 
 
 
 10 
 
 
 .5' 
 
 10 
 5 
 
 25 ch. 
 
 
 5 
 
 35 ch. 
 
 f 
 
 Thence 
 
 S 81° E 
 
 Thence 
 
 S85^ W 
 
 
 35 
 
 30 
 
 
 5 
 
 
 20 
 
 15 
 
 10 
 
 5 
 
 
 
 25 
 20 
 15 
 10 
 5 
 
 
 Thence 
 
 South 
 
 
 Thence 
 
 V 60^ E 
 
 ■s^- 
 
 4 c 
 20 
 
 24 ch. 
 
 
 3 i 
 
 J8 eh. 
 
 4> . 
 
 15 
 
 
 
 35 
 
 
 ^ u 
 
 10 
 
 
 
 80 
 
 
 Wg 
 
 5 
 
 
 
 25 
 20 
 15 
 10 
 
 
 Thence 
 
 West 
 
 efD. 
 
 
 Parish of C. , and County 
 
 
 5 
 
 
 tate of A B., Esq., in the 
 
 Thence I 
 
 ^25°W 
 
 
 easterly angle of the Es- 
 
 1 
 
 Cominei 
 
 iced at the 
 
 most 11 
 
 (COK 
 
 TINUBD.) 
 
 
LAND SURVKYINO. 
 
 ■;;{ 
 
 fining. 
 
 ro ck. and 7 /. 
 
 NarrowLake 
 
 4 cL 
 
 t ck. 
 
 eh. 
 
 Remarks o.n the preceding Form of a Field Book, 
 
 Tim procctliiig uotf>s urn sii])];osed to be entered in the 
 field book, wliile surveying the Estate of A. B., Es((,, (.S'.v- 
 Fig. ()7,) the counscs being taken from the meridian l>y ;i 
 '•In-umferentor, and the .stationary distances mea-^ured by a 
 half or two-pole chain. 
 
 Determine rirst at what part of the Estate it will be most 
 eonvenient to co/nmence the survey. Having conclnded to 
 begin at the angle No. 1., which is the m,)st Easterly corner 
 in the Estate, you insert in the field book the place of be- 
 gimiing, thus: " Commenced at the most Easterly corner 
 of," ike. In keeping a field book it is found most conveni- 
 ent to begin at the bottom of the page, and to write .ip- 
 ward.s. Set the instrument on the angidar point, and take 
 the course to the second station at tiie angle No. 2, which is 
 seen to be due West. Write in your field book " Thence 
 West," or " Thence W\" Proceed to measure the distance 
 between / 1 and Z % and every tin.e that the ten pins cur- 
 ried by the foremost chain-Jjoarer are all transferred to the 
 hindmost chain-man, insert 5 in your field notes, writing 
 upwards; for 10 half or tw^o--pole chains, only tnake 5 chains^ 
 When you have arrived at the station write down the odd 
 chains and links, if any, and place the sum of the whole in 
 the right hand column, thus: «' 24 cA." Observe whoso 
 land lies to the left of the land which you are surveying, 
 and enter a note of it in your field book, in the left haml 
 colunm, thus: " Estate of Mr. A W." Observe also if any 
 particular objects a])j)ear in the immediate viciinty ai.'l ad- 
 joining the stationary line, such as stream, fence, road, &e., 
 and insert it also in the left hand colmnn of your field jmok' 
 thus: '-Kryad." Proceed in this nmnncr from station to 
 station, uniil you leturn to the place of beginning, always 
 ••arefully noting to whom tl^e adjoining land belongs, tluv 
 r..ads, waters, &c., which bound, the Field or Estate'^whicli 
 you are surveying, and also the streams, lakes, Lr., which 
 you cross in running the lines, and at what part of the line 
 you cro.ss them; as all these particulars must be expressed 
 
T! 
 
 74 
 
 LAND SUKVEYING. 
 
 and iiccurately laid down upon the plan which is afterward^ 
 to be drawn. 
 
 I'Jik' 
 
 ii 
 
 H r ■! 
 
 { I 1 ■ 
 
 
 VARIATION OF THE COMPASS. 
 
 The natural magnet or loadstone was for a long time sni.- 
 posed to be the only body which possessed inagnetic proper- 
 ties. It ,3 an ore of iron, whose specific gravity is about 
 five times that of water. Its colour is iron-black, a.id its 
 lustre metallic. It is found in almost every part of the 
 world, and occin-s in beds, often of vast thickness, and of 
 great extent. Its attractive power over small piece, of iron 
 has been known from the remotest antiquity. It is sai.l to 
 be distinctly referred to by Hon.er, Pythagoras, Aristotle, 
 i'lmy, !kc. Iv has been asserted that its directive i)ow.M- or 
 polarity was known to the Chinese in the earliest ages, a.Kl 
 that the needle was employed to guide travellers by lan.l a 
 thousand years before the commencement of the Christian 
 Ji.Ba. 
 
 To whatever amount of importance these statements may 
 be entitled, it may nevertheless be confidently asserted, that 
 nearly all our knowledge of the magnetic virtue, and nearly 
 all Its ai,plications to practical purposes, are discoveries and 
 mvontions of comparatively modern date. Notwithstand- 
 mg, however, of the numerous and valuable additions, which 
 have recently been made to our acquaintance with the laws 
 by which magnetic influences are regulated, many interestin-r 
 and important points still remain to be determined. To the 
 dotermmation of some of these points the attention of scien- 
 tific men has recently been directed. Magnetic observatories 
 have been erected, and powerful and delicate instruments 
 hav-e been constructed for the advancement of this brand. 
 ot Science. Members of the British Government were re- 
 questeu some years ago, to establish magnetic observatories 
 not only in Lntain but also in these Colonies. About the 
 same ime Baron Humbolt addressed an interesting letter to 
 the late Duke ot Sussex, President of the Royal Society, 
 
VARIATION OP THE COMPASS. 
 
 75 
 
 1 is afterwards 
 
 long time sup- 
 ijnctic proj)er- 
 tivity is iiho'.n 
 hlack, and its 
 y part oC th(; 
 kncss, and of 
 pif3cc,> of iron 
 It is said to 
 •as, Aristotle, 
 tive j)(nv<M- or 
 iest age?, am! 
 ers l»y land a 
 the Christian 
 
 iitements may 
 asserted, that 
 le, and nearly 
 scoveries and 
 ^otwithstand- 
 litions, which 
 vith the laws 
 ny interesting 
 lied. To the 
 tion of scien- 
 ohservatories 
 ' instruments 
 i' this branch 
 lent were re- 
 observatories 
 About the 
 ^ting letter to 
 »yal Society, 
 
 soliciting that learned body to extend in the colonies of 
 I Great Britain, the line of simultaneous observations, and to 
 ' establish permanent magnetic stations either in the tropical 
 regions cm each side of the magnetic Equator, or in the high 
 Latitudes of the Southern Hemisi)here, and in Canada. I 
 mention these facts for the purpose of attracting the atten- 
 rion of the North American Colonist to this interesting and 
 important subject. 
 
 The property of magnets or magnetized bodies upon which 
 nearly all their value depends, is their polarity or directive 
 power. By these terms, is intended to be expressed tho 
 tendency of such bodies when suspended, or made to float 
 on water or mercury by being placed on a thin piece o^ wood 
 or cork, to assume a position in which the one end will be 
 tlirected to the North and the other to the South, nearly. 
 In consequence of their possessing this property, by their 
 assistance, we can at any time ascertain the direction of the 
 meridian at any given place, and the bearings of other ob- 
 jects in relation to that line. The magnetic instrument 
 <ommonly employed for this purpose is the Compass. It is 
 a matter of i egret that the name of the inventor of this curi- 
 ous and invaluable instrument is unknown. It deserves to 
 be written in letter^ of gold and to be handed down with 
 honour to the latest ages. 
 
 Though magnetic instruments are useful in determining se- 
 veral curious and important points, their principal value con- 
 sists in their application to the arts of Navigation and Land 
 Surveying. By the aid of the compass the mariner guides 
 his vessel through the trackless ocean, and establishes an 
 intercourse with the most distant nations. By the assist- 
 ance of the compass the surveyor divides large tracts of 
 country covered with dense forests, assigns to the future oc- 
 cupant his portion, and determines the bounds of his habi- 
 tation, or assigns to the respective claimants their just pro- 
 portion of an improved and valuable estate. 
 
 It nmst not however be supposed that the compass, how- 
 ever useful, aftbrds to the surveyor infallible direction in 
 his operations. The magnetic effects are liable to various 
 
 'SI 
 
 I 
 
It 
 
 'l* { 
 
 7»> 
 
 T-\NI) .sun\ EYrwo, 
 
 ami varying innuiMicrs and (lisfniliiinccs, uhich tl 
 
 or nnnt Im« iil»Ic to diMcct inul cstiniiitp. 'rhn^duivoof tl><«h'i> 
 
 u' siirvov 
 
 influotn'cs is still invi)|\M!il in olwcnritv, hut tlir cd'c^ts 
 
 ar<? 
 
 Avcll known nnd fnllv cstiilrlish 
 
 Of ilicsp on«' of till 
 
 niosi iinportiint and tlicrcfoi-c first dcsorvin"- nllcnt 
 
 Til 
 
 ion is: 
 
 c I 
 
 (tiialinn of the Nrcdir.—h Iiuh alr^udy lic<<ti ol»- 
 o)>s not point Nonli mid South cx- 
 
 srrvi'd th.il llir iimj'nrt d 
 
 acliv : or, in other words, that the niiinnrt 
 
 terrestrial meridian seldoi 
 ma-fnetie needle from a true North and Sontli I 
 a true meridian, is called its vnrinli 
 eontinnally varyinjr, Aecoidiiiirlv, the va; .at 
 
 in ( 
 
 lill 
 
 les. 
 
 on. 
 
 ie meridian and the 
 n eoineide. Th,' deviation of the 
 
 ine, or iront 
 on. This deviation is 
 ion is (lili'erent 
 brent jdaees, and in the same plare at <litferent tin 
 In some phiee.s th(>ro is little or no pereeptihh^ variati 
 In otluM- places the variation is great. At some times it ap- 
 pears to h(> stafi^mary at a particnlar place, at otiier times 
 in the same j)hice it increases or diminishes with <?reat rapi- 
 
 o variation was 10' 
 
 arrived at its maximnin, or 
 
 >ein-U> 17'K. The Easterly 
 
 rom 1()57 to 1G(>2, no 
 
 dity. At Lomhm, in the year 1 ;')?(), th 
 15' Kasterly. In 1580, it had 
 jjreat«>st Easterly deviation, 1 
 \ariation then be<ran to decreas(>. I 
 
 variation was percejuible. In KUHs it >vas S-l' V\ Csterh 
 
 The Westerly variat 
 
 ion continnetl to increase until 1815, 
 
 when it arrived at its maximum or ^n-eatest Westerlv d 
 ation, heinj; then '24'' i27' 18" W. It 1 
 
 V tievi- 
 
 1112 
 
 In 18;>1 it was ^21 \V 
 
 las since been decrcas- 
 
 At Paris, in 1541, the north end or pole of th 
 
 die pointed 7^ to the East of iNortlr/ In 1580 it had 
 
 its maximum of Easterly variat 
 
 c nni'nietfc nee- 
 
 attained 
 
 ion, Avhich was 11^. SO'. 'J'l 
 
 le 
 
 easterly variation declined ffrad 
 
 about Hj[)6, when it became 
 variation was 15' W, The Westerl 
 Ji-radualiy until 1814, when it had 
 since been decreasiui;. In 18'iO it 
 
 frradually from that time until 
 imperceptible. In nm thtt 
 
 Accordino- to the report of Dr. (Jesner I- 
 
 y variation increased 
 iirrived at 2\>^' 54'. It has 
 wasi2\>-^ Ui' W. 
 
 fist, made to His Ex 
 
 rovincial (ieolo- 
 
 Colebrooke,K.H., Lientenunt-C 
 
 celleucy Sir ^Villiam MacLean ( 
 
 leorife 
 
 he 
 
 Governor of Nevv-Brunswicl< 
 ariation iu that Province ranges from 17-to ^IV ^V 
 
V Mir \TTON or Trn. roMrx- 
 
 1 1 
 
 An.l on tlK- lirli nCN.pf., |h|.{, I (oiiixl lli<' variniion nt lluv 
 
 (If VcltO to l)«! IS' 10' W., lU'Jlllv. 
 
 IN 
 
 siflfs tlipsi' pn^'iTssivp cFmnj^'cs in tl 
 
 10 v.'iiiiiiinn (I 
 
 -•"mpri-^, tlir ii.TiMr is ,il 
 nr<'rial»||. osrilhitioiis, nt ijiti; 
 
 -ill 
 
 tf .nn 
 
 «M-r-iit timrs of the flay jiikI iii-Wif. 'I'Im; oI 
 
 \\\o('t \n inorp iriiriiiti> yif. ii|»- 
 rent soasfUH «»r ilirycMr. ami 
 
 i-^crvailMii- 
 
 whi.-ii havo Urvn ina<l<* h. (h-tcnniiin tho prcciyi! p.-riod 
 llic your in wliirli this annual varialion attains it 
 
 S (ll 
 
 s niavitniuii 
 
 111(1 niinitnnni ilo not. cvacfly r-ornspnnd. I'roliahly tl 
 ai-p (lifUM-ciif in (litrcrcnt parts of il 
 liowcvc.r, it may ho sfatrd to l)(! loiist 
 f<i ahont 7 jninnti's, and jfrcatpst 
 
 IP \vorld. In L't'ni'r-al, 
 ill \\ ii.tr-r, anioinititu 
 
 •> nnnntr- 
 
 T 
 
 111 s.ininuT, wlioii it is aliuii. 
 anic discropanpy o\ist,s in the ruiiiicron-! 
 
 -•'ivations niaiK! tu dptorniino tlio 
 
 mnni of tlip daily variati(»n. hi f.ondon tl 
 
 niax'itnntn and mini- 
 
 daily variation is «,(>' -M' 
 
 In ( 
 
 iV'lco 
 
 t>. :» 
 
 ajpf it 
 
 IS only 10' .W.. I", in Ka-a.i it 
 
 10 ,',M'nf'ral moan 
 
 ioiiova it is not rpiito !(/. In 
 
 amounts to I ' 10' 
 
 'I'iic lollowini; diurnal 
 
 variations liavo hoon obsorvcd 
 
 Paris. Durinsf tlio ni^rht it was noarly stationary. At 
 
 m 
 
 rise its North cvtromit 
 
 SIUI- 
 
 y movod to tlio VVostwanI, as if uvoid- 
 
 in-,Mlio <;(dar indup.n.'o. Towards noon, or j 
 
 trom nor)!! to A o"c| 
 
 iioi'o ironorallv^ 
 
 dcvialion. 
 
 Tl 
 
 ock, it attainod its maxinii 
 
 o'clock, when it had r 
 
 H'li it roturnod Kastward, till i», lo. 
 
 im VVo.st»;i-|y 
 
 ur n 
 
 'fMP 
 
 liiH-d its orijjMnal jxtsition, whoro 
 
 '•'•"iaino.1 until moi-nin- In April, May, .Tuno, Jnlv, A 
 :-nist, and Soptomhcr, the <laily variation v 
 Diirin-; the othor six months it was from 8 
 
 ir: 
 
 ion was from IS' to 1; 
 
 <lays it amountod to '25', whil 
 
 to 10'. On'somo 
 
 or ♦. 
 
 i<J oil othoi-s it did not oxcood 
 
 H.Miro it will follow that a lino run l)y tl; 
 •dM)ut mid-day and partly lato in the aft« 
 
 wi 
 
 II not 
 
 l)o a strai'dit liiK 
 
 compass, partly 
 rnoon or ovotiiiiir. 
 
 Si 
 \ortI 
 
 IlCC 
 
 th 
 
 on tho mairnotic; noodlo doos not al 
 
 1 and South, — sinoo tl 
 
 ways point duo 
 
 us 
 
 foront j)larps, and in tl 
 
 variation differs \vi<lely in dif- 
 
 ^'n\re this variation is not 
 
 10 same placo at diffoi-oiit timos,— and 
 
 govorned hy any rule hitherto d 
 
 IS- 
 
V 
 
 <^ 
 
 /y. 
 
 I 
 
 ■el 
 
 
 <p 
 
 >^ 
 
 
 IMAGE EVALUATION 
 TEST TARGET (MT-S) 
 
 1.0 
 
 1 5 '""^™ 
 
 «" lllitt 
 
 '- 1. 
 
 I.I 
 
 i.25 
 
 1.4 
 
 2.5 
 
 2,2 
 
 12.0 
 
 1.8 
 
 1.6 
 
 Photographic 
 
 Sciences 
 Corporation 
 
 ^ 
 
 <^>^> 
 
 c?-* 
 
 «^^ 
 
 ^<^A 
 
 
 "% 
 
 V 
 
 
 «^ >^ '<9^rN\ 
 
 
 
 23 WEST MAIN STREET 
 
 WEBSTER, N.Y. 14580 
 
 (716) 872-4503 
 
 "-b' 
 
 «i* 
 
 <i. 
 
78 
 
 LAUD SURVEYING, 
 
 covered, by which, independent of observution, it may ex- 
 actly be ascertained,— it becomes a matter of great iin})«)r- 
 tance to the Surveyor, as well as to the Mariner, to under- 
 stand, and to be able to employ the expedients necessary to 
 determine the amount of this deviation, at any particular 
 place, and at any specified time. In order to understand 
 these methods, the student should make himself familiar with 
 the meaning of the following geographical and astronomical 
 terms : — 
 
 The Equator is a great circle, equally distant in every part 
 of its circumference from the poles, and dividing the globe 
 into two equal parts or hemispheres. It is called olso The 
 Equinoctial Line. Its distance from the pole is 90°. If the 
 plane of the Terrestrial Equator be produced to the hea- 
 vens, it will describe The Celestial Equator. 
 
 The Latitude of any place is its distance from the Equa- 
 tor reckoned in degrees and minutes. If the place is North 
 of the Equator it is said to be in North Latitude. If it be 
 South of the Equator it is in South Latitude. The Lati- 
 tude of any place cannot exceed 90- degrees. 
 
 The Complement of the Latitude of any place is the dif- 
 ference between the Latitude of that place and 90^ 
 
 The Horizon is a great circle of the sphere cutting the 
 Equator at right angles, and ilividing the world into two 
 parts. 
 
 The Rational Horizon is a great circle, cutting the Equa- 
 tor at right angles, and dividing the world into two equal 
 parts, the plane of which passes through the centre of the 
 earth. 
 
 The Sensible Horizon is a less circle, likewise at right 
 angles to the Equator, and dividing the globe into two un- 
 equal parts. It is the circle which bounds our vision, and 
 of which our eye is the centre. 
 
 The Declination of the sun or star is its distance from the 
 Celestial Equator, reckoned in degrees, minutes, &c. It is 
 North or South, according us the sun or star is to the North 
 or South of the Equator. Declination cannot exceed 90°, 
 
 The Complement of the declination of the sun or of a star 
 
VAniATION OF TiIE COMPASS. 
 
 79 
 
 i.sthe distance between it and the pole, and may be ascer- 
 tained by sul)tracting the declination from 90°. 
 
 The Jlzimuth of the sun cr of u star is an arc of the 
 horizon, which measures the distance of the sun or a Ktar at 
 its rising or sitting, from the North or South cardinal points. 
 Azimuth distances accordingly arc measured on the horizon 
 frc in the North or South points. 
 
 Amplitude is the complement of the Azimuth, or its de- 
 fect from a right angle; or it is the distance of the sun or 
 star at its rising or setting,' from the East or West points, 
 in degrees, minutes, &c., measured on the horizontal circle. 
 
 The Magnetic Amplitude is the amplitude indicate.i l>y 
 the circumferentor, or quartered compass; or it is the num- 
 l)er of degrees, &c., which the sun or star rises or sets to 
 the North or South of the magnetic East or West points. 
 
 To find the variation of the Compass by Amplitudes. 
 The Latitude of the place, the Sun's Declination, and 
 the magnetic amplitude bemg given, find first the true ampli- 
 tude by the following rule : 
 
 As the Co-Sine of the Latitude 
 Is to the Sine of the Sun's Declination,* 
 So IS radius 
 
 To the Sine of the true Amplitude. 
 Then, if both the magnetic and the true amplitudes be 
 either North or South, their difference is the variation; but 
 If the one is North and the other South, their sum is the 
 variation. 
 
 To know whether the variation is E. or IV. 
 Let the observer's face be turned towards the suii, and if 
 the true amplitude is on the right-hand side of the mao-uetic 
 <n- observed amplitude, the variation is E„ but if to the left. 
 It is W. 
 
 * The sun's declination must be taken from an Ephcmeris It 
 .s a ways contained in the JVautical Almanack and Jistronomical 
 
 s ONERS Of the Admiralty. It will be found also in some oi" 
 the Almanacks pubhshed in the Colonies. 
 
UM. 
 
 •so 
 
 r,AND sunvEYiNr:, 
 
 EXAMPLES. 
 
 !. On tholOtli of Aurrust, 184->, in Lat. ^}(r N.. r)„; brarinj. 
 of tho sun at its rising was ohsprvod to be N. 85^ K. by the 
 rornpass; roqiiirod tho true uniplitwlo and tho variation ot 
 rlif? r)(.'0{|lo. 
 
 To find the true ^mplUude. 
 
 A.s tho Co-sino of tho Lat. 46^ 
 
 Is fo tho Sino of tho .Sun's Doc. 15^ .S.V 
 
 So is Radius 
 
 0.81177 
 i>.4-l!)17 
 
 lo.oonrij 
 
 tho 
 
 To tho Sine of the truo Amplitude 22^ 45' 9.58740 
 Tiio bearing of tho .sun by the conipass being N. 85^ E.. 
 fMagnetio amplitude is flO^ — 85^ = 5'^ N. Thoroforo, 
 
 Truo Amplitude E. 2-r 45' N., for the Do.r. is N. 
 
 Mag. Amplitude E. 5'^ 0' N. 
 
 Variation 17*^45'; 
 
 whioh is V/e.st, because the observation beijig talvoa in tho 
 morning, and the observer's face being turned towards tin. 
 sun, tho truo Amplitude is on tho left of tho ma-neti<' ..r 
 oljsorved Amplitude. 
 
 ^^l. Suppo.so the bearing of the sun at setting to bo S. 80' 
 V/., and con.scquently tho magnetic Amplitude W. 10^ S 
 nhde the truo Amplitude is found to be VV. 25^ S. ^Vhat 
 is tin; variation? 
 
 True Amp. ^Y . 2-P S. 
 Mag. Amp. W. IQ^ S. 
 
 Variation 15- W., 
 becausothe true Amplitude is to the left of tho Magnetic. 
 
 '"5. At the time of rising, suppo.se the .sun's bearing to bo 
 > . 7;)^ E. by the compa.ss, and consequently tho, Mag. Amp. 
 h. 1.)^ S., while the true Amp. is found to be E. S' 15' N • 
 required the variation. '' 
 
 True Amp. E. 8^ 15' N. 
 Mag. Amp. E. 15^ 0' S. 
 
 Variation -25^1.5'W,, 
 because the truo AinplitudG is to the left of the Marrnetic. 
 
VARIATFON OF THE COMPASS. g] 
 
 4. ^^"FPOSO the sun':^ honring at setting to 1)0 S 83 W 
 Ml.en the true Amp. is found to be W. 7^ .'50' N.; re„nir.Mj 
 the variation-. i ■'<« 
 
 True Amp. W. 7° 3(7 N 
 Mag. Amp. W. 7= 0' S. 
 
 Variation 14°30'K 
 1.ecau.se the true Amplitude i. to the right" of the Mag.oti.. 
 
 Tofmd the variation by Concentric Circles 
 
 mu^loTZ^ '""', ''' '"""^'"^^ ^^^^' (about a foot 
 M naie,) diaw several concentric circle.. In the centre 
 
 p aTe "^r'tV^V ''"^'^^-^ ^""«^' PerpendicuL t , J 
 
 on any of the crdes, upon ^vhich the shadow of tiie heac 
 of the pm rests, an. ,„ark it carefully. Observe aNo in he 
 
 rmke a ma.k. A right line joining these snot.s or mark, nil! 
 be m East and West linp k;.o^: .u- .- "laiKs, mil 
 
 ne an,l u win be a iVo.W and South line. 7'ZZtl 
 n fron, .„o centre, and in i,« p,„ec .,„„,:„ ,e „„ X ■ r 
 
 t^ uit, ^tne needle of a compass suits verv uoli ^ n» i i 
 nhus.„,ea„.,ea™„H.„i,e,.,,eNr.i::::<^ 
 
 By tins method, with care and a little experience the v. 
 
 -^^'-' '"ay be detennined with consiclerable "euSc' 
 Tofnd the variation by the Nokth Sxah and Aooxn 
 1 be constellation Ursa Major, or the Gr.^f « 
 
 known by the name of Charles^ vLn , '"' ''''" 
 
i'4 
 
 82 
 
 LAND SURVEYING, 
 
 Ming a rectangle, or square, which is considered as forming 
 the body of the wain. The two hindmost of these are call- 
 ed pointers, because a right line drawn from them towards 
 the North will pass near the polfe star in the tail of the Lit- 
 tle Bear. Following this square arc three other stars of 
 about the same size, forming the tail of the Great Bear, or 
 the handle of the jdough, visible every clear night. The 
 one next the body of the bear is Mioth. Now it so hap- 
 l)ens that the pole star and Alioth come to the meridian at 
 the same time. This star is accordingly often employed by 
 Navigators to determine the latitude. By its assistance also 
 we may ascertain the variation of the compass with consi- 
 derable accuracy, by the following method:— 
 
 About midnight, in the beginning of October, or about 8 
 o'clock, P. M., towards the end of November, the pole star 
 comes to the nuoidian, and it the same time Alioth is at the 
 meridian below the pole, and consequently both stars are 
 due North. Alioth is also exactly perpendicular to the pole 
 star, or directly below it. While Alioth is still to the West- 
 ward, let the compass be duly levelled and prepared to take 
 its bearing. Then suspend a plummet by a white thread, 
 in some convenient place, so that without moving the body 
 much the plummet and compass may both be attended to. 
 Bring the thread to cut the North star. Watch carefully 
 until Alioth comes to the thread, and is cut by it. Then 
 take the bearing of A ,th by the compass, and its diverg- 
 ence from the North wdl be the variation. 
 
 Note.— By causing the plununet to fall into a vessel of 
 water, the wind (if there should be any at the time) will be 
 prevented from moving it. In this way the object may be 
 gained with greater case and accuracy. 
 
 Besides these progressive, annual, and diurnal variations, 
 the magnetic needle is liable to disturbances from local and 
 from temporary causes. Of these the most important are, 
 the existenceofniasses of ferruginous matter in the vicinity, 
 the Aurora Borealis, and thunder storms. 
 
 It is well known that the magnet is powerfully affected 
 
VVniATlON OP THE COMPASS. gg 
 
 •ho whole sui.: „";r^ V ,: ;:,r"7^ '■••™'^' ?~"^"-" 
 
 -no., are wi.hou, „„ .ZZT^r ^r^'r, .'r!''?'; 
 >n clays, and sands, and even in n-,v, ■ ,.(■ , ''""''•""' 
 
 -1 suManee., and in the a.J ,^C"' ^S" ^ ""'V','"- 
 ».se, ,„ eertain conditions aflc« tl e' ne^dt W ' T 
 therelore rcasoimhlv evnee. ,h., .. ^"-' '""''" 
 
 ""•"once. DomC " '"'^"'""°»"" "f *■".,,„„„ oc- 
 
 vonenee orsu^e "r. Z ^u" ""',"""""■"' """ "'" '"'"1- 
 whena survey IXa.ie l.^^ "'"' '"'""'" «'■""'"'' ■""' 
 "thor .notallic's ,i" 7; d'' TT " '"' "'' "'"" "'•'•■ '"■ 
 
 ■■aWe, amounting oft«:::;e'^:Te:it!:'" T, V '"'"""- 
 of (loteotinff denarfiirn . r. '" "^fe'^^''- ^ iie bast inetJ„„| 
 
 ..";; i.;>eed!,. r:r:i«r rjitrr ""-^ -- 
 
 affect the n,„ ""e Su, v """='• '™'»'"'^ -'•■^'ances, which 
 
 -"«ioninthe;:;hLro? :i;Znrf'7''T;''^"' 
 
 '.i-"oney i„r™rtlr;:r;:^^:e*-" ''""'"'''"'•'' 
 try it hy the following. ,cs, « '""*"""= "wtrumcnt, to 
 
 in»t">,nent, and ,11^1,! T"™ ""^ ""<''"'= *■'•"■" "'» 
 
 in a hoard. Wl e t ,he ne'T ° f '"^ "'""""' P'»' '-""-'I 
 vibrate, then W ,t ins r ' ""'"™'"'' ''"■' ^<^"-'' "' 
 «he presence of "he ittn.n T", ''"'^'"'^'' "'"' "> "• "• 
 ".» «.nner i^ in tti:": ^/^r^^f .-'>o "r""-' 
 appear that the presence of th„ i„ «<« if >t evidently 
 
 'i.e instrnnien. sLuld 'i: :I,:d:,re:;""""' '"'''°" ""^ "^•""'•' 
 
 '-le ■■'«^"": "r::;- ':;:: i:::;rzr"'r ""'-" "" 
 
 "ary »-ove,„ents, to which 5. ^ H ™S T ""'""■"''- 
 
 '■apncious movements th„„„ i """"« «"''■■<'' apparently 
 "'otion, and fre!,"";, "".'""'= "--crseswith „ shiveri 
 
 frequently 
 
 oscillates several degrees 
 
 on each 
 
84 
 
 LAND SURVEYING. 
 
 side ot' its moan position. Whon the Aurora only rise?? a 
 lew degrees' above the, horizon, the disturbance is Hniaii und 
 ot'ten inappreciable. But when the Aurora rises to the ze- 
 nith, the di.sturban(!e is generally very considerable M. Ara- 
 go, wlio has stuilied the influence of the Northern liights 
 upon the needle with particular care, states that the part ot' 
 the heavens at which all the beams or radiations of an Au- 
 rora meet and unite, is precisely the })oint to which a nuig- 
 wetic: needle directs itself when suspended by its centre of 
 gravity. 
 
 The needle may be affected by an Aurora which is iiivisi- 
 ble at the place of disturbance. M. Arago assures us that 
 Auroras visible oidy in America, at St. Petersbnrg, and in 
 Si])eria, produced very perceptible derangements of the nee- 
 dle at Paris. It seems however, that some kinds of Aurora, 
 though exceedingly brilliant and rapid in their movements, 
 .scarcely affect the ntagnetic needle; producing oidy at most, 
 a slight trenmlous motion. 
 
 The needle of the compass may lie afiected also by the 
 electri(r fluid, previous to or during a thunder-storm. The 
 effect of an electric shock is i)eculiar. Soinetinies it com- 
 nuinicat'^s the nuignetic virtue to unnnignetised iron or steel. 
 Sometiines it entirely destroys the m^ignetic virtue o|' u 
 magnetised body. And sometimes it reverses the poles of a 
 magnet. It may therefore be worth while to examine mag- 
 netic instruments after violent thunder-storms. 
 
 There is still another affection of the magnet, called tht 
 dip of Ihe needle, to which we nmst shortly advert. This 
 expression denotes the angle which a well l)alanced needk; 
 forms with the horixon^ after it has been mugnetiseo, and 
 w hen it is allowed to move freely in the plane of the mag- 
 netic meridian. This angle, like the angle of variation, has 
 different values in difierent j)U\ces; being, generally speak- 
 ing, very small at the Equator, and increasing towards the 
 j>oles. At the magnetic pole, which Connuander Ross found 
 to be situated in North Latitude 70° 5' il", and We.-;t Lon- 
 gitude 9G^ 45' 48'', the dip was 89' 59', or within one mi- 
 nute of being perpendicular. There is much reason to sup- 
 
THE RUNNING OP LINES gjj, 
 
 poso that every placo Iims itij own magnetic axis, with its 
 own polo, and 0(iuut()r. 
 
 Like the variation, the tlij) of the needle also undergoes a 
 continual chamro, increasing in .some places and dindnish- 
 ing in others. At Lon.lon, in 17^?0, the okscrved dip wa« 
 74" 4-1', and the computed dip was 7b' 27, while in 1830 
 the observed dip was GO- 38', and ir. 1833 the computed dir. 
 was 69'^ 21'. 
 
 Whenever the needle of a compass is perceived to vary 
 from the horizontal position Avhile resting freely on the 
 pivot, it becomes unf.t for service until it is corrected. For 
 this purpose, make the instrument perfectly h>vel by mcan.s 
 of the spirit-level, which will bo indicated by the air bub- 
 bles remaining in the centre. Then supjily the end of the 
 needle with an additional quantity of magnetism, until it re- 
 sumes Its horizontal position. Then both ends ot the nee- 
 dle Will bo equally distant from the bottomof the instrument. . 
 Then too, if the compass be a good one, both ends will point 
 to the same degree on the graduated brass circle within 
 which It revolves. This operation should be repeated every 
 three or four years. 
 
 THE RUNNING OF LINES. 
 
 , In the runningof lines fourthing.s are to bo observed, viz- 
 —Course, Distance, Difference of Latitude, and Departure. 
 
 1. The Course is the angle which the lino run forms 
 with the meridian of the place from which you started. * 
 
 2 The Distance is the length of the line run, reckoned 
 m chams and links, rods, &c. 
 
 3. The Difference of Latitude is the distance of the 
 one end of a line from the other end. North or South, and 
 IS reckoned on a meridian, 
 
 4. The Departure is the distance between one end of a 
 hne, and the meridian passing through its other end. It i.s 
 East or West, and is measured on a parallel of Latitude 
 
H 
 
 Land scrvkviwo. 
 
 PROBLEM I. 
 The Course and Distance of any line being given, to Jind 
 the Difference of Latitude and the Departure. 
 The Distance the Difference of Latitude, and the Dcpar- 
 ture, from a right-angled triangle. Therefore, 
 To find the Difference of Latitude. 
 As Radius 
 Is to the Distance, 
 
 I" ^;V''^;^?°-S'"^ of t'je Course 
 
 i o the Difference of Latitude. And, 
 
 2^0 find the Departure. 
 As Radius 
 Is to the Distance, 
 So is the Sine of the Course 
 1 o the Departure. 
 
 N. 2. \\ * the Distance, or length of the line 71 cA 20/ • 
 required the Difference of Latitude or Northing V^t 
 Departure or Westing. ^ 
 
 To find S. N. the Difference of Latitude. 
 
 As Ra<iiU3 GO'' .^ nnn/w. 
 
 IstpDist.SA7loo/. 'IfX 
 
 So IS the Co-Sine of the Course 25° 9:95709 
 
 To the Diff. Lat. S N 6452 /. T7o"976 > 
 
 To find A N, the Departure. 
 As Radius S0° ,^ .^^„^ 
 
 l8tptheDist.SA7l20/. '^^8 
 
 So IS the Sine of the Course 25" 9.G2595 
 
 To the Departure A N 3009 / 3 473^3" 
 
 Thus the Difference of Latitude, or the Northing i« a. 
 curtained to be G152 /., or (M ./. «,a 5. I., a„u t e D p . 
 t«re, or W estmg, to be 3009 /. , or 30 eh. and 9 I ^ 
 
 By the same i.ethod, the Difference of Latitude and the 
 ^^•Tbo Course of the line S. A. «« laid don-,, on diagram 68,. 
 
Tilt nuifNINO OP Lll-iEf. 
 
 17 
 
 Departure may bo Tound af^er running any line, when the 
 Course and Distance arc known. 
 Note.--\Vhm the course is tlue No-th or South the rjir 
 
 vn^^'lii^^'lifT T'-^'^"^'^^ Distanco'^rand he ot 
 artuicisO; and when the Course is due Ka.st or WesT 
 
 PROBLEM H. 
 
 The Difference of Latitude and the Departure being given 
 
 to fmd the Course and Distance. 
 
 To find the Course. To fmd the Distance. 
 
 fs^r^'h?n ^^I* -^"^ ^' the Sine of the Counje 
 
 Sottcm^^"'^""' IH to the Departure 
 
 Tr.tv, 'r ^. ^ So IS Radius 
 
 1 o the Tangent of the Course. To the Distance. 
 
 EXAMPLE. 
 
 Suppose I run in the North East quarter until my Diff. of 
 Lat. IS C ch. 83 /., (Fig, c,9,) and my Dcp. 4 ch. 76 /., wh"' 
 was the Course and Dist. 
 
 To find the Course. 
 As the Diff. Lat. C85 I. 
 Is to tlie Dep. 476 1. 
 'So is Racijua C0° 
 
 2.8S569 
 
 2.67661 
 
 10.00000 
 
 To the Tan. of the Course 34° 44' 
 To fmd the Distance. 
 
 As the Sine of the Course 34° 44' 
 IS to the Dep. 476/. 
 So is Radius 90° 
 
 9.84092 
 
 9.75569 
 
 2.67661 
 
 10,00000 
 
 2.92092 
 
 dls^ 
 
 To the Dist. 833. 5 I. 
 Hence the course is N. 34° 44' E., and the strtionar 
 tance, or length of the line is 8 t/i. 83 . 5 /. 
 
 PROBLEM IIL 
 
 To find the direct Course and Distance made good in 
 
 Traverse Running. 
 Make a Table divided into six colums. In the first colunm 
 
m 
 
 TAN') 8URVCYINQ. 
 
 ! >«■ 
 
 *et down the acvcml rour.sos, and opposito tofliem set down 
 in the hccoiuI roluiim tlit;ir (•orrosjxjtidin;? distfiiice?. The 
 rhiid and tourth cohDiuiH arc to -rontain the Difibrenco of 
 l.atiiiidc, th« third being marked N., and thn fourth, S. 
 Tho fifth and nixth cnlunni s are to contain tho Departure, 
 the fifili Ueiug niark(;.l E., and tho sixth, W. 
 
 Having' entered tho Course and Distance in their rcspec- 
 live colunniK. find l)y thoprecodinj]^ problems, the Diflerence 
 uf Latitude and the Dejjarlure, for each Course and Dis- 
 tance, and insert them in the Table, in their prope. columns 
 opposite to the Course and Distance; observing that the 
 Diff. of Lat. must be placed in the colmun marked N. when 
 the course is Northerly, and in he column marked S. when 
 it is Southerly; and (Uat the Departure must be inserted in 
 the column marked E. if the Course i.- Easterly, and in the 
 column marked W. if it is Westerly. Add up'tho columns 
 of Northing and Southing, and of Easting and Westing. 
 The Diflerence between the sums of the N. and of the S. 
 columns will be the whole Diff. of Lat. made good, and will 
 be of the same name with tho greater: and the diflerence be- 
 tween the sums in the E. and W. colutnns will be the whole 
 Departure made good, of the same name with the larger 
 sum. With this Diff. of Lat. anc; Departure find a corres- 
 ponding Course and Distance. The defective columns of 
 the Table will show the direction of the home Course. 
 
 EXAMPLE. 
 
 A surveyor on an exploration, run the following Courses 
 and Distances, viz:-~S. 2'4° W. 54 ch., (Fig. 70,) thGnco 
 ti. 783° W. 39 cL, thence N. SSr W. 40 ch., thence N. 56^ 
 E. 69 cA.,* thence N. 22^° W. CO cA.; required the direct 
 Course and Distance to the place of beginning. 
 
 * The distance on iho 4iti slatiora.y line of the diagram belojw- 
 lug to Ftg. 70, is wrong. " ^ 
 
*lia UOKHlH.i or LINKA. 
 
 TRAVERoF TABLE. 
 
 Courses. 
 
 S. 7Hr W, 
 N. 33.^ W. 
 N. 5G.1° K. 
 N.2-2i«W. 
 
 Oopnrturr. 
 
 I Diff. of Lat. 09.G'lN 
 
 104.09 
 57.30 
 
 To find the Course, 
 
 Astho DiT. of Lat. G952 /. 
 Is to the Dep. 4673 1. 
 So is Radius 90° 
 
 To Tan. of Course 33° 55' 
 
 2'o find the Distance. 
 
 As Sine of Course 33^ 55' 
 lis to the Dep. 4G73 t. 
 So ia Radius 00^ 
 
 3.84204 
 
 3.6(i959 
 
 10.00000 
 
 9.82755 
 
 9.746G2 
 
 3.66959 
 
 10.00000 
 
 To the Dist. 83G1 /. S.r.l2&7 
 
 As the dcf eiency in the Table is in the S. and E. column.s, 
 rhc home course is S. 33° 55' E., and the di^^tance to the place 
 of beginning 83 c/i. 61 L 
 
 iingrarn belong- 
 
 PROBLEM ly. 
 
 To lay out a straight road from A !o D, (Fig 71,) instead 
 of the crooked line iV B C D. 
 
 Set your compass at A , and take the course anct dis- 
 tance to B, wiiich, insert in a Traverse Table as below, ac- 
 cording to the preceding problem. In the same manner 
 tAke tlie courses and distances from B to C, and froui C to 
 D. Then find the course and distance from D to A, as di> 
 rected in the foregoing example, and run it accordingly. 
 
'I'k'' 
 
 iQ 
 
 LAND SUUVEYINO. 
 
 Couives. 
 
 Dist. 
 
 Diff. of Lat. 
 
 N. ) S. ~ 
 
 Departure. 
 E. ! W. 
 
 y. 80° E. 
 jP. 15^ E. 
 ih. 20° W. 
 
 7.ft0 
 
 7.00 
 
 10.00 
 
 
 1 . 80 
 7.63 
 9.40 
 
 7.3!^ 
 2.05 
 
 1 
 1 
 
 5J.42 
 
 
 18.33 
 
 9.41 
 
 3.42 
 
 1 1 
 
 -. l'^'^2 
 
 Diff. of Lat. S.' 
 
 18.33 1 
 
 5.02Dep.E.I 
 
 ■fhe course from D to A is N. IS^ G' W., and the distance 
 19 cA. S9/, 
 
 By traverse runnin^ir, a Surveyor being furnished with a 
 correct outline of the boundaries of any County or Province, 
 may lay off the courses and distances of roads through the 
 forest, or explore a body of Wilderness Land. Traverse 
 running may also be applied to the determination of inac- 
 cessible distances. 
 
 PROBLEM V. 
 
 Tofmd the Diference of variation* on an old line. 
 _ ff the mark.s made at the time of the first survey remain 
 Visible, c/ace the original line with your compass. Then 
 the Difference between the Course now given bv the compass, 
 and the Com o laid i\o^^■n ui)on the plan or ip.ap is the Dif- 
 fcircnee of variation, since the time at which the fr /mer sur- 
 vey was made, 
 
 Tut if only tiio cvtrcmitio: of the old line, or if only twa 
 pomts in tlie line not visible from each othe-, can be satis- 
 fdctordy determined, .;et your compass to tiie course laid 
 oown on the jilan, or mentioned in the grant or deed, and 
 run out the distance. Tills course and distance will gene- 
 rally bring you out in sight of the end of tlie original ^line. 
 From the end of the old line> and at a rigjit angle thereto! 
 measure the e\uct distance to tijc line which yo»i have just 
 run. Then, 
 
 * DiJJh-cncc of Variation denotes the diflereiico between the 
 variiitioij of tl)e compass at tlie lime when the line w.-i, fir-. r„,. 
 «ndil,e l.meuhenit beco.r.s necessary to run it ngain, or ra- 
 
■# 
 
 THB RCKWIKO OP LIWEfl. 
 
 d the distance 
 
 • ngain, or ra- 
 
 As the length of the old line 
 Is to the Distance, 
 
 SI 
 
 So is 57.3 
 
 1 o the degrees, minutes, &c., in the Diff. of Variation. 
 
 it the course bring you out to the left of the old line, the 
 difference of variation is Westerly; if to the right, it is East- 
 erly^, and must be allowed accordingly., 
 
 iVo/c—In changing the course by the compass to suit th« 
 d fferenee of variation, remend)er to add when the cou se of 
 the line to he run s n the N P or «; "ur V ^°"V^® ?* 
 
 tract when it is n tlio N n^' S I' ' ^"^"e'-, and sub- 
 
 EXAMPLES. 
 
 1. The original course of the old line A B, (Fj> 72 > 
 was N. 550 W ,„d length, 100 ch. Running that^course 
 and distance I eame out 6 ch. to the left of B. Required the 
 difference of variation, and the home course. 
 
 a/' it '^'k ''MZ '■ ''''^ = ''' ~^' + ^^'^ I^iff- of Var. 
 
 S 410 s/e r r-'° ^^'^^• = '^^^ S4'. Therefore, 
 o. '11 34 L., 13 the home course. 
 
 The difference of variation may also be found by the 2nd 
 case of right angled Trigonometry. 
 Thus, As the distance A B 100 ch. o noooc 
 
 Is to the Distance BCCcA. 5 77815 
 
 bo IS Radius 90 o j^-^^^^ 
 
 ToTan. of/BACS=26' V^TsIs 
 giving 3 o 26' for the difference of variation as before 
 
 2. Uuiming the old line A B, (Fig. 73,) by its orij^iral 
 
 required the correct present course from B to A 
 ch. ch. 
 
 As 50 : 4 : : 57. S'^ : 4^^ 34' = Diff. of Var W Tf,n« v 
 10*^ R ~U Ao QA' wr XT ^'"« "I var. ». lhenls<. 
 
 A iU^^lc • a \. '• -^ ne course from B to 
 
 •a, tnereioro is .9 i.ic c></ iir ••" iv» 
 
 3. Being craployed to find the present course of an nl,l 
 lino, or,g,„ally run N. QO«E, (Ag. ?..,) one .."ue! B°" uo-. 
 
93 
 
 LAND SDaV£VIRa< 
 
 I 
 
 ning that course and distance I came out 8 r/b. to ibo right; 
 required the correct home course. 
 
 ck. ch. 
 As 80 : 8:: 57.3° : 5° 43' E. Diff. of Var. Then N. 20 
 
 E. — 5° 43' E = 14 " 17'. The home course therefore ia S. 
 140 17 w. 
 
 4. Being employed to trace an old line A B, {Fig. 
 
 75,) formerly run N. 15° W, (30 ck,, by running that course 
 
 and distance I came out 5^ efts, to the right; required tho 
 
 present course from A to B. 
 
 ch, ch. 
 As 60 : 5.5 : : 57.3= : 5]° Diff. of Var. Then 15« + 
 
 6 ° 1 5' = 20 = 1 5', Hence ihc present course of A B is N, 
 
 eO= 15' W, 
 
 ' PROBLEM VI. 
 
 To find the difference of variation on coeval or eontemporor' 
 
 ry lines. 
 
 Ascertain by the compass the courses of a number of old 
 linos, the more the better, then the difference between their 
 mean and the original course is the difference of variation 
 sought, nearly. 
 
 EXAMPLE. 
 
 In tracing the several lines of an old grant, in which tho 
 courses were laid down us running N. 20= E., I found them 
 to be as follows, viz: N. 21 = SO' K., N. 21 = 15' E., N. 21 ° 
 40' E., N. 21 = 50' E., N. 21 = 45' E., N. 21 = 30' E., and N 
 21 ° 15' E.; required the difference of variation. 
 
 21 ° 30' -|- 21 = 1 5' -[- 21 ° 40' -f 21 ° 50' -|- 21 ° 45' + 
 21 ° 30' 4- 21 = 15' = 1.50= 45' 
 
 Then 150® 45 —7 = 21= 32' mean course. Then 21 ° 
 32' — 20= = 1 = 32' = diff. of var. E. 
 
 Directions for blazing, and for running lines when the 
 course is obstructed by trees, houses, hills, ravines, <^c. 
 1. Corner trees, or bounds, are generally blazed on four 
 
 sides J and the initials of the Surveyor's name, the initials 
 
kn, to tbo right; 
 
 Then N. 20 
 i therefore ia S. 
 
 le A B, (Fig. 
 ling that course 
 ;•, required tbo 
 
 Then 15« + 
 56 of A B is N, 
 
 THE RDNNING OF LINES. 
 
 98 
 
 or contempora." 
 
 number of old 
 3 between their 
 ce of variation 
 
 ;, in which tho 
 1., I found them 
 
 15' E., N. 21° 
 ° 30'E., andN 
 ion. 
 
 -\- 21 ° 4i3' + 
 
 .sc. Then 21 ° 
 
 lines when the 
 , ratrincS, ^c. 
 
 biazoct on four 
 me, the initials 
 
 of the owner's name, and the year on which the Burvey was 
 made, should be impressed on them with a marking iron. 
 
 2. Trees standing on the line are generally blazed and 
 marked with three notches, made by striking the axe up^ 
 wards. 
 
 3. Lines should be well cleared out and bushed; and all 
 trees standing within four feet of the line, on each side, 
 should bo blazed on two places in the direction of the line.' 
 Large trees that obstruct the course, ought to be blazed and 
 hacked exactly on the part of the tree which is cut by the 
 ourse. They should likewise be blazed and hacked in the 
 same wr.y on the opposite side. 
 
 Suppose you are employed to run the line A B, (Fi^ 70 ) 
 commencing at, or bounded by the spruce tree at a"* Ha- 
 ving marked the tree as may be necessary, place your com- 
 pass between A and C, as close to A as may be convenient 
 and set it to the given course. Let the Eushman go forward 
 and cut away all the bushes that obstruct the sight, .mtil 
 they arnve at the tree at C, standing exactly on the line. 
 1 h,s tree is therefore to be blazed and hacked in the cen- 
 tre. It is to be blazed and hacked in the centre like- 
 wise on the opposite side. Remove the coirpass and 
 place It between C and D, as near to C as may be conveni- 
 ent, and set u to the original course. Be cardul that your 
 compass is level and that the back-sights cut the tree at C, 
 on he centre. Direct the bushmen again until they arrive 
 at the tree at D, vhich does not stand exactly on the line 
 Cause It to be blazed and hacked, quartering on the left sic'e' 
 Again remove your compass, and place it a little beyond d" 
 and set it to the course. Let C. bushn.en proceed as before 
 to the tree at F, which stands on the left side of the line 
 Cause It to be blazed and hacked on the right side. Proceed 
 "1 the same manner until you arrive at the end of the dis- 
 tance at B. A little practice will render the whole familiar 
 Again suppose you are called* to run the line A B, (Fit,' 
 77.,) the course of which is obstructed at c by a chuiih ami 
 Its enclosure Proceed as before until you'arriv: a 
 Pomt c, within a little distance of the church. Then strike 
 
94 
 
 LAWD SURVEnilG* 
 
 off to the right or left, as may be most convenient, exactly at 
 a right angle with your course. Run in this direction until 
 you are fairly clear of the obstructions, as at d. Then ro- 
 Bumc your original course, until you can, without any ob- 
 struction, return to the first line, as at e. Then strike off 
 towards the original line, at a right angle with your last 
 course, and run the same distance towards the firfvt line as 
 you formerly run from it, making r/ equal to cd. Add the 
 distance de to the distance Ac. Place your compass at/, set 
 it to the course and proceed as before 
 
 4. Allowance must also be made in running lines for ine- 
 qualities of surface. A line run over steep hills, or across 
 streams with high banks,, will evidently be longer than it 
 would be were the line throughout its whole extent perfectly 
 level or horizontal. In a survey it is generally this level or 
 base line, and' not the surface line, that is required. Now 
 as this base line cannot* be determined by direct measure- 
 ment, other expedients must be adopted for its determina- 
 tion. For this purpose different methods may be employ- 
 ed. Were it always practicable to measure the ascents and 
 descents in direct lines, it would be easy to determine the 
 iS-ase line by Trigonometry. Let the direct distance from A 
 to B, (Pi^r, 73,) up a hill, be S8 cL, and from B to C, down 
 its opposite side, be 51 ch., and the angle CAB 23° 4&', and 
 the angle A C B 54° 8', then the horizontal distance from A 
 to C will be found to be 103 ch. But it is seldom possible to 
 measure acclivities or declivities in a straight surface lino 
 liy the chain. In certain cases the principles laid down in 
 the mensuration of heights and distances might be applied 
 to ascertain its direct length. It is, however, seldom convc- 
 tiient to employ this method. The usual way is, in ascend- 
 ing a hill to direct the hindmost chain-man to hold the chain 
 directly over the pin left by the leader, at such an height 
 that when the chain is stretched it will he horizontal; and in 
 descending to direct the leader to hold his end so high that 
 the chain, when straight, will be level, and then stick his pin 
 perpindiculariy below the end of it. To determine when 
 tho end of the chain is directly over the pin in ascending a 
 
THE BUKKIIIO OF LUES. 
 
 M 
 
 h.ll, and the exact spot in whici, the ph. shouW be placed in 
 descendnig ., ,s customary to recommond to let a stone fall 
 from the end of the chain. The use of a Ime and llm" 
 s an nnprovement npon .hi., method. In ovdina y caTet 
 the eye can determine «hen the chain is horizontal, men 
 greater accuracy i., required, the Quadrant n>.ay be employ! 
 
 In running line, over hilly ground, a two-pole or half chain 
 s preferrable to a ^hole chain, i: i, much easier to stretch 
 he former, until it becomes nearly s-raight, than thettter 
 meZr"" """•»••>'' P^OP" '0 employ even a shorter 
 
 Jh ^'""r """""^ "f "="'•"« 'he boundaries of land, upon , 
 
ac 
 
 1«' 
 
 
 160 
 
 
 155 
 
 
 150 
 
 
 145 
 
 
 140 
 
 
 135 
 
 
 ISO 
 
 
 125 
 
 
 120 
 
 Ji 
 
 115 
 
 4-> 
 
 110 
 
 a> 
 
 105 
 
 
 100 
 
 
 95 
 
 CO 
 
 90 
 
 '3 
 
 ,85 
 
 X! 
 
 80 
 
 CO 
 
 75 
 
 f^ 
 
 70 
 
 .2 
 
 G5 
 
 
 60 
 
 J3 
 
 55 
 
 s 
 
 50 
 
 W 
 
 45 
 
 40 
 35 
 80 
 25 
 20 
 15 
 10 
 5 
 
 Thence N. 
 
 land surveying.. 
 
 Example of a Field Book. 
 
 and 1840. 
 160 chs. to a juniper trco marked H, W. 
 
 on four .sidej'. 
 144 chs. to a maple squared and hacked 
 
 128 chs. to a pine s(piared. 
 
 112 cAs. to a birch squared. 
 
 96 chs. to a spruce squared. 
 
 80 chs. to a pine do. 
 
 G4 chs. to an ash marked do, 
 
 43 chs. and hounded by a spruco stake 
 32 chs. to a hemlock marked S. B. 
 16 chs. to a fir marked T. D. . 
 
 W. 
 
 20' 
 
 Commenced at a spruce tree marked H. W, and 1840 . 
 
THE RUNNING OF LINES, 
 
 97 
 
 !0 murkod il. W. 
 
 W, and 1840 
 
 Additional Remarks on the Running of Lines. 
 
 The great secret, the grand security of success in survey- 
 ing, is to run the correct course, to run the lines exactly 
 straight from bound to bound, and to measure with accuracy 
 the distance between them. To obtain these results, every 
 thing ^depends upon the quality of the surveyor's instru- 
 ments, and on his skill and dexterity in using theiiL 
 
 As lands are frequently bounded by curved, as well as by 
 straight lines, it is the duty of every surveyor to make him- 
 self thoroughly acquainted with the properties of curves. 
 
 It is customary to bound lands on rivers, roads, &c. 
 When lands are to be bounded by rivers, great care should 
 be taken to place the boujids at a proper distance from the 
 edge of the stream or shore. Banks are liable to be under- 
 mined, and if the bound bo too near the brink it may fall 
 in, and leave its exact position in uncertainty. From this 
 source disputes frequently arise, leading to lawsuits, and 
 resulting in the loss of the property, peace, and character 
 of the parties, and the reputation of the surveyor. 
 
 Difficulties likewise frequently arise from bounding lands 
 upon roads. The road is liable to be changed for the pur- 
 pose either of straightening or levelling it, and their boun- 
 daries are in danger of being removed. Surveyors therefore 
 should, as far as possible, measure from known and well esta- 
 blished boundaries, and run in straight lines. It is particu- 
 larly desirable that the place of beginning be tlistinctly 
 marked, and not liable to be removed. Lines then would 
 be easily retraced either by the surveyor by whom they were 
 run, or by his successors. 
 
 In the tracing and retracing of lines, great care sJiould al- 
 so be taken to follow closely the original line, especially if 
 it be straight. No trees should be blazed except those 
 which were blazed before. When individuals unacquaint- 
 »'d with the properties of lines, mark trees which stand per- 
 haps two rods to the right or left of the original line, inte- 
 
 I 
 
r 
 
 I 
 
 08 
 
 LAND SLRVEYING. 
 
 rested parties may be deceived, or an opportunity afforded 
 to the litigious to enibroif his peaceful neighbour in the 
 anx.eties and lo.ses of a lawsuit. The surveyor too comc3 
 in for a full share of the blame. No unqualified or unau- 
 thorized person has any right to take such liberties. By 
 such improper conduct peaceful settlements are frequently 
 thrown into confusion, and evUs of incalculable magnitude 
 have been produced. 
 
 MENSURATION OF LANDS. 
 
 The area or contents of any figure is the measure of the 
 surface contained within its lines or bouiKlaries. 
 
 In Land Measuke. 
 m feet, or 25 links make , Rod, Po,e, or Perch. 
 
 4 Hods, or 66/^, or 100 1., or 22yds. 1 Chain. 
 10 square poles or perches i Rood 
 
 4Roods.o. 10sq,chs.,orI60sq.poles 1 Acre.* 
 
 10,000 Square Links i Sn..n,.« ri • 
 ,.1- t; T- , i^quare Cham. 
 
 ():Jo square Links it- r. . 
 
 or. AftftQ T , 1 Square Perch. 
 
 iij,000 Square Lmks i s^„^,.„ p , 
 innnnna t • , Square Rood. 
 
 100,000 Square Lmks i c^......^ * 
 
 nn u A ^ Square Acre. 
 
 «i4n Square Acres i «„., iv,., 
 
 un r'l • • , . 1 Square Mile. 
 
 HO Chains in length j j^jjj^, 
 
 ent^ft;ro"irr^'''"^ Umd itwmbe found most convrni- 
 tnt to take all the measures m four-pole chains and link. 
 
 PROBLEM r. 
 
 To Ml the area of a Parallelogram, whether it be a Hanare 
 a hectangle, a lihomhus, or a Rhomboid. 
 
 Mnliinly the length I 
 the product v.-ill be th" - 
 
 RULE J. 
 
 >y the per[)endicular breadth, 
 
 arul 
 
 e area. 
 
ortunity afTortlcd 
 icighbour in the 
 veyor too comes 
 lalified or unau- 
 h libertioss. By 
 s are frequently 
 la])Iy magnitude 
 
 MENSURATION OP LANDS. 
 
 99 
 
 DS. 
 
 measure of 
 
 the 
 
 rie- 
 
 '•■ 
 
 
 ,Pfi 
 
 lie, or Perch. 
 
 in. 
 
 
 
 xl. 
 
 1 
 
 
 
 are 
 
 Chain. 
 
 
 are 
 
 Perch. 
 
 
 are 
 
 Rood. 
 
 
 ire 
 
 Acre. 
 
 
 ire 
 
 Mile. 
 
 
 1 n)o.st conveni- 
 
 ins 
 
 and l\u\i!i 
 
 . 
 
 it be a Sqnare. 
 mboid. 
 
 r breadth, an»l 
 
 RtJLX U. 
 
 As radius 
 
 Is to the sine of any angle of the parallelogram, 
 So is the i)roduct of the sides containing the angle 
 To the area of the parallelo^nam. 
 
 ' nVLE. III. 
 
 Multiply the product of any two adjacent sides of the 
 parallelogram by thejiatural sine of the included angJe. 
 
 EXAMPLES. 
 
 1. A square tract of land, B A C D, {Fig. 79,) fronts on 
 the road B A, which runs N, 80^ W., and the length of its 
 side 44 cA. 72 /.; required the area, the courses o/the other 
 sides, and a plan of the same. 
 
 AB= = 44.72 X 44.72 = 1999.8784 ch. ~ 10 = 199 
 .98784 ac. = 199 .?c. 3 r. 38;). = area. 
 
 The course of A C is N. 10° E.— of C D, S. 80^ E - nd 
 ofDB, S. 10°W. 
 
 Draw the road B A. Take any point on that road as at 
 B, and lay off 44 ch. 72 I. towards A, according to the given 
 scale. At A raise the perpendicular A C, and according 
 to the same scale lay off 44 ch. 72 /. Draw C D equal and 
 parallel to C A. Then join D B, and the plan is drawn. 
 
 2. Requn-ed the area of the Rectangle A G F E, (F»g- 80 ) 
 whose length A G is 80 ch., and breadth A E 30 cA ' 
 
 AGXAE = 80XS0= 2400 ch. = 240 ac. = area. 
 
 3. Required the area of a Rhombus A B C D, (Fig 81 ) 
 whose front A B runs E. 15 cA., and the side B C, N. 10- E. 
 and the perpendicular D K is 14 ck. 77 I. ' 
 
 1477Z. = DK. 
 1500Z. = AB = Ba 
 
 22.15500 
 4 
 
 . 62000 
 40 
 
 24.80000 ^n«. 22 ac. r. 24/). 
 
 4, Requ^ ' the area of a Rhomboid A B E F, {Fig. 
 
 82,) 
 
m 
 
 100 
 
 LAND SURVEYING. 
 
 •n 
 
 \vh')>v front A B is 15 ch., the side B E, 50 ch. 86 /., and 
 the per|)eijdicular, 50 ch. 8 /. 
 
 5008 /. X 1500 /. = 7512000 /. = 75 ac. r. VJ p. =nrea. 
 5. Required the area of the above Rhomboid the angle 
 B A F being 80°. 
 
 By Rule 2: As Radius 90° 10.00000 
 
 Is to Sine / B A F 80° 9 . 99S.S5 
 
 Sois B A X A F 762.9cA. 2.88246 
 
 751.3 cA. 2.87581 
 
 751 .3 ch. = 75 ac. Or. 21 p. = area. Or, by Rule 3: 
 B A X A F X Nat. Sine / 80° == 762.9 cA. X 98481 = 
 
 751. SI 1549 ch. = 75 ac. Or. 20.98;>.j or 75 ac. r. 21 p., 
 
 nearly. 
 
 PROBLEM 11. 
 
 To find the area of a Triangle. 
 
 RULE 1. 
 
 Multiply one of its sides by a perpendicular let fall upon 
 it from the opposite angle, and half the product will be the 
 area. 
 
 RULE n. 
 Multiply the product of any two of its Bides by the natu- 
 ral sine of their included angle and half the product will be 
 the area, 
 
 EXAMPLES. 
 
 I. In the triangle ABC, (Fig. 83,) A B is 15 cA., and 
 the perpendicular C D let fall upon it from the opposite an- 
 gle at C is 14 ch. 77 l.-, required the area. 
 A B = 1500 Z. 
 CD = 1477/. 
 
 2)2215500 
 
 A rea = 1 1 . 07700 I. 
 4 
 
 .30800 
 
 40 
 
 12.35000 
 
 X 
 
 1 ac. Or. 12 
 
 p. 
 
MCN8URATI0N OP LANDS. 
 
 101 
 
 ^.»u t. 8 cA., and A C runs N. 20*^ E. 26 ch. (J5 /.• lo- 
 quired the area. 
 
 S. 80^ E. 
 
 N. 20^ E. 
 
 180' 
 100' 
 
 100 Sum, 80° = ^ B A C 
 
 Then by Rule 2, A C X A B X Nut. Sine / 80' ^ 
 
 ,HnZn ^ ' '^- ^ ■'^'^' = 209.9614920 cA. ^ 2 = lO-i 
 .9807460 ch. = 10.4980746 ac. = 10 ac 2 r. nearly, ^ urea. 
 I he area may al«o be determined by Logarithn.s, accord- 
 nig to the following rule: 
 
 As Radius 
 
 I^ lo the sine of any antjle of a i ian-rle 
 So is the product of the sides containing the anglo 
 1 o twice the area of the triangle. 
 Then, As Radius 90° 
 
 Is to the Sine of / B A C 80' 
 
 .So is ABXAC= 26.65X8= 213.2 
 
 10.00000 
 9 99.335 
 
 2 . 32878 
 
 To twice the area 210. ch. 
 
 2.32213 
 
 Then 210 ^ 2 =: 105 cA. = 10 ac. 2 r. = area. 
 
 PROBLEM III. 
 
 The three sides of a Mangle being given to find the arm. 
 
 RULE. 
 
 From half the sum of the three sides subtract each sido 
 separately. Then multiply the half of the sun. of the sides 
 by .he three remainders successively, and the ..nuare root 
 oi the product will be the area. . 
 
 EXAMPLE. 
 
 ..^T'ri'}^ ^'"^ °^ "" '"^"'^^^ ^^^°«« three «ide.. arc re> 
 spcctively 20, 30, and 40 ch. (Fig. 85.) 
 
10:^ 
 
 LAND SURVEYING, 
 
 eh. 
 
 
 30 
 
 
 80 
 
 
 40 
 
 
 2)90 
 
 sum, 
 
 45 
 
 half-surn, 
 
 25 
 
 1st rem. 
 
 1125 
 
 
 15 
 
 2nd rem. 
 
 16875 
 
 
 5 
 
 3rd rem. 
 
 45 — 20 = 25 l8f rem. 
 45 — 30= 15 2nd rem, 
 45 — 40 = 5 3ni rem. 
 
 V 84375 = 290.47 ch. = 29.047 ac. == 29 ac. r. 7 p. 
 area. 
 
 By L0UARITUM.S. 
 
 Half-.suni 45 
 1st rem. 25 
 2nd rem. 15 
 3rd rem. 5 
 
 Log. 1.G5.S21 
 1.39794 
 1.17G09 
 0.69897 
 
 2)4.92021 sum. 
 
 290.4 cA. 2.463105 square root. 
 
 Now 290.4 ch. = 29.04 ac. — 29 ac. r. Gj3. 5= area. 
 
 PROBLE ' IV. 
 
 Tcjind ih:- irea of v Trapczoii^. 
 nuLE. 
 
 Add together the two parallel sides, and multiir- their 
 sum by the perpendicular breadth, or by the distan be- 
 tween them. Then half the product will be the area. 
 
 EXAMPLE. 
 
 Required the area of a Tr.npnzoid A BCD, {Fig. 86,) 
 whose parallel sides are 12 ch. 41 I. and 8 ch. 22 /., and 
 whose perpcndicuicir distance is b ch. ID I. 
 
MENSURATION OF LAMDS. 
 
 A B= 12.41 
 CD= 8 22 
 
 lOA 
 
 Sum of parallel sides 20. G3 
 
 And rectangular breadth =: 5.15 
 
 2)100.2445 = product. 
 
 Half prod. =: 53. 12225 cA. = 5.S12225 »c. 
 10 p. nearly. 
 
 = '» uc. I »• 
 
 PROBLEM V. 
 
 To find the area of a Megular Polygon. 
 
 RULE. 
 
 Multiply the perimeter of the polygon or the sum of its 
 Bides, by the perpendicular let fall from the centre ui)ori one; 
 of the sides, and half the product will be tho area. 
 
 EXAMPLE. 
 
 The sides of the regular pentagon A B C D P: A, {Fig. 
 87,) measure each 25 ch., and the perpendicular O P mea- 
 Burcs 17 ch. 2 /.; required the area. 
 
 25 cA. X 5= 125 ch. := perimeter. Then 125 ch. X 17- 
 .02 ch. = 2127.50 cA. -^ 2 = 1063.75 cA.= 10G.S75ar, 
 = 100 Of. 1 r. 20 j9. = area. 
 
 PROBLEM VL 
 
 To find the area of a Trapezium. 
 
 RULE. 
 
 Draw a diagonal dividing the trapezium into two trian- 
 jrles; then find tho areas of these triangles, and their sum 
 will he the area required. 
 
 iYo^e. -If two perpendiculars be let fall on the diagonal 
 Jrom the opposite angles, and their sum multiplied bv the 
 diagonal, halt the product will be the area. 
 
 EXAMPLE. 
 
 -n the trapezium A B C D, {Fig. 88.) the diagonal A C 
 is 13cA. 50/., the perpendicular Da 6 cli. 50 /., and B6 5 -/i. 
 70 /.; required the area. 
 
J 04 
 
 LAND SURVEYING, 
 
 5.70 + 6.50= 12.20 X 13.50 = 164.7000 - 
 3500 ch. = 8.235 ac. = 8 «c. r. 37 p. = area. 
 
 •2 = S2. 
 
 ffi! 
 
 I, ' 
 
 PROBLEM VII. 
 
 To find the area of any Rectilineal Figure. 
 
 RULE. 
 
 Divide the figure into triangles, find their areas separately, 
 then the sum of their areas will be the area required. 
 
 EXAMPLE. 
 
 Required the number of acres contained in the farm, thr, 
 field notes of which are contained in the following Feld 
 Book. (Fig. 89.) 
 
 No. OF Triangle. 
 
 Bases 
 in links. 
 
 Perpend. 
 in links. 
 
 1 
 
 o 
 
 3 
 
 4 
 5 
 
 Double Areas 
 in links. 
 
 5210 
 6400 
 6100 
 6100 
 4500 
 
 1700 
 2500 
 2900 
 2500 
 1450 
 
 8857000 
 16000000 
 17690000 
 15250000 
 
 6525000 
 
 Sum of douiile areas 
 Area in links 
 
 64333000 
 
 321 
 
 61000 
 4 
 
 2.44000 
 
 40 
 
 .ins. 321 ac. 2 r. 17;?. 17.60000 
 
 In running the J)ase line, the perpendicular may be taken 
 by the cross stafl^l Set up the cross staflTat that point in the 
 base at which, while one of the lines c ' the cross ranges 
 with the base, the other points exactly to the opposite angle. 
 Measure the distance from that point to the opposite angle, 
 and enter in the Fold Book in the column marked perpen- 
 diculars. Fini.«h the running of the base line, and insert its 
 entire length in the column marked bases. Multiply the 
 base by the perpendicular, and insert the product in the 
 column marked double areas. Proceed in this manner until 
 all the triangles of which the figure i.s frjinnoRfid are mea^ 
 .sured and computed. Divide the sum of the double areas 
 by 2, and you have the area of the whole figure or farm, 
 
00^0 = Si, 
 •ea. 
 
 Fissure, 
 
 MENSURATION OF LANDS. 
 
 Vf)h 
 
 In order to plot tlio survey it will be necessary to note the 
 distance of the point at whicJ^ the perpendicular was taken 
 from the end of the base line. 
 
 i^"i^r~'^ *^'°"^^ staff with sights is to be preferred to one 
 whicli has only small points at the extremities of the cr<)-<s 
 Imes. 
 
 reas separately, 
 required. 
 
 11 the farm, the 
 rollowing Feld 
 
 'ouBLE Areas 
 in link s. 
 
 8857000 
 16000000 
 17690000 
 15250000 
 
 6525000 
 
 643 33000 
 
 321.61000 
 4 
 
 2.44000 
 40 
 
 17.60000 
 
 may be taken 
 
 lat point in the 
 
 ! cross ranges 
 
 opposite angle. 
 
 opposite angle, 
 
 larked perpen- 
 
 , and insert its 
 
 Multiply the 
 
 )roduct in the 
 
 s manner until 
 
 >sed are mea- 
 
 D double areas 
 
 ire or farm.. 
 
 PROBLEM VIII. 
 
 To find the area of a Mixtilineal Figure, hy means of eqiii- 
 distant ordinates. 
 
 RULE. 
 
 Measure the perpendicular breadths of the figure in seve- 
 ral places, equidistant from each other, then divide the sum 
 of these perpendicular breadths by their number, the ((uo- 
 tient multiplied by the whole length of the line will give a 
 near approximation to the area of the figure. 
 
 example. 
 The length of the base of a field, curvilinear on one side, 
 is 7 ch. 20 /., {Fig. 90.); and the lengths of seven equidi?:- 
 tant ordinates erected upon it are respectively 200/., 225/., 
 230/., 248/., 260/., 280/., and 300/.; required the area of the 
 field. 
 
 . . ^inks. Then, 249 mean breadth. 
 A I = 200 7C70 
 D A = 225 L 
 
 fjf = 230 1.79280 area in link*. 
 
 F/ = 248 4 
 
 G e = 260 
 
 Hdr== 280 3.17120 
 
 (3 C = 300 40 
 
 7)1743 
 
 6.84800 
 
 249 mean breadth. Ans. lac. 3 r. 6/?. nearly. 
 
 If greater accuracy l)e re(|uired, take half the sum of the 
 two extreme breadths for one of the ordinates, and add it to 
 Uie others as before; then divide the sum by the number of 
 parts in the base, instead of bv the mimbRv nf ni.Hin,.t«. 
 '•Hid this mean breadt 
 
 lultiplied by the length of the ba 
 
 so 
 
ii 
 
 106 
 
 LAND SURVEriNG. 
 
 will give the area. It is still, however, only an approxima- 
 tion, but sufficiently near the truth in ordinary circumstances. 
 It may be observrl, farther, that the greater the number of 
 onlinates employed, the nearer the result will be to the ex- 
 act area. 
 
 When the curved boundary meets the base, as in often the 
 case in surveying, the area is found by dividing the sum 
 of all the ordinates by the number of parts in the base, and 
 then multiplying the quotient by the length. 
 
 If it is particularly inconvenient or imiu-acticablc to erect 
 ordinates at equal distances, perpendiculars may be raised 
 at unequal distances, and the parts into which the figure is 
 then divided may be computed as so many trapezoids, and 
 the^sum of their areas taken as the area of the whole. 
 
 PROBLEM IX. 
 
 To find the diameter of a circle whose circumference is given, 
 or the circumference when the diameter is given. 
 
 RULE I. 
 
 As 7 is to 22, so is the diameter to the circumference. 
 As 22 is to 7, so is the circumference to the diameter. 
 
 RULI^II. 
 
 As 1 is to 3. 1416, so is the diameter to the circumference. 
 As 3. 1416 is to 1, so is the circumference to the diameter. 
 
 EXAMPLES. 
 
 1. If the diameter of a circle be 1 ch. 12.68 /., what is the 
 length of the circumference. 
 
 Asl : 3.1416 : : 112.68/. : 354 /., or 3 ch. 54 L, Jlns. 
 
 I. If the circumference of a circle is 3 ch. 54 /., what is 
 the diameter. 
 
 As 3.14ir> : 1 : : 354 I. : 112.68 l, or 1 ch. 12.68 /. Jns. 
 
 By this problem the number of degrees contained in the 
 radius of a circle may be determined. For since the radius 
 is half the diameter, and the cirenmference cnntaing 360° it 
 follows that half the quotient of 360° divided by 3. Hie^ill 
 cive the number of degrees contained in the radius. 
 
MENSURATION OF LANDS, 
 
 PROBLEM X. 
 
 To find the area of a circle whose diamcicr is given. 
 
 !07 
 
 RULE, 
 
 Multiply the s<iuare of the diarii 
 product will bo the urea. 
 
 ctcr by .7854, and the 
 
 EXAMPLE. 
 
 llequirpd the area of a circle whose diameter is 10 n 
 
 10= X • 7851 = 78. 5400 c/^. = 7.85^ 
 = area. 
 
 ro40Qac. = 7ac.Sr. Uip.. 
 
 PROBLEM XL 
 
 To find the area of a circle whose circumference is ^i,en. 
 
 RULE. 
 
 Multiply the square Of the circumference by 07Q58 md 
 the product will be tire area. ' 
 
 EXAMPLE. 
 
 JU<>~- X .07»53 = 78«.6.9C8O0 L == 7 „.. 3 ,, ,3^. ^ 
 
 /., what is the 
 
 PROBLEM XIL 
 
 To find the circyference of an Ellipse, the transverse and 
 conjugate diameters being given. 
 
 RULE. 
 
 Multiply the square root of half the sum of thn 
 the two diameter. 1^ 3.14,(i, and the ^h ■ villT"?' 
 '•ircumfereuee, nearly. l"-0(ni( t udl be the 
 
 EXAMPLE. 
 
 Rrquired the circumference of -.n Vii:. 
 
 trans- 
 
 v^^L±_Ji'l 
 
 ^ X 3.1410'= V 5iljf_36^ 
 
 xa. Mifi==. 
 
108 
 
 LAND SURVEYING. 
 
 V58.5X 3.141G = 7.648 X 3.1416= 23.9269= the 
 vircumfVionce. 
 
 PROBLEM XIII. 
 
 To determine the area of an Ellipse, the transverse and 
 conjugate diameters being given. 
 
 RULE. 
 
 Multiply the product of the transverse and conjugate di- 
 junolers by . 7854, und the result will give the area. 
 
 EXAMPLE. 
 
 Required the area of an Ellipse whose transverse diame- 
 ter is 9 eh., and conjugate 6 ch. 
 
 9 X 6 X .7854= 42. 4116 cA. = 4ac. Or. 3B p. Ans. 
 
 Note. — In practice, a surveyor is seldom required to mea- 
 sure a circle or ellipse. 
 
 PROBLEM XIV. 
 
 To find the area of a farm by drawing apian of il from a 
 scale of equal parts. 
 
 RULE. 
 
 On good paper, draw a correct plan by a scale of equal 
 parts, (say a scale of 2 ch. to an inch, — the larger the scale 
 employed the more accurate the work will be). Draw large 
 lines dividing the figure into triangles, on these bases let 
 perpendiculars fall from the opposite angles. Measure the 
 length of these bases and perpendiculars by the same scale 
 by which the plan was drawn, and enter them into their re- 
 spective columns in the Calculation Table. Multiply the 
 several bases by their corresponding perpendiculars, and 
 insert their products in the column of double areas. Then 
 half the sum of this column will be the area of the field, 
 nearly. 
 
 EXAMPLE. 
 
 Required the area of the farm, the field notes of which 
 are contained in the following Field Book. (Fig. 91.) 
 
MENSUR.VTION OP LANDS. 
 
 109 
 
 23.9269 = the 
 
 transverse and 
 ?n. 
 
 [1 conjugate di- 
 e area. 
 
 lasverse diame- 
 
 3Sp. Jlns. 
 jquired to meu- 
 
 un of it from a 
 
 scale of equal 
 larger the scale 
 ). Draw largo 
 
 these bases let 
 . Measure the 
 
 the same scale 
 m into their re- 
 Multiply the 
 mdiculars, and 
 3 areas. Then 
 ea of the field, 
 
 lotes of which 
 (Fis.dl.) 
 
 
 
 Fie 
 
 i-i) Book. 
 
 
 
 Nu. 
 
 OF S 
 
 TATION. 
 
 Course. |D 
 
 ISTANCE. 
 
 1 
 
 at 
 
 A B 
 
 N.18'^34'E. 
 
 
 4892 
 
 2 
 
 
 BC 
 
 N. 20^ E. 
 
 
 5000 
 
 3 
 
 
 CD 
 
 East 
 
 
 4000 
 
 4 
 
 
 dp: 
 
 S. 20^^ E. 
 
 
 5100 
 
 5 
 
 
 EF 
 
 N. 80^ VV. 
 
 
 4500 
 
 6 
 
 
 FG 
 
 S. 15° E. 
 
 
 5500 
 
 7 
 
 
 GA 
 
 West. 
 
 
 6000 
 
 Calculation Table. 
 
 No 
 
 OF Trian. 
 
 Base. 
 
 |Perp. 
 
 jDouBLE Area. 
 
 1 
 2 
 3 
 4 
 5 
 
 CED . 
 C K F 
 C B F 
 B G F 
 A GB j 
 
 7503 
 7503 
 5000 
 6404 
 6000 1 
 
 2506 
 2300 
 2600 
 2603 
 4609 
 
 18802518 
 1 7256900 
 13000000 
 16669612 
 27654000 
 
 
 
 
 
 2)93383030 
 
 466.91515 
 4 
 
 3.66060 
 40 
 
 t ... ^ 26.42400 
 
 ^'Ins. 466 ac. 3 r. 26 p.. 
 
 Kemarks.-.ln the preceding Field Book the first column 
 contain.s the No. ot the stations, and consequentiv the num- 
 ber ot the sides of the farm; the second, the bearings of the 
 Imes from the meridian; the third, the stationary (fistances 
 m links. 1 he second and third columns contain all the data 
 necessary to protract the plan of the farm, A BCD E F G A 
 
 i he first cokmmof the Calculation Table contains the 
 iNos. of the triangles into which the lignre is divided- the 
 second the base of caclMrianglo; the third, the porpemJicu- 
 ur; and the l.)urth, the product of the base and perpendicu- 
 lar, mid IS called the column of double areas, half the sum of 
 which gives the area, nearly. 
 
 This method, however, will only give an approximation 
 lil. IV''"'- 1^^ '^ ^^^\poss\h\c by it to determine the 
 length, ot base and perpendicular lines within several links, 
 tvspocially It the-e lines arc of considerable len-rh 
 
110 
 
 LAND SURVEYING. 
 
 PROBLKM XV. 
 
 1 find Ihc'avca of am, Rectilinear Fis;urc (the courses and 
 distances roimd the same beinu; friven,) without the assist, 
 ance of a plan, by Rcctanii;ulur Surveying-; i. e. by calcu- 
 lation from Tables of Northing, Souihing; Easting, and 
 il esting. 
 
 KULE. 
 
 Prepare a Tablcj with ten columns. In the first, lioaded 
 '' No. of Stilt.," write the nimiber of the staiioii, 0, 1, 2, 3, 
 &c. Ill the second, headed " IJeurinir," write the eour/ie,' 
 In the third, n.arked " Di^st. in ch. /.," insert the distanec hi 
 chaniH and links. In the fourth and fifth eohunns, headed 
 " Difi". Lat.," insert the Difierence of LutitiKh.-, a.-eordin.r 
 to the directiojjw contained in the HI. and IV. Prob. ol" 
 Transverse n^tniinjr of lines. 
 
 Fill up likewise, ae(;ording to tlu' same directions, the 
 sixth and seventh colunms, heu(hMl " Half Dep.," observing I 
 only that inste-ad of the whole, the half of the Departure is 
 to be entered. Place the si-.i -|- before the Hastings, and 
 the .si-n- before the Westi..-s. W the field notes have 
 been ('orrectly taken, and the entries of Difi". of I.at. and of 
 Half Dep. been accurately nuule, the sum of the North and 
 S()uth C(dunuis will be equal. The sum of the East and 
 ^V est colunuis will also be etiual. 
 
 In the eighth column headed " Mer. Dist.," and oppositu 
 U) in the first colunm, insert the whole Departure, or doti- 
 l>le the sum uf the Half-Kastin-s, or Half-VVestin-^ con- 
 tained in the sixth and seventh columns. Obscrre what 
 sum has been entered in thefi'rst lineof eitiierof the columns 
 headed "Half Dep.," opposite to the fi-ure 1 in the fast 
 column. Observe also whether the v.niry has been nutde in 
 the E. or W. cohunn. If the entry Jias been made in tlw 
 r:. colunm, add the smn to the whole Departure. If the 
 entry has been made in the W. column, snbtract'the sun. 
 irom the whole Dej.arture. Insert the smn or difierence in 
 
 the ei-dith culuiim in, 
 
 iik.ul " Mer. Dist." 01 
 
 kiriy, that the sun) now iu.serte<! is the 
 
 )serve jiarticu- 
 vicridional dislaua 
 
MENSUnATTON OF LANDS. 
 
 Ill 
 
 i>f the. middle of the first line. To this sum add or subtract 
 accordinjr as it is P^ast or W(^st the same sum or Hjslf De- 
 parture, and you have the meridional distance at the end of 
 the fi-st line. Observe a,i,rain the sum that i'* entered in the 
 column of Half Dep., oj)j)osite to the figiii-.' 0. in the iirst 
 column ^f the Table; and accordinpr as it Ici- !he sign 4- or 
 — pr-^fixcd, add it to or subtract it from the in. ildional dis- 
 tance at the end of the first line. This will ive the meri- 
 dional distance of the wuV/r/Zt' of the secojid i!;)f. Proceed 
 in this manner until the column is completeh :i!l, d. if the 
 operation has been correctly performed, the last sum will be 
 equal to the sum at the head of the column. 
 
 Next, multiply the several meridional distances at the 
 middle of each line into the Northing or Southing, which 
 will be found opposite to that meridionnl distance hi one of 
 the columns marked Dim Lat. in the Table. Y\heu the 
 sum has been taken from the column marked " N." the pro- 
 duct is to be inserted in the ninth colunm, marked '' North 
 Areas;" but if it have been taken from the column mnrKed 
 "S." the product must be entered in the tenth coiinim, 
 headed "South Areas.^' Then the difference between the 
 sum of the products contained in the column of North Areas 
 and the sum o" the products in the column of South Areas 
 will be the area of the Figure. 
 
 t. 
 
 Idionul dislauGi 
 
 EXAMPLES. 
 
 1- Required the aroa of a farm whose field notes are as 
 follows, viz:— N. 20° E. 50 ch., P^ast 10 ch., S. 20° E. 51 eh., 
 N. 80° W. 45 ch., S. 15^ E. 55 ch., West 60 ch., and N. 18° 
 34' E. 48 ch. 92 /. 
 
 Having prepared your Table, and entered your stations, 
 courses and distances in their resjjective columns, by the di- 
 rections and principles laid down for the running of linos, 
 or from the annexed Tables, find the DitT. Lat., and the 
 Half Dep., and insert them in their proper i.dace in the Tn- 
 ble. Thus the first course is N. 20^^ E., and distance 50 ch., 
 the Northing is 40 ch. 98 /., and the Half Easting 8 ch. 55 /. 
 Insert the former in the column marked N.; and the latter 
 
Ml 
 
 l.KTil) SURVEYING. 
 
 n the column marked E., and place the sign + before U. 
 Proceed in this manner until the columns of DifT. Lat. and 
 Half Dep. are filled u]). 
 
 Add up the colunm.s of DifT. Lat. and of Half Dep. 
 The sum of the Northings is 101.05. The sum of the 
 Southings is also 101 .05. The Eastings and Westiygs arc 
 likewise equal. These agreements shew that the survey 
 'las been correctly taken. 
 
 Proceed next to fill np the column headed " Mer. Dist," 
 In this column, in the same line with in the first column, 
 write 104 ch. 32 /., the whole departure or double the sum 
 of the Half Eastings or Half Westings. Under the head- 
 ing «' Half Dep.," and in the column marked E., you will 
 find the sum 4-8.55 has been entered. Then 104.32-4- 
 8.55 = 112.87. This sum is the meridional distance at the 
 middle of the first line. Insert it in the column of Mer. 
 Dist., opposite to 1 in the first column. Then to this sum 
 add 8.55, and you have 121.42, the meridional distance at 
 the end of the first line, or at the beginning of the second 
 line. Place this sum in the column of Mer. Dist., perpen- 
 dicularly below the Mer. Dist. at the middle of the first line. 
 Again to the sum last entered add 20.00, which you will 
 find in the E. Column, of Half Dep., and it will give you 
 the meridional distance at the middle of the second line. 
 Thus 121.42 + 20.00 = ]41.'t2. Insert thi.j sum in the 
 column of Mer. Dist., immediately below the last entry, and 
 directly opposite to 2 in the first column. Proceed in this 
 manner until the column is filled up. The last sum must be 
 equal to the first, or the sum at the head of this column. 
 
 Next, multiply the meridional uistanct at the middle of 
 the first line, which in this example is 112.87, by the differ- 
 ence of latitude which will be found under « Diff. Lat." in 
 the column marked N., and which in this Example is 46.98; 
 and insert the product 5302.6326 in the column of North 
 Areas, because the Diff. Lat. ij N. The second meridional 
 distance in the middle of the line in this column of Mer. 
 Dist. is 141.42, but as the course is due East there is no dif- 
 lerence of Latitude, und conscn[UGntly no product to be in- 
 
MBKSURATIOM OF LANDS, 
 
 U.i 
 
 Uff. Lat. and 
 
 •crted in either column of areas, The third meridional dis- 
 tance in the middle of the line is 170.14, and the different*^ 
 of Latitude is 74.92 in the column marked S. The product 
 of these numbers is 8153.1088, and is to be placed in the 
 Column of South Areas, because the Difl*. Lat. is S. Pro- 
 ceed in this manner until these columns are completed. 
 
 ^' B.— The meridional distance for the middle of the line 
 will always be found in the column of Mer. Dist., opposite 
 to, and m the same line with, the No. of the Station, the 
 Bcarmg, Distance, DifT. Lat. and Half. Dep. ♦ 
 
 The sum of the products contained in the column of North 
 Areas is 10989.0006, and the sum of the products in the co- 
 lumn ot South Areas 15679.5043. The difference between 
 them 4690.5040 ch., or 469 ac, r. 8 ». is the area of the 
 r arm. "^ 
 
114 
 
 tMfD SURVETING. 
 
 
 o tf 
 
 ax 
 o 
 
 as 
 
 u 
 
 ?5 
 
 W 
 
 u 
 
 Q 
 
 fa 
 
 ao 
 
 
 H 
 ■< 
 
 O 
 
 1 — 
 
 
 ® 
 
 
 CO 
 
 
 
 CO 
 
 
 
 iljjA 
 
 
 in 
 
 
 
 •^ 
 
 
 
 Vi« 
 
 
 OS 
 
 
 
 S 
 
 
 
 <2 
 
 
 CO 
 
 
 
 
 
 
 IM 
 
 
 lO 
 
 
 
 iO 
 
 CO 
 
 i 
 
 
 CO 
 
 
 r>. 
 
 
 
 
 
 P 
 
 
 
 o 
 
 CO 
 
 8 
 
 o 
 
 o 
 
 CO 
 
 
 
 »-« 
 
 
 
 'I" 
 
 c?> 
 
 CO 
 
 o 
 
 !>• 
 
 »?» c» (n rf (r> o >* CO 00 CO o) vn e» 
 
 
 00 -^ -n- '^ 
 
 »-< CO t-» »n 
 
 «0 »^ t^ r^ »f5 GO 
 
 
 G« 
 
 -H _■ r. 
 
 o CO «o Tf 
 
 •-< CO 
 
 »-^ 
 
 (D CO »* 
 
 
 1—1 
 
 5» TT to 1^ t- 
 
 iOCO'<3'-^COaD<5iO 
 
 
 
 
 I-* »^ 
 
 I-« 1— ( 
 
 T-H »-< 
 
 1—* 
 
 ""^ 
 
 
 
 
 
 w 
 
 
 o 
 
 
 CO < 
 
 
 
 
 urn 
 
 
 o 
 
 
 »-4 
 
 
 
 
 s 
 
 
 o 
 
 
 n» 
 
 
 1 
 
 
 Gt 
 
 
 CO 
 
 
 o 
 
 
 
 
 I 
 
 
 1 
 
 
 
 •n 
 
 o 
 
 r« 
 
 
 c< 
 
 
 r-. 
 
 CO 
 
 if5 
 
 o 
 
 1^ 
 
 
 »-« 
 
 
 »>• 
 
 ^^ 
 
 00 
 
 o 
 
 CD 
 
 
 t^ 
 
 
 t^ 
 
 
 
 -f 
 
 -- 
 
 
 
 
 
 
 GO 
 
 T 
 O 
 
 
 ift 
 
 ao 
 
 If) 
 
 »n 
 
 o 
 
 CO 
 
 Ci 
 
 CO 
 
 QO 
 
 CO 
 CO 
 
 tn 
 
 o 
 
 o 
 o 
 
 d 
 in 
 
 o 
 
 Q 
 
 o 
 o 
 
 o — 
 
 o 
 o 
 
 in 
 
 o 
 c 
 
 in 
 in 
 
 o 
 
 o 
 
 d 
 CO 
 
 G» 
 
 CV 
 
 QO 
 
 &3 
 
 o 
 
 O 
 
 -3 
 
 o 
 
 o 
 
 C5< 
 
 o 
 
 O 
 
 OO 
 
 ;?; 
 
 
 o 
 
 in 
 
 
 00 
 
 o 
 
 ^. 
 
 -« G< CSO 
 
 in 
 
 CO 
 
 c « 
 
 ~.J . 
 
 ^ t o> 
 
 ^ -^ 
 
 • — n 
 
 Cw *rf *^ 
 
 •sf i 
 
 a 
 '5 
 
 60 
 
 QJ < < 
 
 .S CO 
 
 s ■* 
 
 O . 
 
 C 
 
 .0 
 
 O) 
 
 «■< 
 
 o 
 
 3 
 «-* 
 
 ID 
 
 ^^ 
 
 d 
 o 
 
 v 
 
 .0 
 
 rt CO t: 
 
 el 
 
 oO ="> 
 
 a o 
 
 §2; 
 
 §.2 
 
 O c3 
 
 £ =^ « 
 
 (■3 Z 
 
 KM 
 
 
 E- 
 £/ 
 
 & 
 
 C 
 
 c 
 
• — r; 
 
 g "" CO 
 
 Cw *rf *^ 
 
 s< « 
 
 •sf i 
 
 ^tiN a 
 «— . 60 
 
 QJ < < 
 
 .S 00 
 
 s ■* 
 
 o . 
 
 "13 
 
 o 
 
 s 
 
 o 
 o 
 
 « 
 .0 
 
 « 5t3 
 
 25 
 c "^ 
 
 5 to «-■ 
 
 o 
 >. 
 
 §2; 
 
 a o 
 
 §.2 
 
 
 0) 
 
 ■^ CI 
 
 o u .2 
 
 si® 
 
 KM 
 
 MENSURATION OF L_JfDS. 
 
 Hi 
 
 X 
 
 IT. 
 
 § 
 
 00 
 
 H 
 
 < 
 
 '^» 
 
 00 
 
 U 
 
 u 
 
 ^^ 
 
 m 
 
 
 
 
 GO 
 
 CO 
 
 
 
 
 
 
 Oi 
 
 
 
 lO 
 
 QO 
 
 T 
 
 1^ 
 
 irj 
 
 «>. 
 
 T 
 
 CO 
 
 
 
 r* 
 
 t" 
 
 CO 
 
 
 
 
 'X) 
 
 00 0; 
 
 — 'r 
 
 T 
 
 10 
 
 t^ t^ !05 
 
 •■s 'i" 
 
 ■0 
 
 — 
 
 
 
 00 
 
 05 
 
 •* -T 
 
 e» 
 
 CO 
 
 
 • 
 
 "T 
 
 '.0 
 
 u" 
 
 >n .-. 
 
 
 
 -« Tj ^ 
 
 'X) 
 
 ,^ 
 
 
 - 
 
 •^ 
 
 
 
 
 ul 
 
 
 
 V 
 
 in 
 
 
 -T 
 
 • 
 
 'O 
 
 
 
 •-» 
 
 •>- 
 
 » 
 
 C( 
 
 ^ 
 
 'J ;o in ^ i-» O o O t~ rr lO 
 
 o 
 
 ICO 
 
 rr 
 
 CO 
 
 
 ►^ 
 
 u 
 
 c/j 
 
 12; 
 
 0. 
 
 u 
 Q 
 
 b.' 
 
 5: 
 
 -^«OCl»ftC»i-iO«05t>» 
 
 O O) 
 
 •-« CO 
 
 CO 
 
 o 
 
 —« CO •-« 
 
 CO 
 
 CO 
 
 ' 
 
 1-1 rr 
 
 4- -f- 
 
 G< 
 CO 
 
 o 
 
 o 
 
 CO 
 
 o 
 
 CO 
 
 CO 
 
 CO 
 CO 
 
 00 
 
 B 
 O 
 
 (O 
 
 s 
 
 •a 
 a 
 
 e 
 
 e 
 o 
 
 o 
 
 GO 
 
 CO 
 
 CO 
 
 ■^ t>. 
 
 o 
 
 CO 
 CO 
 
 00 
 
 r; 'o 
 w o 
 
 
 » 
 
 o 
 
 CD 
 
 o 
 
 in 
 
 o 
 
 O 
 
 c 
 
 o 
 
 CO 
 
 !>■ > 
 
 o 
 
 o 
 
 in 
 
 o 
 
 O 
 
 CO 
 
 o 
 vn 
 
 W w 
 
 o 
 
 o 
 
 <5« 
 
 o 
 >n 
 
 cr. ^ ^ ^ CD* 
 
 -« G« 
 
 iD 
 
 
 CO 
 
 6> 
 O 
 
 e 
 « 
 
 S 
 
 s 
 
 o 
 u 
 
 e 
 
 u 
 
 c 
 
 5 
 o 
 
 CO 
 
 2 fe 
 
 8 ^ 
 
^■Il^''' 
 
 •tr 
 
 IHf 
 
 i' ■' 
 
 ill 
 
 1 
 i 
 
 = ■ 
 
 jf'Hi 
 
 
 ■ HI 
 
 
 llHi 
 
 t 
 
 II 
 
 
 1 
 
 
 ll 
 
 ■■5 
 
 
 m 
 
 LAIO SURVZTINO. 
 
 3 w 
 
 O «* 
 
 55 -«i 
 
 s 
 
 I- 
 
 .-J 
 
 §0 CO 
 in »fj 
 
 O "^ M •-< 
 
 • • ■ • 
 
 00 05 c» ■v 
 
 §<W O 00 
 cy5 c« -. 
 -< rn c« 
 
 -yj O Q 
 OJ Q O 
 t^ ift lf> 
 
 00 no oo' 
 
 rn Oi »-« 
 0» O CD 
 
 »^«« I'm 
 
 ■^ 2 Q lO O CC <-( 05 
 
 -; CD Oi -f rr* t* erj lo 
 '■e ''j'ooiftooojor* 
 
 '3 
 ♦« 
 a 
 o 
 
 s 
 
 en 
 
 -d 
 
 s 
 
 OS 
 
 » 
 0) 
 
 EiQ 
 
 B 
 
 in 
 
 
 «£> CJ ft* 
 >0 Cl i5« 
 
 G< *?< in 
 
 +4-4- 
 
 73 
 
 12; 
 
 
 oo o 
 — o 
 
 g'o* 
 
 CO rA 
 
 G« 
 
 •^ in o 
 o o o 
 
 in cc in* 
 
 C« G« -» 
 
 C C O Tf o o o 
 in in c as o o o 
 ■n oj o" G« o in oo* 
 
 <30 5« (^ CO CO o« G« 
 
 
 « 
 
 ■< 
 H 
 
 ■I ^ 
 
 \^, 
 
 ^ ^ 00 O c» 00 
 . . . -x> (/} 
 
 -^ i^ ^ (ZJ i/5 !/J 
 
 >-i c» 9? t in -^ j>. 
 
 ■5 «J. 
 
 o ^ 
 
 c »^ 
 
 o e 
 
 0) i-x 
 
 -C CO 
 
 fS CO 
 
 o '^ 
 
 >^ 1-H 
 
 3 GO 
 
 * r« 
 
 X! " 
 
 ~ 75 
 
 ,« 75 
 
 ' i 
 
 
 a 
 
 -S 
 
 a 
 o 
 a. 
 
 a 
 
 b 
 O 
 ••« 
 
 «a 
 
 Q> 
 <t) 
 TJ 
 
 4> 
 
 .£3 
 
 fa .. 
 
 ° s 
 
 '^ ^ 
 
 rt 3 
 
 "" s 
 
 ■s 2 
 
 ID U 
 
 «-i <?< G« CO rr -^ 
 
 II II II II II II 
 
 t -T "rr 00 CO Q 
 in :o CO o r- © 
 
 »n G« ft« o in o 
 
 ^ GO »>• CO -n" CO 
 
 c» rr rr T cr CO 
 
 Xin CO 'o o J^ 
 • • • • • 
 m G» G« o in 
 
 f^ .-^ CO t>» Oi -r 
 
 ll 
 
 £ &. 
 
 " a. 
 p . a. 
 
 5 u = 
 
 CD •• W 
 
 jl; • r 
 » u ^ 
 (-.•'• 
 
 o '^ " 
 
 o, c • 
 Hi)'- 
 
 a. ^ > 
 fl - - 
 
 C4 *^ 
 
 "1 r; (S (— ! tK (-» ■•iw 
 
 ■S;o 
 §2 
 
 s 
 
 = -3 
 
 bo-3 
 
 C 3 
 
 ~ O 
 7J 
 
 o 
 
 ^rf 
 
 
 
 M^ 
 
 o 
 
 
 «■« 
 
 o 
 
 
 «-J 
 
 so 
 
 m 
 
 _c 
 
 
 na 
 
 
 u. 
 
 IS 
 
 O 
 
 a. 
 
 u 
 
 Q} 
 
 ti 
 
 O O 'I" CI T 
 
 »-< O "V C? G» 
 
 • • • , • 
 
 !>• C t^ •^ f 
 
 G« G« G« G» C« 
 
 xxxxx 
 
 in o 
 in o 
 
 G« CO G» 
 
 t^ -< ,-4 
 
 00 o X -^i r- 
 
 an e 
 
 "S-S 
 
 cur 
 5 2 
 
 OS « 
 
 O a u 
 2 fi 
 
 M-i n - 
 
 - a - 
 Q « 3 
 
 ^0,0 
 
 CO 
 
 CQ 2 " 
 
 . 5 3 
 
 < 
 
 'o 
 
 S $ cd 
 o ^ «> 
 
DIVISION OF LANT>. 
 
 U7 
 
 (5* 00 -r --rj 
 
 II II II II 
 
 ■^ 00 CO Q 
 «5 O r- O 
 
 '^i O irJ o 
 
 »>• crs Tf CO 
 
 •5 t 
 
 o w 
 
 E b 
 
 •' c 
 
 b> s 
 
 ■ a. 
 
 E u 3 
 
 dS'S m 
 
 <D •• W 
 
 ,1^ • r 
 
 (^ c u 
 o I. rt 
 
 ° s a. 
 
 a, c at 
 
 WOT) 
 
 s « « 
 
 e! ^ > 
 fl - - 
 
 *" o "5 
 
 4) 
 
 a> c 
 
 1" T (T) CO 
 CO CO o J^ 
 
 tI e< o »n 
 
 CO I— OJ 'T 
 
 + -f-|-}- 
 
 O -^ CI T 
 
 o T CO <;;» 
 
 C t>-* Tj! TP 
 
 T3< rl Tf — < 
 
 5« G« &» C« 
 
 xxxx 
 
 D CI CO i5« 
 
 • • • • 
 
 s X c« r- 
 
 ■^ *-• OS 
 
 r: « . 
 
 -O 60- 
 S S 3 
 
 OS § 
 
 C — la 
 
 O a u 
 
 =^ I ° 
 2 "s 
 
 S «•- 
 
 « - 
 
 OS « 
 
 « a - 
 Q^ 3 
 
 O *» 
 . o u 
 
 "Jl 
 
 .s ^ S 
 •° .2 & 
 
 a .s = 
 
 .fc'u the Norf lungs a.ul Southing, into a w w,^^^^^^^^^^ 
 
 "/'"'I. 'I'" « f the .olm , ;\ ■ Sou h te wiVr^'lr''? '" 
 
 DIVISION OF LAND. 
 
 PROBLEM J. 
 
 To divide a parallelogram in any propor-l, on hy a line run- 
 nmg parallel to a given side. 
 
 RUtE. 
 
 Since parallelograms of the same altitude are to one ano- 
 ther as their bases, (Euc. vi 1 > fir<l fir.=f t>,o .. 
 . I ^^"*- *'• ^>>' "'^<' nift the {>rea or quan- 
 
 tity of land contained in the whole figure. Then, as the 
 area of the whole parallelogram is to its base, ho is the area 
 or quantity of land to be laid off, to its base, 
 
 EXAMPLE. 
 
 i 20 1a' P'f '^'^«^!r .^ ^ ^ ^' <^^- ^4') the base A B 
 1.. 20 ch., and the side A D is 16 cA. It is required to de- 
 raised from these points, to the East or West acconlin. .0 .1 
 m,.p IS to be drawn on the East or West side 0^^^ ^ . ^ -^^''^ 
 
 /'I, 
 
I IB 
 
 LAND SUnVEYIKG. 
 
 terminc the point in the base A B, from which a right line 
 must coinnicnco, which, runnin^r i.arallel to b C until it 
 strikes the opposite side D C, shall form a rectangle E F B C, 
 containip-r lo ac. A D X A B = 16 X 20 = 320 cA. = 
 32 ac. = whole area. Then, as 32 ac. : 20 ch. : : 10 ac. : 
 G ch. 25 ;. = B F, the base of a rectangle E F B C, con- 
 taining 10 ac. Then from the point B lay off* 6 ch. 25 /. to- 
 wards A, and you will have the point required. 
 
 The preceding rule applies to all parallelograms, whether 
 Squares, Rectangles, Rhombuses, or Rhomboids, 
 
 PROBLEM ir. 
 
 From a ginen point in the boundaries of a Square or Rcc- 
 tan^le, to run a line which shall cut off a given quantity of 
 land in a giv."n direction. 
 
 EXAMPLE. 
 
 In the Rectangle A B C D, (Fig. 95,) containing 28 ac. 
 the line A B runs E. 14 ch., and the line AD runs N. 20 cA. 
 It is requirf'fl to lay off 15 ac, to the east by a line commcnc- 
 cing at E, 8 ch. from the / at B. The course and distance 
 of this division luie are also required. 
 
 RUIiE. 
 
 From the given point E run the line E F parallel to A D 
 or B C. Then determine the area of the rectangle A E F D; 
 thus, A D X A E = 20 X C == 120 c/t. =12 ac. = area of 
 A E F D. Subtract this area from the area of the whole 
 filture; thus, 28 — 12 = IG crc. = area of the remaining 
 rectangle E F C B. Find the difference between this area 
 and the area to be laid off; thus, 16 — 15 = 1 ac. Now it 
 will bo seen at once that this area is in the form of a riirht 
 angled triangle. Of this triangle there are known or deter- 
 mined the area which is 1 ac.,and the base line E F, which 
 is 20 ch. From these data, determine the length of :he per- 
 pendicular F S, by the following rule: 
 
 x)ivide the area by half the base, and the quotient will he 
 
 tho length of the perpendicular; thus, 1 ac. or 10 ch. -r 
 
 EF 
 
DIVISION OF LAND. 
 
 UO 
 
 ch a right line 
 o h C until it 
 angle EFBC, 
 !0 = 320 ch. =r 
 ch. : : 10 ac. : 
 E F B C, oon- 
 ' C ch. 25 /. to- 
 ll. 
 
 rams, whether 
 jidsj 
 
 quare or Rce- 
 fen quantily of 
 
 taining 28 ac. 
 run-s N. 20 ch. 
 line comnicnc- 
 e and distance 
 
 arallel to A D 
 nglcAEFD; 
 ac. = area of 
 of the whole 
 he remaining 
 eeii this area 
 1 ac. Now it 
 rni of a right 
 own or dcter- 
 e E F, which 
 
 th of 
 
 he per- 
 
 lotient will he 
 EF 
 
 or 10 ch = 1 ch., which is the length ol' the pcrj.endicular 
 i" b. As the area contained in the roctan^-le E 13 C F cut 
 of}- by the line E F, exceeds the <iuantitv of land (If, «o ) 
 required to be laid off, it is evident that 'the 1 ac. mn.t be 
 taken tro,n that area; or, that the perpendicular F H must be 
 laul <,rt towards C, or the right. If, however, instea<i of the 
 Muant.ty to be laid oft" being less than the area or quantitv of 
 land contained m the remaining rectan-le E B C F it had 
 exceeded that quantity, the difference would have t'o be t',- 
 kcn from the area contained in the rectangle A D F F • or 
 m otJier words, the perpendicular F S would re.juire to be 
 laid ort towanls the West, or towards the left ht. .,! 
 
 The course is ascertained by Prob. V. Runnin^^ of Lines; 
 thus, as E F or 20 : F S or 1 : : 57.3^ ; / E F *< - ^^ r.o/ 
 y. 
 
 Since^ie triangle^F S is right angled at F, ET^or 
 400 -I- F S= or 1 = S E"-or401 ch., the scjuare root of which 
 isj.0 ch. 3/. = E S. The course of E S therefore is N, 20-' 
 J~ E., and the distance 20 ch. '31. 
 
 PIIOBLEM Iir. 
 
 To divide a Trapezoid into two equal parts by a line rim- 
 nuiir perpc7idicularhj to the base or front. 
 
 EXAMPLE. 
 
 lu the Trapezoid A B C D, {Fig. 96,) containing 12 ac. 
 S r. Up., the parallel sides run due East 12 and 20 c// re- 
 spectively the si,Ie A D runs N. IQo E. 8 ch. 12 /,, and the 
 -!e B C N. 3^^ 34' W. 10 ch. 37 I. It is required to divide 
 the Irape/oul into two equal parts by a line running due 
 •>orth from tlie base or front A B. 
 
 From the angle at D let a perpendicular D S fall upon 
 ho base A B. By Rule I., Right-angled Trironon.etrv, we 
 ;;;;•' that as is l ch. 39 /., and that D S is Hch. in length. 
 Iheu by Prob. II., Mensuration, we find thn nma of the 
 tnangie A D S to be 55000 /. Now the area of the whole 
 i rape.oul is 12 ac. 3 r. ^ p. or 1280000 /. Half the area of 
 
no 
 
 LAND SURVEYING. 
 
 tho wliole Trapezoid is therefore 640000 /. But we have 
 already the ,area of the triangle A D S = 55600, which, sub- 
 tracted from 640000 leaves 584400 /. as the area remaining 
 to be laid off, which from an inspection of the figure, it in 
 evident must be laid off in the shape or figure of a rectangle. 
 In this rectangle we have the area 584400 /., and one of the 
 
 sides, D S, 8 ch. Hence, 
 
 584400 
 8.00 
 
 7 ch. 30 /. Then from 
 
 the point S run off 7 ch. SO I. due East to E,; and from E 
 run E F due North and the the trapezoid is divided by it 
 as wan required. 
 
 PROBLEM IV. 
 
 To divide a prn-altelogram into two equal parts by a line. 
 * riminng from a given point. 
 
 EXAMPLE. 
 
 Let A B C D, (J%. 97,) be a parallelogram. It is re- 
 quired to run a lino from the point F which shall divide the 
 parallelogram into two equal parts. 
 
 Draw the diagonal' D B, and bisect it. Draw a line from 
 the point F through the point of bisection of the diagonal, 
 and continue it till it strikes the opposite side D C iu the 
 point E; the line F E will divide the parallelogram A B C D 
 into two equal parts, as was required. (Euc. i. 34.) 
 
 PROBLEM V. 
 
 To divide a Trapezium.. 
 
 EXAMPLE.. 
 
 In the trapezium A B C D, (Fig. 98,) the two sides B C 
 and A D are parallel. It is required to cut off one third ol" 
 the whole area by a line running from the point A. 
 
 Produce the line B C to E, so that C E may be equal to 
 A D. From J hiy off B G equal one third of B E, and join 
 A G; the triaTigle A G B is the third part of the trapezium 
 A BCD. (Euc vi. 1.) 
 
DIVISION OP LAND. 
 
 /. But we have 
 j600, which, sub- 
 3 area remainiinj 
 the figure, it is 
 re of a rectangle. 
 ., and one of the 
 
 /. Then from 
 
 E,; and tVom E 
 is divided by it 
 
 ur 
 
 PROBLEM VI. 
 
 To divide a Trapezium into two equal parts, h, « line drawn 
 from one of its aiigles. 
 
 EXAMPLE. 
 
 Let A B C D, (Fig-. 99,) be the given trapezium, and A 
 the angle from which the dividing line is to be drawn. Draw 
 the diagonals A C and B D. Bisect D B in E. Throufrh 
 E draw G E F parallel to A C. Join A F and it will di- 
 vide the trapezium A B C D into two equal parts. 
 
 parts by a line 
 
 It is re- 
 shall divide the 
 
 gram 
 
 'raw a line from 
 )f the diagonal, 
 side D C iu the 
 logram A B C D 
 le. i. 34.) 
 
 ; two sides B C 
 oft' one third of 
 oint A. 
 
 nay be equal to 
 
 if IJ E, and join 
 
 the trapeziuiiv 
 
 PROBLEM VIL 
 
 To divide a Triangle into any proposed number of equal 
 parts, by lines running- from a given angle. 
 
 EXAMPLE. 
 
 It is required to divide the triangle ABC, (Fig. iOO,) into 
 three equal parts, by lines running from the ano-le at C 
 
 According to Euc. i. 38, triangles upon equal bases,' and 
 between the same parallels, are equal to each other, there- 
 fore divide the line opposite the angle at C into three equal 
 parts, and from the points of division D, E, draw the lines 
 D C and E C. The areas of the triangles A D C, D E C, and 
 E B C, will be equal to each other. 
 
 PROBLEM Vm. 
 
 To divide a Triangle by lines running parallel to a given 
 
 side. 
 
 EXAMPLES. 
 
 1. In the triangle ABC, (Fig. 101,) the side A B mea- 
 sures 40 cA., the side A C 53 ch., and the side C B 56 c^i 
 It Ks requu-ed to divide the triangle ABC into two equal 
 parts, by a hue running parallel to A B 
 
 According to Euc. vi. 19, similar triangles are to each 
 other m the duphcate ratio of their homologous sides: there- 
 tore as the area of the whole triangle is to the square of its 
 mle, so ,s the urea to be cut oft' to the square of its side" 
 
122 
 
 LAND SURVEYING. 
 
 The square root of this sum will he the side of rho trJanHe 
 to be cut ofl^ thus: the area of the triangle A B C is 106 of 
 niul consequently th(^-ea to be cut off is 53 ac. Then, us 
 AJB C or lOG ac. : A C^- or 3364 ch. : : C D E or 53 ai, : 
 C L)» or 1683 ch.', and V 1682 = 41 = C D. Then, draw 
 I) E from the point D, parallel to A B, and the trian-le is 
 divided into two equal parts, as was required. 
 2. Divide the above triangle into three equal parts, by 
 
 lines runninjr parallel to the base A B, (Fig.. 102.) 
 
 The whole area being 100 ac, one third of it is 35.3333 -f 
 
 nc; therefore as ABC oi^06 ac. : ATC^ ov 3364 ch. : : 
 
 C E U or 35.3333 -\- ac. : C E= or 1121.33 A-, and V J121 
 
 .33 + = 33 ch. 43 /. = C E. 
 Again as 106 : 3364 : : C G II or 70.6666 -f- • C~G- or 
 
 2242.65; then V 2242.65 = 47 ch. 35 /. = C G. 
 
 The:i through the points E and G draw ED and GH 
 
 parallel to A B, and the triangle is divided into three equal 
 
 jiarts, as was required. 
 
 ^ By the same principle any specified amount of area may 
 
 oo laid off in a trapezium by a line running i)arallel to one 
 
 oi Its sides, for by producing some two of its sides until they 
 
 meet, a triungle Mill be formed. 
 
 EXAMPLE. 
 
 In the trapezium A B C D, (Fig. 103,) the side A D runs 
 S. 17- E. Ibch., A B runs E. ^20 ch., and B C runs 8. 20^ 
 ^'V . 1 7 ch. It is required to lay off 6 ac. towards the North 
 by a line running parallel to A B. 
 
 Produce the sides A D and B C until they meet in F 
 i'hcn ISO^ - (Z E A B -]- Z E B A) := 37^ = / A EB. 
 
 Bv Obli^ur Angi>ed Trigonometry. 
 To find the side \ E. 
 
 As Sine Z A E D 37° 
 
 Is to A B 20 
 
 Ho is Sine /ABE 70^ 
 
 To A E 31.23 
 
 9.77046 
 1.30103 
 9.97299 
 
 1.4945G 
 
DIVISION OF I. VND. 
 
 m3 
 
 To find the side B E. 
 
 As Sine Z A E B 37^ 
 
 Is to A B 20 
 
 80 is Sine Z B A E 73° 
 
 9.77046 
 1.J0103 
 9.980G0 
 
 To BE 31.78 1.50217 
 
 Next, by Mensuration, Prob. II. Rule 2, the area of the 
 triangle A B E is found to be 29.86331 ac, from which take 
 the area to be cut off 6 ac, and the remainder is 23.8633 lac. 
 Then as 29.86334 : B E^ or 1009.9684 : : 23.88334 : ET-^ 
 or 807.0507, and V 807.0507 = 23 ch. 40 I. Lay off B F =-- 
 28 ch. 40 I, and from F run F G due West, and A B F (i 
 will contain 6 ac. 
 
 By the same rule we find that the triangle E C D contains 
 7 ac. 2 r. and 35 jo., and that the trapezium G F C D con- 
 tains 16 ac. and 23 p. 
 
 PROBLEM IX. 
 
 To divide land hy Calculation. 
 
 EXAMPLE. 
 
 It is required to divide the farm A B C D E F A, {Fig. 
 104,) into two equal parts by a line running from the point A, 
 
 Calculate first the area of the whole farm. Then draw a 
 line, or suppose a line to be drawn from the given point to 
 some other known station as at D, which will divide the 
 farm in the required proportion, as nearly as you can judge. 
 Then fill up the columns of a Calculation Table with the 
 courses and distances from A round to D. The difference be- 
 tween the sum of the North and of the South columns will 
 show the Difterence of Latitude, and the diflerencc between 
 the sum of the East and of the West columns will show the 
 Departure of D A. From these data find the area of the 
 part cut off A B C D A. Find the difference between this 
 area and the area of the half of the whole faru). That dif- 
 ftn-cncc will be a triangle. If the area of the piece cut off 
 exceed the half area of the whole figure, that triangle lies 
 within the figure cut off, but if it be less than half the area 
 
^-24 
 
 LAND SURVEYING. 
 
 <)(■ the whole figure, the triangle lies on the opposite side of 
 the lin(^ A D. Suppose that tho quantity cut off exceed the 
 half of the whole area. Find the area of the triangle ADC. 
 Then as the area of the triangle A D C is to the square of 
 the side D C so is the area of the triangle A D H to the 
 square of the side D H. Then having the course and dis- 
 iuv ca of A D and D H, by a Traverse Table find the course 
 anl iistance of A H, the true dividing line. Set your com- 
 pass at A, and run the course and distance A H, and the 
 farm is divided as required. 
 
 Suppose the farm to contain 16 ac. 1 r. 21 p., and the field 
 notes of the survey to be as follows: 
 
 Commenced at station A, and run thence S. 80° E. 7 ch. 
 50 Z., thence S. 15° E. 7 ch. 90 /., thence S. 20° W. 10 ch., 
 thence N. 75° W. 8 ch. 45 L, thence N. 8 ch., thence N. 15" 
 E. 8.50 /., to the place of beginning. Let the plan be laid 
 by a scale of 10 ch. to an inch. 
 
DIVISION OP LAND, 
 
 125 
 
 pposite side of 
 off exceed the 
 riangle ADC. 
 I the square of 
 A D H to the 
 jurse and dis- 
 find the course 
 Set your com- 
 A H, and the 
 
 .J and the field 
 
 
 a s« 
 
 
 H < 
 
 
 S U 
 
 
 o a: 
 
 
 CC <J 
 
 
 s -; 
 
 
 H -! 
 
 
 Bh U 
 
 
 O Bj 
 
 
 iz; < 
 
 
 H 
 
 
 
 •r. 
 
 
 
 Q 
 
 
 
 • 
 
 O 
 
 • 
 
 u 
 
 
 < 
 
 s 
 
 
 Q 
 
 
 
 
 
 o 
 
 
 
 < 
 
 &■ 
 
 
 
 — 
 
 b 
 
 o 
 
 » 
 
 HJ 
 
 ■^ 
 
 K 
 
 -3 
 
 25 
 O 
 
 Cfi 
 
 >5 
 
 
 h 
 
 o 
 6 
 
 1?; 
 
 
 en 
 o 
 
 4- -f 
 
 o 
 
 o 
 
 O 
 
 CD 
 
 !^» 
 
 
 o 
 
 GO 
 
 O 
 
 
 50 
 
 G^ 
 
 CO 
 
 •^ 
 
 
 GO 
 
 
 • 
 
 
 
 
 1— « 
 
 h- 
 
 Ci 
 
 
 CD 
 
 
 
 
 CO 
 
 eo 
 
 
 
 
 GO 
 
 GO 
 
 
 
 
 • 
 
 
 
 
 
 CO 
 
 CD 
 
 _,„. 
 
 
 
 T-t 
 
 i-H 
 
 o 
 
 o 
 
 Ci 
 
 o 
 
 o 
 
 o» 
 
 
 • 
 
 
 1^ 
 
 o 
 
 05 
 
 
 »-i 
 
 
 
 
 • 
 
 o 
 
 ^ 
 
 1-^ 
 I— ( 
 
 ira 
 
 & 
 
 
 
 
 G« 
 
 CD 
 
 m 
 
 c« 
 
 »-< 
 
 
 GO •=? 
 
 CO 05 
 
 co'^ 
 
 00 
 
 o 
 
 12; 
 
 o 
 
 Q 
 
 o 
 
 ^ 
 
 rr»o 
 
 C^l 
 
 G« '-' 
 
 (?» 
 
 OS 
 
 OS 
 
 CO 
 
 X> 
 
 >o 
 
 •^ 
 
 G-« 
 
 SI 
 
 Oj 
 
 OS 
 
 1-H 
 
 1— ( 
 
 T-^ 
 
 
 X) 
 
 GO 
 CO 
 
 03 
 UO 
 
 c< 
 
 
 u 
 
 
 Q 
 
 
 •«1 
 
 
 triangle 
 
 E. 
 
 E. 
 
 
 ls^= 
 
 1-4 
 
 {j^ o o 
 O O CO 
 
 i]; <s< rt 
 
 O 
 CO 
 
 CO 
 
 < 
 
 
 
 
 a 
 
 o 
 
 03 
 o 
 
 <1 
 
 
 ^ 
 
 CO 
 
 o 
 
 03 
 
 o 
 
 fcO 
 
 s 
 
 CI 
 
 ci 
 
 3 
 
 o 
 in 
 
 >-i 
 
 u 
 >■ 
 
 ii 
 
 i3 
 
 CO 
 
 Q.S 
 
 a 
 
 — < 
 e 
 
 S3 
 s 
 )i 
 
 S 2 
 
 ^ 2 
 il § ^ 
 
 ' O ti 
 
 *>» M . 
 _, •-< >» 
 
 •• « 2 
 "^ tr. ^ 
 
 CO aJ a> 
 
 — ;-* " 
 
 ' Ph » 
 
 ^ a> 
 « o 
 
 (=> c ca 
 ".23 -w 
 
 '^ "^ TJ 
 
 c « 
 o 
 
 o 
 o 
 
 CO 
 
 ci 
 in 
 
 m 
 
 MM 
 
 3 
 o 
 
 C -J .23 
 
i'-2G 
 
 T.AND StIRVKVING. 
 
 Cnfr.ula/ionor of Conslniction. "><'"ion of 
 
 liy Calcutation wo can ascortain flio true course- -in,! rJi« 
 
 PROBLEM X. 
 
 To divide a Triangular Lot of Land in certain proportions. 
 
 EXAMPLE. 
 
 Being employed to divide a ten acre lot of Marsh between 
 h CO clannants,-A, B and C; A clain.in, 4 acres, and B 
 and C 3 acres each. The lot is triangular. The base A B 
 ( IS- 105,) measuring 20 ,/,., ,„j ^ perpendicular let fall 
 .hereon fr-om the opposite angle measuring 8 ch. 50 /. The 
 lot, therefore, it is evident, >vill not hold out its .neasure- 
 ment. Now snj)posing .;.. division lines to run from the 
 angle opposite to the base, how much land, and what nro^ 
 portion of the base should each claimant receive 
 
 C D X A B = 20.00 X 8.50 = 170.0000 ^ 2 =, g^.oOOG 
 = 8 ac. 2 r. = area of the lot. 
 
 AslO:8^:.4:3ac. lr.24p. = A'sshare. 
 
 :3:2«c. 2n8;,. = B'sorC'sshare. 
 20 ch. : : 3 ac. I r. 24;,. ; 8 ch. = A's share 
 
 As 10 : 8^ : 
 As 8.5 ac. : 
 
 of base. 
 As 8.5 ac. : 
 
 share of base. 
 
 20 ch. 
 
 2 «c. 2 r. 8 ^. : 6 ch. = B's and C's 
 
 PROBLEM XL 
 
 To divide by Calculation a lot of land of a certain amount 
 of value <^nong different claimants, in proportion to the 
 amount of their claims and the estimated value of the land. 
 
 EXAMPLE. 
 
 A Testator leaves by ys\\\ a lot of land containing 500 ac., 
 the value of which he estimates at £1470, to be divided 
 
f»»,u 
 
 DIVISION OP LAND. 
 
 V27 
 
 fiinong h.s servants A B C D E F in the following propor- 
 uom, ucnonling to the value of the hind, viz: to A he bo- 
 
 T'lnn''' V'''"" "^""'^^ •^^^' t«B £20, to C £10, to D 
 ^100, to E £400, and to F £1,000. Now the vah.e of the 
 land most convenient for A, B, and C, is estimated at 7s 
 per acre, vs le the land most convenient for D is worth 10s 
 per aero, for E 15.. per acre, and for F 12.. per acre [t is 
 roqu.re.l to determine the quantity of land which falls ta 
 the share of each. 
 
 nULE. 
 
 Divide the sum bequeathed to each by the value of the 
 
 and per acre which is to Le allotted to him, add the quo- 
 
 ■ont, together, d.vule the whole given quantity of lani by 
 
 .ha sum; th.s quotient will be a common .nultiplier, by 
 
 « ch multiply each particular quotient and the jn-oduct 
 
 h/d viz, ' ''T"'"''r' "'""^^ '^''^ '^ '"^^^ .shareof each 
 ndmdual, or: Say as the sum of all the quotients is to the 
 
 Thus: A 7) 40( 5.714281 
 B 7) 20( 2.85714 
 7) 10( 1.42857 [ 
 
 . 20( 2.85 
 f' 7) 10( 1.421 
 D JO) 100(10. 
 E 15) 400(26. GC666 
 * 12)1000(83.33333 
 
 Quotients. 
 
 Now, 
 Then, 
 
 Sum of Quotients, 129.99998 or ISO 
 500 -. 130 = 3.846153, the common multiplier. 
 5.71428X3.846153= 219778 a/. - \». i 
 2.85714 X 3.846153 = lo 9918 ac ~ R L'"'''' 
 1.42857 X 3.846153 = .5 4941 ac - T' 'h""'^' 
 
 X 3.846153= 38:' 1 ^ : - g;; h'a::,^- 
 
 10. 
 
 26.66666 X 3.846153 = 10^ 5641 ar - F.'"r'"" 
 83 S'n*?'^ V Q QAi-ir.o MZ ^^' J^^^s share* 
 
 ^''^.dJJj., X 3.846153 = 320.5127 ac. = F's share. 
 
 Sum of the whole shares, = 500~o"o20 «c. 
 
 ^in the same princinln if pny '^incrl- -hnv-. \ j . 
 land of different vah.^^. " ^^ ^ '^'""'^^ '''''^'' 
 
 Again if there be different quantities of land as well as 
 <I'ffcrent values, find what each quantity is worth at it, "all" 
 
LAND SURVEYING, 
 
 tion, and adtl their suhis toj^other: then, ns the sum of the 
 quantities is to this sum, so is one acre to its mean vahie. 
 
 LOCATION OF LANDS. 
 
 This section will treat of the method of laying oft' any 
 given quantity of land, in any specified form, from the len^^t 
 possible data. 
 
 As the quantity of land is generally given in acres, roods, 
 and perches, it is necessary to reduce them to square links, 
 which may be performed by the following 
 
 rules: 
 
 1. To the acres annex five cyphers on the right hand, and 
 the whole will be links. 
 
 2. Having annexed five cyphers to the right of the num- 
 ber of roods, divido the sum by 4, the quotient will be the 
 links. 
 
 3. To the right hand of the porches annex four cyphers, 
 and divide by 16, the quotient will be the links. 
 
 4. Add these sums together, and you have the square links 
 contained in the givei/quantity. 
 
 PROBLEM L 
 
 To lay out a given quantity of land, in the form of a Square. 
 
 RULE. 
 
 Extract the square root of the area, and you have the side 
 of the square required. 
 
 EXAMPLE. 
 
 It is required to lay out 200 acres of land in the form of 
 a squ" -1 the East side of a road running N. 10^ E., 
 (FiV lo ) What is the length of the side of tho square? 
 Lay down also a plan from a scale of 25 chains to an inch. 
 
 200 ac. =_. 2000000 I., the square root of which is 4472 + /. 
 2= 44 ch. 72 I. = the side of the square; and since the course 
 of A C is N. lO*^ E„ the course of A B must be vS. 80^ E. 
 
LOCATION OP LAWBS. 
 
 J2f» 
 
 ight hand, and 
 
 have the side 
 
 df'ROBLET^' If. 
 
 To lay out land in the form of jctangle, the length of one 
 
 side being given. 
 
 Divide the area by the given side, and the quotient ^viil 
 express the length of the other side. 
 
 EXAMPLE. 
 
 Being employed to lay out 80 ac. 2 r. 20 p. on the West 
 side of, and fronting on, a road running N. 3° i-. (Fi<r \m\ 
 the lot to measure 12 chains in front? along Jaii rtl; ';'. 
 qmrcd the course and distances, with a plan of the same 
 
 80 ac 2 r. OQp. =8062500 /. -j- 12 cA. or 1200 /. = 6719 / 
 or 67 ch. 19 /. = length of side required. 
 
 The course of A B is S. 87^ E., and distance 67 ch. 19 /., 
 and B C runs N. 3° E. 12 ch. 
 
 PROBLEM III. 
 
 To lay out land in the form of a Rhombus, one of the angles 
 
 being given. 
 
 RTILE. 
 
 Divide the area by the Nat. Sine of the given angle, and 
 the square root of the quotient will be the side required. 
 
 EXAMPLE. 
 
 Being employed to lay out 100«c. of land, in the fonn of 
 
 {ttg 108,) the course of the line from said road to be S. 80^ 
 
 lot laid down by a scale o? 25 chain, to an inch. 
 
 Phe Nat. Sine of 80=, when radius is 1, is .98481, and 
 100«. ,0000000 /. Then 10000000-^ .98481 = lOlSl'" 
 
 PROBLEM IV. 
 
 To lay off land in the form of a Rhomboid, a side and an 
 
 angle being given. 
 
 RULE. 
 
 Divide the area by the product of the given side multi- 
 
180 
 
 LAND SURVEVING, 
 
 plio.l into the Nat. Sine of the given an^Ie, the quotient will 
 be tlu, Dtiicr side. 
 
 EXAMPLE. 
 
 It is rcquirod to lay ofT 75«c. 23 p. in the form of :i rhom- 
 lK)i(l, on the Ncjith .side of, and fr tini,' on, n river, (Fifr. 
 109,) wiiich run.s duo East, the front to measure 15 chains 
 alonj,' said river, and the line from the river to tlie rear to 
 run N. l(P E. What mu.st be the length of the side line.' 
 Draw also a plan of the lot. 
 
 The Nat. Sine, as in the preeeding Example, is .98181 X 
 1500 /., the width of the front = 1477.21500. Then 75 ac. 
 Or. 23p. = 75M375-f- 1177.21500 = 5086 /. = 50 cA. 86/., 
 the length of the .side lino A D. 
 
 I PUODLEM V. 
 
 To lay ojf land in a rectangular form, so that tJic length may 
 be a given multiple of the breadth, 
 
 RULE. 
 
 Divide the area by the given multiple and the .square 
 root of the quotient will be the width, and the width multi- 
 plied by the given multiple will be the length. 
 
 EXAMPLE. 
 
 «cing employed to lay off 78 ac. 2 r. 36 jt;. on the East 
 side of a line running N. 4° E. {Fig. 110,) in the form of 
 a reetangle, who.?o length .shall be three times that of its 
 breadth; required the courses, distances, and a plan of tho 
 lot. 
 
 78 ac. 2 r. 36 p. = 7872500 ?. -^ 3 = 2624166, the .square 
 root of which is 1620* very nearly. The breadth therefore 
 113 cK. 20 /., and the length == 16.20 X 3 = 48.60 or 48 ck 
 ,60 /. 
 
 A D run.s N. 4^ E. 16 ch. 20 /. 
 'D C runs S. 86^ E. 48 ch. 60 I. 
 
 * By assuming 1G20 /. as tho vvicltii instead of 1619.9 -f- the 
 
 true widtii, tho above lot coiil; 
 
 una ; lOut 4 r. more liian tlic iriv 
 
 (Ml 
 
 quantity. Unless where land is exceedingly valuable, ji surveyor 
 would probably take 1C20 /. as the width, and lay off accordingly. 
 
LOCATION OF LANDS. 
 
 191 
 
 ic quotient will 
 
 I'HOHLF.M VI. 
 
 To lay rut l„nd in a rectany:ular form, so that tl . lens-tk 
 may he Ic the hreaiUh in a certain proportion. 
 
 RULE. 
 
 Mujfij.ly tl.o area hy the loss and .livido i),„ ,,rn,I„rt I.y 
 thn grouter i.uml.or of tho proportion, mid tlu. sq.mre ro«'t 
 ot tl.o cp.otiont will 1,0 tho wi.lth: Ami tl.o >xi,ltl. .nultipliod 
 hy tho .qroator nn.l divi.lod l>y ;'.o loss nu„.!,or of the pro- 
 j)ortiou will be tl.o leiigih. 
 
 R^ 'I.E. 
 
 If it H ro(pnred to lay ou m ar. 17 p. in a rortnnjrnlnr 
 form, (Fig. Ill,) so that the l.roa.lth may l.o to tho lonuth 
 as 5 IS to8, uhat must tho ionjrth and tho hroadth l.rn- 
 speot.vcly? Draw u map of the lot hy a scale of .J5 ch. to 
 an inch. 
 
 I09«c.l7;>. = 109l0625/. X5=.54553l25^8=:f,H10Ma 
 the square root of uhioh is iitill = breadth of tho farm' 
 Ihon 2G11 X 8= 20888 -^ 5=.4179. Tho lon^th A |{ 
 t .-^relore is 41 ch. 79 /., and the breadth A D 20 ch. 1 1 /. 
 
 PROBLEM VII. 
 
 To lay out land in the form of a Rectangle, so that the Un'-th 
 may exceed tkc breadth, by a certain given quantity "' 
 
 RULE. 
 
 Add the squai-e of one fourth of the given difloronoo to 
 the area, . .d f,-om tho square root of the sum .subtract half 
 theg.ven differonee for the less side. To the remainder 
 add tho nhole difference for tho greater side. 
 
 EXAMPLE. 
 
 It is required to layout 200 a., "n a rectangular form 
 {tig 112,) so that the length may exceed the breadth by 
 10 ch. 
 
 Y- = 250000 + 2000000 area, = 20250000, the 
 
 1000 
 
 .'•quart: 
 
 ^■oot of >yhich i. 4500 - -^ or half the giyen difference =, 
 
rS'i 
 
 LAND SURVEyiNG. 
 
 4000 /, = tho leas side, and 4000 -f- 1000 the whole difter- 
 ence = 5000 /., the greater side. The side A D therefore 
 must be 40 ch., and the side A B 50 ch. 
 
 PROBLEM VIII. 
 
 To lay out land in the form of a Rhomboid^ so that the 
 length may be a given multiple of the breadth. 
 
 RULE. 
 
 Divide the area by the product of the given multiple and 
 the natural sine of the given angle, and the quotient will he 
 tho breadth; and the breadth multiplied by the given multi- 
 jde '^'ill be ihe length. 
 
 EXAMPLE. 
 
 Required the sides of a Rhomboid containing 10 ac, {Fig. 
 113,) Avhose acute angle is 80°, and whose length is three 
 times greater than the breadth. 
 
 Nat. Sine 80^ to Rad. 1 is .98481 X 3 = 2.95443, and 
 10 ac. = 10.00000 /. -f- 2.95443 = 338474, the .square root 
 of which is 32 /. or 5 ch. 82 I. = width, and 5 ch. 82 /. X 
 3= 17 cA. ij /. = Icuffth. 
 
 PROBLEM IX. 
 
 To lay out land in the form of a Rhomboid, so that the length 
 may be to the breadth in any given proportion. 
 
 RULE. 
 
 Multiply the area by the less number in the given pro- 
 portion, nnd divide the product by the product of the Nat. 
 Sine of the given angle multiplied by the greater number of 
 the proportion: the sipiare root of the quotient will be the 
 •breadth; and the breadth multiplied by the greater and di- 
 vided by the less number in the given proportion gives the 
 length. 
 
 EXAMPLE. 
 
 l3(Mn2f employed to lay out 10 ac. in tho form oS a Rhoni- 
 btiid whose length shall be to its breadth as 2 to 5, and whose 
 
DIVISION OF LAND, 
 
 ISS 
 
 \g 10 ac, (Fig. 
 
 \ of a Rhnm- 
 
 included angle shall be 80°; required the length and breadth. 
 (See the preceding Figure.) 
 
 Nat. Sine 80« is .98481 X 5 = 4.92405, and War =. 
 1000000 /. X ^ - 2000000 ~ 4.92405 = 4061(59, the square 
 root of which is C3S /. or G ch. 33 I., = the hrea.lth. and 
 038 X 5 
 —^-=1595 /. or 15 ch. 95 /., = the length. 
 
 PROBLEM X. 
 
 To lay out land in the form of a Trapezoid* Mho.e cenlral 
 length shall be any given multiple of the xmdlh. 
 
 RULE. 
 
 Divide the area by the given multiple, and the squnre 
 root ot the quotient will be the width; which multiplied by 
 the given multiple will give the central len-th 
 
 EXAMPLE. 
 
 It is desired to lay off 200 ac. on the East side of a roa<l 
 running N. 30^ W., (Fig. lU,) in the form of a trapezoid 
 ^vho.se parallel sides shall run due East, and who.^e central 
 length sh.ll be double its breadth; required the courses and 
 distances, and a plan of the lot. 
 
 VlOff^^oriooOOOOOTr^ = 31G2 /. or 31 ch QP I = 
 the breadth, and 31 ch. 62 /. X 2 = 63 ch. 12 /. = cen'tr-il 
 length. 
 
 Then to find the length of the parallel sides, sinr-e in the 
 triangle A D N right angled at N, the side N D = B C is 
 known to be 31 ch. 62 L, the angle at D is al.o Known to 
 be 30^ and consequently the angle at A must be G0°; ..y 
 right angled Trigonometry, say ap Sine / A : D N : ; 
 Sine Z D : A N, from which we find A N to be 18 ch. 26 A 
 
 Again, since the central length E F = —±5.^ ^^„j ^^ j^^ 
 
 7 ^^.~~ ^ *^'' '^ ^" ^'^" '-^'"t'vl length E F you add half 
 the ddlerence or half A iV, the sum will be the longest side 
 A B; and if from the cetUral leno-tl, R F y..)u .subtract half 
 
 * A Trapezoid is a rectilineal qiu.diilatcral li.r„re. oiilv ivva nf 
 whose opposuo sides are parallel. ° ' ^ ^""^ "* 
 
 M 
 
 "*«T« f>..Jt0:: 
 
tm 
 
 LAND SURVEYINO 
 
 the differenco or half A N, the remainder will be the length 
 of the shortest side DC. 
 
 6324 = 5411 or 54 ch. IW. = D C, the shortest side. 
 Wherefore commencing at A, A B runs East 72 cA. 37 l. 
 
 i^i"? "^^' ^^ '^^•' ^2 ^•' ^ ^ '•""^ W«st 54 ch. Ill 
 and D A runs N. SO'^ W., and the distance is ascertained by' 
 1 ngonometry to be 3(> ch. 51/. 
 
 PROBLEM xr. 
 
 To lay out land in the form of a Trapezium, having one 
 
 of its sides given. 
 
 , RULE. 
 
 Divide the given area into two parts, either equal or un- 
 equal, and then find the perpendicular that will lay out one 
 ot these parts in a right-angled triangle upon the given side 
 as a base. 1 his perpendicular will be a diagonal of the tra^ 
 pczium, and a ba.e upon which theren,aining triangle must 
 be constructed. Then find the perpendicular, which, fall- 
 mg upon the-opposito side of this base, will lay out the other 
 part. 
 
 » ,f^;.5:^---'^''^f^, perpendiculars are found by dividing dou- 
 Ue the area ot the triangle by the given or known shfes 
 
 EXAMPLE., 
 
 sure 8 c?' '^^' """" °^ ''^''''*' '''^'' ^ ^ '^^" '"«^- 
 
 Let the area be supposed to be divided into triangle., one 
 of which contams 5 ac. and the other 3. 
 
 5 ac. or 500000 I. X ^ 
 
 S'ch'.'i^i^QCO ir'~ ^ ^-^^ '• = perpendicular. Then 
 from the poi.u U in tho given side B C, and perpendicular 
 to tt draw hA = laso L, and join A C; the triangle A B C 
 
 C0nt2,Hiri 5 uc. 
 
 Next --"''- °'' ^^^^^^' XJi 
 
 * I5r,0 = '^^O'- == perpendicular of 
 
LOCATION OF LANDS. 
 
 ISS 
 
 remaining triangle. From A, and perpendicular to A'B, 
 draw A D 4S0 /. ; join D B, and tiic triangle A D B will 
 contain 3 ac. 
 
 The trapezium A C B D will also contain 8 ac, and the 
 side B C is 10 ch., as was required. 
 
 Pi.. 
 
 >BLEM XII. 
 
 To lay out land in the form of a Triangle, of which one side 
 and the an^le at one of its erzlremities are given. 
 
 RULE, 
 
 Divide double the area by the product of the given side 
 multiplied into the Nat. Sine of the given angle, and tho 
 quotient will be the other side, including the given angle. 
 
 EXAMPLE. 
 
 From the Northern extrcTiiity of the line N C, (Fig-. 116,) 
 which runs due North 25 ch., it is required to run another 
 line C O, S. 34° 41' E., so that the triangle N O C may 
 contain 80 ac. 
 
 Nat. Sine of 34° 41' is .56C04 X 2500 or N C = 1422, 
 a«d 80 oc. X 2 = leOOOQOO I. -M422 = 112457. or 112 ch. 
 45 /., = side C Q. 
 
 PROBLEM XIII. 
 To lay off any quantity of land in a triangular form, be- 
 tween two lines forming an angle, one of the sides of the 
 triangle being given. 
 
 RULE. 
 
 Divide double the area to be laid off by the length of the 
 given side, and the quotient will be the length of a perpen- 
 dicular let f\ill from the opposite angle upon some part of 
 the base or line given. From the extremity of the given 
 line raise a perpendicular of the ascertained length. From 
 the end of that perpendicular run another line^ parallel to 
 the given line until it intersects the other line. Then a 
 line drawn from the point of intersection to tlie point frpm 
 
136 
 
 I-\ND Sl'UVEYING. 
 
 which the porpendicular Avas raised will complete the tri- 
 angle containing the required number of acres. 
 
 EXAMPLE. 
 
 hi the corner or angle formed by the road A B (Fig. 117,) 
 and A C, I am required to lay off 4 ac. fronting on the road 
 A n 10 cL; rciiiiircd the termination of the lino A C. 
 
 Double of the area = 400000 X 2 = 800000 -f- 1000 /., 
 (the length of A 13) = 800 /. or 8 ch. = length of perpen- 
 dicular. Then from B and perpendicular to the line A B 
 run a lino B S, 8 ch. in length. From the end of this per- 
 pendicular or from the point S run a line S C parallel to 
 B A, until it strikes or intersects the side line A C aforesaid 
 in C. Join C B. The triangle ABC contains 4 ac, as 
 was required. 
 
 N. B.— In' this case the quantity of the included ande 
 does not aitect the accuracy of the rule. It may be an an- 
 gle ol 80^ as C A B, or of 75° as C A B, or of 50^= as C" A B, 
 
 PROBLEM XIV. 
 
 To lay off land in the form of an Isosceles Triangle, the an- 
 gle contained between the equal sides and the area being 
 given. 
 
 RULE. 
 
 Divide doulle the area by the Nat. Sine of the given 
 angle, and the square root of the quotient will be the length 
 of one of the equal sides. 
 
 EXAMPLE. 
 
 It is rrq Mired to lay out 38 ac. 2 r. 18 p. in the form of an 
 Isosceles Triangle A B C, {Fig. 118,) the course of A B is 
 S. 25° W., and the coiuve of A C is S. 26° E.; What must 
 be the length of thf! sides end the course of B C. 
 
 38 ac. 2 r. IS p. = 33(11250/. X 2 = 772250, the double 
 nrea, ~ .77715, the Nat. Sine of / A, (25° + 20° = 51°) 
 = 9936940, the square root of which is 3151 = A C or A B. 
 Then 180^ - / A or 51- = (/ B -|- / O^or 129°. Now 
 since the / B and the / C are equal each of them is 64'^ 
 SC. Whercforo, by Trigonometry: 
 
LOCATION OF LA5DS, 
 
 137 
 
 plete the tri- 
 
 H (Fig. 117,) 
 J on the road 
 A C. 
 
 -f- 1000 /., 
 h of perpcn- 
 he line A B 
 
 1 of this per- 
 ^ parallel to 
 
 C aforesaid 
 ins 4 ac, as 
 
 ;luded angle 
 ly be an an- 
 »°asC"AB, 
 
 ngle, the an- 
 '■ area being 
 
 f the given 
 e the length 
 
 ! form of an 
 le of A B is 
 What must 
 /. 
 
 the double 
 2G° = 51°) 
 \CorAB. 
 29°. Now 
 them is 64'' 
 
 As Sine of / C 64° 30' : B A 3151 : : Sine / A 51^ • 
 B C 2713. 
 
 The courhe of A B is S. 25° W., and the / B is IJI'- 30'; 
 the course of B C is N. 89*-^ 30' E. 
 
 Hence the sides A B and AC are each 31 ch. 51 /., and 
 the side B C runs N. 89'^ SO' E. 27 ch. 13 /. 
 
 PROBLEM XV. 
 
 To locate land in the form of a Circle. 
 
 E,ULE. 
 
 Divide the area by .7854, and the square root of the quo- 
 tient will be the diameter. 
 
 EXAMPLE. 
 
 Required the diameter of a circle containing one acre. 
 {Fig. 119.) 
 
 V 1 oc. = 100000 /. -h 7854 = V 127323 . 65 =r 356 . 8 /. 
 
 or 3 c/^. iJG.S /, 
 
 PROBLEM XVI. 
 
 To lay out land m the form of an Ellipse. 
 
 CASE I. 
 
 When the Transverse Diameter exceeds the Conjugate by a 
 
 given quantity. 
 
 RULE. 
 
 Divide the area by .7854, to the quotient add the square 
 of half the difference between the diameters, from the square? 
 root of the sum subtract one half of the difference between 
 the diameters, and the remainder will give the Conjugate. 
 The difference added to the Conjugate will give the Tnuis- 
 verse. 
 
 EXAMPLE. 
 
 ^ Required the Transverse and Conjugate diameters of an 
 ^"llliprfo containing one acre, whose Transverse diameter 
 shall exceed thu Conjuo-ate by one chain. (Fig. 120.) 
 
 1' 
 
138 
 
 LAffD SURVEYIlfO, 
 
 1 ac, = lOOOOO /. 4- . 7854 = 127323 -j- V — or 2500 « 
 
 2 
 
 129823, the square root of which is SCO — ~ or &0 ^ 
 310 = Conjugate, and 310+ 100 = 410= Transverse. 
 The Transverse diameter therefore is 4 cA. 10 /., and the 
 Conjugate 3 ch. 10 /. 
 
 CASE II. 
 
 When the Transverse mid Conjugate Diameters are to each 
 other in a certain ratio. 
 
 RULE. 
 
 Multiply the area by the greater number in the propor^ 
 tion, and divide that product by the product of the less num- 
 ber multiplied into .7854, and the square root of the quo- 
 tient will bo the Transverse diameter; then multiply the 
 Transverse by the less number in the proportion and di- 
 vide by the greater, and it will give the Conjugate. {See 
 the preceding Figure.) 
 
 EXAMPLE. 
 
 It is required to lay out one acre in the form of an Ellipse 
 whose Transverse diameter shall be to its Conjugate in the 
 ratio of 5 to 3, 
 
 100000 X 
 
 77854 X 3 
 » 276 = the Conjugate* 
 
 4C0 = the Transverse, and l^l^L? 
 
APPENDIX. 
 
 It is presumed that in the preceding treatise nothing oe^ 
 curs requiring a formal demonstration until the etudeoi ar. 
 rives at 
 
 RECTANGULAR TRIGONOMETRY. 
 
 THEOREM. 
 
 The sine versed-sine, tangent, and secant, of an arc 
 which IS the measure of any given angle, is to the «ine, 
 versed-sme, tangent, and secant, of any other arc which is 
 the measure of the same angle, as the radius of the fo-.st arc 
 18 to the radius of the second. 
 
 Let B D (Fiff. 121,) a„,, p H j^^. ^^^^ ^^^^ ^^.^^.^j^ ^^^_ 
 
 sure the same an.^le BAG; and let A B be the radius of 
 the arc B D, and A If tlic radiu.. of the arc F H. Let D C 
 be the Sine, B C the tangent, and A C the secant, of the arc 
 
 l^aL'n/Tu ""V^ "'"^' " ^^ '''' ^''^"^^"^' -'* ^ F. the 
 parallel, accordmg to Euc. vi. 4, tang. B C : tang, il E 
 
 a'd V n''- ^ '^' ^"'^ ^^"" ^ ^ = «'"^ J^^ I ^^ rad. 
 ; r A « „ ' '"'^ '^' '^'-''^- ^^ ^ •' '''' ^^ E : : rad. A B , 
 Tdii. A H. Hence the trutli of the 'J^heorcm is obvious 
 
 Froni this Theorem if is evident, that, as the Trigonome^ 
 trical lables exhibit in numbers, the sines, tangents, bo- 
 eants, &c., of certain angles to a given radius, they exhibit 
 
THEOREMS. 
 
 i'.O 
 
 also the ratio of the sines, tangents, eecantfi, Stc, of the 
 same angles to any radius whatever. 
 
 Upon this principle the solutions of the difierent cases of 
 right-angled plane triangles depend; and from this Theoroin 
 the Rules for Ilcctangular Trigonometry are deduced. 
 
 HI 
 
 OBLIQUE-ANGLED TRIGONOMETRY. 
 
 THEOREM I. 
 
 The sides of a plane triangle are to each other as the sines 
 of the angles opposite to them. 
 Let ABC (Fig. 123,) be a triangle, and C D a perpen- 
 dicular let fall from the vertical angle at C upon the oppo- 
 site side A B; because the A C A D is right-angled at D, 
 C A : C D = R : Sine / A. For the same reason C B : 
 C D = R : Sine /.' B; and inversely, C D : C B = Sine B 
 : R; therefore, by indirect equality, C A : C B = Sine / 
 B : Sine / A. In the same v/ay it may be demonstrated 
 that C A : A B = Sine / B : Sine ^ C. 
 
 THEOREM II. . 
 
 If to half the sum of two quantities be added half their dif- 
 ference, that sum will be the greater quantity; and if from 
 half the sum of two quantities be subtracted half the differ- 
 C71CC, the remainder will be the less quantity. 
 Let the two quantities be represented by A E and E B, 
 ( Fig. \2?,,) A E being the greater, and E B the less. Then 
 it is ovidint that A D is the sum, and C E the diftercnce of 
 the two quantities, and A D or D B their half sum, and 
 C D or D E their half difference. Now if to A D we add 
 D E Ave have A E, the greater quantity; and if from D B 
 we take D ]•: we have E B, the less quantity. 
 
 THEOREM in. 
 
 The sum of the two sides of a triangle is to their difference 
 as the langmt of half the sum of the angles at the base is 
 to the tangent of half the difference. 
 Let A B C {Fig. 121,) be any triangle. From A as a 
 
140 
 
 Sec, of the 
 
 int cases of 
 •s Thporoiii 
 lui'ed. 
 
 'RV. 
 
 s the sines 
 
 > a perpen- 
 I the oppo- 
 jlcd at D, 
 ason C B : 
 i = Sine B 
 = Sine / 
 rnonstrated 
 
 ' iheir dif- 
 nd if from 
 ^ the differ- 
 
 \ and E B, 
 ss. Then 
 ftercncc of 
 
 sum, am! 
 
 D we add 
 from D B 
 
 difference 
 the base in 
 
 m A as a 
 
 141 
 
 APPENniX. 
 
 centre wilh the radius A 15 describe the semicircle D B E 
 Produce C A to D. Join D B and 13 E, and draAv E F pa- 
 rallel to B C. Then because the anj?le D A B is the exte- 
 rior angle of the triangle A B C, it is equal to the 6um of 
 the two interior and opposite angles ABC and A C B. But 
 the angle D E B is equal to half the angle D A B; therefore 
 the angle D E B is equal to half the sum of t'ho an-lcs 
 A B C and A C B. Now since A B is equal to A E, the 
 angle A B E is equal to the angle A E B. But the angle 
 A E B IS equal to the two angles E B C and B C E- where- 
 fore, also, the angle A B E is equal to the sum of the an-les 
 E B C and B C E. To each of these add the angle E B C- 
 then the whole angle A B C is equal to twice the angle 
 E B C together with the angle B C E. Whence it is plain 
 that the angle E B C or the alternate angle B E F is equal 
 to half the difFe.ence of the angles ABC and B C A Now 
 the angle D BE is a right angle. (Euc. iii. SI.) Therefore 
 to the same radius E B, D B will be the tangent of the an- 
 gle D E B and F B will be the tangent of B E F; so that 
 B D : B 1. : : tan. DEB:: tan. B E F : : tan. ^ (A B C 
 + A C B) : tan. ^A B C - A C E). Also, A D and A E 
 are each equal to A B, it is evident that D C is the sum of 
 the sides A B and A C, and that C E is their differonc. 
 But because E F is parallel to B C, D C : C E : : D B • 
 B F; that is, the sum of the two sides of the trianHo ABC 
 IS to their difference, as the tangent of half the sum of tho 
 angles opposite to these sides is to the tangent of half their 
 uiflerence. 
 
 THEOREM IV. 
 
 Ina7iy right lined plane trianp;le the base h to the sum of 
 the other sides as the difference of these sides is to the 
 the difference of the segments of the base, made by a per^ 
 pendieular let fall upon it from the angle opposite to it 
 
 In the ol)lique-anfflcd 
 
 triangle A B D, {Fig. 125,) pro- 
 
 duce B D until B G is equal to A B, the si 
 
 B as a centre, with the distance B G or B H describe 
 
 lortest side. On 
 
 a cir- 
 
If' 
 
 149 
 
 MCN6CRATI0N OP StJPEnFICIEB. 
 
 cle A H G, cutting B D and A D in the points H and F.. 
 Then D G is evidently equal to the sum of the sidca D B 
 and B A, and li D their difference. And since A E is equal 
 to E F, D F is the difference between D E and E A, the 
 segments into which the base is divided by the perpendicu- 
 lar let fall upon it from the opposite angle. Now (by Euc. 
 •iii. SC,) the rectangle contained by D G and D H is equal 
 to the rectangle contained by D A and D F; therefore, A D 
 .: G D : : H D : F D, i. c. the base is to the sum of the 
 other sides as the difference of these sides is to the differ- 
 ence of the segments of the base. 
 
 nOLE IT. 
 
 This is me'-'^ly another application of the same principle. 
 
 ROLE. III. 
 
 Let a = D A, 6 = D B, c r= A B, and a = D E, the great- 
 er segment; then a — a; = E A, the less segment. 
 
 Then, a : b ~\- c : : b — c:2x — a 
 and 2 ax — a^ = 6= — c' 
 Hence, 2 ax — o'-f6' — c' 
 X = a^-\-b'^~ c* 
 
 and 
 Hence the Rule. 
 
 1 -" a 
 
 1 
 
 
 Let i 
 
 
 perpen 
 
 1 
 
 C B E, 
 
 
 the lust 
 
 
 B : :C 
 
 2a 
 
 MENSURATION OF SUPERFICIES. 
 
 Ill 
 
 PROBLEM I. 
 
 nULE I. 
 
 The measuring unit of a superficies may be one inch, one 
 foot, one yard, one chain, or any determinate figure and mag- 
 nitude. Let A B C D {^Fig. 126,) be a rectangle, and M 
 the unit of measure. When M is contained a certain num- 
 l>er of times in A B and B C, it is only necessary to multi- 
 ply together the figures which exjjress the number of times 
 the linear unit M is contained in A B and B C. The pa- 
 rallelogram A B E F is equal to the rectangle ABC D- 
 <Euc. i. 86), Hence the reason of the rule is obvious. 
 
 AX 
 
 '■^. 
 
■A 
 
 APPENDIX. 
 
 143 
 
 H and F. 
 idc8 D B 
 ^ is equal 
 E A, the 
 •pcndicu- 
 (by Euc. 
 [ is equal 
 ore, A D 
 m of the 
 10 differ- 
 
 nULK II. 
 
 Let A B C D {Fig. 12G,) be a parallelogram, and C K, its 
 perpendicular altitude. Then in the right-angled triangle 
 C B E, Had. : Sine B : : C B : C E; then by nmltiplyi"ng 
 the last two terms of this proportion bv B A, as Rad • Sine 
 B : : C B X B A : C E X B A: but A B X C E =. area of 
 the parallelogram, and hence the rule. 
 
 nULE III. 
 
 The demonstration of this rule is ovidentlv comprised in 
 the preceding. 
 
 irinciplc. 
 he great- 
 
 PROBLEM II. 
 nui,K I. 
 
 The trutlrof this rule will be evident by comparing Fue 
 1. 41, with Rule I. Prob. II. ^ ^ 
 
 RULE II. 
 
 This rule follows evidently and directly from Rule, II. 
 
 Prob 
 
 inch, on© 
 
 and mag- 
 
 and M 
 
 ain num- 
 
 tO JTJUlti- 
 
 of times 
 The pa- 
 . B C D. 
 ous. 
 
 PROBLEM IIL 
 
 Let the sides opposite to the angles A, B, and C, (Fift 
 122,) be represented by a, b, and ., respectively. ^' 
 
 Then6= = a= + c=~2cXDB,andDB = "!±£!z:*'. 
 
 2 c 
 
 Hence D C = V a'— -^liZzEi! '_ 
 
 
 V 
 
 d -\- b -\- c 
 
 o 
 
 X V 
 
 a -f- b~\- 
 
 — «X V 
 
 ^ 
 
 a ~\-b -\~e 
 
 Ax V 
 
 a 
 
 -^ c. LetS^thesumofthesidesofiht 
 
MKNSlfa.VTIOM OP SUPRRFICES. 
 
 144 
 
 y^j ^ii?_>li?-*?-= area of the trhuiglc. Thc-eforo tho 
 
 inula expressed in words, is tho rule. 
 
 his for- 
 
 PROIJLEM IV. 
 
 The area of the triangle A D D, = -^-— ^(Fj-. 128,) 
 
 DC DC 
 
 and the area of tho A B D C = -^ - X B F --p^X DK. 
 
 Then A B X D C X -;r^ = the sum, from which fornmla 
 tho rule is sufficiently obvious. 
 
 PROBLEM V. 
 
 In the Pentagon A B C D E, (Fig. 129,) let a perpcn- 
 
 dicular full from the centre II. Then A B X -^= area of 
 A A B R. Now tho area of the polygon is plainly equal to 
 the areas of as many As, each equal to the triangle A B R, 
 as the polygon contain.i sides. Hence the reason of the 
 Rule is manifest. 
 
 PROBLEMS VI & VH. 
 These two problems are simple applications of the rule 
 for determining the area of triangles. 
 
 The area A i — 
 m tXn s 
 
 PROBLEM VIII. 
 A DXmt 
 
 \-Ani, (Fig. 130;) the area 
 
 A D-f 
 A D - 
 
 Hence 
 
 Thes 
 land St 
 vestiga 
 
 This 
 ascertai 
 
 ms = 
 
 2 
 
 \- m n> &c. The area of the whole figure 
 
 If a SI 
 
 Northin; 
 
 sum of t 
 
 Let a I 
 
 first Stat 
 
 line. T 
 
 fi c, and 
 
 TJipn 
 
 ■exactly f 
 
 sum of tl 
 
 Also, tl 
 
 n g -f k j 
 
 Ite added 
 
 to the lut 
 
 mm of tl: 
 
 In any 
 sides [yrv^j^ 
 sum of tl] 
 they stand 
 
APPENDIX. 
 
 ^Jl± i!*J_fni -r ° >• -h £ g -;- B C 
 A D -;- B C 
 
 ]45 
 
 6 X A B. Now , 
 
 .i is an arithmetical mean between the two ends. 
 
 Hence the Rule. 
 
 PROBLEMS IX-XllI. 
 These Problems are of so little importunco in practical 
 land Hurvey.ng that I think it unnecessary to eivi the in- 
 vestJL'ations. •' ^ '^ '" 
 
 PROBLEM XIV. 
 
 This Problem is merely the application of the rule for 
 ascertainmg the area of u triangle. 
 
 PROBLEM XV. 
 
 THKOREM I. 
 
 If a survey has been accurately made the sum of tho 
 ^orthmgs u.ll e.,ual the sum of the Southings, and the 
 sum 01 the Eastings will equal the sun, of the wLstin^s 
 
 Let a b c de, (Fig. m,) represent a f .Id. Let a be tho 
 ^t stat.or, 6 the second, &c., and let N S be a meridian 
 hue. 1 hen a n b h, and c p, will be n.^ridians, and n i, 
 h ., and p d, Will be departure, or East and We.t lines 
 
 Ihon It IS evident that the Northings (//J- ,. ,vill* be 
 
 •exactly equal to the SotUhings, « n -^ /. A '- c ;r T th. 
 
 sum of the Northings is equa- .o the sum of 'the'souU;;,^;:; 
 
 Also the Departures, c h -' a o- = 6 w J- » ,/ • / ,. /„, 
 
 bo added to the first part of the preceding equation, and b n 
 to the latter, then c h -\- ag = n h -L pd^-fe i e tho 
 .^um of the Eastings is equal to the sum of ihe Westlnfeo. 
 
 THKOREM II. 
 
 1" any trapezium, as A B C D, {Fig. 1S,2,) having two 
 ^i- perpendicular to a given side, the product of half the 
 
 side- 
 
 sum of the parallel sides multii 
 they stand will be th 
 
 e area of the I'ljure. 
 
 'I"'^ 'V^ the ba?c on which 
 
 n 
 
146 
 
 MENSC7RATI0N OP SUPERFICIES, 
 
 1 
 
 ii^ 
 
 Let Ds and m n be drawn parallel to A 13 , and R F pa- 
 rallel to B C or A D; Cs is the diiTerence between the sides 
 A D and B C, and C n = 7is = w D z::^ their half difference, 
 and the perpendicular E F will l)iscct Ds and in n. Now 
 a» the angles D F m and n F C are equul, Euc. 1. 2'2, and 
 the side F n :^ the side F in, and 7iC = mD, the ii iungles 
 are equal and similar. Now if A B be multiplied by 
 
 -= E F, the product will be the area of the 
 
 I 
 
 Trapezoid, 
 
 THEOREM HI. 
 
 In rectangular surveying (m which the work is always on 
 one side of the first Meridian,) if the departure of any sta- 
 tionary distance is East, and the work lios on the East side 
 of the North imd South line, the farther that that course is 
 run the greater will bo the departure or the distance from 
 the f'rst meridian. But the farther that a stationary dis- 
 tance having West departure extendi, the nearer will the 
 first meridian be a})proaclied. 
 
 Draw N S (^'Vg-. 133,) for a first meridian. Let a, b, c,. 
 and d, be stations on the East side of N S, Let also the 
 perpendiculars I a, h i, s; c, and e d, be raised upon the N. 
 and S. line. Draw a r, b t, and c p, parallel to N S. Now 
 the departin-e of the first stationary line rt 6, is 6 r, and lies 
 to the West si<le of its meridian a r. As the point h in the 
 line a b, is nearer the line N S than the point a, for a I — 
 i b — b i-, therefore b i is less than a I, x\wA consequently the 
 point b is nearer the first nitn-idian N S, thati the jioiiit a \.<. 
 
 In the next statiotui^y (listancc // r, the dcj);)rture lies to 
 the Eastward of its vueridian b I; but the ^ oiut c, or any 
 point in this distance line b c, is more remote t'roni the fir^t 
 meridian N S, than the point h is, for h i -\- c t = c g. 
 
 THEORRAI IV. 
 
 If the meridian distance in the middle of every stationary 
 line be mulr,i[)lied into the particular Northings or South- 
 ings of that line, .uul the dilfcrence between the sum of the 
 
 Norlh and llic su.-n of the Sout'i products be taken, that 
 daTerencc v.-ill ' i the area of the survey. 
 
 Let 1 
 
 whose a 
 
 plan for 
 
 from the 
 
 let meri( 
 
 F in, an( 
 
 Avill be t 
 
 The r 
 
 lines whi 
 
 Now I 
 
 ^fXd, 
 
 and the s 
 
 or the wi 
 
 the midd 
 
 ward, ar( 
 
 By Th. 
 
 an .i y h\ 
 
 Z AE^ 
 
 Z A E D 
 
 the area 5 
 
 the remai 
 
 or the dil 
 
 *he sum o 
 
 Hence thi 
 
 The pr: 
 Land are 1 
 a formal d 
 
 In pcrus 
 ferred to tl 
 work, whi( 
 
 He will t 
 
APPENDIX. 
 
 147 
 
 Lot A F B C D E (Fig. ,84,) be the plan of a «,r,ey 
 
 whose area ,s require,!. Dr.avv N S ,,„ the west .ide of ,he 
 
 plan tor a fir.st meridian. Let perpendiculars fall upon N S 
 
 rom the begmnins and middle of every stationary I „e and 
 
 ct ,ner,d.a„s be drawn through each station. The„ I" 
 
 '?',"";'";• ™^;'. ■>" ""^ Northings; and C I, Dp, and Ex,' 
 will be the Southmgs. - ' 
 
 The meridian distances to •'.e middle of the stationary 
 « '''T^'r'^' "" Northward, are oa,dn,andgk 
 Now by Theor. II, Z H X » o = area Z A F H l-L 
 
 H/X,in = areaHFB/I,;„nd/«Xff*=area/BC6/ 
 and the sum of the areas will bo the areaof Z A FBCJZ 
 or the whole North area. Again the meridian distance, ..l 
 
 warT ;"??" '''"T' """ '''•''' ■=— -» «»«". 
 wai(i, are (x R, e </, and u v. 
 
 By Theor. II, A j X G R = area of the trapezoid ;, D C 6v 
 Ta l\l ' tT "'•"' "f f J' *. and A Z X «» = Jl 
 
 Z A F DC A 7 T , '^'^ ""•"'^ "'" ""= '"0 urea of 
 /' A J!, U C * Z, or the whole of the South area Then if 
 
 the area Z A F b C 67 be taken from the area Z A E D cTz 
 
 tlie remainder will be the area of th , figure \ F B C D E A 
 
 rhelurn'o^H'^ "'l""^" "■" -^^ "^ "-^ N"'"' »«"» ««d 
 Hence the foundation of the rule is cvidenu 
 
 DIVISION OF LAND. 
 
 a form,. . ■"■" '" """'"" '■'■'"" '^"'^'''''^ Elements, that 
 
 a formal demonstratton of them is considered unnecessary 
 
 LOCATION. 
 
 fer'r"d''r^°V'"'' """ ■"■ "■" ^P'""'"'''' ""= Student is re- 
 
 -, I ... "^ '-"f"'ncu ill luui part 01 the nrecrdin<r 
 
 •vork, wh,eh treats of the Location of Lands. ^ 
 
 He wdl take ,K,tiee, likewise, that in the following inve.- 
 
148 
 
 LOCATION. 
 
 rigiitions the letter a, is employed to represent the area or 
 contents of a field, farm, &c. 
 
 PROBLEMS I & II. 
 
 The area of a rectangle is equal to the product of one 
 side X by the other. It is evident then that the area -f- by 
 one of the sides will give the other side. The area of a 
 square is the square of one of its sides. The square root 
 of the area therefore, must be equal to the length of one of 
 its sides. For a square, the formula stands thus: V « = 
 side of the square. For a rectangle it is thus expressed: 
 
 a 
 
 -f= the side required, in which expression b represents 
 
 the given side. 
 
 PROBLEM III. 
 Let S = nat. sine of the given angle, and jc = A B or B D. 
 
 a 
 
 a 
 
 Then S cb^ == a, and x~ = g ; therefore a: = V g"' which 
 affords the Rule. 
 
 PROBLEM IV. 
 
 Let S = nat. sine of the given angle, b — the side given, 
 
 and X = the side required. Then SX6Xa3orS6x=:o; 
 
 a 
 therefore x= r^ , which is the rule. 
 
 PROBLEM V. 
 
 Let m = the given multiple, and x = the breadth. Then 
 m K = the length, and m x X ^ or m .x' = a; hence x' = 
 
 — • Therefore, x = V — ' which gives the rule. 
 in w 
 
 = ICDj 
 
 5 a am 
 Rule. 
 
 Let 
 
 length 
 Xx = 
 
 6x4-^ 
 
 x= V 
 Rule. 
 
 Let X 
 given m 
 
 XS=a 
 
 Let S: 
 
 2 : 5 
 
 breadth; i 
 
 and x2=s 
 ilule. 
 
 PROBLEM VI 
 
 Let X = width, then as 5 : 8 
 
 8 X . S X 
 
 X :— =— 3 wherefore ~v- 
 
 Lot T = 
 *or2x' = 
 
APPEWDIX. 
 
 149 
 
 = length. Then 
 
 5 a and «2 = ^ '^ 
 Rule. 
 
 8 X 
 
 8 «« 
 
 5 Xx = a,or-^:=^a;hence 8x^^ 
 
 r- Therefore,a;=v~' 
 
 8~' ^vhich yields the 
 
 PROBLEM VII. 
 
 length rnlb";;;".!-! ^^^^^^-^nce between the 
 
 i= 1,2^ ""• Complete the square x'^ + 
 
 ^*+T=«+4- Then,a;-f-4 = JTTT^ „. , 
 
 - ^ ' ' 2 "^ « + — . Therefore 
 
 /.2 f - 4 
 
 4 
 Rule. 
 
 A — TT or a; = -— 1^ 
 
 *— -2-— V a-j--^, ^vhich is the 
 
 PROBLEM VIII 
 
 Let X == breadth, S= „at. sbe of dven / on i 
 given multiple. Then «i r ,u , *= . ^' ^^d « := the 
 I nen w oj = the length. Then x^mx 
 
 XS=a,andwcc2S=a,anda:= = -:^. tk. r 
 
 a m S l^nereforc a; =^ 
 
 "^ ~mH' '^^^'c^ is the Rule. 
 
 o; 
 
 PROBLEM IX. 
 Let S = nat. sine of / B A n «« i 
 
 5x '^ "^^> and X = width; then as 
 
 ^ •' Y~ C B, and S 0. = D E, the perpendicular 
 breadth; hence ^ + Sx=anr^ 
 
 
 and x'= -- therefore a; = v ~ - A n 
 n , ^^ — Vgg— AD, vv 
 
 hich affords t>ie 
 
 8 X 
 
 5 
 
 PROBLEM X. 
 
 Lot * — i»;^..i, iK -. 
 
 ..... then 2 ^ = central long,!,. Then 2 :c X 
 
 *"-"=«''»''»=vf which is the R„,„. 
 
!50 
 
 LOCATIOK. 
 
 PROBLEM XI. 
 
 The reason of this rule appears from the rule given at 
 Prob. II, because a triangle is just half a rectangle of the 
 same base and altitude. 
 
 PROBLEM XIL 
 
 Let b = given side, S = the sine of the given / , and « =» 
 
 bxS 
 the side required; then, — tt"— ^> nence we have fis x = aa 
 
 2« 
 
 and X =7—' from which the reason of the rule is obvious. 
 
 * PROBLEM XIIL 
 
 This Problem is merely a particular application of the 
 rule given at Prob. XI. 
 
 PROBLEM XIV. 
 
 Let S = the nat. sine of the given / , and x = one of tho 
 
 equal sides; then s x^ = 2 a, and x^ = — and x = V y» 
 which is the Rule. 
 
 PROBLEM XV. 
 
 According to Euc. xii. 2, circles are to each other as the 
 
 souares of their diameters. Now the area of a circle whose 
 
 diameter is 1, according to the calculation of the celebrated 
 
 Van Ceulen, is .78c>3i)8 -\-, but for practical purposes 
 
 . 7854 is sufliciently near the truth. When therefore x = 
 
 diameter, x' X -7854 = a. Thenx" = 
 
 a 
 
 .7854 
 
 > and X = 
 
 V -78(^4 ' which gives the Rule. 
 
 Ui 
 
 PROBLEM XVI. 
 
 Let 6 = .7854, and x = the Conjugate diameter, then 
 
APPENDIX. 151 
 
 X -f- 100 /. = the Transverse diameter; then {x -\- 100) X 
 
 X X 6 = a, antl 6 a;^ -f- 100 6 i = a: and x* + 100 x = ?- 
 
 b 
 
 Complete the Square, and x' -|- 100 z + 2500 = ^^ -j- 2500. 
 
 Thenx-f-50 =V ^-1-2500 andx = v|-f 2500- 50,which 
 affords the Rule. 
 
 PROBLEM XVII. 
 
 Let X = the Transverse diameter, and 6 = , 785'!, Then 
 
 no 3x 5 b x^ 
 
 as & : S : : I : --= the Conjugate; hence -^-p — = o, and 
 
 5a 
 
 5a 
 
 3 6 x' = 5 a and x'= "f^- Therefore x = V ||, which for- 
 mula expressed in words is the Rule, 
 
FOR T 
 
 In the 
 B D = S 
 AP=i. 
 
 length of 
 and B to 
 that the t 
 
 Make t 
 tre Coft 
 and A B 
 A B F 
 gles is cq 
 must conl 
 n^ent A F 
 •'cnti-e of 
 (Euc. iii. 
 angle A 
 ABC nil 
 
A COLLECTION OF 
 
 PROMISCUOUS PROBLEMS, 
 
 FOR THE FARTHER ILLUSTRATION OF THE 
 
 PRECEDING RULES. 
 
 PROBLEM I. 
 In the triangle A B D, (Fig. 135,) arc given A B = 5, 
 B D =: S, and A D = 4, and the line P D in position, viz: 
 A P _ 1. Required the construction of the figure, and the 
 length of the lines, A 0, and B, drawn from the angles A 
 and B to a vvnidmill at O, on such a point in the line P D 
 that the angle A O B shall contain 120°. 
 
 CONSTRUCTION. 
 
 Make the base, A B, the chord of 120^ and find the cen- 
 tre C ot the corresponding circle by making the angles BAG 
 and A B C each S0=. Because in every quadrilateral, a, 
 A O B F , inscribed in a circle, the; sum of the opposite an- 
 gles IS equal to 180-, (Euc. iii. 22;) and as the angle A O B 
 must contain 120° by the terms of the Problem, its supple- 
 n^ent A F B must contain 60^. And since the angle at the 
 ocmve of a circle is double the angle at the circumference, 
 (Euc. ni. 20,) the / A C B must be 120^ And as the tri- 
 angle A B C is an isosceles, each of the angles CAB and 
 ABC must contain 30^ The point in which the ciroumfe- 
 
154 
 
 APPENniX, 
 
 rcnce of the circle cuts th«; line V D, given in position, will 
 be the situation of the windmill, and the angle A O IJ will 
 contain 120°, as was required. 
 
 Proportion hy which to find the segments A H and H B. 
 
 As A B (5) : A B + D B (7) : : A D — D B (!) : A H 
 — H B(1.4). Now A B = 5, and5+ 1 .4 = 6.4, the half 
 of which is S.2 = A H; and 5 — 1 .4 = 3.6, the half of 
 which is 1.8 = H B. 
 
 To find the perpendicular D H. 
 
 As the triangle A D B is right-angled at D, the perpen- 
 dicular D H is a mean proportional between the segmenta 
 
 A H and H B; therefore V 3.2 X 1.8 =/v/5.76 = 2.4 = 
 D H, and AH — PAz:=:2.2 = PH. 
 
 Proportion to find the / D P H. 
 
 As the side P H = 2 . 2 . 34242 
 
 Is to HD = 2. 4 0.38021 
 
 So is r ad. 90° 10.00000 
 
 To the tan. Z D P H = 47=^ 29' 10.03779 
 Hence 180° — 4^ 29' = 132° 31' = / D P A. 
 
 To find C B. 
 
 
 As the sine / B C A 120° 
 
 9.93753 
 
 Is to A B = 5 
 
 0.69897 
 
 So is sine / C A B 30° 
 
 9.69897 
 
 To the side C B = 2 . 88 . 46041 
 
 To find (Ae Z 5 B C P and C P B. 
 
 As B P + B C== 6.88 0.83759 
 
 IstoBP — BC = 1.12 
 
 So is tan. i sum = 75° 
 
 0.04922 
 10.57195 
 
 To tan. h diif. ^ 30° 17' 9 . 78358 
 
 Then 75° -\- 31° 17' = 106^ 17' = Z B C P. 
 And 75^^ — 31° 17' = 43° 43' == Z C P B. 
 
PROMISCUOUS PKODLEMS. 
 
 To find C p. 
 
 As the sine / B C P = 10(J° 17' fl.OS'iiJiJ 
 Is to side B P = 4 O.OOiOtJ 
 
 So is sine ^ C B P = 30^ 9 69897 
 
 152^ 
 
 To the side C P = 208 
 
 0.81881 
 
 Tojind ZsP O C andP C O, 
 
 As side C O =2.88 
 
 Is to sine / C P O 91" 12' 
 
 So is C P = 2 . 08 
 
 O.lfiOIl 
 9.99991 
 0.81881 
 
 To sine / P O C 4G'' 1 1' 9.85831 
 
 Then 130° — - 46° 11' — 91° 12' = 42"" .S'7' = / P C O.. 
 
 To find the dist. P O. 
 
 As sine / C P O 91° 12' 9.99991 
 
 Is to the side C O = 2.88 0.4G041 
 
 So is sine / P C O 42" 37' 9.880H5 
 
 To the side P O = 1.95 0.29115 
 
 To find the Z s P O H and P B O. 
 
 As PB-fP = 5.95 077452 
 
 Isto P B— P O =2.05 0.31175 
 
 So is tan. ^ sum ^ s 6G° 15' 10.35654 
 
 To tun. -i difr. 38^4' 9.89;}77 
 
 Then 66° 15' -j- 38= 4' = 104° 9' = / P Q «. 
 And (j6'-' 15' -- 33^ 4' = 27'Mr = / P B O. 
 
 To find the side O B, 
 
 As sine / P O B 104° IG' 9.986SO 
 
 Is to side P B = 4 0.60206 
 
 J?o is sine / B P O 47" 29' 9.86752 
 
 To side O B = 3,04 0.48828 
 
 ii 
 
 !l 
 
156 APPENDIX, 
 
 To find the side A 0. 
 
 As sine Z A O IJ li20' 
 
 h to side A B = 5 
 
 So is sine Z P B O 27^1' 
 
 9,93753 
 0.60897 
 9.65976 
 
 To side A O = 2.63 0.4'il'iO 
 
 yote.—'Vh'is Problem might have been solved more ex- 
 peditiously by Algebra. 
 
 ii i 
 
 PROBLEM II. 
 
 Near the middle of a certain farm or tract of land A B (', 
 (Fig-. 136.) whose form is that of an equilateral triangle, 
 and whoso side A C runs due North, is a spring of water at 
 0, so situated that the perpendiculars O T, O D, and S. 
 let fall from it upon the three sides of the triangle, are re- 
 spectively 18. '20, and 24 chains, viz: T r=: 18 c/i., O D :=r 
 20 ch., and OS — 24 eh. The owner of the farm has be- 
 queathed it to his three daughters, O, P, aiul Q; and to is 
 bequeathed the triangle A O C, to P the triangle A O B, 
 and to (i. the triangle B O C. Required the area of the 
 whole farm, the area of the portion bequeathed to each of 
 the daughters respectively, and the courses and distances of 
 the division lines. 
 
 It can be proved that the perpendicular C R is exactly 
 equal to the sum of the perpendiculars O D, O T, and O S, 
 in whatever part of the triangle the point O is situated. 
 The Problem is then solved by Trigonometry and Mensura- 
 tion of Superficies, as follows : 
 
 To find the side A C, (md consequently the other sides. 
 
 As the triangle A B C is equilateral, each of its Z s — 
 (iO'-; therefore • 
 
 As the .sine of the angle at A 60° 9.93753 
 
 U to C R = T + O D + O S = G2 1 .79239 
 Soisrad. 90= 30.00000 
 
 To the Bide A C r- 71.59 
 
 1.85486 
 
PROMISCUOUS PROBLEMS. 
 
 <57 
 
 Then 71.59 c/t. (A B) X <i2 c^. (C R) = 1437 58 cA. ^ 
 2 = 2iJ18 . 79 ch. ^r. 221 ac. 3 r. 20 p. = the arou of the tri- 
 angle A B C. 
 
 To find the share of each Daui^hter. 
 7l.59c/t. (AC) X24c/t. (Q S) 
 
 25 jo. = O's portion. 
 
 = 859.08 cA. = 85 ac. 3 r. 
 
 Ajraln 
 
 71-59 c A. (A B) X 20 cA. (O D) 
 
 71 ac. 2 r, 14 p. = P'.s portion. 
 
 ^ //l.59cA. (BC)X18cA. (OS) 
 
 And — ^^ 
 
 --= 715.00 rh. 
 
 464.31 ch..= 46 ac. 
 
 Ir. 28 j9. = Q's portion. 
 
 To find the Courses and Distances of the Division Lines. 
 
 Join S D, D T, and T S; then in the A D O S vvc have 
 given S O, O D, and / S O D, to find the side S D and 
 the Z S D O; then the / A D O = 90"^ — / S D O == 
 /ADS. Having ascertained t.hisside and these angles, then 
 in the triangle A S D, all the /.s and the side 8 D will bo giv- 
 en to find A D and A S. Tlien D B and S C jnay be found 
 by Subtra(!tion, and B O and O C by the S(iuare Root. 
 
 Ne.xt, the /SOD -- 120^ subtracted from 180^ = 1)0°, 
 the half of which i.s SO'' — . half the sum of the opposite 
 andes. 
 
 Also, D O -•- O S = 20 :- 24 = 44 = 
 
 sum of the sides. 
 
 And O S — D O = 2 4 — 20 - 4 — difference of sidea. 
 To find the ZsSD O and D S 0. 
 
 As D o :- o s 
 
 44 
 
 Is to O S — D O = 4 
 
 So is i sum of /s 30~^ 
 
 To tan. i diflr. 3° 
 
 To find the side S D. 
 
 As sine / D S O 27^ 
 Is to zA^ L) O — 20 
 So is sine /SOD 120^ 
 
 1 . G4345 
 0.t)020G 
 9.76144 
 
 8 . 72005 
 
 9.65705 
 1.30103 
 9.93753 
 
 To the side S D =38.15 
 
 1.58151 
 
t&s 
 
 APPENDIX, 
 
 SS° 
 
 W: 
 
 
 Then 30« — 3° = 27^ « / D S 0, and 30^ -f S^ 
 ^ S D O, and 90^^ — 27' (Z D S O) =* CS"' « ^ A S D, 
 and 8C^ — 85° = 57« = A D S. 
 
 2'o/m(i A D. 
 
 As flinc Z D A S CO"* 
 Is to side D S = S8.15 
 So is sino Z A S D CS° 
 
 0.9S753 
 1.5S151 
 
 9.94G88 
 
 Tosido A D = 39,S9 
 
 1.59376- 
 
 To find A S. 
 
 
 As sino Z D A S 60° 
 U *oside D S=:38.1i» 
 So i.s sine / A D S 57° 
 
 9.93753 
 1.58151 
 9.92S59 
 
 To Bide A S = SG . 95 1 . 5G757 
 
 ' To find the /, D A O, 
 
 As side A D = 39.29 
 Is to side D O = 20 
 So is rad. CO*^ 
 
 1.59S7G' 
 
 1.30103 
 
 10.00000 
 
 To the tan. Z D A O '^7° 9 . V0727 
 
 Now the Z C A B = CO^ and Z D A O = 27°; their dif- 
 ference is 33?, and the course of A is N, 33° E. 
 
 Tofmd the Z ^^ O. 
 
 AsthcsMlc D B = 32.30 
 Is to the side D O = 20 
 So is rad. 90° 
 
 1 . 50920 
 
 1.30103 
 
 10.00000 
 
 To the tan. Z B B 31° 45' 9.79183 
 Since Z C A B = 60° and Z D B O = 31° 43', their sum 
 is 91° 43' ~ 90° = 1° 43' and 90^ — 1° 43' — 83° 17', Ilenco 
 the course of the line B O is S. 83° 17' E. 
 
 To find the length of A 0. 
 V(AD'-t-DO') = V1243.7041«44.08 = AO. The 
 length cf A O therefore is 44 ch. 8 /. 
 
 To find the length o/B 0. 
 
 V(DE» + DO') = v' 1443.2900=»S7,0D=*DO. Tbo 
 length of B O thcref jrc iy S7 ch. 9Q L 
 
 
 V(S 
 fore the 
 42 ch. 1 
 
 The I 
 lake v/h 
 area of 
 mencing 
 lake, I r 
 king the 
 course o 
 fore, tha 
 the disla 
 offsets a I 
 
 I 
 
 jNo. 
 
 o: 
 
 Tho 
 
 arc£ 
 
S3° «= 
 S D. 
 
 pnoMisctrou' problems. |^ 
 
 To find tk» /, C S. 
 
 As dirt side C S = S4 . C'l 1 5S058 
 
 Is to the side S O =: ^4 r.asbci 
 
 ^« '^ '•'^''- J <-" 10.00000 
 
 To tan. S C O 34° 4S' 9.840CS 
 
 To find the Unstk o/C 0. ' 
 
 '^/(SC«-j-SO')=Vl77G.029fi = 42.14=cCO. There- 
 fore the course of C O is S. S4° 4S' E„ and the distance i. 
 42 cA. 1 4 /. 
 
 eirdif- 
 
 eirsum 
 Ilcnco 
 
 K The 
 
 L Tb« 
 
 PROBLEM III. 
 
 The Figure (1S7) is intende.l to represent that part of a 
 lake which 18 inchidcd within the boundaries of a farm, the 
 area of which part I am employed to determine. Com- 
 jnencng at that point C at which tl: /ear line intersects the 
 ake, I run S. 20c/,., thence Vi. 15c/i., thence N. i5c/l.,stri- 
 kmg the rear line at D. Setting my compass at D, I find the 
 course of 1) C, the rear line, to be E. I am satisfied there- 
 tore that the surv- r has been accuratoly made, and that 
 the distance between C and D is 15 ch. I then measure iii« 
 offsets and enter them into my field book as follows- 
 
 ^l^^l^I^J'd^i^^di^fRP-ri^oucLEnvTirs:] 
 
 800/. 
 
 500 /. 
 
 SCO 
 
 200 
 
 500 
 
 SOO 
 
 (CO 
 
 200 
 
 4CO00O 
 
 COQQO 
 
 1500CO 
 
 120000 
 
 2)730000 
 S65000 
 
 5£l^!^/llL*li°i£LiS^JM0F Far. 81DESI BliiTA^ii: 
 
 J 
 4 
 7 
 8 
 
 ^150 /. 
 COO 
 225 
 223 
 
 150/. 
 200 
 300 
 400 
 
 The area «f the whole Rectangle A B C D is 
 
 67500 
 
 120000 
 
 67500 
 
 £0000j 
 
 S4C000 
 
 li 
 
]6<) 
 
 APPENi»;X. 
 
 B C X D C = 1500 / X aOOO I. = 30.00000/, 
 
 \nd the area of all the offsets is 3»35000-f- 345000= 7. 10000 
 
 Aroa o<'tho Lake 2iJ at. 3 r. 'Up. 
 
 22.9000 
 4 
 
 3 . 60000 
 40 
 
 24.00000 
 
 m 
 
 m 
 
 PROBLEM IV. 
 
 The multilincal Plot {Fig. 13S,) represents the bounda- 
 ries of an ungranied or reserved lot of land, of which the 
 bases and perpendiculars are given in the following field 
 book. Required the contents. It is required also to lay oflT 
 200 acres frotn the point B, towards A„ 
 
 No. OF A.i 
 
 !\,SE.| 
 
 Perp. 
 
 Doubi-eAue.\s 
 
 1 
 
 1800 
 
 750 
 
 1350000 
 
 2 
 
 1800 
 
 850 
 
 1 530000 
 
 3 
 
 1270 
 
 350 
 
 444500 
 
 4 
 
 2100 
 
 GOO 
 
 1260000 
 
 5 
 
 1800 
 
 350 
 
 030000 
 
 
 
 1400 
 
 250 
 
 350000 
 
 7 
 
 3100 
 
 540 
 
 1674000 
 
 8 
 
 2500 
 
 1100 
 
 2750000 
 
 9 
 
 2S50 
 
 1280 
 
 3648000 
 
 10 
 
 2350 
 
 340 
 
 069000 
 
 11 
 
 3050 
 
 700 
 
 213.5000 
 
 12 
 
 ^1740 
 
 1710 
 
 8247600 
 
 13 
 
 4200 
 
 2860 
 
 12012000 
 
 14 
 
 2200 
 
 1200 
 
 2640000 
 
 15 
 
 221.0 
 
 1(,00 
 
 3616000 
 
 16 
 
 3100 
 
 15!0 
 
 5134000 
 
 17 
 
 .3 /on 
 
 HOO 
 
 4440000 
 
 IS 
 
 lOSOO 
 
 4200 
 
 45360000 
 
 19 
 
 108U0 
 
 4400 
 
 47520000 
 
 
 2)145710100 
 
 7285505a 
 
P20MISCUOUS PROBLEMS. 
 
 151 
 
 1.00000/. 
 .10000 
 
 [.9000 
 4 
 
 . 60000 
 40 
 
 4.00000 
 
 bounda- 
 vhich tho 
 i^ing field 
 
 to lay off* 
 
 Trapezoids, 
 
 rg = 
 
 IfJOO 
 
 of = 
 
 1000 
 
 ne =• 
 
 1 500 
 
 md = 
 
 1 060 
 
 <? c = 
 
 2050 
 
 S6 = 
 
 1900 
 
 ta = 
 
 2500 
 
 11610 
 Then the sum of these offset. = IIGIO -. 7, the number 
 ■(.f them = 1658 the mean offset; and 1658 Xtr = 6-100 = 
 .<061 1200 ^ the area of the trapezoids, r f, o c, n d, mc,ei, 
 and a a, wh.ch added to the area of the trianghvs, (Nos 
 1--19,) give. 83166250 ^ 834 ac. 2 r. 26 p. = area of the 
 whole lot. 
 
 To lay off- i200 acres from the point B. 
 Let a conjectural lino bo drawn or run from B to M The 
 area of B M A D vv.ll be found to be 26288200, from which 
 subtract thc3 quantity to be laid ofl", 20000000, the remainder 
 .s 6288200, which X by 2 == 12576-100 == the double area of 
 tne A L A M, which divided by the conjectural line B M. 
 or 9150, gives 1374 for a perpendicular let lall froui M on 
 the hne A B. Then run B A and the operation i« completed. 
 
 PROBLEM V. 
 
 The following method of ascertaining the contents of a 
 hold, who.se ooundaries are ^curviliuear or irregular, is some- 
 urnes successfully a<l.,pted by skilful and experienced sur- 
 veyors. 
 
 Let the mixtilineal figure a c d ef g h C A, {Fk , 1.S9,) 
 represent the boundaries of a field or tract of land, the con- 
 tents ot which are required. Run the lines A B and B C, 
 so that the parts «, c, e and g, included between these lines, 
 ^'Ktll be as nearly as can be estimated, equal to the parts b, 
 a and./, lyn,g l,eyoud fliem; then find the area of the iriun- 
 glo A B C. 
 
 In the same manner a curvilinear figure maybe reduced 
 ' "''" ^"'"^ "* '' parallelogram, or any other rectilinear fi- 
 
 'Hi 
 
6 til 
 
 It 
 
 is 5; 
 
 1C2 
 
 APPENDIX. 
 
 gure, and its area ascertained by the ordinary rules for de- 
 termining the area of such figures. 
 
 By this method a surveyor, of good judgment and exten- 
 sive experience, will come very near the true contents of a 
 field. A«, however, much will depend upon the formation 
 of a just estimate of the quantity of hind contained in de- 
 tached pieces, this method should only be adopted by skilful 
 practitioners, and where lands are not very valuable.. 
 
 In!?! 
 
 PROBLEM VF. 
 
 The triangular lot of land, ABC, (Fig. MO,) lies on the 
 side of the road A B. It is required to divide it by a lino 
 running from the opposite angle C to the road A B, so that 
 the areas'ef the parts may be as 9 to 7, the side A B being 
 9i chains. What extent of front must bo assigned to each 
 parr? 
 
 As the two A s into which the field is tD be divided have 
 the same altitude, it is evident that they must be to each 
 other as their bases. 
 
 Therefore as IG : 9 : : 953 /. : 534 . 375 or 5 ch. 54 -f /. = A D. 
 And as. IG : 7 : : 950 /. : 41 5 . G'25 or 4 ch. li)-\-L=DB. 
 
 n 3: 
 
 PROBLEM Vn. 
 
 Divide the straight line A B, (Figs. 141 Si 142,) into thrco 
 parts, in the proportion of ?>, 5, 7. 
 
 From the i)oints A and B, draw the parallel lines A C and 
 B D, on opposite sides of the Koc A B. Prom a scale of 
 equal parts lay ofl' ?. iVom A towards E, and 7 from B t'l- 
 wards F. From the same scale lay off also 5 from E to- 
 wards C, and fr(,in F towan^s D. Tiien draw the iines E D 
 and C F, intersecting A B in H and R. 
 
 Then A H : H R : : 3 : 5, and 11 R : R B : 
 
 D 
 
 7. 
 
 In this %vay A B may be divided similarly to -any g' van di- 
 vided line, 
 
 JS'olc. — This method of dividing lines might be advantag'^- 
 ously employed lo find the point 1) in the preceding Prob., 
 
 nni\ a-ho t^niiif P. in thif vvllu'Jl fnllllWS- 
 
I for do- 
 
 id exten- 
 ;nts of a 
 jnnation 
 ed in de~ 
 )y skilful 
 
 es on tho 
 by a lino 
 5, so t!!at 
 I B being 
 d to each 
 
 ded have 
 ) to each 
 
 L = A D. 
 ?. = D B. 
 
 PKtMISCUODS PROBLEMS. gg 
 
 PROBLEM VIII. 
 
 The side A B of a triangular field containing 6 acre, is 
 4C0, and A C 420. It is required to lay ol 2 ac. Ty a 
 
 frS. '""'""^ ^"'" '^" ^'''''' ^' "'"^'^ '^ 22° *^-Lt 
 
 f E als between A and D, the point F will he in A C;but 
 ^r not, tho^ponu F will be in B C. Now if wo join D C 
 
 and A 1< E would be parallel. 
 Therefore, As A D : A E : : A C : A F. 
 
 To find A E. 
 By Prob. VI., As G : 2 : ; A B (4GC) : A E (156). 
 To find A F, 
 As A D (230) : A E (155) : : A C (420) : A F (2S3) 
 Lay off 233 from A to F, in the direction of C, and ruu 
 the line l D, and the work is completed 
 
 If E ha<l fallen between D and B, the point F would have 
 fallen m ilie line C B. 
 
 into thrco 
 
 s A C and 
 1 .scale of 
 roni B t'T • 
 *om E to- 
 iines E D 
 
 PROBLEM IX. 
 
 A Gentleman after having taken the disncr ions of a 
 nqunro fiehl forgot all the dist mce.-:, and only rcccllected 
 that bavmg occasion to measure the diagonal hr oupd it to 
 exceed the .side by 10 ch. Required a ruie by which to find 
 tnc side. 
 
 ^Lci X = one of the sides of the squa-r ... D C D, ( AV 
 MS,) and d = the difference bet^x c en tnc sido and the diagorVl 
 orlOcA. Then a,' -f-c;== the hypotenuse BD, Butaccor- 
 <ling to Euc. i. 47, lU;^ -j- D'^ = B D=^ or •:. B C= = B D » 
 Hence we have 2 x-^ =-. o;^ ^- ^2 d x + a^= or a;' - 2 rf x =J 
 C-. Comfjlete the Squerc and x- — ^dx -\- d- = rf- 4- d^ 
 orj:= + 2 e^ x -{- d'~ = o d\ Then . - ./ = V 2 d\ and 
 a ~y 2 d"- -f a' or .T 4.14= sido of tho square, Hcnco 
 iosults the foiiowinj 
 
 •^.r 
 
i 
 
 It 
 111 
 
 in 
 
 m 
 
 164 
 
 APPENDIX, 
 
 RULE! 
 
 To tho square root of twice the .sr(uare of the diflcrcncr, 
 add tho difference, and the sum will bo the side of tho 
 fiquarc, 
 
 PROBLEM X. 
 
 Required a rule by which to lay off a given quantity of 
 ijfind in the form of a triangle, two sides of which ahall be 
 equal, the included angle being given. 
 
 Let a represent the urea, S the nat. sine of the given /, 
 and a; one of the equal .sides. (i'Vg*. 144.) Then S x* — '2 a 
 
 '2 a 
 
 and x" = ~<i~' ' therefore a; == -v/ 
 
 'J. a 
 
 Whence results 
 
 the rule. Divide double the area by the nat. sine of the in- 
 cluded angle, and the square root of the quotient will be the 
 length of one of the equal nidod. 
 
 PROBLEM XL 
 
 To re-es' ^ marks upon an old line, without running it. 
 
 IIULE. 
 
 Itun a lino at random in the direction of the old line, upon 
 which set up stak(>s equi-distant from each other. When 
 you arrive oi)posite to the end of the original line, th«; 
 marks upon which you wi^h to restore, remove your instru- 
 ment thereto, and let a perpendicular fall uj)on the random 
 line. Then as the length of that line is to the perpendicu- 
 lar let fidl upon it iV.j'u the extremity of tho olil line, so is 
 the distance to the first .stake to the distance which it must 
 be moved to the old line. 'J'hcjn if this distance be multi- 
 plied by 2, 3, 4, &,c.j as circumstances may require, tf* pr - 
 ducts will bo the several distances which the stakes must jo 
 moved, in order to st^nd on the old line. 
 
 Let C B, {Fig, 145/) be an old line, the mark.s upon which 
 it is rcquireil to re-establish, while at the same time it is in- 
 convenient to run the same. Run the random line C A 20 ch. 
 The length oi" the perpendicular A i^, or the distance of A 
 
 X: 
 
liflcrencr, 
 itie of tho 
 
 [uantity of 
 h »hull be 
 
 PROMISCCOUS PROBLEMS. 
 
 165 
 
 from tho end of tho old line is found to be 5 ch. On this 
 lino, A C, set up stakes at a, c, and e, each 5 ch. distant from 
 each other. 
 
 Then, As C A (20) : A B (5) 
 As C A (20) : A B (5) 
 AsC A (20) : A B (5) 
 Or thus: Having found hy^tho first proposition that c fL 
 1.25, then 1 .25 X 2 = 2.50 = c d, and 1 .25 X 3 = 3.7D=: 
 a b. 
 
 Ce( 5) :(?/(!. 2.5.) 
 C c (10) : c rf(2.50.) 
 C a (15) : a h (3.75.) 
 
 I given Z, 
 S X- ^ 2 a 
 
 ICC results 
 
 ; of the in- 
 will be the 
 
 )'unning it. 
 
 [ line, upon 
 5r. When 
 1 line, tho 
 our instru- 
 lie random 
 erpendicu- 
 [ line, so i.s 
 ich it must 
 ; be multi- 
 re, th pr. • 
 tes must bo 
 
 ipon which 
 ime it is in- 
 5 C A 20 ch. 
 •tancc of A 
 
 PROBLEM XII. 
 
 A surveyor having run .30 ch. in a direction between South 
 and East, finds that .the sum of hi.s difference of latitude 
 and departure is 40 ch. Required the course, and the area 
 mcluded within the line run, the dilTerence of latitude, and 
 the departure. 
 
 INVESTIGATION. 
 
 Let a = the distance B C, (Fig-. UG,) and h = diff of 
 lat. + dep., or A B + A C; also let x = the dep. or A C. 
 then B — a- = diff. of lat. 
 
 Now, B C"- = B A= + A C"' (Euc. i. 47,) i. e. a^^b^^ 
 2 6 a; -I- 2 x= or 2 .T^ - 2 6 a; = «= _ h\ Therefore, x^ - 
 
 — 2/,07 = A C the dep. Then -10 •— 27 07 = ]f> 93 = 
 A B the diff. lat. 
 
 Honcc we have the following rule to find tho remaining 
 f^idcs of a nght-angled triangle, when the hypotenusp and 
 the sum of the other two sides are given, viz: 
 
 Fioni twice the square of the hypotenuse, or distance run 
 --ubtract the square of the sum of the other sides, viz. the' 
 'i'«. lat. and dep.; divide the remainder by 4, and to tho 
 square root of the quotient add half the sum of the two 
 ^-Jucs, and that sum will bo the departure. 
 
m 
 
 Ik 
 
 If- ;. : 
 
 u 
 
 If 
 
 
 166 ArpsNDix. 
 
 To find the Course . 
 
 AsthedifT. of hit. 12.02 
 latothsdep. 27.07 
 So is rad. CO'' 
 
 1.11125 
 
 1 . 4S248 
 
 10.00000 
 
 To the tan. of course G4' SO' 10.32122 
 7^0 find the Jlrea. 
 zIJU-^-J^-H^ = 17.\ ac. nearly. The course, therefore, 
 
 is S. C^° 30' E., and the area 17.i ac. nearly. 
 
 PROBLEM XIII. 
 
 To locate land in tbeform of a Bight-angled Triangle, the 
 Area and the Hypotenuse being given. 
 
 Let a = area, b — the hypotenuse A C, {Vig. 147,) and 
 
 "a 
 a; = base A B, tlien -- = perpendicular C B. Then, by 
 
 . 4 a' 
 Euc. i. 47,x--{---2- 
 
 = i'^; then x» -\~ 4 a- ~ b"^ x-, and x< 
 
 . i« x5 ^ _ 4 a'. Next, x^ — 6= x' -j- --- = -^ — 4 o» 
 
 S64 
 
 Then, z»~6= = V J^—^a^^ and x= = 6*-;-V 
 
 4 a' 
 
 ---4a»J 
 ' 4 > 
 
 which cx- 
 
 Whercforc x==vj6^iV[-^ 
 
 prcssion afTtsrdo us the following 
 
 rule: 
 
 From the hiquadrate of the hypotenu.se divided by 4,"sub- 
 tracl four times the -^quarc of the area, and extract the 
 pquarc root of the remainder. To the root add, or from it 
 subtract (according as vou wish to ascertain the lon<,^c.st or 
 shortest side of the triangle) the square of the hypolnnu.so 
 divided by 2, the square root of the sum and of the differ- 
 ««co Avillgive the length of the sides respectively. 
 
 •I 
 
therefore, 
 
 '.angle t the 
 
 147,) and 
 Then, by 
 
 x^, and x< 
 4 o« 
 
 which cx- 
 
 64 
 
 4 " 
 
 :4 
 
 i by 4, "sub- 
 extract the 
 , or from it 
 5 lon<^c.st or 
 hypotenuse 
 ' the diflcr- 
 
 y- 
 
 paoiiiscuous PROHLEMa. J€7 
 
 PROBLEM XIV. 
 
 Required the length and breadth of a rectangular meadow, 
 
 whose perimeter is GO chains, and area 20 acres. 
 
 Let a =. area, b = perimeter, and x = length, then --~ 
 breadth, and 2x -;- ~ rrr b. Then 2 a-' -!- 2 « rrr 6 r. This 
 
 equation reduced tjives x 
 
 '4 "'-^ rro-^- i ^''c" 
 
 CO 
 
 a 
 
 c™20cA. r= length, and -- — 10 ch. — breadth. This fur- 
 mula, expressed in words, affords the following 
 
 rule; 
 Divide the square of the perimeter by IG, and from the 
 quotient subtract the area. To the square root of tha re- 
 mainder add one fourth of the perimeter, and the sum will 
 be the length, and the area divided by the length will b«tho 
 width. 
 
 PROBLEM XV. 
 
 An easy method of locating land in the form of a llhcmb'oid. 
 
 Let the figure A B C D, {Fig. 143,) represent a Rhom- 
 boid whose area and front A D arc ^iven. 
 
 By Trigonometry find the base and perpendicular A e and 
 c D, of the right-angled triangle A E D = C 6 B. Next, 
 find the areas of these triangles; then by Prob. II., Loc., 
 by out the remainder in a rectangle as A 6 C e, and D e -f- 
 « C «= D C, a side of the Rhomboid. 
 
 PROBLEM XVL 
 The owner of a square field A B C D, {Fig. 149,) con- 
 taining 10 ac, wishes to lay off a walk half way around 
 which shall take up one acre. Required the width of the 
 walk. 
 
 Let a = one side of the square, and x = width of tho 
 H-alk; thon 2 a z — x' = 6, the area of tho walk. New this 
 
 t 
 
 I 
 
 
u 
 
 
 168 
 
 APPENDIX. 
 
 equation rcrluccd gives a; = a + V (o'^ — ■ 6) = 52 /., the 
 width of tho vvulk. Henco tho 
 
 From the area of the square subtract tho area of the walk, 
 sulitra<;t tho square root of the remainder from the side of 
 the square, and this last remainder will be the width of thtj 
 walk. 
 
 JS^nte. — Perhaps it may not be alto<TPthpv superfluous to re- 
 mark that the square root of any (juaiitity may be either 
 positive or negative, i. <?„, it may have either the sif^n -4- or 
 ~ before it, because — x X — x = x", as well as x X i". 
 Quadratic equations therefore admit of two solutions. 
 }l(!nce the reason of the use of the ambiguous expression T 
 placed; before the unknown quantity. The learner must 
 not, however, on that account, suppose that every Problem 
 leading to ;i Quadratic equation may have two answers.^ 
 The Problem may be of such a nature as to reader one of 
 tho results wholly imulmissable, and which of them is to be 
 rejected will be easily determined by the conditions of the 
 Problem itself. 
 
 Wfi 
 
 PROBLEM XVII. 
 
 It is required to locate 2 ac. in the form of the figure 
 C Mine d, {Fig. 150,) so that the width C d shall be equal 
 to the width B n, the side C A being (i ch., and A B l ch. 
 What must be the width of C c? or B n? 
 
 I pj a __ m-ca, 6 = C A or 6 ch., c = A B or 4 ch., and 
 X = width, or C rf = Bn. Then b-\-c—x= length, and 
 /(, j^c — x)Xx—bx-\-cx — x^=ii substitute t for b -|- c, 
 then t X — X- = a, and this equation reduced gives the va- 
 lue of .t; thus, X =: -^- -^ V | ^ " " H '^^' ^- -= ^ ti or 
 B n, and from this expression we obtain the following 
 
 uule: 
 
 Add the distances A B and A C. Divide the square of 
 their sutn by 4. From the quotient subtract the area. Sub- 
 iruct the square root of the remainder from half the sum of 
 the two sides A B and A C : the remainder is the width. 
 
PROMISCUOUS I'nOELEMfJ. 
 
 iod' 
 
 52 /., the 
 
 'the walk, 
 he side of 
 iltli of the 
 
 lions to rr- 
 
 be citlior 
 
 sign 4- or 
 
 as X X .r. 
 
 solutions. 
 
 n'ession T 
 
 rn<;r must 
 y Problem 
 auswera. 
 der one of 
 ;m in to be 
 Dns of th«j 
 
 the figure 
 ill be equal 
 A B 4 ch. 
 
 4 ch., and 
 3ngth, and 
 t for b -|- c, 
 res the va- 
 
 .^C dot 
 
 swing 
 
 ! square of 
 rca. Sub- 
 tile sum of 
 width. 
 
 PROHLF.M XVIII. 
 
 To Jindthc scale by which any plan has been drat^n ^nhen 
 
 the contents arc given, but the scale nmittcd. 
 
 nui.E. 
 
 Find the area oy any scale, and then institute the Adlow- 
 mg proportion: 
 
 As the content found 
 
 I^i to the s-iuare of the scale by which vou found it 
 
 oo IS the ;;'i\cn area ' ' 
 
 To the square of the scale by wliich the plan was drawn 
 
 Ihe square rootof thi. nu.nbci^viJl be the scale required. 
 
 PROBLEM XIX. 
 
 To find a etruc area oj a survey, ihough it has been taken 
 by a chain xohich is dihcr too lo7ig or too short. 
 
 Lnl thcarcu l.o complotcl, „sif,hc ch.ni„ ha.l boon of the 
 proper length. U'he,, /bnn th„ fnllowh,, proportion • 
 As tlio square of the true chain 
 ^s to the content found by the chain employed, 
 So IS tlie.square ol" the chain by which the survey was made 
 i o tiw true area. 
 
 PROBLEM XX. 
 To find the area of the inaccessible field A B C D E A 
 
 (Fig. J51.) 
 
 Jr H'T '"' ^^ ^ "' '""'" convenient distance H-om the 
 • ^Id. At t he cxtrennties of this line take the bearings of 
 
 Sysrr^ Tf ^ ^-^ ^--^^ ^^ ^^' ^^ ^--' -'i S A 
 
 and hi v"!; }^''''^'y^'^'-^''''^"S these several Tcourses 
 '"^^ huaiMg. thc.r points of intersection, as A B \ V <tp 
 .vou have the sides of th.e field ' ' 
 
 Its shJes may also be A>und hy Trigonometry, thus- .. 
 ^"i. z\ R fe A, you have all " 
 
 the / 
 
 s and the side R S to imd^ 
 
*70 
 
 APPZIODIS. 
 
 tho other side.?. Again in the A R S B, you have oil tho 
 / s and i side II S to find the other sides. Having as- 
 certained ti.c sidc^i R A and R B, and knowing the / A R 13, 
 the side A B is easily determined. In the same way all tho 
 remaining sides of the field may ho ascertained. 
 
 PROBLEM XXr 
 
 Jlnoihcr method cf fmdins the area of ri^hUlined figures 
 
 by Calculalioii. 
 
 Find the DilTcrcnee of Latitude and tho whole Departure, 
 and fill up the Table as in f rob. XV. of Mensuration. Hav- 
 ing filled Ujithc column of Meridian Distances, add thcfirsi 
 M. D. to the soeond, for the first or upper number in the 
 Column of Sim.s; add the second M. D. to the third for the 
 second number in the colu:nn of Stms, &.C.; and add tho 
 lowest M. D. to tho uppci-mosl for the last number in the 
 column. 
 
 Then multiply each number in the column of sums by its 
 respective Northing or Southing. Insert tho product in the 
 column of North or South areas, and half the difercncc be- 
 tween these columns will be the area of the field. 
 
 Tho following example will .servo to illustrate tho Rule* 
 
 « 
 
 
 .M 
 
 
 a. 
 
 >n c 
 
 ai 
 
 00 1 
 
 o 
 
 CI . 
 
 ^<. 
 
 
 • 
 
 
 M 
 
 ^5 C 
 
 *^ 
 
 C5 C 
 
 Q 
 
 CI c 
 
 
 ^ 
 
 u 
 
 at 
 
 K> 
 
 
 rt 
 
 O 
 
 M 
 
 O C 
 
 
 
 o 
 
 
 O 
 
 '^.> 
 
 
 _ ^ _^ 
 
< 
 
 o 
 
 <: 
 
 >^ 
 
 ID 
 O 
 
 u 
 
 prtoMir;cuoc3 phselcmc. 
 
 IT 
 
 CO o o o 
 
 crj O O O 
 
 «r o ui cj 
 »^ 1^ m 00 
 
 1^ 00 O (XJ 
 
 00 rr> TT i-« 
 
 C» »^ CO ^.' 
 
 « «> C< V 
 
 O I- 
 
 I- ^ 
 
 iO -JJ 
 
 ■n CO 
 »>• — 
 o -. 
 
 c< 
 
 'u"» •:« 
 
 O V ;W 
 
 J l-i l^r 
 
 IO U:< 
 
 _» 
 
 t' OD 
 
 CO 
 
 \,' 
 
 
 QTt 
 
 -<•; 
 
 •-• f« 
 
 t~ 
 
 
 •J* 
 
 
 r7;§ 
 
 TP O 
 
 CTJ CJJ 
 
 30 O 
 
 TT re 
 
 1CC( 
 
 
 H 
 
 u 
 
 H 
 C/! 
 
 H 
 
 O 
 CO 
 
 o o 
 
 •-? 
 
 oco 
 
 r* 
 
 po 
 
 •-4 
 
 '; OT 
 
 ■V 
 
 lO vn 
 
 C3 
 
 o> 
 
 m 
 
 TT 
 
 ^ 
 
 
 w4 
 
 OO~C0nr);2G0-; 
 
 »n -J c« c» CO m ffj 
 
 CO cr. G» — CO c» 
 
 ■ ®3JI!***^oeoco 
 o o « — r^ — i ^ 
 o —1 — < « i-» no 
 CO « « o c< 
 
 en 
 
 CO 
 
 
 c; 
 
 
 
 
 t^ 1" CO CO 
 
 r- 
 
 
 
 
 ""a" »n oj « 
 
 ^^ 
 
 
 
 
 05 CTJ |>. 
 
 ^4 
 
 
 
 
 c« c» 
 
 c;? 
 
 rf 
 
 CO lO 
 
 
 
 O 
 
 tj 
 
 ^1^ 
 
 
 
 O 
 
 in 
 
 o 
 
 
 
 
 CI 
 
 CO 
 
 
 ;j 
 
 CI O C5 •-< 
 Tf O O G< 
 
 <o »r> ci irj 
 
 «—• lO »— 1 
 
 00 
 
 oo 
 
 >n o 
 CI •-< 
 
 rr CI 'CO 
 
 t^ G« CO 
 '-' OO •«,» 
 
 !OOOOOOOt>« 
 
 ocooocoo 
 
 Cr3O«if5OO<n0CI 
 C> GO 0-5 in CI cyj GO GO 
 
 o 
 
 - ., ^ ^ t> r* r. 
 
 o o 
 
 O O 
 
 • • 
 
 o 
 
 4-^ 
 
 o o o 
 O C^ 00 
 •-» CD lO 
 
 o 
 
 ^."^ 
 
 C« 
 
 
 c/f (/: ^i 
 
 
 CO •-• 
 
 "• 7 
 
 O 
 V 
 
 c 
 
 171 
 
 *0 O M S; ^ 
 
 ;.^ ?:^^ 
 
 •*• ** ~ «^ 
 
 W « ^ S m 
 >-■ r rt 4* 
 
 t* > c fl 
 
 's «^-S— < « 
 "•5 -'« 
 
 ,, re T3 
 
 - 5 -3 an ca 
 •- _n w _ 
 
 dj •-• '^ tn 
 
 « nr "^ 
 
 ♦J t; -^3 '/! H 
 
 5 Oj J, O U 
 
 -;:; « r p 
 
 »- « 0) 2 2 
 
 c.^"S '- o 
 
 '' ^ i -9 -^ 
 
 
 ^'^S 
 
 '-I *3 ^ r- 
 
 o o es =: 3 
 
 — ^" O rt O 
 
 rt o jj w G, 
 
 o r; «5 c I;? 
 3 
 
 o J ^ 
 J o o 
 
 
 o 
 
 rJ 
 
 C 
 
 o 
 
 P 
 
 o 
 
 J3 C S to 
 
 o 
 
 s 
 
 3^ 
 
 - -r d a V. ^ 
 ■c ^•' :'' P =: 
 
 2 '■'■< o o •-< 
 
 c^ 2 - -^ & 
 
 X *-* o r— J^ 
 
 I o s: « c> 
 
 « c^ I" 
 
 ^ g S ^^ ">. 
 « e o o 
 *► H ■« > 
 
^MAGE EVALUATION 
 TEST TARGET (MT-3) 
 
 /. 
 
 
 
 
 / 
 
 ^ 
 
 t-?/ 
 
 & 
 
 f/x 
 
 1.0 
 
 I.I 
 
 1.25 
 
 IM 112.5 
 
 1144 _ 
 
 j50 
 
 la IM 1112,2 
 
 II: 1^ 
 
 2.0 
 
 1.4 
 
 1.8 
 
 1.6 
 
 V^ 
 
 <^ 
 
 /a 
 
 'a 
 
 I 
 
 c^. 
 
 C), 
 
 ^m • j^^ 
 
 .>' 
 
 
 A 
 
 >^ 
 
 w/ 
 
 °'W 
 
 Photographic 
 
 Sciences 
 
 Corporation 
 
 M 
 
 'h 
 
 -b 
 
 w 
 
 \\ 
 
 
 ^9) 
 
 V 
 
 .^^ 
 ^^o^ 
 
 
 6^ 
 
 ^ 
 
 % 
 
 '^ 
 
 23 WEST MAIN STREET 
 
 WEBSTER, NY. 14580 
 
 (716) 872-4503 
 
172 
 
 s^" 
 
 APpnrfDix. 
 
 :m 
 
 hnve not thou /> lit it advi.-vablr. to swell the sizo or increase the 
 price ot thi;* Treatise by their insertion. A Surveyor will 
 hnd his advantage in solectii-g- some particular system, in 
 rnakin- liirnsclf thorou,o-hly and faniiliarly acquainted with 
 It, and adhering to it with very few deviations. 
 
 Before concluding this branch of the subject, it may bo 
 serviceable to lay down a few Hxjlf.s for finding CGniained 
 anp^les. 
 
 1. If the first letters of the course nre unlike, and the last 
 likewise, subtract the lesi course from the greater; 
 
 Thus: S. 6'rW. 
 N. 15^ E. 
 
 47'= -. included /. 
 
 2. If the first letters arc unlike and the last alike, add the 
 
 bearings; * 
 
 Thus: S. SO'^W. 
 N. 40'-^ W. 
 
 70=" :.— included /. 
 
 3. If the first and l;ist letters are both alike, add the less 
 bearing to the supp]cn,ont of the greater. 
 
 4. If the first letters are alike and the last unlike, subtract 
 the sum of the bearings from 180°, 
 
 General Ra!e.~-\n oi,lcr to finu the quantity of an ans:le 
 suppose yourself stauiling at the angular point. Then re- 
 verso one or both courses, (as necessity may require,) and 
 the (pumtity of the angle will be easily ascertained. 
 
 LEVELLING. 
 
 Though it is not expected that every Land Surveyor will 
 possess all the qualifications, ;uid provide himself with all 
 the instruments necessary f >:• (;ivil engineering, yet he will 
 often find an acquaintance with the ger,crarprinciples of 
 Levelling of very great service. lie may bo employed to 
 8urvey a courr for condn.^tlng supplies of water, to deter- 
 mine the most suitable si;> f >r the erection of a mill, or the 
 most eligible route for the lunation of a road. If he make 
 hirwsolf completely master of the subject he is in this respect 
 
LEVELLING. 
 
 I'r, 
 
 "•-heap and simnlv ■•„„ , , ^- ■'''"''° Circumfbre;,tor. a 
 
 '"eon.,-,,,,,,, o,...,,.:,', 'theta't':"' ■ '" ""'''•"" "" 
 b<! ompioyi-d. suivcyor caa c.vpct i„ 
 
 WitI, regaril.t.) the rhnarv of T o,.„n- 
 «' nght angles ..vi.l, thi., v^'V^Lcl^Z ',' ' , r ■■""■" 
 
 '1.0 oartl?. .surf : ■;';";"' ,"'• "'"""'' "'"J '-^'■■"'T 
 =1.0 sun; CO „f ihll't] l."o, .o«evc.-,will s„„„ leave 
 
 •■'.0 -,i„, or.he ,,.',' :t::;,v: "^'""•' -^ ^'"''"'"'•' -^ 
 
 "'• 'l.od«.a„ce to which hi r™''"'"'"" <"^ "«= square I 
 
 -ile i. i. rai. 8 /, v ,v ^ "" ^ '".° """ "^ "'^ --«' ' 
 'ii.tanec is 2 ,n^les , V ^ T'"'" °'^ ""^ '^''^'""oc. The 
 
 carsh-a surface - -':;:;: ■ ■'" ";"° '•""■' ''' •■' 0...-V0 of the 
 
 --....oehav:;;;:t:r':::::ij:;-:— ^ 
 
 f^uriacoequrJJy distant in ill it..; / "^ '^"'^^^ ^^ the oartn\s 
 
 ^-pp..j.tho;:;;^;:;:;c;:::;r'-"™" ^■'- 
 
 viclcl into fee,, inches, a„a mZl^th "°' "'" 
 
 vanooi-aslkloatf-hpT. ■, . ' "* ''''^"i? n moveable 
 particular p ,, r' 1 ! " ' ""^ '"' '""''^ '"'''• '" ->' 
 
 ">- -curo'thn a. ■ t„ eeof uT"""" """"''""^ "» -^"""^^ 
 staves to nlac- thorn ,7,. '^■""'«'"'" '""" to carry the 
 
 an erect „,' e-nc ' ' !"'"\'="""'°"^' '" '«'op the,, i„ 
 
 or ,n„,.e to ,0 Cc oi;:: ll!l"'"'.'7 '"^'-'-. -" ""^ 
 
 iKuvc obstruction.^j from the 
 
 ^vay. 
 
 ii; ij 
 
174 
 
 APPENDIX. 
 
 Being thus furnished, the Surveyor directs the chain- 
 bearers to proceed, and measure or run tlie stationary dis- 
 tance. In consequence of the curvature of the earth\s sur- 
 flice the stationary distances shouM not exceed a few chains. 
 (The curvature of the earth in 10 ch. nmo«nts to an 'ghth 
 or . 1-25 of an inch.) He then plants his instrument in the 
 centre of t'lis distance, or midway between the two stations. 
 Then having carefnlly adjusted and levelled his instrument, 
 observing particularly that the air bubble is exactly in the 
 centre, he directs the men at the stations to raise or de- 
 press the vane until it is cut by the hair of the instrument, 
 and to note the height upon the staves. Suppose the height 
 of the vane ujjon one staflf is G feet from the surface, and 
 upon the other 3; then it is evident that the rise between the 
 places is exactly .'3 feet. 
 
 In a continuous ])roccss of levelling, or what is termed 
 compound levellir.g, it is not necessary to find by Subtrac- 
 tion the differences between every stationary distance. It 
 is sufficient to oi>ter each observation in its respective co- 
 lumn, under its title of f )re-sight or back-sight. Having 
 made the necessary entries, the back-stafl:" should be car- 
 ried f )rward and placed at a convenient distance before the 
 fore-stafl", which now becomes the back-stafi". Then place 
 the instrument in the centre, and proceed as before. In 
 this manner complete the survey. 
 
 Add up tho column of back-sights and the column of fore- 
 sights. If these sums are ef|ual, and the survey has been 
 correct, the first station and the last have the same elevation, 
 or they arc on the same level. If the sum of the back- 
 sights exceed the sum of the foresights, the terminating 
 point or last station is higher than the place of beginning 
 or first station, and vice versa, as will appear by the follow^ 
 ing examples: 
 
 1 
 
 2 
 3 
 4 
 5 
 G 
 
chain- 
 nary dis- 
 rtlrs sur- 
 IV chains, 
 m ghth 
 nt in tho 
 stations, 
 trument, 
 ly in the 
 10 or de- 
 truinent, 
 le height 
 ace, and 
 ween tho 
 
 3 termed 
 Suhtrac- 
 mcc. It 
 :tive co- 
 Having 
 he car- 
 !forc the 
 m placo 
 ore. In 
 
 of fore- 
 las been 
 evation, 
 le hack- 
 ninating 
 3ginning 
 ! follow^ 
 
 LCVELLIWa. 
 
 EXAMPLn I. 
 
 17a 
 
 No. OF 
 
 Stat. 
 
 COUR 
 
 SE. 
 
 Back-sights. || Fore-sights. 
 
 1 
 
 o 
 
 3 
 
 5 
 
 G 
 7 
 
 
 N. 10^ E.I 
 
 J> 
 
 N. 15° E. 
 
 Disi. 
 
 300 
 
 SCO 
 
 soo 
 soo 
 
 £00 
 SOO 
 300 
 £00 
 
 c 
 
 
 
 7 
 
 2 
 
 7 
 
 3 
 
 G 
 
 8 
 
 5 
 
 4 
 
 4 
 
 3 
 
 2 
 
 
 
 3 
 
 o 
 
 o 
 
 
 5 
 
 S 
 4 
 
 
 
 'y.00 1 1 42 I 4 f 
 37 3 
 
 
 
 8 
 
 1 
 
 ? 
 
 3 
 
 
 
 cy 
 
 
 
 G 
 
 4 
 
 7 
 
 G 
 
 8 
 
 
 
 
 
 5 
 
 4 
 9 
 
 7 
 
 4 
 
 4 
 
 4 II 37 I 3 I 2 
 o 
 
 5 
 
 I 
 
 o 
 
 The terminating station is therefore 5/.'. l in. 2 fcn'Aa 
 higher than the first. 
 
 EXAMPLE ir. 
 
 No.o^ 
 Stat. 
 
 1 
 
 2 
 3 
 4 
 5 
 G 
 
 Course. 
 
 S."45nv: 
 )> 
 
 s. ooHv. 
 
 DlST. 
 IN LIN. 
 
 Back -sights. || f ore-sights. 
 
 300 
 300 
 300 
 SOO 
 300 
 
 .FT.;lN.iTKNTHS||FT.jN.!'rENTH& 
 
 4 
 
 18C0 1 i^ 
 
 1 
 
 G 
 
 
 
 2 
 
 
 
 5 
 
 
 
 1 
 
 o 
 
 4 
 
 5 
 
 
 
 1 
 
 5 
 
 1 
 
 3 
 
 4 
 
 7 
 
 o 
 
 
 
 
 
 
 
 
 
 o 
 
 •4# 
 
 ii i 
 
 S2| , 
 
 
 
 
 25 8 
 
 8 
 
 7 
 
 Hence it appears ^hat the terminating point is ? feet low. 
 er than the first station. 
 
 The height of hills maybe ascertained likewise by Tri^o. 
 nometrical Calculations, by taking the angles of elevatTou 
 and depression, and measuring the slant sides. 
 
M { S C E L L A N E IT S 
 
 • .V 
 
 Re-,-:stabi.i3:ime.nt of lost BouNnxRir-s,— Rem:.',?;'. 
 
 in attemp^s to .settle disputes about nkl lines, it often hap- 
 pens that tJio parties who were pre,ent at the ori-inal sur- 
 v-ey have forgotten tlie circuiT.stances or iuivo removed fron, 
 the country, or h:;ve thcniocivr ; l.eon removed by deatli 
 and consequently eufficlent cvidcneo cannot be procured to 
 restore the original boundaries. When a new line has been 
 ngrced to, in order to prevent liti-ation afterwards, it is ad- 
 visable that the parties formally release to each other alJ the 
 land quite to the newly established line. 
 
 The following i.s a copy of a Legal llclcasc for this pur- 
 pose : — ^ 
 
 KNOW ALT MEN, by the.e presents, that I, Jl. «,, of 
 m the County of ,,ud Province of 
 
 tor ai". jn consideration of the sum of 
 good and lawi- money of tlic said Province of 
 r n r.r ■ ^'' ""^^ ^'' ^'^-''^h ^-'^'^^ ^ni] tru]v xmid by 
 
 in tlie County of and P^i-iucc of 
 
 at and l;eloro the ensealing and deliveiv of these 
 Zntn '^:^{y''lP\^l^-^^>^ { jo hereby acknowledge and 
 a^n,;^ -^li^ lf'^ 'r^^^^^^' i^^^VK remised, rdeLed, 
 am quit clain>, and by these presents DO remise, release 
 and quit clan,,, to the said C^l)..^ his heirs and ^.l^'Zl 
 
 vdntinf"-:^n-^'V'^^"' ''''T'l^ '^'^^"^" «»^1 ^'^'^''^"''' of 
 md tot .o'^.n' ^^-'."^^^-'^.^^•'■^'•' V, both -r in law orequiiv,of, in, 
 . n to tae .oilounig p.eco or parcel of Land, situate', Wing 
 '•'''' ^'''"- '''-' -'^n<i bounded as follows, naniclv 
 
 beginning at* 
 
 containing by 
 
 nUi'nnfu^J"' "''''"' '" "" '"'""''' "^ '^^''^ '=i"J ♦« •"'^'-''-t here iho 
 
M:5C£LLANE0CS. 
 
 177 
 
 rrVliV,!?!. . r,,^ r~ ^"^ ^he ?amc, more o. !cs5. 
 
 ro HAVE and TO HOLD the above (In.crih.d premises, 
 to iiin the said C.l)., his lieirs, and assi-ns, to his and their 
 only j)roper boncht anrl behoof forever, together with ail 
 and suri^nlar, the buildiu-s, pnvilcives, and appurtenances 
 thereto bclongmnr, or in any Vri.se appertaining, and to every 
 part and pi-reel thereof. ' 
 
 IN WITNESS whereof I have hereunto im- Hand and 
 T)Oi\\ .subscribed and set, thi:! day oC 
 
 in tlic year of our Lord One Thousand Eioht Hundred 
 and ^ 
 
 Signed, Sealed, and Deli- ' 
 vered in the presence of [ Jl, B. L, s. 
 
 Fj. F. 
 
 o. p. 
 
 Facts Respecting Magnetism,— VAniATion of run 
 
 Compass, 
 
 Iron, with its oxides, and alloys, is one of the .substances 
 most generally diffused through nature. It is not, however, 
 the only substance possessing the property of becoming 
 magnetical. The influence of Magnetism has been distinct- 
 ly observed in Nickel, Cobalt, and Titanium. It may be 
 detected in many clays, sands, stones, springs, and rivers, 
 in rain and snow, and even in many animal and vegetable 
 substances. According to M. Arago there is no substance 
 which, under favourable circumstances;, is incai)able of ex- 
 hibiting unequivocal evidences of magnetic virtue. 
 
 The opposite poles or ends of magnets attract each other, 
 i. e., the North pole of one magnet will attract the South 
 pole of another magnet. 
 
 Tho electric fluid, or lightning, generally destroys the 
 polarity of the needle. 
 
 Heat has a great influence on magnetism. A white heat 
 entirely destroys the magnetic virtue. According to the ex- 
 periment oi' Earlow on malleable iron, soft shear steel, and 
 hard shear steel, the magnetic power is about 4 times as 
 strong when the metal is at a red heat or at a blood red heat 
 as when it is cold. 
 
 Some substances will not exhibit any .symptoms of mag- 
 netic virtue until gently heated. Minerals which are not 
 
 II \t 
 
 ! .! WZ 
 
17a 
 
 APPENDIX, 
 
 V y. 
 
 W$ 
 
 n<- 
 
 metallic arc almost all acted upon by the magnet after thej 
 liavc lieeji suojecrcd to the action of fire. 
 
 The effects of heat upon the magnetic virtue is very vari- 
 able. The principle upon which it operates is not under- 
 stood. No rule can therefore be given, by which its cfTccta 
 m \y be dercrmined. 
 
 Chemical action is said aKso to aficct the magnetic needle. 
 
 1 he statements ofcxperimentersui)onnagnetism arc often 
 very opposite and contradictory. 
 
 These consideration.,' would naturally lead us to expect 
 considerable disagreement between magnetic instruments, 
 and a want of uniformity of action in the magnetic needle. 
 This accordingly wo find to be the case. These f icts there- 
 fore afl'ord sufficient evidence of the inaccuracy of a method 
 Komctim^s employed by surveyors to ascertain the diflerenco 
 of variation. The following is the method to which I al- 
 lude : Knowing the original course and dale of an old line, 
 and having ascertained the prcc^ent course, they divide the 
 difference between the two courses by the nund^er of the years 
 which have intervened between the dates of the respective 
 surveys, and use the quotient as the mean annual difference 
 of variation, and allow it accordingly on all lines near that 
 place. The inaccuracy of this rule may be placed bevond 
 dispute, by the consideration of the following ficts: 
 
 The line of division between the Townships of Sackvillo 
 and Westmorland, in the Province of New Brunswick, runs 
 ucarJy four milco through a part of Sackvillc marsh', and 
 therefore affords peculiar facilities for observation. 
 
 In 17C2 its course was due North. In 171)1 it was traced, 
 and found to run by the compass N. 2° 4b' E., which gives 
 tjcarly 5' SO" as the yearly diffeience of variation. Accor- 
 dmg to a grant and plan made by George Sprowlc, then 
 Surveyor-General of New Brunswick, the course in 1813 
 was N. 2=^ SO' E, which exhibits a retrogade chan<.e of va- 
 nat.on of 10' in twelve years. In 1843 I found ii"to be N. 
 C° 15' E, or S° 45' in thirty years, giving an annual chann-o 
 of variation of 7' SO". From 17C2, when the line was first 
 run, until 1843, are cighty-oac yeans, and the change of va- 
 
 
MISCELLANEOUS. 
 
 lio 
 
 nation during that time amounts to C !&', nliich gives 4' 37' 
 for the mean annual change of varit^tion. Again, by other 
 linos situated very near this lino, and run in 1823 the' dinbr- 
 cnce of variation in 184S was found to be 1« 20' or 4' every 
 year. ^ 
 
 Whether we impute these discordant results to the inac- 
 curacy of the surveys, to the (ii.sagreenient of instruments or 
 to the n-regularitiesof the magnetic influence, or tj all these 
 causes combined, the inaccuracy of tho above rule is equally 
 proved. ^ 
 
 Surveyors while using instruments governed by the mag- 
 not should take care that they have no substance about their 
 persons by which its actions may be affected. A delicate 
 needle n.ay be affected by a knife in the pocket, or buttons 
 composed of magnetic brass upon their clothes. Of this 
 fact any person may satisfy himself by placing a compass on 
 some solid object, and after the needle has settled, causing 
 some person having any ferruginous substance about him to 
 approach within two feet of the instrument. Tho move- 
 ment of the needle from its true position will indJrato tho 
 magnetic disturbance which his presence occasions. To 
 this cause may be referred many of the inaccuracies which' 
 arc so perplexing in old • irveys. 
 
 Surveyors would do well to devote some of their leisure 
 hours to the study of the geological structure of the earth. 
 Some acquaintance with this important and interesting sci- 
 cnce is so intimately connected with pr-ctical land su1-vcy- 
 ing, that it may legitimately be said to come within tho 
 range of his professional qualifications. 
 
 Si;CGESTiON AnouT Meridian Li.ves. 
 
 I would before dismissing this subject take the liberty of 
 suggesting the propriety and expediency of establishing ttuo 
 meridian lines in every County, or at convenient distances 
 from each other, by which every Surveyor might compare 
 his instrument as often as should be deemed necessary. 
 Those lines should be determined with great accuracy by 
 astronomical observation, and cstabli«hcd by permanent 
 
 I ! 
 
 ill 
 
nmM 
 
 ISO 
 
 APPEffOIX. 
 
 iiKirk.H not liable to an aJtcnitkm of position. Tht; courses 
 (rontiiiiu'd in all docunientt! conveyjn^r n titlo to hnulcd pro- 
 perty, aiui in all docuincntal rrconis tjhoulii bo taken from 
 this true ))iuri(lian, instead of from the magnetic. l)y this 
 mcuns many inac(Mu-;;cie.s avouM bo avoided, much nssist- 
 anco would be allbrdcHl in after times to Surveyors in tra- 
 v.'ini; ''"f-' ' v.hich wiil then !)o old, and bi etcne eventually the 
 .source of much valuable information upon the science of 
 magneiiim,— a .science of jrrcat importance in the airair.s of 
 mankind, a:id a science as yet but imperfectly understood. 
 
 My oI;jcct in the preceding treatise has been to select anti 
 include v/itJun as narrow limits as po.s^■iI)le the most Kimple 
 and mo.|t c:ctensively applIcaLle methods of Land Survey- 
 ing, and to adapt the .'jtiitcment and iilu.-^tration of them to 
 the most ordinary capacity. 
 
 The Surveyor must not expect to fmd in any treatise ex- 
 amples ut\i\cry case with which ho may meet in tl:(; course 
 of his practice. V/hcn we consider the numerous unac- 
 countable irrc:;;ularincs to v.hich tiie magnetic virtue is sub- 
 ject, the inumerous avA] unapj)reciable causes by Avhich it 
 may be distiirbed, the diUVrejices between i.M'trumcnts go- 
 ve.-ned ■ by the needle,, and the loose ujanner in which the 
 original surveys were frequently executed, lie need ntit be 
 astonished if after his utmost care and diligence:', he find it 
 almost Jmpossibla to restore lost boundaries with any dc"Teo. 
 of ccrtaiiiiy. 
 
 Most of the old grants in these Provinces contain more 
 land than they express. Sometime^, however, they contaiu 
 less. In eitlicr ease the recorded description differs from 
 their true dimensions and contents. Still the law ref]uire3 
 the Surveyor, in re-surveys, to follow as nearly as i)ossible 
 the original description. 
 
 Many errors have arisen from following courses as they 
 :ire literally e\-])resscd in the grant or reijordedj document, 
 without making the necessary ;dIowance for change of vari- 
 ation, &.C. Wlien this course has been pursued in subse- 
 
MrSCELr-ANEOUS. 
 
 ISi 
 
 qucnt transfers of land, cxpei.^ive litijf^tion hu. soniefnio. 
 been the result. 
 
 Until meridian lines are estal.lisl.ed !.v oo.npot.-nt aiilh-,- 
 nty as suggested in u for.ner part of this work, in .Irauin- 
 deeds -.vlnch convey lands f^M'anfed or convey ed „iany verui 
 a^ro, u new survey should he nuuie, an.i the c<,urses and dis- 
 tance niserted accordingly. Tru., it i. that siuvrss an- e.s- 
 pensive, but lawsuits are ot'ten ruinous. 
 
 As in most cases the oldc.t liiie n.ust' be allowed, it oft,.,, 
 becomes a matter of n.uch importance to a.ceru.in the con.- 
 parat.vo ages of ditierent line.. An.ong the nunwrou- dif- 
 ficulties vy-h.ch the young Surveyor ha. to encounter, tins i. 
 about the greatest When several linos run frou. the .unl 
 mm forming with each other angles of considerable n,a.. 
 
 the date ot then- favourite line, to determine which is th« 
 o dest IS often an exceedingly difficut task. lu a few in 
 stances the appearance of blazes on the troes-may 1 j 
 jome assistance. An appeal t^ the oldest inhabitants :' t^' 
 
 imu "",;"" P"""' 1 ^'" "••^^'"•^' ^"-•^•>' -• ^--- other 
 circumstances ..cquamted with the lines, is genoralk- the 
 
 most safe and satisfactory course to pursue. In d en 
 
 however, it is frequently difficult, and often utterlv i m ^ : 
 
 dete. """"''' '" '"^''^^'"» ""^^"-"^'^ ^"-" - -i- 
 Notwithstandiug the heavy responsibility which devolve* 
 on ho Surveyor, frequently he must depend, to n great ex 
 ent, upon his own judgment and discretion. I„ Tse cir 
 camstances an intimate and extensive knowledge of Mathe' 
 matical principles, and a general acquaintance tvith colla c 
 
 labyrinth, by suggesting to him numerous expedients whi<-h 
 -;^^ never occtir to the mind of . mere Lr;::^;- 
 
 1 
 
 4 
 
' '' ,<• 
 
 ERRATA. 
 
 Page 7f», third line from tlie bottom— for '•' Sir William 
 MacLcan George Colebrooke, R. H. ^ 8lc., read Sii William 
 MacBeaii George Colcbiooke, K. H. &c. 
 
 Pag9 116, last line of tlic Calculation Ta!)!c, in the column 
 Half Departures — for "= 13.95 ' read — 13. OS, 
 
 Page 133, at the head— for <' Division of Land" read Lo- 
 cation of Land. 
 
 
TRAVERSE TABLE, 
 
 CONTAINING TIIE 
 
 DIFFERENCE OF LATITUDE AND HALF DE- 
 
 PAIITUIJE, 
 
 TO EVEUY ^UAllTEU DECHliE OF TIIL COM VPS; THE DIS- 
 TANCE SUPPOSED 10 BE OWE CHAIN, OK FOUR RODS. 
 
 To find the Dijf. of La', and Dcp. by the following Table. 
 
 In tlic fi'-sit column tmder D. M. find the Degrees rncl 
 Minutes contained in the bearing; W) w line Avitli wliichj un- 
 der N. S. and Ft. W., you liavc the Diff. of Lut. and halt' 
 the D'^p. ior that hearing. ISIidtiply tliis Difl". of Lut. and 
 Dep. by the length of the Stationary Distance; and the pro- 
 duct will 1)0 the DiiT. of Lat. and half Dcp. for that line. 
 
 Thus, let the bearing be N. 10'^ 15' W., Distance 20 ch. 
 30 /. llcqnircd tlie Diif. of Lat. and Departure. 
 .9840 N.S. .0839 E.W. 
 
 20.30 20.30 
 
 295200 
 
 19G800 
 
 2(;G70 
 
 17780 
 
 1.9975200 Northin,?. 
 
 1.801(370 half Westing. 
 
 3.G09340 Westing. 
 
 N. 3. — In the following Table, if the Dep. be multiplied 
 by two, the Dei), and Diif. of Lat. will be the natural sine.-^ 
 and co-.-^ines of the corresponding Courses, respectively; the 
 Radius being supposed to be one. 
 
r 
 
 ?MFFERENCn or LATITUDE AND DEPARTURE. 
 
 
 
 15 
 30 
 45 
 
 .8988 
 .8968 
 .8949 
 .892!) 
 
 i>j 90 
 
 ,2210 
 ,2230 
 ,2250 
 
 5. 
 
 .(» 
 
 .99(32 
 
 .043(; 
 
 1(>. 
 
 
 
 .9()13 
 
 .1378 
 
 i27. 
 
 
 
 .8910 
 
 .2270 
 
 
 15 
 
 .99.58 
 
 .0457 
 
 
 15 
 
 .9{;00 
 
 .1399 
 
 
 15 
 
 .8890 
 
 .2239 
 
 
 ,50 
 
 .9954 
 
 .0179 
 
 
 30 
 
 .9588 
 
 .1420 
 
 
 30 
 
 .8870 
 
 .2308 
 
 45 
 
 .09i;i .0501 
 
 
 45 
 
 .957«) 
 
 .1441, 
 
 
 45 
 
 .8850 
 
 .2323 
 
 C\ 
 
 0; 
 
 15: 
 
 3(»i 
 
 M5| 
 
 7.1 01 
 i!n! 
 '30, 
 ^15" 
 
 : ! 5; 
 
 '30 
 
 .!5! 
 
 1 
 
 9 JO! 
 
 ro,= 0, 
 
 .99451.0522 
 
 .99 10. or U 
 
 .993(>j.05{i6 
 .9931 L 0587 
 
 ^91)25.01109 
 .9920!. On31 
 .99J4i.Oi352 
 .9'^0:!|.0ti74 
 
 '.1545' 
 
 29. 
 
 
 
 .1500 
 
 
 15 
 
 .15S'ji 
 
 
 30 
 
 .l()07i 
 
 
 45 
 
 j;^0 
 
 .9903]. oi;9(; !19. 
 .989!.;. 071 7 
 .9890|.0739 
 .98?'3 .0700 
 
 ■38:7Tom2|:20, 
 
 .9870 .0801'! 
 .:'8!i3'.{;825 
 
 .9SJ5I.0847 
 
 .981S;.08i)8 
 .♦»-• IOJ.088:' 
 .'»^32j.OiJll 
 .9824'.0^;33 
 
 
 15 
 30 
 45 
 
 .8829 
 .8309 
 .8788 
 .8767 
 
 .8725 
 .8703 
 .8084 
 
 .2347 
 
 ,23b"f) 
 
 ,2335) 
 
 ,24051 
 
 ,2424 
 
 ,-.;443 
 
 ,2462 
 ,2481 
 
 30.1 
 15 
 
 It'U 
 
 45 
 
 .8(;(io 
 
 .81)38 
 .St-IG 
 .8594 
 
 ,2500 
 ,2519 
 ,2537 
 ,2556 
 
 21. 
 
 
 
 1 
 
 15 
 
 
 .-JO 
 
 
 4 J 
 
 31. 
 
 
 
 .8571 .2575 
 
 
 15 
 
 .8549 
 
 .2594 
 
 
 30 
 
 .8527 
 
 .2612 
 
 
 451 .8503 
 
 ,2031 
 
 32. 
 
 
 
 .8480 
 
 .2(i49 
 
 
 !5 
 
 .8457 
 
 .26(:8 
 
 
 30 
 
 .8431 
 
 . 'IbSO 
 
 ^45 
 
 .8410'. 2705! 
 
 33. 
 
 
 
 ■ 
 
 15 
 
 
 30 
 
 ' 
 
 45 
 
 34. 
 
 1 01 
 
 '15 
 
 
 30 
 
 i 
 
 45 
 
 35. 
 
 
 
 
 15 
 
 
 30 
 
 
 45 
 
 3(3. 
 
 
 
 
 15 
 
 
 30 
 
 
 45i 
 
 37. 
 
 
 
 
 15 
 
 
 30 
 
 1 
 
 4'5 
 
 38. 
 
 
 
 
 15 
 
 
 ;}0 . 
 
 
 45 . 
 
 39. 
 
 . 
 
 
 15 . 
 
 
 30 . 
 
 i 
 
 -In 
 
 41. 
 
 
 
 
 15 
 
 
 30 
 
 
 45 
 
^' 
 
 
 
 DIFFERENCF 
 
 • OP 
 
 LATITUDE AND 
 
 DEPARTt'RE, 
 
 
 ID. |.M.! iN.H. |lvVV.|iI).|M.| N.S. |E.W.||1). |M 
 
 • 1 N. «. 
 
 |E.VV.| 
 
 33. 
 
 (] 
 
 .8387 
 
 .2723 
 
 ;44. 
 
 
 
 .7102 
 
 .3473 
 
 55. 
 
 f 
 
 ..5731 
 
 .4095 
 
 ■ 
 
 10 
 
 .83()3 
 
 .2741 
 
 
 15 
 
 .7163 
 
 .3489 
 
 
 15 
 
 .5706 
 
 1.4108 
 
 
 3i 
 
 .833J) 
 
 .2759 
 
 
 30 
 
 .7132 
 
 .3.504 
 
 
 30 
 
 .5664 
 
 .4120 
 
 
 ■ib 
 
 .8315 
 .8290 
 
 .'2718 
 '.2796 
 
 
 45 
 
 .7102 
 
 .3520 
 
 
 45 
 
 .5628 
 
 .4133 
 
 34. 
 
 
 
 45. 
 
 
 
 .7071 
 
 y r* '.> Tv 
 
 56. 
 
 
 
 .5592 
 
 .4155 
 
 
 If) 
 
 .8266 
 
 .2814 
 
 
 15 
 
 .7041 
 
 .3551 
 
 
 15 
 
 .5555 
 
 .4157 
 
 
 .id 
 
 .8241 
 
 .2832 
 
 
 30 
 
 .7009 
 
 .3.566 
 
 
 30 
 
 .5519 
 
 .4169 
 
 i 
 
 4b 
 
 .82K) 
 
 .2850 
 
 
 45 
 
 .6978 
 
 .3581 
 
 
 45 
 
 .5483 
 
 .4181 
 
 35. 
 
 
 
 .81SI1 
 
 .2667 
 
 46. 
 
 
 
 .694(i 
 
 .3596 
 
 '57. 
 
 
 
 .5446 
 
 .4193 
 
 
 lb 
 
 .816(i 
 
 .2885 
 
 
 15 
 
 .6915 
 
 .3612 
 
 
 15 
 
 .5408 
 
 .4205 
 
 
 30 
 
 .8141 
 
 .2903 
 
 1 
 
 30 
 
 .6883 
 
 .3627 
 
 1 
 
 30 
 
 .5373 
 
 .4216 
 
 
 45 
 
 .8116 
 
 .2921 
 
 1 
 
 1 
 
 45 
 
 .6852 
 
 .3642 
 
 
 45 
 
 .5336 
 
 .4228 
 
 3(3. 
 
 6 
 
 .80!.t0 
 
 .2939 
 
 147. 
 
 
 
 .6820 
 
 .3656 
 
 58. 
 
 
 
 .5299 
 
 .4240 
 
 
 15 
 
 .8064 
 
 .2956 
 
 
 15 
 
 .6788 
 
 .3671 
 
 
 15 
 
 .5269 
 
 .4251 
 
 
 30 
 
 .8058 
 
 .2974 
 
 
 30 
 
 .6756 
 
 .3686 
 
 
 30 
 
 .5225 
 
 .4263 
 
 
 45, .8012 
 
 .2991 
 
 
 45 
 
 .6724 
 
 .3701 
 
 
 45 
 
 .5188 
 
 .4274 
 
 37. 
 
 
 
 .71)8() 
 
 .3009 
 
 43.1 
 
 .6691 
 
 .3715 :59. 
 
 
 
 .5150 
 
 .4286 
 
 
 15 
 
 .7960 
 
 .3026 
 
 
 15 
 
 .6659 
 
 .3730 
 
 
 15 
 
 .5113 
 
 .4297 
 
 
 30 
 
 .7933 
 
 .3044 
 
 
 30 
 
 .6626 
 
 .3745 
 
 
 30 
 
 .5075 
 
 .4308 
 
 
 45 
 
 .7907 
 
 .3061] 
 
 
 45 
 
 .6593 
 
 .3759) 
 
 45 
 
 .5033 
 
 .4319 
 .4380 
 
 38. 
 
 
 
 .7880 
 
 .3078 
 
 49. 
 
 
 
 .6560 
 
 .3773 
 
 60. 
 
 
 
 .5000 
 
 
 15 
 
 .7853 
 
 .3095 
 
 
 15 
 
 .6527 
 
 .3788 
 
 
 15 
 
 .4962 
 
 .4341 
 
 
 30 
 
 .782(i 
 
 .3112 
 
 
 30 
 
 .6494 
 
 .3802 
 
 
 30 
 
 .4924 
 
 .4352 
 
 
 45 
 
 .7799 
 
 .3129 
 
 
 35 
 
 .6461 
 
 .3816 
 
 
 45 
 
 .4886 
 
 .4362 
 74373 
 
 '69. 
 
 
 
 .7771 
 
 .3146 
 
 50. 
 
 
 
 .6428 
 
 .3830 
 
 01. 
 
 
 
 .4848 
 
 
 lo 
 
 .7744 
 
 .3163 
 
 
 15 
 
 .6394 
 
 .3844 
 
 
 15 
 
 .4810 
 
 .4,383 
 
 
 30 
 
 .7716 
 
 .3180 
 
 
 30 
 
 .6361 
 
 ..3858 
 
 
 30 
 
 .4771 
 
 .4394 
 
 1 1 
 
 i 
 
 45 
 
 .7(i88 
 
 .3197 
 
 
 45 
 
 .6327 
 
 .3872 
 
 
 45 
 
 .4733 
 
 .4405 
 
 ■10. 
 
 
 
 .7660 
 
 .3214 
 
 51. 
 
 
 
 .6293 
 
 .3885 
 
 62. 
 
 
 
 .4695 
 
 .4415 
 
 
 lo 
 
 .7632 
 
 .3230 
 
 
 15 
 
 .6259 
 
 .3899 
 
 
 15 
 
 .4656 
 
 .4425 
 
 
 30 
 
 .7601 
 
 .3217 
 
 
 30 
 
 .6225 
 
 .3913 
 
 
 30 
 
 .4617 
 
 .4435 
 
 
 45 
 
 .7575 .3263} 
 
 
 45 
 
 .6191 
 
 .3926 
 
 
 45 
 
 .4579 
 
 .4445 
 
 ■u. 
 
 
 
 .7547 
 
 .3280 
 
 52. 
 
 
 
 .6157 
 
 .3940 
 
 m. 
 
 
 
 .4540 
 
 .4455 
 
 
 lb 
 
 .7518 
 
 .S!i9,6 
 
 
 15 
 
 .6122 
 
 .3!>53 
 
 
 15 
 
 .4501 
 
 .4465 
 
 
 30 
 
 .7489 
 
 .3313 
 
 
 30 
 
 .6087 
 
 .396i] 
 
 
 30 
 
 .4462 
 
 .4475 
 
 4'2? 
 
 45 
 
 
 .7460 
 
 .3329 
 
 
 45 
 
 .6052 
 
 .3980 
 
 
 45 
 
 .4423 
 
 .4485 
 
 .7431 
 
 .3345 
 
 53. 
 
 
 
 .6018 
 
 .39931 
 
 64. 
 
 
 
 .4383 
 
 4494 
 
 
 15 
 
 .7402 
 
 .3361 
 
 
 15 
 
 .5983 
 
 .40o;>| 
 
 
 15 
 
 .4344 
 
 4503 
 
 
 'id 
 
 .7373 
 
 .3378 
 
 
 30 
 
 .5948 
 
 40191 
 
 
 ^0 
 
 .4305.4513 
 
 
 15 
 
 .7313 
 
 S394I 
 
 
 15 
 
 .5912 
 
 4032, 
 
 i 
 
 65. 
 
 15 
 
 .4265 .4522 
 
 •13.1 
 
 
 
 .73 131.. 34 10 
 
 54. 
 
 .5878{ 
 
 .4045 
 
 .4226 
 
 4532' 
 
 
 15 
 
 . 7232 j. 34 20 
 
 15 
 
 .58421 
 
 .40.58 
 
 
 15 .4186 
 
 1541 
 
 
 30 
 
 .72.54 ,3441| 
 
 
 30 
 
 .5807 
 
 4070 
 
 
 JO .4140 
 
 4550 
 
 
 45 
 
 .7224 
 
 .3457 
 
 
 15 
 
 .5771 
 
 4083; 
 
 1 
 
 15 
 
 .4177|. 
 
 4559 
 
 4" 'I 
 I- 
 
■ 
 
 ^B 
 
 ! 
 
 H^^^B 
 
 
 
 DJFFEUEKCR OF LATI TUDE A ND DEPARTURE. 
 
 1E.\V.||1)-|IV».| N. S. jE-VV-l 
 
 fD:j¥p. sT ii:.w.! |D.l->i.|N.s. 
 
 f)G. 
 
 
 15 
 30 
 45 
 
 .40G7 
 
 .,4027 
 .3087 
 .3947 
 
 G7. 
 
 or .3907 
 
 15 
 
 30 
 45 
 
 .38G7 
 .38i>7 
 .373G 
 
 .4507 
 .157G 
 .4550 
 .4594 
 
 .4011 
 .401!) 
 .4027 
 
 74. 
 
 75. 
 
 
 15 
 30 
 45 
 
 ~0 
 15 
 
 30 
 45 
 
 ,275(5 
 .2714 
 
 .27G2 
 .2G30 
 
 ^2588 
 .2540 
 .2504 
 .2401 
 
 .4800 
 .4812 
 
 .4818 
 .4823 
 
 4829 
 4835 
 4840 
 4840 
 
 82. 
 
 83. 
 
 
 15 
 30 
 45 
 
 ~d 
 
 15 
 30 
 45 
 
 .1392 
 .1348 
 .1305 
 .120 2 
 
 T2I8 
 .1175 
 .1132 
 
 .1088 
 
 .4951 
 .4954 
 .4957 
 .4900 
 
 .4902 
 .4905 
 .4908 
 .4970 
 
 08. 
 
 
 15 
 30 
 45 
 
 .3740 
 .3705 
 .3005 
 
 .3024 
 
 4030 
 4044 
 
 ,4052 
 
 ,4u0t» 
 
 70. 
 
 
 15 
 
 30 
 15 
 
 .2419 
 
 .2377 
 .2344 
 
 .2292 
 
 ,4851 
 
 ,4850 
 ,4802 
 .4807 
 
 84. 
 
 
 15 
 30 
 45 
 
 .1045 
 .1002 
 .0958 
 .0915 
 
 .4972 
 .4974 
 .4977 
 .4979 
 
 09. 
 
 
 15 
 30 
 45 
 
 .3581 
 .3543 
 
 70. 
 
 71. 
 
 
 15 
 30 
 45 
 
 .4008 
 
 .407(i 
 
 .ooy^ .4( 8.3 
 
 _^GJU001_ 
 
 .4!)98 
 
 .» 
 
 .3420 
 
 .3379 
 
 .3338 
 o 
 
 2207 
 
 
 15 
 
 30 
 
 .3255 
 
 211 
 
 f.i 
 
 .47(H) 
 .4713 
 .4720 
 
 .4727 
 
 .4734 
 
 77.1 0' 
 15 
 
 45 
 
 "0 
 15 
 
 3fi 
 
 73. 
 
 45 
 
 .3173J.4741 
 
 .3131 .474S 
 
 79. 
 
 
 15 
 
 45 
 
 .2249 
 .2207 
 .2104 
 .2122 
 
 T2079' 
 .203(; 
 .1993 
 .1951 
 
 TTlK>S'.4908 
 .18051.4912 
 .18221.4910 
 
 
 15 
 
 45 
 
 .3090 
 
 3007 
 
 ,4755 
 
 ,4' 
 
 ,47; 
 
 H'^Z 
 
 .29C^5l.4775 
 
 50. 
 
 
 15 
 
 73. 
 
 
 
 
 15 
 
 30 
 
 45 
 
 29241.4781 
 
 ,2882'. 4 /.'^S| 
 .2840|.47it4i 
 .2798'.4y^'0 
 
 15 
 30 
 
 .4872 
 .4870 
 .4881 
 .4880 
 
 ^4890 
 .4895 
 .4899 
 .4904 
 
 85. 
 
 SO. 
 
 
 15 
 30 
 45 
 
 
 15 
 30 
 45 
 
 .0871 
 .0820 
 .078'! 
 .0741 
 
 .0097 
 .0054 
 .0010 
 .0500 
 
 .4981 
 .4983 
 .4884 
 .4980 
 
 4988 
 ,4989 
 ,4990 
 .4992 
 
 4920 
 
 .177! 
 
 .l73iJl.4!i24| 
 
 87. 
 
 
 
 .0.523 
 
 .4993 
 
 
 15 
 
 .0480 
 
 .4994 
 
 
 30 
 
 .0430 
 
 .4995 
 
 
 45 
 
 .0392 .4590 
 
 .1 
 
 .':oa 
 
 ,4927 
 
 30 .1050.4931 
 45 .1007 .49.35 
 
 88. 
 
 15 
 
 30 
 45 
 
 .15(^4 
 .1521 
 
 .5 478 
 .14 
 
 o'-i 
 
 4938 
 ,4941 
 ,4945 
 .4948 
 
 89. 1 
 15 
 30 
 45 
 
 .0349 
 .0305 
 .0202 
 .0218 
 
 T0174 
 .0131 
 
 .0087 
 .0043 
 
 4997 
 49!I7 
 4998 
 
 4998, 
 
 4999 
 ,4999 
 , 5000 
 .5000 
 
 90.1 0! .0000;. 5000 
 
S. lE.VV. 
 
 32. 
 
 4951 
 
 48 . 
 
 4954 
 
 [15 . 
 
 4957 
 
 G2. 
 
 49G0 
 
 18 
 
 49G2 
 
 75 
 
 49G5 
 
 3:1 
 
 4908 
 
 8S 
 
 .4970 
 
 Tb 
 
 .4972 
 
 02 
 
 .4974 
 
 58 
 
 .4977 
 
 15 
 
 .4979 
 
 71 
 
 .4981 
 
 20 
 
 .4983 
 
 •m 
 
 .4984 
 
 r4i 
 
 .4980 
 
 J97 
 
 .4988 
 
 J51 
 
 .4989 
 
 ilO 
 
 .4990 
 
 3G() 
 
 .4992 
 
 323 
 
 .4993 
 
 ISO 
 
 .4994 
 
 43G 
 
 .4995 
 
 3i'2 .4596 
 
 34f 
 
 .4997 
 
 305 
 
 . 49!I7 
 
 ■2{)-i 
 
 ! .4998 
 
 21b 
 
 ) .4998; 
 
 17^ 
 
 I .4999 
 
 13] 
 
 .4999 
 
 08' 
 
 7 , 5000 
 
 104 
 
 } .5000 
 
 )000,.5000| 
 
Fr;i L-j 
 
 T'l. 
 
 S / 
 
 \ ■'''(' iJt. 
 
Tfi -• --ir — 
 
 f'M; 
 
 A- 
 
 E -i 
 
 L\, 
 
 / 
 
V M;iMroe 
 
n 
 
■T. 
 
 N 
 
 / 
 
.-^a?iw 
 
 f! I 
 
 111 
 
 I! : 
 
 )!) 
 
 ,\ 
 
 >A' 
 
 C^ 
 
 11; 5^ 
 
 /.,>V 
 
 '■ I q J. 
 
 xU 
 
 
a*. 
 
\':i ; 
 
 11 
 
 '.i I 
 
 .1" 
 
* * 
 
# 
 
 m 
 
 nk-- 
 
 f 
 
 ':'W^ 
 
 i 
 
 I' f '• ' 
 
 k 
 
 ill 
 
 HI V 
 
 A 
 
m 
 
 •ill 
 
 'V 
 
 . > \ 
 
 'V! 1 
 
 i .,i 
 
/ 
 
 iu/ 77 
 
 ^^ * 
 
 3L. 
 
 li:^^ fji 
 
ill 
 

It I- 
 
 rv' 
 
 ^f 
 
 '''/. • 
 
 -/. 
 
 ::■/' 
 
 ,/^ 
 
\ 
 
 Jl. 
 
 i^.«.' 
 
 ^i 
 
 rx: 
 
 )■(. 
 
 j; 
 
 /' - — 
 
4^^. 
 
 T~ 
 
 f-- 
 
 '■<'l ,'Mi 
 
 -^ 
 
 J'l. 1. 
 
 /'<) ,^»r, 
 
 ^1' 
 
 ~j—~ 
 
 1 K' ' - a 
 
 \ 
 
 )(<i ,'n 
 
 — i'- / 
 
 
 \ 
 
 \ 
 
 — ^H 
 
 T''<;.!),V. 
 
 '•'"; ,'/;>. 
 
 ,/•' 
 
 > 
 
 
 '"',';■'' 
 
 u' 
 
 
 ■ V 
 
 y^ 
 
 'J 
 
 JJ 
 
 
 /•M/'t'.>. 
 
 (r' 
 
 - -J 
 
 1- 
 
 1. 1: 
 
 K . — . 
 
 '•'mj. irv, ■' 
 It" — ^ „___, 
 
W) 
 
 ^A^.A 
 
 I 
 i 
 
 W '■ 
 
 1 
 
 y 1 
 
 E—- 
 
 *^ 
 
 iT'i 
 
 \ \ 
 
 I i A 
 
 ^ 1 
 
 1 ^' 
 
 I •- 
 
 D 
 
 L.. 
 
Si (ill' .'li'' (Ji.((i tin iiii'l 
 
 
 
 t'lj IIV , 
 
 ■ S' ruli- i'.'i rh tr n n m rh 
 
 — -'H 
 
 T Li,. ii>. lf)■<l-^ atutiT.iC 
 

 i 
 
 v.. 
 
 '•-.'i 
 
 C 
 
 T. ' 
 

 /<r 
 
 ~- c 
 
 I'll- Hi. 
 
 I''ii //.;' 
 
 1, 
 
 if; 
 
 D^.- 
 
 
 !■ i>i- n-'^. 
 
 \. 
 
 .1* ir 
 
 \A- 
 
 n* 
 
 
 T'ni n i,. 
 
 F 
 
 A -I 
 
 
 'c /- 
 
 t'nj.U! 
 
 yri, 
 
 .1 (It: 
 
 A' 
 
 T^'.f/ l]<i. 
 
 1} 
 
 
 A 
 
 A 
 
 Fuj.ilS 
 
 i-Ki.iri. 
 
 B 
 
 r 
 
 i: 
 
 t7 
 
 .-_ii 
 
 rui,.i 
 
U i 
 
 A I — 
 
 A- 
 
 <- F, 
 
 1^- 
 
 ^■1 
 
 % 
 
 ■!J 
 
 ■f 
 
 ■i 
 
 !'! 
 
 .H' 
 
 / 
 ,1 -— 
 
/•'''-;. //';, 
 
 FtijiV^i) 
 
 
 J I 
 
 / 
 
 // 
 
 \ 
 
 r 
 
 X \ 
 
 r 
 
 w 
 
 / \ 
 
 / 
 
 / 
 
 1 Fiy. i V.V 
 
 I \ 
 
 '','/• ' '-\ 
 
 t- 
 
 V'- 
 
 \\ 
 
 \\ 
 
 I 
 ll 
 
 \ 
 
 I ff 
 
 6" 
 
 B 
 
 Ag 
 
 '■■'//■ ''.':), 
 
 f-^!) ivrj. 
 
 A 
 
 \S 
 
 — f — -»-- 
 
 -3} 
 
 V 
 
 J 
 
 
 Vfl 
 
 7?- 
 
 ^_-- 
 
 -r--~>^ 
 
 /)-=^- 
 
 / 4 
 
 ■ V. , 
 
 C 
 
 P=! 
 
 /•Vf/.xpfi, 
 
 1 :-f 
 
 I . ■ ' 
 
 i- I 
 
 -^L .._ . 
 
 ' I ! 
 
 t i 
 
 I I 
 
 / 
 
 — i~ 
 
 :_..„_ J 
 
 M 
 
 K 
 
 II 
 
 c 
 
 w 
 
 I' "I- I \',S 
 
 \ 
 
 7{ 
 
 T.,h 
 
 ' y ftlCW: .Vt'.iu 
 
ly 
 
 / 
 
 I ' 
 
 5V" 
 
 ? ^~ 
 
 irt^- 
 
 ni. 
 //I— = 
 
V 
 
^^*-li^^ 
 
 vV 
 
 If, 
 
 .».-'. 
 
 y'i 
 
 /• 
 
 ^ 
 
 
 
 ft 
 I 
 
 11 
 
 ir I 
 
I 
 PI 
 
i^.;r 
 
 
 
 
 r 
 
 
 
 
 
 :, 
 
 
 If 
 
 
 i <3' 
 
 A<~- 
 
VI. r.) 
 
 trN^ 
 
 .^- 
 
 TO 
 
 li 
 
 I ;• 
 
 IT 
 
 rvh.Try Mev '' :At<iL' 0" 
 
A^ 
 
 Vii 
 
 i 
 
 1 1 
 
 
 i 
 
 I ; 
 
 
 •n^ 
 
 ^L 
 
 .4 _^i!ii( 
 
 /{- 
 
Viij I',:'. 
 
 hnilli'i 
 
 l-'llh I '' I 
 
 A 
 
 l-iLj/li,'.! 
 
 i^lJ:50, ff 
 
 I'U h t.y JitfX if„IM>l 
 
N. 
 
 
 1 
 
 o" 
 
 2 
 
 0. 
 
 3 
 
 0. 
 
 4 
 
 0. 
 
 _5 
 
 0. 
 
 6 
 
 0. 
 
 7 
 
 0. 
 
 8 
 
 0. 
 
 9 
 
 0. 
 
 10 
 
 1. 
 
 11 
 
 
 12 
 
 
 13 
 
 
 14 
 
 
 15 
 
 
 16 
 
 
 17 
 
 
 18 
 
 
 19 
 
 - 
 
 20 
 
 
 21 
 
 
 22 
 
 
 23 
 
 
 24 
 
 
 25 
 
 
A TABLE 
 
 OP 
 
 LOGARITHMS OF NUMBERS 
 
 FROM 1 O 10,000. 
 
 
 N. 
 1 
 
 Lo?. 
 
 N. 
 26 
 
 Log. 
 
 N. 
 51 
 
 Loi?. 
 
 N. 
 76 
 
 liOg. 
 
 0.000000 
 
 1.414973 
 
 1.707570 
 
 1.880814 
 
 2 
 
 0.301030 
 
 27 
 
 1.431364 
 
 52 
 
 1.716003 
 
 77 
 
 1.886491 
 
 3 
 
 0.477121 
 
 28 
 
 1.447158 
 
 53 
 
 1.724276 
 
 78 
 
 1.892095 
 
 4 
 
 0.G02060 
 
 29 
 
 1.462398 
 
 54 
 
 1.732394 
 
 79 
 
 1.897627 
 
 5 
 
 0.698970 
 
 30 
 
 1.477121 
 
 55 
 
 1.740363 
 
 80 
 
 1.903090 
 
 6 
 
 0.778151 
 
 31 
 
 1.491362 
 
 56 
 
 1.748188 
 
 81 
 
 1.908485 
 
 7 
 
 0.845098 
 
 32 
 
 1.505150 
 
 57 
 
 1.755875 
 
 82 
 
 1.913814 
 
 8 
 
 0.903090 
 
 33 
 
 1.518514 
 
 58 
 
 1.763428 
 
 83 
 
 1.919078 
 
 9 
 
 0.954243 
 
 34 
 
 1.531479 
 
 59 
 
 1.770852 
 
 84 
 
 1 . 924279 
 
 U) 
 li 
 
 1.000000 
 1.041393 
 
 35 
 36 
 
 1.544068 
 1.556303 
 
 60 
 61 
 
 1.778151 
 1.785330 
 
 85 
 86 
 
 1.929419 
 
 1.934498 
 
 12 
 
 1.079181 
 
 37 
 
 1.568202 
 
 62 
 
 1.792392 
 
 87 
 
 1.939519 
 
 13 
 
 1.113943 
 
 38 
 
 1.579784 
 
 63 
 
 1.799341 
 
 88 
 
 1.944483 
 
 14 
 
 1.146128 
 
 39 
 
 1.591065 
 
 64 
 
 1.806180 
 
 89 
 
 1.949390 
 
 15 
 
 1.176091 
 
 40 
 
 1.602060 
 
 65 
 
 1.812913 
 
 90 
 
 1.954243 
 
 16 
 
 1.204120 
 
 41 
 
 1.612784 
 
 66 
 
 1.819544 
 
 91 
 
 1.959041 
 
 17 
 
 1.230449 
 
 42 
 
 1.623249 
 
 67 
 
 1.826075 
 
 92 
 
 1.963788 
 
 18 
 
 1.255273 
 
 43 
 
 1.633468 
 
 68 
 
 1.832509 
 
 93 
 
 1.968483 
 
 19 
 
 1.278754 
 
 44 
 
 1.643453 
 
 69 
 
 1.8.38849 
 
 94 
 
 1.973128 
 
 "■M 
 
 1.301030 
 
 45 
 
 1.653213 
 
 70 
 
 1.845098 
 
 95 
 
 1.977724 
 
 21 
 
 1.322219 
 
 46 
 
 1.662758 
 
 71 
 
 1.851258 
 
 96 
 
 1.982271 
 
 22 
 
 1.342423 
 
 47 
 
 1.672098 
 
 72 
 
 1.857333 
 
 97 
 
 1.986772 
 
 23 
 
 1.361728 
 
 48 
 
 1.681241 
 
 73 
 
 1.863323 
 
 98 
 
 1.991226 
 
 24 
 
 1.380211 
 
 49 
 
 1.690196 
 
 74 
 
 1.869232 
 
 99 
 
 1.995635 
 
 2b 
 
 1.397940 
 
 50 
 
 1.698970 
 
 75 
 
 1.875061 
 
 100 
 
 2.000000 
 
 N. B. In the following table, in the last nine columns of 
 each page, where th« first or leading figures change from Q's 
 to O's, points or dots are introduced instead of the O's through 
 the rest of the line, to catch the eye, and to indicate thai from 
 Ihence the annexed first two figures of the Logarithm in the 
 second column stand in the ne.\t lower line. 
 
A TABLE OF LOGARITHMS FROM 1 TO 10,000. 
 
 '"'I 
 
 S 
 
 N. 
 
 1 |l|2|3i4i5i6|7|8|9|D. 1 
 
 100 
 
 000000 
 
 0434 
 
 08()8 
 
 1301 
 
 1734 
 
 2166 
 
 2.'i;'S. 3029 
 
 3461 
 
 3S91 
 
 432 
 
 101 
 
 4321 
 
 4751 
 
 5181 
 
 5609 
 
 6038 
 
 6406 
 
 6894 
 
 "321 
 
 7748 
 
 8174 
 
 428 
 
 103 
 
 8600 
 
 9026 
 
 9451 
 
 9876 
 
 .300 
 
 .724 
 
 1147 
 
 1570 
 
 1993 
 
 2415 
 
 424 
 
 103 
 
 012837 
 
 3259 
 
 3680 
 
 4100 
 
 4521 
 
 4940 
 
 5360 
 
 5779 
 
 0197 
 
 6616 
 
 419 
 
 104 
 
 7033 
 
 7451 
 
 7868 
 
 8284 
 
 8700 
 
 9116 
 
 9532 
 
 9947 
 
 .361 
 
 .775 
 
 416 
 
 105 
 
 021189 
 
 1603 
 
 2016 
 
 2428 
 
 2841 
 
 3252 
 
 3664 
 
 4075 
 
 44S6 
 
 4896 
 
 412 
 
 106 
 
 5306 
 
 5715 
 
 6125 
 
 6533 
 
 6942 
 
 7350 
 
 7757 
 
 8164 
 
 8571 
 
 8978 
 
 408 
 
 107 
 
 9384 
 
 9789 
 
 .195 
 
 .600 
 
 1004 
 
 1408 
 
 1812 
 
 2216 
 
 2619 
 
 3021 
 
 404 
 
 108 
 
 033424 
 
 3826 
 
 4227 
 
 4628 
 
 5029 
 
 5430 
 
 5830 
 
 6230 
 
 6629 
 
 7028 
 
 400 
 
 109 
 110 
 
 7426 
 
 7825 
 
 8223 
 
 2182 
 
 8620 
 2576 
 
 9017 
 
 291)9 
 
 9414 
 3302 
 
 9811 
 3755 
 
 .207 
 
 .602 
 4540 
 
 . 998 
 4932 
 
 390 
 3i)3 
 
 041393 
 
 1787 
 
 4148 
 
 HI 
 
 5323 
 
 5714 
 
 6105 
 
 6495 
 
 6885 
 
 7275 
 
 7664 
 
 8053 
 
 8442 
 
 8830 
 
 389 
 
 112 
 
 9218 
 
 9606 
 
 9993 
 
 .380 
 
 .766 
 
 1153 
 
 1538 1924 
 
 2309 
 
 2694 
 
 386 
 
 113 
 
 053078 
 
 3163 
 
 3816 
 
 4230 
 
 4613 
 
 4996 
 
 5378 5760 
 
 6142 
 
 6524 
 
 382 
 
 114 
 
 6905 
 
 7286 
 
 7666 
 
 8016 
 
 8426 
 
 8805 
 
 9185 9563 
 
 9942 
 
 . 320 
 
 379 
 
 11 -J 
 
 000698 
 
 1075 
 
 1452 
 
 1829 
 
 2206 
 
 2582 
 
 2958 
 
 3333 
 
 3709 
 
 4083 
 
 376 
 
 116 
 
 4458 
 
 4832 
 
 5206 
 
 5580 
 
 5953 
 
 6326 
 
 6699 
 
 7071 
 
 7443 
 
 7815 
 
 372 
 
 117 
 
 8186 
 
 8557 
 
 8928 
 
 9298 
 
 9668 
 
 ..38 
 
 .407 
 
 .770 
 
 1 145 
 
 1514 
 
 369 
 
 118 
 
 071882 
 
 225(t 
 
 2617 
 
 2985 
 
 3352 
 
 3718 
 
 4085 
 
 4451 
 
 4816 
 
 5182 
 
 366 
 
 119 
 120 
 
 5547 
 
 5912 
 
 6276 
 9904 
 
 6640 
 .266 
 
 7004 
 .626 
 
 7368 
 ,987 
 
 7731 
 1347 
 
 8994 
 1707 
 
 8457 
 
 8819 
 
 363 
 360 
 
 079181 
 
 9543 
 
 2067 
 
 2426 
 
 121 
 
 082785 
 
 3144 
 
 3503 
 
 3861 
 
 4219 
 
 1576 
 
 4934 
 
 .5291 
 
 5647 
 
 6004 
 
 357 
 
 122 
 
 6360 
 
 6716 
 
 7071 
 
 7126 
 
 778 1 
 
 8136 8490 
 
 8845 
 
 9198 
 
 9552 
 
 355 
 
 123 
 
 9905 
 
 .258 
 
 .611 
 
 .963 
 
 1315 
 
 1667 2018 
 
 2370 
 
 2721 
 
 3071 
 
 351 
 
 124 0931221 
 
 3772 
 
 4122 
 
 4471 
 
 4820 
 
 5169 5518 
 
 586() 
 
 6215 
 
 6562 
 
 349 
 
 125 
 
 6910 
 
 7257 
 
 7604 
 
 7951 
 
 8298 
 
 8644, 8990 
 
 9335 
 
 9681 
 
 ..26 
 
 3''e 
 
 126 
 
 100371 
 
 0715 
 
 1059 
 
 1403 
 
 1747 
 
 2091 
 
 2434 
 
 2777 
 
 3119 
 
 3462 
 
 343 
 
 127 
 
 3 804 
 
 4146 
 
 4487 
 
 4828 
 
 5169 
 
 5510, 5851 
 
 6191 
 
 6531 
 
 6871 
 
 340 
 
 128 
 
 7210 
 
 7549 
 
 7888 
 
 8227 
 
 8565 
 
 8903' 9241 
 
 9579 
 
 9916 
 
 .253 
 
 338 
 
 129 
 130 
 
 110590 
 
 0926 
 
 1263 
 4611 
 
 1599 
 4i)14 
 
 1934 
 
 5278 
 
 2270 
 
 2605 
 5943 
 
 2940 
 6276 
 
 3275 
 
 (5608 
 
 3(509 
 6940 
 
 335 
 333 
 
 113943 
 
 4277 
 
 5611 
 
 131 
 
 72 n 
 
 7603 
 
 7934 
 
 821)5 
 
 ,8595 
 
 8926 
 
 9256 
 
 958() 
 
 9915 
 
 .245 
 
 330 
 
 132 
 
 120574 
 
 09()3 
 
 1231 
 
 1560 
 
 .1888 
 
 2216 
 
 2544 
 
 2871 
 
 3198 
 
 3525 
 
 328 
 
 133 
 
 3852 
 
 4178 
 
 4504 
 
 4830 
 
 *5156 
 
 548 1 
 
 5806 
 
 6131 
 
 645(5 
 
 6781 
 
 325 
 
 134 
 
 7105 
 
 7429 
 
 7753 
 
 8076 
 
 8399 
 
 8722 
 
 9045 
 
 9368 
 
 9690 
 
 ..12 
 
 323 
 
 135 
 
 130331 
 
 0655 
 
 0977 
 
 1298 
 
 1619 
 
 1939 
 
 2260 
 
 2580 
 
 2900 
 
 3219 
 
 321 
 
 136 
 
 3539 
 
 3858 
 
 4177 
 
 4496 
 
 4814 
 
 5133 
 
 545 1 
 
 5769 
 
 6086 
 
 6403 
 
 318 
 
 137 
 
 6721 
 
 7037 
 
 7354 
 
 7671 
 
 7987 
 
 8303' 8618 
 
 8934 
 
 9249 
 
 95(54 
 
 315 
 
 138 
 
 9879 
 
 .194 
 
 . 508 
 
 .8-.2 
 
 1136 
 
 1450; 1763 
 
 2076 
 
 2389 
 
 2702 
 
 314 
 
 139 
 140 
 
 143015 
 
 3327 
 6138 
 
 3639 
 
 3951 
 7058 
 
 4263 
 73(57 
 
 457114885 
 
 519(5 
 8291 
 
 5507 
 8603 
 
 5818 
 8911 
 
 311 
 309 
 
 146128 
 
 6748 
 
 7676 
 
 7985 
 
 141 
 
 9219 
 
 9527 
 
 9S35 
 
 . 142 
 
 .449 
 
 . 756 
 
 1063 
 
 1370 
 
 1676 
 
 1982 
 
 307 
 
 142 
 
 152288 
 
 2594 
 
 2900 
 
 3205 
 
 3510 
 
 3815 
 
 4120 
 
 4421 
 
 4728 
 
 5032 
 
 305 
 
 143 
 
 5336 
 
 5640 
 
 5943 
 
 6246 
 
 6549 
 
 6852 
 
 7154 
 
 7457 
 
 7759 
 
 806 1 
 
 303 
 
 144 
 
 8362 
 
 8664 
 
 8965 
 
 9266 
 
 9567 
 
 9868 
 
 .1(58 
 
 .469 
 
 .769 
 
 10(>8 
 
 301 
 
 145 
 
 161368 
 
 1667 
 
 1967 
 
 2266 
 
 2564 
 
 2863 
 
 3161 
 
 3460 
 
 3758 
 
 4055 
 
 299 
 
 146 
 
 4353 
 
 4650 
 
 4947 
 
 5244 
 
 5541 
 
 5838 
 
 6134 
 
 6430 
 
 6726 
 
 7022 
 
 297 
 
 147 
 
 73 J 7 
 
 7613 
 
 7908 
 
 8203 
 
 8497 
 
 8792 
 
 9086 
 
 9380 
 
 9674 
 
 9968 
 
 295 
 
 148 
 
 170262 
 
 0555 
 
 0848 
 
 1141 
 
 1431 
 
 1726 
 
 2019 
 
 2311 
 
 2603 
 
 2895 
 
 293 
 
 149 
 150 
 
 3186 
 
 3478 
 6381 
 
 3769 
 
 4060 
 6959 
 
 4351 
 
 7248 
 
 4641 
 
 4932 
 
 5222 
 
 5512 
 
 5802 
 8689 
 
 291 
 289 
 
 176091 
 
 6670 
 
 753(5 
 
 7825 
 
 8113 
 
 8401 
 
 151 
 
 8977 
 
 9264 
 
 9552 
 
 9839 
 
 .126 
 
 .413 
 
 .699 
 
 .985 
 
 1272 
 
 1.558 
 
 287 
 
 152 
 
 181844 
 
 2129 
 
 2415 
 
 2700 
 
 2985 
 
 3270 
 
 3555 
 
 3839 
 
 4123 
 
 4407 
 
 285 
 
 153 
 
 4691 
 
 4975 
 
 5259 
 
 5542 
 
 5825 
 
 6108 
 
 6391 
 
 6674 
 
 6956 
 
 7239 
 
 283 
 
 154 
 
 7521 
 
 7803 
 
 8084 
 
 8366 
 
 8647 
 
 8938 
 
 9'2(IM 
 
 9490 
 
 9771 
 
 ..51 
 
 '281 
 
 155 
 
 190332 
 
 0612 
 
 0892 
 
 1171 
 
 1451 
 
 1730 
 
 2010 
 
 2289 
 
 2567 
 
 2846 
 
 279 
 
 156 
 
 3125 
 
 3403 
 
 368 1 
 
 3959 
 
 4237 
 
 4514 
 
 4792 
 
 5069 
 
 5346 
 
 5623 
 
 278 
 
 157 
 
 5899 
 
 6176 
 
 6453 
 
 6729 
 
 7005 
 
 7281 
 
 7556 
 
 7832 
 
 8107 
 
 8382 
 
 276 
 
 158 
 
 8657 
 
 8932 
 
 9206 
 
 9481 
 
 9755 
 
 ..29 
 
 .303 
 
 .577 
 
 .850 
 
 1124 
 
 274 
 
 159 
 
 201397 
 
 1670 
 
 19'13 
 
 2216 
 
 2488 
 
 2761 
 
 3033 
 
 3305 
 
 3577 
 
 38481 272 1 
 
 .N. 1 1 1 1 2 1 3 1 4 i 5 1 6 i 7 1 8 1 9 1 D. 1 
 
A TABLE OP LOGARITHMS FROM 1 TO 10,000. 
 
 9 
 
 D. 
 
 S[H 
 
 4:32 
 
 174 
 
 428 
 
 415 
 
 424 
 
 616 
 
 419 
 
 775 
 
 416 
 
 896 
 
 412 
 
 978 
 
 408 
 
 O'Jl 
 
 404 
 
 01^8 
 
 400 
 
 998 
 
 396 
 
 iVM 
 
 ;393 
 
 8:30 
 
 389 
 
 (594 
 
 386 
 
 5-^4 
 
 382 
 
 •S-20 
 
 379 
 
 08:3 
 
 376 
 
 815 
 
 372 
 
 514 
 
 369 
 
 182 
 
 366 
 
 819 
 
 363 
 
 4:^6 
 
 360 
 
 004 
 
 357 
 
 552 
 
 355 
 
 071 
 
 351 
 
 562 
 
 349 
 
 .26 
 
 im 
 
 462 
 
 343 
 
 871 
 
 340 
 
 25:3 
 
 338 
 
 609 
 
 335 
 
 940 
 
 333 
 
 245 
 
 330 
 
 525 
 
 328 
 
 781 
 
 325 
 
 .12 
 
 323 
 
 219 
 
 321 
 
 40:3 
 
 318 
 
 564 
 
 315 
 
 702 
 
 314 
 
 818 
 
 311 
 
 911 
 
 30;) 
 
 982 
 
 :}()7 
 
 0:52 
 
 305 
 
 06 1 
 
 3U3 
 
 068 
 
 301 
 
 055 
 
 29;> 
 
 022 
 
 297 
 
 968 
 
 295 
 
 895 
 
 293 
 
 802 
 
 291 
 
 689 
 
 289 
 
 558 
 
 287 
 
 407 
 
 285 
 
 2:39 
 
 283 
 
 .51 
 
 '281 
 
 846 
 
 279 
 
 )623 
 
 278 
 
 !:382 
 
 276 
 
 1124 
 
 274 
 
 5848 
 
 272 
 
 9 
 
 D. 
 
 N. I 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 D. 1 
 
 160 
 
 204120 
 
 4391 
 
 466.1 
 
 1 4934 
 
 520'] 
 
 t 54751 574f 
 
 ) 60 le 
 
 . 628( 
 
 > 6.55e 
 
 > 271 
 
 161 
 
 6826 
 
 709(] 
 
 . 736!; 
 
 7634 
 
 7904 
 
 I 81 7.'^ 
 
 t 8441 
 
 871f 
 
 > 897t 
 
 1 9247 
 
 ' 269 
 
 162 
 
 951.^ 
 
 978L 
 
 1 ..51 
 
 .319 
 
 .58f 
 
 » .85S 
 
 1 112! 
 
 138? 
 
 1 16.54 
 
 t 1921 
 
 267 
 
 163 
 
 212188 
 
 2454 
 
 c 272(J 
 
 2986 
 
 325S 
 
 ! 351fe 
 
 378:^ 
 
 I 404S 
 
 4314 
 
 4579 
 
 266 
 
 164 
 
 4844 
 
 510ii 
 
 5:37;^ 
 
 5638 
 
 5902 
 
 , 6l6r 
 
 643f 
 
 1 66f>4 
 
 - 6957 
 
 ' 7221 
 
 264 
 
 165 
 
 7484 
 
 7747 
 
 ' 801(J 
 
 8273 
 
 853P 
 
 8798 
 
 906C 
 
 9323 
 
 958.1 
 
 984G 
 
 262 
 
 166 
 
 220108 
 
 037(J 
 
 0631 
 
 0892 
 
 11. 5L 
 
 1414 
 
 167.'5 
 
 1936 
 
 2I9f 
 
 2456 
 
 261 
 
 167 
 
 2716 
 
 29 7() 
 
 323fi 
 
 3496 
 
 3755 
 
 4015 
 
 4274 
 
 453.1 
 
 4792 
 
 .5051 
 
 259 
 
 168 
 
 5309 
 
 5568 
 
 582(j 
 
 6084 
 
 6342 
 
 660U 
 
 6858 
 
 7115 
 
 7372 
 
 7630 
 
 2.58 
 
 169 
 170 
 
 7887 
 
 8144 
 0704 
 
 84O0 
 0960 
 
 8657 
 1215 
 
 891:] 
 1470 
 
 9170 
 1724 
 
 9420 
 1979 
 
 9682 
 2234 
 
 993S 
 
 2488 
 
 .193 
 
 2742 
 
 2,56 
 2.54 
 
 230449 
 
 171 
 
 2996 
 
 3250 
 
 3504 
 
 3757 
 
 4011 
 
 4264 
 
 4517 
 
 4770 
 
 5023 
 
 5276 
 
 253 
 
 172 
 
 5528 
 
 6781 
 
 6033 
 
 6285 
 
 6537 
 
 6789 
 
 7041 
 
 7292 
 
 7544 
 
 7795 
 
 252 
 
 173 
 
 8046 
 
 8297 
 
 8548 
 
 8799 
 
 9049 
 
 9299 
 
 9550 
 
 9800 
 
 ...50 
 
 .:300 
 
 2,50 
 
 174 
 
 240549 
 
 0799 
 
 1048 
 
 1297 
 
 1546 
 
 1795 
 
 2044 
 
 2293 
 
 2.541 
 
 2790 
 
 249 
 
 175 
 
 3038 
 
 3286 
 
 35:34 
 
 3782 
 
 4030 
 
 4277 
 
 4525 
 
 4772 
 
 50 1 9 
 
 5266 
 
 248 
 
 176 
 
 6513 
 
 5759 6006 
 
 6252 
 
 6499 
 
 6745 
 
 6991 
 
 7237 
 
 7482 
 
 7728 
 
 246 
 
 177 
 
 7973 
 
 8219 8464 8709 
 
 8<i54 
 
 9198 
 
 9443 
 
 9687 
 
 9932 
 
 .176 
 
 246 
 
 178 
 
 250420 
 
 066410908 1151 
 
 1395 
 
 1638 
 
 1881 
 
 2125 
 
 2368 
 
 2610 
 
 243 
 
 179 
 
 180 
 
 2853 
 
 3096 
 5Q14 
 
 33,381 3580 
 
 3822 
 6237 
 
 4064 
 6477 
 
 4306 
 6718 
 
 4548 
 69.58 
 
 4790 
 
 7198 
 
 5031 
 7439 
 
 242 
 
 241 
 
 255273 
 
 5755 
 
 5996 
 
 181 
 
 7679 
 
 7918 
 
 8158 
 
 8398 
 
 8637 
 
 8877 
 
 9116 
 
 9355 
 
 9594 
 
 98:33 
 
 239 
 
 182 
 
 260071 
 
 0310 
 
 0548 
 
 0787 
 
 1025 
 
 1263 
 
 1501 
 
 1739 
 
 1976 
 
 2214 
 
 238 
 
 183 
 
 2451 
 
 2688 
 
 2925 
 
 3162 
 
 3399 
 
 3636 
 
 3873 
 
 4109 
 
 4346 
 
 45 S 2 
 
 ?-37 
 
 184 
 
 4818 
 
 5054 
 
 5290 
 
 5525 
 
 5761 
 
 5996 
 
 6232 
 
 6467 
 
 6702 
 
 6937 
 
 235 
 
 185 
 
 7172 
 
 7406 
 
 7641 
 
 7875 
 
 8110 
 
 8344 
 
 8578 
 
 8812 
 
 9046 
 
 9279 
 
 234 
 
 186 
 
 9513 
 
 9746 
 
 9980 
 
 .213 
 
 .446 
 
 .679 
 
 .912 
 
 1144 
 
 1377 
 
 1609 
 
 233 
 
 187 
 
 271842 
 
 2074 
 
 2306 
 
 2538 
 
 2770 
 
 3001 
 
 3233 
 
 3464 
 
 3696 
 
 3927 
 
 232 
 
 188 
 
 4158 
 
 4389 
 
 4620 
 
 4850 
 
 50 'J 1 
 
 5311 
 
 5542 
 
 5772 
 
 6002 
 
 6232 
 
 230 
 
 189 
 190 
 
 6462 
 
 6692 
 
 8982 
 
 6921 
 9211 
 
 7151 
 9439 
 
 7380 
 9667 
 
 7609 
 9895 
 
 7838 
 .123 
 
 8067 
 
 8296 
 
 .578 
 
 8525 
 .806 
 
 229 
 
 228 
 
 278754 
 
 .351 
 
 191 
 
 281033 
 
 1261 
 
 1488 
 
 1715 
 
 1942 
 
 2169 
 
 2396 
 
 2622 
 
 2849 
 
 3075 
 
 227 
 
 192 
 
 3301 
 
 3527 
 
 3753 
 
 3979 
 
 4205 
 
 4431 
 
 4656 
 
 4882 
 
 5107 
 
 5332 
 
 226 
 
 193 
 
 5557 
 
 5782 
 
 6007 
 
 6232 
 
 6456 
 
 6681 
 
 6905 
 
 7130 
 
 73.54 
 
 7578 
 
 225 
 
 194 
 
 7802 
 
 8026 
 
 8249 
 
 8473 
 
 8696 
 
 8920 
 
 9143 
 
 9366 
 
 9.589 
 
 9812 
 
 223 
 
 195 
 
 290035 
 
 0257 
 
 0480 
 
 0702 
 
 0925 
 
 1147 
 
 1369 
 
 1,591 
 
 1813 
 
 2034 
 
 222 
 
 196 
 
 2256 
 
 2478 
 
 2699 
 
 2920 
 
 3141 
 
 3363 
 
 3584 
 
 3804 
 
 4025 
 
 4246 
 
 221 
 
 197 
 
 4466 
 
 4687 
 
 490? 
 
 5127 
 
 5347 
 
 5567 
 
 5787 
 
 6007 
 
 6226 
 
 6446 
 
 220 
 
 198 
 
 6665 
 
 6884 
 
 7104 
 
 7323 
 
 7542 
 
 7761 
 
 7979 
 
 8198 
 
 8416 
 
 8635 
 
 219 
 
 199 
 200 
 
 8853 
 
 9071 
 1247 
 
 9289 
 1464 
 
 9507 
 1681 
 
 9725 
 
 1898 
 
 9943 
 
 2114 
 
 .161 
 2331 
 
 .378 
 2.547 
 
 .595 
 2764 
 
 .813 
 
 2980 
 
 218 
 217 
 
 3010:10 
 
 201 
 
 3196 
 
 ;i4l2 
 
 3628 
 
 3844 
 
 4059 
 
 4275 
 
 449 1 
 
 4706 
 
 4921 
 
 5136 
 
 216 
 
 202 
 
 5:351 
 
 5566 
 
 5781 
 
 5996 
 
 6211 
 
 6425 
 
 6639 
 
 6854 
 
 7068 
 
 7282 
 
 215 
 
 203 
 
 7496 
 
 7710 
 
 7924 
 
 8137 
 
 8351 
 
 8564 
 
 8778 
 
 8991 
 
 9204 
 
 9417 
 
 213 
 
 204 
 
 9630 
 
 9843 
 
 ..56 
 
 .268 
 
 .481 
 
 .693 
 
 .906 
 
 1118 
 
 1330 
 
 1,542 
 
 212 
 
 205 
 
 311754 
 
 1966 
 
 2177 
 
 2389 
 
 2600 
 
 2812 
 
 ;3023 
 
 32.34 
 
 3445 
 
 3C56 
 
 211 
 
 206 
 
 :3867 
 
 4078 
 
 4289 
 
 4499 
 
 4710 
 
 4920 
 
 5 1:30 
 
 5340 
 
 .5551 
 
 5760 
 
 210 
 
 207 
 
 6970 
 
 6180 
 
 6390 
 
 6599 
 
 6809 
 
 7018 
 
 7227 
 
 7436 
 
 764.fi 
 
 7854 
 
 209 
 
 208 
 
 8063 
 
 8272 
 
 8481 
 
 8689 
 
 8898 
 
 9106 
 
 9314 
 
 9522 
 
 9730 
 
 9938 
 
 208 
 
 209 
 210 
 
 320146 
 
 0354 
 2426 
 
 0562 
 2633 
 
 0769 
 
 2839 
 
 0977 
 3046 
 
 1184 
 3252 
 
 1391 
 .3458 
 
 1598 
 3665 
 
 1805 
 3871 
 
 2012 
 4077 
 
 207 
 206 
 
 322219 
 
 211 
 
 4282 
 
 4488 
 
 4694 
 
 4899 
 
 5105 
 
 5310 
 
 5516 
 
 5721 
 
 5926 
 
 6131 
 
 205 
 
 212 
 
 6336 
 
 6541 
 
 6745 
 
 6950 
 
 7155 
 
 7359 
 
 7563 
 
 7767 
 
 7972 
 
 8176 
 
 204 
 
 213 
 
 8380 
 
 8583 
 
 8787 
 
 8991 
 
 9194 
 
 9398 
 
 9601 
 
 9805 
 
 ...8 
 
 .211 
 
 203 
 
 214 
 
 3.30414 
 
 0617 
 
 0819 
 
 1022 
 
 1225 
 
 1427 
 
 1630 
 
 1832 
 
 2034 
 
 2236 
 
 202 
 
 215 
 
 2438 
 
 2640 
 
 2842 
 
 Ofj/tA \ 
 
 3248 
 
 3447 
 
 3649 
 
 3850 
 
 4051 
 
 4253 
 
 202 
 
 216 
 
 4454 
 
 46551 
 
 4856 
 
 5057 
 
 5257 
 
 5458 
 
 5658 
 
 5859 
 
 6059 
 
 6260 
 
 201 
 
 217 
 
 6460 
 
 ()660 
 
 6860 
 
 7060 
 
 7260 
 
 7459 
 
 7659 
 
 7858 
 
 8058 
 
 8257 
 
 200 
 
 218 
 
 8456 
 
 86.56 
 
 8855 
 
 9054 
 
 9253 
 
 9451 
 
 9650 
 
 9849 
 
 .,47 
 
 .246 
 
 199 
 
 219 
 
 340444 0642' 
 
 0841 
 
 1039 I337I 
 
 14:15 1632' 
 
 18:30 2028' 
 
 2225 
 
 198 
 
 ^'- 1 <1 t Ul 2 1 3 4 1 5 1 6 7 1 8 1 9 D. 1 
 
4 
 
 ' I 
 
 ■ft' 
 
 " it 
 
 8' . 
 11 
 
 r:l- 
 
 4 
 
 A TABLE OF LOGARITHMS FROM 1 TO 10,000. 
 
 
 
 N. 
 
 1 |l(2|3 4|5|6|7|8|9|D. 1 
 
 220 
 
 342423 
 
 2620 
 
 2817 
 
 3014 
 
 3212 
 
 3409 
 
 3606 3802 
 
 3999 
 
 41961 197 1 
 
 221 
 
 4392 
 
 4589 
 
 4785 
 
 4981 
 
 5178 
 
 5374 
 
 5670 
 
 6766 
 
 5962 
 
 6187 
 
 196 
 
 222 
 
 6353 
 
 6549 
 
 6744 
 
 6939 
 
 7135 
 
 7330 
 
 7525 
 
 7720 
 
 7915 
 
 8110 
 
 195 
 
 223 
 
 8305 
 
 8500 
 
 8694 
 
 8889 
 
 9083 
 
 9278 
 
 9472 
 
 9666 
 
 9860 
 
 ...54 
 
 194 
 
 224 
 
 350248 
 
 0442 
 
 0636 
 
 0829 
 
 1023 
 
 1216 
 
 1410 
 
 1603 
 
 1796 
 
 1989 
 
 193 
 
 225 
 
 2183 
 
 2375 
 
 2568 
 
 2761 
 
 2954 
 
 3147 
 
 3339 
 
 3532 
 
 372^1 
 
 3916 
 
 193 
 
 226 
 
 4108 
 
 4301 
 
 4493 
 
 4685 
 
 4876 
 
 5068 
 
 6260 
 
 6452 
 
 6643 
 
 5834 
 
 192 
 
 227 
 
 6026 
 
 6217 
 
 6408 
 
 6599 
 
 6790 
 
 6981 
 
 7172 
 
 7363 
 
 7554 
 
 7744 
 
 191 
 
 228 
 
 7935 
 
 8125 
 
 8316 
 
 8.506 
 
 8696 
 
 8886 
 
 9076 
 
 9266 
 
 9456 
 
 9646 
 
 190 
 
 22U 
 23U 
 
 9835 
 
 ..25 
 1917 
 
 .215 
 2105 
 
 .404 
 2294 
 
 .593 
 
 2482 
 
 .783 
 2671 
 
 .972 
 
 2859 
 
 1161 
 3048 
 
 1350 
 3236 
 
 1539 
 3424 
 
 189 
 
 188 
 
 361728 
 
 231 
 
 3612 
 
 3800 
 
 3988 
 
 4176 
 
 4363 
 
 4551 
 
 4739 
 
 4926 
 
 5113 
 
 .5301 
 
 188 
 
 232 
 
 6488 
 
 5675 
 
 5862 
 
 6049 
 
 6236 
 
 6423 
 
 6610 
 
 6796 
 
 6983 
 
 7169 
 
 187 
 
 233 
 
 7356 
 
 7542 
 
 7729 
 
 7915 
 
 8101 
 
 8287 
 
 8473 
 
 86.59 
 
 8845 
 
 9030 
 
 186 
 
 234 
 
 9216 
 
 9401 
 
 9587 
 
 9772 
 
 9958 
 
 .143 
 
 .328 
 
 .613 
 
 .698 
 
 .883 
 
 185 
 
 235 
 
 371068 
 
 1253 
 
 1437 
 
 1622 
 
 1806 
 
 1991 
 
 2175 
 
 2360 
 
 2544 
 
 2728 
 
 184 
 
 236 
 
 2912 
 
 3096 
 
 3280 
 
 3464 
 
 3047 
 
 3831 
 
 4015 
 
 4199 
 
 4383 
 
 4565 
 
 184 
 
 237 
 
 4748 
 
 4932 
 
 5115 
 
 5298 
 
 5481 
 
 6664 
 
 6846 
 
 6029 
 
 6212 
 
 6394 
 
 183 
 
 238 
 
 6577 
 
 6759 
 
 6942 
 
 7124 
 
 7306 
 
 7488 
 
 7670 
 
 7852 
 
 8034 
 
 8216 
 
 182 
 
 239 
 
 240 
 
 8398 
 
 8580 
 0392 
 
 8761 
 0573 
 
 8943 
 0754 
 
 9124 
 0934 
 
 9306 
 1116 
 
 9487 
 1296 
 
 9668 
 1476 
 
 9849 
 1656 
 
 ..30 
 
 183V 
 
 181 
 181 
 
 380211 
 
 241 
 
 2017 
 
 2197 
 
 2377 
 
 2557 
 
 2737 
 
 2917 
 
 3097 
 
 327? 
 
 3466 
 
 3636 
 
 180 
 
 242 
 
 3815 
 
 3995 
 
 4174 
 
 4353 
 
 4533 
 
 4712 
 
 4891 
 
 6070 
 
 5249 
 
 6423 
 
 179 
 
 243 
 
 5606 
 
 6785 
 
 5964 
 
 6142 
 
 6321 
 
 6499 
 
 6677 
 
 6856 
 
 7034 
 
 7212 
 
 178 
 
 244 
 
 7390 
 
 7568 
 
 7746 
 
 7923 
 
 8101 
 
 8279 
 
 8466 
 
 8634 
 
 8811 
 
 8989 
 
 178 
 
 245 
 
 9166 
 
 9343 
 
 9520 
 
 9698 
 
 9875 
 
 ..61 
 
 .228 
 
 .405 
 
 .582 
 
 .759 
 
 177 
 
 246 
 
 390935 
 
 1112 
 
 1288 
 
 1464 
 
 1641 
 
 1817 
 
 1993 
 
 2169 
 
 2345 
 
 2.521 
 
 176 
 
 247 
 
 2697 
 
 2873 
 
 3048 
 
 3224 
 
 3400 
 
 3575 
 
 3761 
 
 3926 
 
 4101 
 
 4277 
 
 176 
 
 243 
 
 4452 
 
 4627 
 
 4802 
 
 4977 
 
 5152 
 
 5326 
 
 6501 
 
 5676 
 
 58.50 
 
 6025 
 
 175 
 
 249 
 
 6199 
 
 6374 
 
 6548 
 
 6722 
 
 6896 
 
 7071 
 
 7245 
 
 7419 
 
 7592 
 
 7766 
 
 174 
 
 250 
 
 397940 
 
 8114 
 
 8287 
 
 8401 
 
 8634 
 
 8808 
 
 8981 
 
 9154 
 
 9328 
 
 9.501 
 
 173 
 
 251 
 
 9674 
 
 9847 
 
 ..20 
 
 .192 
 
 .365 
 
 .538 
 
 .711 
 
 .883 
 
 1056 
 
 1228 
 
 173 
 
 252 
 
 401401 
 
 1573 
 
 1745 
 
 1917 
 
 2089 
 
 2261 
 
 2433 
 
 2605 
 
 2777 
 
 2949 
 
 172 
 
 253 
 
 3121 
 
 3292 
 
 3464 
 
 3635 
 
 3807 
 
 3978 
 
 4149 
 
 4320 
 
 4492 
 
 4663 
 
 171 
 
 254 
 
 4834 
 
 6005 
 
 5176 
 
 5346 
 
 .55-7 
 
 5688 
 
 5858 
 
 6029 
 
 6199 
 
 6370 
 
 171 
 
 255 
 
 6540 
 
 6710 
 
 6881 
 
 7051 
 
 7221 
 
 7391 
 
 7561 
 
 7731 
 
 7901 
 
 8070 
 
 170 
 
 258 
 
 8240 
 
 8410 
 
 8579 
 
 8749 
 
 8918 
 
 9087 
 
 9257 
 
 9426 
 
 9595 
 
 9764 
 
 169 
 
 257 
 
 9933 
 
 .102 
 
 .271 
 
 .440 
 
 .609 
 
 .777 
 
 .946 
 
 1114 
 
 1283 
 
 1451 
 
 169 
 
 258 
 
 411620 
 
 1788 
 
 1956 
 
 2124 
 
 2293 
 
 2461 
 
 2629 
 
 2796 
 
 2964 
 
 3132 
 
 168 
 
 259 
 260 
 
 3300 
 
 3467 
 5140 
 
 3635 
 5307 
 
 3803 
 5474 
 
 3970 
 6641 
 
 4 J 37 
 
 5808 
 
 4305 
 5974 
 
 4472 
 6141 
 
 4639 
 6308 
 
 4806 
 
 167 
 167 
 
 414973 
 
 6474 
 
 261 
 
 6641 
 
 6807 
 
 6973 
 
 7139 
 
 7306 
 
 7472 
 
 7638 
 
 7804 
 
 7970 
 
 8135 
 
 166 
 
 262 
 
 8301 
 
 8467 
 
 8633 
 
 8798 
 
 8964 
 
 9129 
 
 9295 
 
 9460 
 
 9625 
 
 9791 
 
 165 
 
 263 
 
 9956 
 
 .121 
 
 .286 
 
 .451 
 
 .616 
 
 .781 
 
 .945 
 
 lUO 
 
 1275 
 
 1439 
 
 165 
 
 264 
 
 421604 
 
 1788 
 
 1933 
 
 2097 
 
 2261 
 
 2426 
 
 2590 
 
 2754 
 
 2918 
 
 3082 
 
 164 
 
 265 
 
 3246 
 
 3410 
 
 3574 
 
 3737 
 
 3901 
 
 4065 
 
 4228 
 
 4392 
 
 4555 
 
 4718 
 
 164 
 
 266 
 
 4882 
 
 5045 
 
 5208 
 
 5371 
 
 5534 
 
 .5697 
 
 5860 
 
 6023 
 
 6186 
 
 6349 
 
 163 
 
 267 
 
 6511 
 
 6674 
 
 6S36 
 
 6999 
 
 7161 
 
 7324 
 
 7486 
 
 7643 
 
 7811 
 
 7973 
 
 162 
 
 268 
 
 8135 
 
 8297 
 
 8459 
 
 8621 
 
 8783 
 
 8944 
 
 9106 
 
 9268 
 
 9429 
 
 9591 
 
 162 
 
 269 
 270 
 
 9752 
 
 9914 
 1525 
 
 ..75 
 
 1685 
 
 .236 
 1846 
 
 .398 
 2007 
 
 .559 
 2167 
 
 .720 
 2328 
 
 .881 
 
 2488 
 
 1042 
 2649 
 
 1203 
 
 2809 
 
 161 
 161 
 
 431364 
 
 2/1 
 
 2969 
 
 3130 
 
 3290 
 
 3450 
 
 3610 
 
 3770 
 
 39.30 
 
 4090 
 
 4249 
 
 4409 
 
 160 
 
 2V2 
 
 4569 
 
 4729 
 
 4888 
 
 5048 
 
 5207 
 
 .5367 
 
 5526 
 
 5685 
 
 5844 
 
 6004 
 
 159 
 
 273 
 
 6163 
 
 6322 
 
 6481 
 
 6640 
 
 6798 
 
 6957 
 
 7116 
 
 7276 
 
 7433 
 
 7592 
 
 159 
 
 274 
 
 7751 
 
 7909 
 
 8067 
 
 8226 
 
 8384 
 
 8542 
 
 8701 
 
 8859 
 
 9017 
 
 9175 
 
 158 
 
 275 
 
 9333 
 
 9491 
 
 9648 
 
 9806 
 
 9964 
 
 .122 
 
 .279 
 
 .437 
 
 .594 
 
 .7,52 
 
 1.58 
 
 276 
 
 440909 
 
 I0f)6 
 
 1224 
 
 1381 
 
 1538 
 
 1696 
 
 1852 
 
 2009 
 
 2166 
 
 oooo 
 
 157 
 
 277 
 
 2480 
 
 2637 
 
 2793 
 
 2950 
 
 3106 
 
 3263 
 
 3419 
 
 3576 i 3732 
 
 3889 
 
 157 
 
 278 
 
 4045 
 
 4201 
 
 4357 
 
 4513 
 
 4669 
 
 4825 
 
 49811513715293 
 
 5449 
 
 156 
 
 279 
 
 5604 
 
 5760 
 
 5915 
 
 60V\ 
 
 62261 6382^ 6537 6692' 6848 
 
 7003 
 
 1.55 
 
 N. 
 
 1 |1|2|3|4|5|6|7|8|9|D. 1 
 
 N, 
 
 
 280 
 
 44 
 
 281 
 
 
 282 
 
 45 
 
 283 
 
 
 284 
 
 
 285 
 
 
 286 
 
 
 287 
 
 
 288 
 
 
 289 
 
 46 
 
 290 
 
 4(] 
 
 291 
 
 
 292 
 
 
 293 
 
 
 294 
 
 
 295 
 
 
 296 
 
 47 
 
 297 
 
 
 298 
 
 
 299 
 
 
 300 
 
 47 
 
 301 
 
 
 302 
 
 46 
 
 303 
 
 
 304 
 
 
 305 
 
 
 306 
 
 
 .307 
 
 
 308 
 
 
 309 
 
 
 310 
 
 4S 
 
 311 
 
 
 312 
 
 
 313 
 
 
 314 
 
 
 315 
 
 
 316 
 
 
 317 
 
 5C 
 
 318 
 
 
 319 
 
 
 320 
 
 6C 
 
 321 
 
 
 322 
 
 
 323 
 
 
 324 
 
 51 
 
 325 
 
 
 326 
 
 
 327 
 
 
 328 
 
 
 329 
 
 
 .330 
 
 61 
 
 331 
 
 
 332 
 
 52 
 
 333 
 
 
 334 
 
 
 335 
 
 
 336 
 
 
 337 
 
 
 338 
 
 
 339 
 
 53 
 
 N. 
 
 
 i 
 
 — -'.Z'S-.'Wfz 
 
Id. I 
 
 6 
 
 197 
 
 7 
 
 196 
 
 
 
 195 
 
 4 
 
 194 
 
 9 
 
 193 
 
 6 
 
 193 
 
 4 
 
 192 
 
 4 
 
 191 
 
 6 
 
 190 
 
 9 
 
 189 
 
 4 
 
 188 
 
 1 
 
 188 
 
 9 
 
 187 
 
 
 
 186 
 
 3 
 
 185 
 
 8 
 
 184 
 
 5 
 
 184 
 
 4 
 
 183 
 
 6 
 
 182 
 
 
 
 181 
 
 V 
 
 181 
 
 6 
 
 180 
 
 8 
 
 179 
 
 2 
 
 178 
 
 9 
 
 178 
 
 9 
 
 177 
 
 ,1 
 
 176 
 
 7 
 
 176 
 
 ,5 
 
 175 
 
 ifi 
 
 174 
 
 11 
 
 173 
 
 ,8 
 
 173 
 
 t9 
 
 172 
 
 .3 
 
 171 
 
 '0 
 
 171 
 
 '0 
 
 170 
 
 .4 
 
 169 
 
 • 1 
 
 169 
 
 !2 
 
 168 
 
 16 
 
 167 
 
 '4 
 
 167 
 
 (5 
 
 166 
 
 H 
 
 165 
 
 19 
 
 165 
 
 12 
 
 164 
 
 8 
 
 164 
 
 ^9 
 
 163 
 
 '3 
 
 162 
 
 )1 
 
 162 
 
 )3 
 
 161 
 
 )9 
 
 161 
 
 )9 
 
 160 
 
 )4 
 
 159 
 
 )2 
 
 159 
 
 ^5 
 
 158 
 
 )2 
 
 158 
 
 
 157 
 
 !9 
 
 157 
 
 [9 
 
 156 
 
 )3 
 
 155 
 
 ID. 1 
 
 
 A TAHLE OF LOGARITHMS FHOM 1 
 
 TO 10,000. 
 
 
 6 
 
 N, 
 
 |l|2|3i4l6|6|7!8|9|D. 1 
 
 280 
 
 447158 
 
 7;h3 
 
 7468 
 
 7623 
 
 7778 
 
 7933 
 
 8088 
 
 8242 
 
 8397 
 
 8552 
 
 1.55 
 
 281 
 
 8706 
 
 8861 
 
 9015 
 
 9170 
 
 9324 
 
 9478 
 
 9633 
 
 9787 
 
 9941 
 
 ..95 
 
 154 
 
 282 
 
 450249 
 
 0403 
 
 0557 
 
 0711 
 
 0865 
 
 1018 
 
 1172 
 
 1326 
 
 1479 
 
 1633 
 
 1.54 
 
 283 
 
 1786 
 
 1940 
 
 2093 
 
 2247 
 
 2400 
 
 2553 
 
 2700 
 
 2859 
 
 3012 
 
 3165 
 
 153 
 
 284 
 
 3318 
 
 3471 
 
 3624 
 
 3777 
 
 3930 
 
 4082 
 
 4235 
 
 4387 
 
 4.540 
 
 4692 
 
 1.53 
 
 285 
 
 4845 
 
 4997 
 
 5150 
 
 5302 
 
 54.54 
 
 5606 
 
 5758 
 
 5910 
 
 6062 
 
 6214 
 
 1.52 
 
 286 
 
 6366 
 
 6518 
 
 6670 
 
 6821 
 
 6973 
 
 7125 
 
 7276 
 
 7428 
 
 7579 
 
 7731 
 
 1.52 
 
 287 
 
 7882 
 
 8033 
 
 8184 
 
 8336 
 
 8487 
 
 8638 
 
 8789 
 
 8940 
 
 9091 
 
 9242 
 
 151 
 
 288 
 
 9392 
 
 9543 
 
 9694 
 
 9845 
 
 9995 
 
 .146 
 
 .296 
 
 .447 
 
 .597 
 
 .748 
 
 151 
 
 289 
 
 460898 
 
 1048 
 
 1198 
 
 1348 
 
 1499 
 
 1649 
 
 1799 
 
 1948 
 
 2098 
 
 2248 
 
 1.50 
 
 290 
 
 462398 
 
 2548 
 
 2697 
 
 2847 
 
 2997 
 
 3146 
 
 3296 
 
 3445 
 
 3594 
 
 3744 
 
 1.50 
 
 291 
 
 8893 
 
 4042 
 
 4191 
 
 4340 
 
 4490 
 
 4639 
 
 4788 
 
 4936 
 
 5085 
 
 5234 
 
 149 
 
 292 
 
 6383 
 
 5532 
 
 5680 
 
 5829 
 
 5977 
 
 6126 
 
 6274 
 
 6423 
 
 6571 
 
 6719 
 
 149 
 
 293 
 
 6868 
 
 7016 
 
 7164 
 
 7312 
 
 7460 
 
 7608 
 
 7756 
 
 7904 
 
 8052 
 
 8200 
 
 148 
 
 294 
 
 8347 
 
 8495 
 
 8643 
 
 8790 
 
 8938 
 
 9085 
 
 9233 
 
 9380 
 
 9527 
 
 9675 
 
 148 
 
 295 
 
 9822 
 
 9969 
 
 .116 
 
 .263 
 
 .410 
 
 .557 
 
 .704 
 
 .851 
 
 .998 
 
 1145 
 
 147 
 
 296 
 
 471292 
 
 1438 
 
 1585 
 
 1732 
 
 1878 
 
 2025 
 
 2171 
 
 2318 
 
 2464 
 
 2610 
 
 146 
 
 297 
 
 2756 
 
 2903 
 
 3049 
 
 3195 
 
 3341 
 
 3487 
 
 3633 
 
 3779 
 
 3925 
 
 4071 
 
 146 
 
 298 
 
 4216 
 
 4362 
 
 4508 
 
 4653 
 
 4799 
 
 4944 
 
 5090 
 
 5235 
 
 5381 
 
 5526 
 
 146 
 
 299 
 300 
 
 5671 
 477121 
 
 5816 
 7266 
 
 5962 
 7411 
 
 6107 
 7555 
 
 6252 
 7700 
 
 6397 
 
 6542 
 7989 
 
 6687 
 8133 
 
 6832 
 
 8278 
 
 6976 
 
 8422 
 
 145 
 145 
 
 7844 
 
 301 
 
 8566 
 
 8711 
 
 8855 
 
 8999 
 
 9143 
 
 9287 
 
 9431 
 
 9575 
 
 9719 
 
 9863 
 
 144 
 
 302 
 
 480007 
 
 0151 
 
 0294 
 
 0438 
 
 0582 
 
 0725 
 
 0869 
 
 1012 
 
 1156 
 
 !299 
 
 144 
 
 303 
 
 1413 
 
 1586 
 
 1729 
 
 1872 
 
 2016 
 
 2159 
 
 2302 
 
 2445 
 
 2588 
 
 2731 
 
 143 
 
 304 
 
 2874 
 
 3016 
 
 3159 
 
 3302 
 
 3445 
 
 3587 
 
 3730 
 
 3872 
 
 4015 
 
 41.57 
 
 143 
 
 305 
 
 4300 
 
 4442 
 
 4585 
 
 4727 
 
 4869 
 
 5011 
 
 51.53 
 
 5295 
 
 .5437 
 
 5579 
 
 142 
 
 306 
 
 5721 
 
 5863 
 
 6005 
 
 6147 
 
 6289 
 
 6430 
 
 6572 
 
 6714 
 
 6855 
 
 6997 
 
 i42 
 
 31)7 
 
 7138 
 
 7280 
 
 7421 
 
 7563 
 
 7704 
 
 7845 
 
 7986 
 
 8127 
 
 8269 
 
 8410 
 
 141 
 
 308 
 
 8551 
 
 8692 
 
 8833 
 
 8974 
 
 9114 
 
 9255 
 
 9396 
 
 9537 
 
 9677 
 
 9818 
 
 141 
 
 309 
 310 
 
 9958 
 
 ..99 
 1502 
 
 .239 
 1642 
 
 .380 
 
 .520 
 1922 
 
 .661 
 2062 
 
 .801 
 2201 
 
 .941 
 2341 
 
 1081 
 2481 
 
 1222 
 2621 
 
 140 
 140 
 
 491362 
 
 1782 
 
 311 
 
 '^-760 
 
 2900 
 
 3040 
 
 3179 
 
 3319 
 
 3458 
 
 .3597 
 
 3737 
 
 3876 
 
 4015 
 
 139 
 
 312 
 
 4155 
 
 4294 
 
 4433 
 
 4572 
 
 4711 
 
 4850 
 
 4989 
 
 5128 
 
 5267 
 
 5406 
 
 139 
 
 313 
 
 5544 
 
 5683 
 
 5822 
 
 5960 
 
 6099 
 
 6238 
 
 6376 
 
 6515 
 
 66.53 
 
 6791 
 
 1.39 
 
 314 
 
 6930 
 
 7068 
 
 7206 
 
 7344 
 
 7483 
 
 7621 
 
 7759 
 
 7897 
 
 80.35 
 
 8173 
 
 138 
 
 315 
 
 8311 
 
 8448 
 
 8586 
 
 8724 
 
 8862 
 
 8999 
 
 9137 
 
 9275 
 
 9412 
 
 9550 
 
 138 
 
 316 
 
 9687 
 
 9824 
 
 9962 
 
 ..99 
 
 .236 
 
 .374 
 
 .511 
 
 .648 
 
 .785 
 
 . 922 
 
 137 
 
 317 
 
 501059 
 
 1196 
 
 1333 
 
 1470 
 
 1607 
 
 1744 
 
 1880 
 
 2017 
 
 21.54 
 
 2291 
 
 137 
 
 318 
 
 2427 
 
 2564 
 
 2700 
 
 2837 
 
 2973 
 
 3109 
 
 3246 
 
 3382 
 
 3518 
 
 3655 
 
 136 
 
 319 
 
 3791 
 
 3927 
 
 4063 
 
 4199 
 
 4335 
 
 4471 
 
 4607 
 
 4743 
 
 4878 
 
 5014 
 
 136 
 
 320 
 
 505150 
 
 5286 
 
 5421 
 
 5557 
 
 .5693 
 
 5828 
 
 5964 
 
 6099 
 
 6234 
 
 6370 
 
 1.36 
 
 321 
 
 6505 
 
 6640 
 
 6776 
 
 6911 
 
 7046 
 
 7181 
 
 7316 
 
 7451 
 
 7586 
 
 7721 
 
 135 
 
 322 
 
 7856 
 
 7991 
 
 8126 
 
 8260 
 
 8395 
 
 8530 
 
 8664 
 
 8799 
 
 8934 
 
 9068 
 
 135 
 
 323 
 
 9203 
 
 9337 
 
 9471 
 
 9606 
 
 9740 
 
 9874 
 
 ...9 
 
 .143 
 
 .277 
 
 .411 
 
 134 
 
 324 
 
 510545 
 
 0679 
 
 0813 
 
 0947 
 
 1081 
 
 1215 
 
 1.349 
 
 1482 
 
 1616 
 
 17.50 
 
 1.34 
 
 325 
 
 1883 
 
 2017 
 
 2151 
 
 2284 
 
 2418 
 
 2551 
 
 2684 
 
 2818 
 
 2951 
 
 3084 
 
 133 
 
 326 
 
 3218 
 
 3351 
 
 3484 
 
 3617 
 
 3750 
 
 3883 
 
 4016 
 
 4149 
 
 4282 
 
 ^'114 
 
 133 
 
 327 
 
 4548 
 
 4681 
 
 4813 
 
 4946 
 
 5079 
 
 .5211 
 
 5344 
 
 5476 
 
 5609 
 
 5741 
 
 133 
 
 328 
 
 5874 
 
 6006 
 
 6139 
 
 6271 
 
 64Q3 
 
 6535 
 
 6668 
 
 6800 
 
 6932 
 
 7064 
 
 1.32 
 
 329 
 330 
 
 7196 
 
 7328 
 8640 
 
 7460 
 
 8777 
 
 7592 
 8909 
 
 7724 
 9040 
 
 7855 
 9171 
 
 7987 
 9303 
 
 8119 
 9434 
 
 8251 
 9566 
 
 8382 
 9697 
 
 132 
 131 
 
 518514 
 
 331 
 
 9828 
 
 9959 
 
 ..90 
 
 .221 
 
 .353 
 
 .484 
 
 .615 
 
 745 
 
 .876 
 
 1007 
 
 131 
 
 332 
 
 521138 
 
 1269 
 
 1400 
 
 1530 
 
 1661 
 
 1792 
 
 1922 
 
 2053 
 
 2183 
 
 2314 
 
 131 
 
 333 
 
 2444 
 
 2575 
 
 2705 
 
 2835 
 
 2966 
 
 3096 
 
 3226 
 
 3356 
 
 3486 
 
 36 1 6 
 
 130 
 
 334 
 
 3746 
 
 3876 
 
 4006 
 
 4136 
 
 4266 
 
 4396 
 
 4526 
 
 4656 
 
 4785 
 
 491.'-^ 
 
 130 
 
 335 
 
 50 15 
 
 5174 
 
 5304 
 
 5l;54 
 
 5563 
 
 5693. 
 
 5H22 
 
 .5951 
 
 nop. 1 
 
 6VMI 
 
 ]29 
 
 336 
 
 6339 
 
 6469 
 
 6598 
 
 6727 
 
 6856 
 
 6985 
 
 7114 
 
 7243 
 
 7372 
 
 75(4 
 
 1 129 
 
 337 
 
 7630 
 
 77.'i9 
 
 7888 
 
 8016 
 
 8145 
 
 8274 
 
 8402 
 
 8531 
 
 8660 
 
 87.SH' 129 
 
 338 
 
 8917 
 
 9045 
 
 9174 
 
 9302 
 
 9430 
 
 9559 
 
 96M7 
 
 9815 
 
 9943 
 
 ..721 128 
 
 339 
 
 N. 
 
 530200 0328 
 
 0456 
 
 0.>S4i 0712' 0840i 0968' 1096 
 
 1223 
 
 13.'; I 
 
 ' 128 
 
 1 1 1 2 1 3 i 4 1 5 1 r, 1 7 1 8 ! M 
 
 1 I). 
 
 13 
 
il 
 
 ' t 
 
 I ' 
 
 
 c 
 
 A TABLE OP LCdARITHAlS FliOM 1 10 10,000. 
 
 N. I I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I U. 
 
 340 
 311 
 342 
 343 
 344 
 345 
 346 
 347 
 348 
 349 
 
 350 
 351 
 352 
 353 
 354 
 355 
 356 
 357 
 358 
 359 
 
 360 
 361 
 362 
 363 
 364 
 365 
 366 
 367 
 368 
 369 
 
 370 
 371 
 372 
 373 
 374 
 375 
 376 
 377 
 378 
 379 
 
 380 
 381 
 382 
 383 
 
 384 
 385 
 386 
 
 387 
 388 
 389 
 
 390 
 391 
 392 
 393 
 
 394 
 395 
 396 
 397 
 
 398 
 399 
 
 ~n"." 
 
 531479 
 2754 
 4026 
 5294 
 6558 
 7819 
 9076 
 
 540329 
 1579 
 2825 
 
 544068 
 5307 
 6543 
 7775 
 9003 
 
 550228 
 1450 
 2668 
 3883 
 5094 
 
 556303 
 7507 
 8709 
 9907 
 
 561101 
 2293 
 3481 
 4666 
 5848 
 7026 
 
 568202 
 9374 
 
 570543 
 1709 
 2872 
 4031 
 5188 
 6341 
 7492 
 8639 
 
 579784 
 580925 
 2063 
 3199 
 4331 
 5461 
 6587 
 7711 
 8832 
 9950 
 
 591065 
 2177 
 3286 
 4393 
 5496 
 6597 
 7695 
 8791 
 9883 
 
 6()()!»73 
 
 1607 
 2882 
 4153 
 5421 
 6685 
 7945 
 9202 
 0455 
 1704 
 2950 
 
 4192 
 6431 
 6666 
 7898 
 9126 
 0351 
 1572 
 2790 
 4004 
 5215 
 
 6433 
 7627 
 8829 
 ..26 
 1221 
 2412 
 3600 
 4784 
 5966 
 7144 
 
 8319 
 9491 
 0660 
 1825 
 2988 
 4147 
 5303 
 6457 
 7607 
 8754 
 
 9898 
 1039 
 2177 
 3312 
 4444 
 5574 
 6700 
 7823 
 8944 
 ^._61 
 
 1176 
 
 2288 
 
 3397 
 
 4503 
 
 5606 
 
 670'; 
 
 7805 
 
 8000 
 
 9992 
 
 1082 
 
 1734 
 3009 
 4280 
 5547 
 6011 
 8071 
 9327 
 0580 
 1829 
 3074 
 
 4316 
 5555 
 6789 
 8021 
 9249 
 0473 
 1694 
 2911 
 4126 
 6336 
 
 6544 
 7748 
 8948 
 .146 
 1340 
 2531 
 3718 
 4903 
 6084 
 7262 
 
 8436 
 9608 
 0776 
 1942 
 3104 
 4263 
 5419 
 6572 
 7722 
 8868 
 
 ..12 
 1153 
 2-291 
 3426 
 4557 
 5686 
 6812 
 7935 
 9056 
 .173 
 
 1287 
 
 2399 
 
 3508 
 
 4614 
 
 5717 
 
 6ft 1 " 
 
 7914 
 
 9009 
 
 .101 
 
 1191 
 
 1862 
 3136 
 4407 
 5674 
 6937 
 8197 
 9452 
 0705 
 19,53 
 3199 
 
 4440 
 5678 
 6913 
 8144 
 9371 
 0595 
 1816 
 3033 
 4247 
 5457 
 
 6664 
 7868 
 9068 
 .265 
 1459 
 2650 
 3837 
 5021 
 6202 
 7379 
 
 85.54 
 9725 
 0893 
 2058 
 3220 
 4379 
 5534 
 6687 
 7836 
 8983 
 
 .126 
 1287 
 2404 
 3539 
 4670 
 5799 
 6925 
 8047 
 9167 
 .284 
 
 1399 
 
 2510 
 3018 
 4724 
 .5827 
 6927 
 8024 
 9119 
 .210 
 1299 
 
 1990 
 3264 
 4534 
 5800 
 7063 
 8322 
 9578 
 0830 
 2078 
 3323 
 
 4564 
 5802 
 7036 
 8267 
 9494 
 0717 
 1938 
 31.55 
 4368 
 5578 
 
 6785 
 7988 
 9188 
 .385 
 1578 
 2769 
 3955 
 5139 
 6320 
 7497 
 
 8671 
 9842 
 1010 
 2174 
 3336 
 4494 
 56,50 
 6802 
 7951 
 9097 
 
 .241 
 1381 
 2518 
 3652 
 4783 
 5912 
 7037 
 8160 
 9279 
 .396 
 
 1510 
 2621 
 3729 
 4834 
 .5937 
 7037 
 
 9228 
 .319 
 1408 
 
 2117 
 3391 
 4661 
 5927 
 7189 
 8448 
 9703 
 0955 
 2203 
 3447 
 
 4688 
 .5925 
 71.59 
 8389 
 9616 
 0840 
 2060 
 3276 
 4489 
 6699 
 
 6905 
 8108 
 9308 
 .604 
 1698 
 '3887 
 4074 
 .5257 
 6437 
 7614 
 
 8788 
 9959 
 1126 
 2291 
 3452 
 4610 
 .5765 
 6917 
 8006 
 9212 
 
 .355 
 1495 
 2631 
 3765 
 4896 
 6024 
 7149 
 8272 
 9391 
 ..507 
 
 1621 
 2732 
 3840 
 4945 
 6047 
 7146 
 8243 
 9337 
 .428 
 1517 
 
 2245 
 3518 
 4787 
 6053 
 7315 
 8574 
 9829 
 1080 
 2327 
 3571 
 
 4812 
 6049 
 7282 
 8512 
 9739 
 0962 
 2181 
 3398 
 4610 
 5820 
 
 7026 
 8228 
 9428 
 .624 
 1817 
 3006 
 4192 
 5376 
 0555 
 7732 
 
 8905 
 ..76 
 1243 
 2407 
 3568 
 4726 
 5880 
 7032 
 8181 
 9326 
 
 .469 
 1608 
 2745 
 3879 
 5009 
 6137 
 7262 
 8384 
 9503 
 
 1732 
 2843 
 3950 
 .5055 
 6157 
 7256 
 8353 
 9446 
 .537 
 
 2372 
 3645 
 4914 
 6180 
 7441 
 8699 
 9954 
 1205 
 2452 
 3696 
 
 4936 
 6172 
 7405 
 8635 
 9861 
 1084 
 2303 
 3519 
 4731 
 5940 
 
 7146 
 83^19 
 9.548 
 .743 
 1936 
 3125 
 4311 
 5494 
 6673 
 7849 
 
 9023 
 .193 
 1359 
 2.523 
 3684 
 4841 
 5996 
 7147 
 8295 
 9441 
 
 .583 
 
 1722 
 2858 
 3992 
 5122 
 6250 
 7374 
 8496 
 9615 
 .7,30 
 
 1843 
 2954 
 4061 
 5165 
 626/ 
 7366 
 8462 
 9556 
 .646 
 
 2.500 
 3772 
 .5041 
 6306 
 7567 
 8825 
 ..79 
 1330 
 2676 
 3820 
 
 .5060 
 6296 
 7529 
 8758 
 9984 
 1206 
 2425 
 3640 
 4852 
 6061 
 
 1 I 2 
 
 16251 1734 
 6 I 7 
 
 7267 
 8469 
 9667 
 .863 
 2055 
 3244 
 4429 
 5612 
 6791 
 7967 
 
 91 ■ 
 .309 
 1476 
 2639 
 3800 
 4957 
 6111 
 7262 
 8410 
 9555 
 
 .697 
 1836 
 2972 
 4105 
 5235 
 6362 
 7486 
 8608 
 9726 
 .842 
 
 1955 
 3064 
 4171 
 5276 
 6377 
 7476 
 
 2627 
 3899 
 5167 
 6432 
 7693 
 8951 
 .204 
 14.54 
 2701 
 3944 
 
 5183 
 6419 
 7652 
 8881 
 .106 
 1328 
 2.547 
 3762 
 4973 
 6]82 
 7387 
 8589 
 9787 
 .982 
 2174 
 3362 
 4548 
 5730 
 6909 
 8084 
 
 9257 
 .426 
 1592 
 2755 
 3915 
 5072 
 6226 
 7377 
 8525 
 9669 
 
 .811 
 1950 
 3985 
 4218 
 5348 
 6475 
 7.599 
 8720 
 9838 
 .9.53 
 
 2066 
 3175 
 
 4282 
 5.386 
 6487 
 7586 
 
 8572' 8681 
 96651 9774 
 .7.55 .864 
 18431 19.'-.1 
 
 128 
 127 
 127 
 126 
 126 
 126 
 125 
 125 
 125 
 124 
 
 124 
 124 
 123 
 123 
 123 
 122 
 122 
 121 
 121 
 121 
 
 8 
 
 9 
 
 120 
 120 
 120 
 119 
 119 
 119 
 119 
 118 
 118 
 118 
 
 117 
 117 
 117 
 116 
 116 
 116 
 115 
 115 
 115 
 
 m 
 
 114 
 114 
 114 
 113 
 113 
 113 
 112 
 112 
 112 
 112 
 
 111 
 111 
 HI 
 110 
 110 
 110 
 110 
 109 
 109 
 109 
 
 D. 
 
 N. 1 
 
 400 
 
 60 
 
 401 
 
 
 402 
 
 
 403 
 
 
 404 
 
 
 405 
 
 
 406 
 
 
 407 
 
 
 408 
 
 61 
 
 409 
 
 
 410 
 
 61 
 
 411 
 
 
 412 
 
 
 413 
 
 
 414 
 
 
 415 
 
 
 416 
 
 
 417 
 
 62 
 
 418 
 
 
 419 
 
 
 420 
 
 62 
 
 421 
 
 
 422 
 
 
 423 
 
 
 424 
 
 
 425 
 
 1 
 
 426 
 
 ( 
 
 427 
 
 63( 
 
 428 
 
 
 429 
 
 
 430 
 
 63; 
 
 431 
 
 / 
 
 432 
 
 , 
 
 433 
 
 < 
 
 434 
 
 
 435 
 
 i 
 
 436 
 
 ( 
 
 437 
 
 64( 
 
 438 
 
 
 439 
 
 A 
 
 440 
 
 64r 
 
 441 
 
 A 
 
 442 
 
 f 
 
 443 
 
 f 
 
 444 
 
 •3 
 
 445 
 
 f 
 
 446 
 
 s 
 
 447 
 
 65(J 
 
 448 
 
 1 
 
 449 
 
 2 
 
 450 
 
 0.53 
 
 151 
 
 4 
 
 452 
 
 6 
 
 453 
 
 6 
 
 454 
 
 7 
 
 A r f 
 
 i.y.-j 
 
 8 
 
 456 
 
 8 
 
 457 
 
 9 
 
 458 
 
 660 
 
 45!) 
 
 1 
 
 N. I 
 
 ( 
 
A TABLE OF LOGARITHMS FROM I TO 10,000. 
 
 N. 
 
 1 |l|2|3|4 5|6|7!8|9|D 
 
 
 
 400 
 
 (j0206(] 
 
 2169 
 
 2277 
 
 238f 
 
 2494 
 
 2603 
 
 2711 
 
 2819 
 
 2928 
 
 3036 
 
 108 
 
 
 401 
 
 3144 
 
 3253 
 
 3361 
 
 3461J 
 
 3577 
 
 3686 
 
 3794 
 
 .•^902 
 
 4010 
 
 4118 
 
 108 
 
 
 
 4oy 
 
 4226 
 
 4334 
 
 4442 
 
 455C 
 
 4658 
 
 4766 
 
 4874 
 
 4982 
 
 5089 
 
 6197 
 
 108 
 
 
 
 4U:j 
 
 5305 
 
 6413 
 
 .5521 
 
 5628 
 
 5736 
 
 5844 
 
 .5951 
 
 6059 
 
 6166 
 
 6274 
 
 108 
 
 
 i 
 
 404 
 
 6381 
 
 6489 
 
 6,596 
 
 6704 
 
 6811 
 
 6919 
 
 7026 
 
 7133 
 
 7241 
 
 7348 
 
 107 
 
 
 « 
 
 405 
 
 7455 
 
 7562 
 
 7669 
 
 7777 
 
 7884 
 
 7991 
 
 8098 
 
 8205 
 
 8312 
 
 8419 
 
 107 
 
 
 
 406 
 
 8526 
 
 8633 
 
 8740 
 
 884? 
 
 89.5-3 
 
 906 1 
 
 9167 
 
 9274 
 
 9381 
 
 9488 
 
 107 
 
 
 
 407 
 
 9594 
 
 1 9701 
 
 9808 
 
 991^ 
 
 ..21 
 
 .128 
 
 .234 
 
 .341 
 
 .447 
 
 ..5.54 
 
 107 
 
 
 
 40M 
 
 610660 
 
 0767 
 
 0873 
 
 0979 
 
 1086 
 
 1192 
 
 1298 
 
 1405 
 
 1611 
 
 1617 
 
 106 
 
 
 
 40'J 
 410 
 
 1723 
 
 1829 
 2890 
 
 1936 
 2996 
 
 2042 
 3102 
 
 2148 
 3207 
 
 2254 
 3313 
 
 2360 
 3419 
 
 2466 
 3525 
 
 2572 
 3630 
 
 2678 
 3736 
 
 106 
 106 
 
 
 
 612784 
 
 
 411 
 
 3842 
 
 3947 
 
 40.53 
 
 4159 
 
 4264 
 
 4370 
 
 4475 
 
 4.581 
 
 4686 
 
 4792 
 
 106 
 
 
 
 412 
 
 4897 
 
 5003 
 
 5108 
 
 6213 
 
 .5319 
 
 5424 
 
 5529 
 
 6634 
 
 6740 
 
 6845 
 
 105 
 
 
 
 413 
 
 5950 
 
 6055 
 
 6160 
 
 6265 
 
 6370 
 
 6476 
 
 6.581 
 
 6686 
 
 6790 
 
 6895 
 
 105 
 
 
 
 414 
 
 7000 
 
 7105 
 
 7210 
 
 7315 
 
 7420 
 
 7525 
 
 7629 
 
 7734 
 
 7839 
 
 7943 
 
 106 
 
 
 
 41,0 
 
 8048 
 
 8153 
 
 8257 
 
 8362 
 
 8466 
 
 8.571 
 
 8676 
 
 8780 
 
 8884 
 
 8989 
 
 106 
 
 
 
 416 
 
 9093 
 
 9198 
 
 9302 
 
 9406 
 
 9511 
 
 9615 
 
 9719 
 
 9824 
 
 9928 
 
 ..32 
 
 104 
 
 
 
 417 
 
 620136 
 
 0240 
 
 0344 
 
 0448 
 
 0552 
 
 0656 
 
 0760 
 
 0864 
 
 0968 
 
 1072 
 
 104 
 
 
 
 418 
 
 1176 
 
 1280 
 
 1384 
 
 1488 
 
 1592 
 
 1695 
 
 1799 
 
 1903 
 
 2007 
 
 2110 
 
 104 
 
 
 
 419 
 420 
 
 2214 
 
 2318 
 3353 
 
 2421 
 .3456 
 
 2525 
 3559 
 
 2628 
 3663 
 
 2732 
 3766 
 
 2835 
 3869 
 
 2939 
 3973 
 
 3042 
 4076 
 
 3146 
 4179 
 
 104 
 103 
 
 
 
 623249 
 
 
 421 
 
 4282 
 
 4385 
 
 4488 
 
 4591 
 
 4095 
 
 4798 
 
 4901 
 
 5004 
 
 5107 
 
 .5210 
 
 103 
 
 
 
 422 
 
 6312 
 
 5415 
 
 5518 
 
 6621 
 
 6724 
 
 5827 
 
 5929 
 
 6032 
 
 6135 
 
 6238 
 
 103 
 
 
 
 423 
 
 6340 
 
 6443 
 
 6546 
 
 6648 
 
 6751 
 
 6853 
 
 6956 
 
 7058 
 
 7161 
 
 7263 
 
 103 
 
 
 
 424 
 
 7366 
 
 7468 
 
 7.57117673 
 
 7775 
 
 7878 
 
 7980 
 
 8082 
 
 8185 
 
 8287 
 
 102 
 
 
 
 425 
 
 8389 
 
 8491 
 
 8593, 8695 
 
 8797 
 
 8900 
 
 9002 
 
 9104 
 
 9206 
 
 9308 
 
 102 
 
 
 
 426 
 
 9410 
 
 9512 
 
 9613 
 
 9715 
 
 9817 
 
 9919 
 
 ..21 
 
 .123 
 
 .224 
 
 .326 
 
 102 
 
 
 
 427 
 
 630428 
 
 0530 
 
 0631 
 
 0733 
 
 0835 
 
 0936 
 
 1038 
 
 1139 
 
 1241 
 
 i.342 
 
 102 
 
 
 ■ 
 
 428 
 
 1444 
 
 1545 
 
 1647 
 
 1748 
 
 1849 
 
 1951 
 
 2052 
 
 21.53 
 
 2255 
 
 2356 
 
 101 
 
 
 
 4ii9 
 430 
 
 2457 
 
 2559 
 3569 
 
 2660 
 3670 
 
 2761 
 3771 
 
 2862 
 
 2963 
 3973 
 
 3064 
 4074 
 
 3165 
 4176 
 
 3266 
 4276 
 
 3367 
 4376 
 
 101 
 100 
 
 
 
 633468 
 
 3872 
 
 
 431 
 
 4477 
 
 4578 
 
 4679 
 
 4779 
 
 4880 
 
 4931 
 
 .5081 
 
 5182 
 
 5283 
 
 5383 
 
 100 
 
 
 
 43^ 
 
 5484 
 
 5584 
 
 5685 
 
 5785 
 
 .5886 
 
 5986 
 
 6087 
 
 6187 
 
 6287 
 
 6388 
 
 TOO 
 
 
 
 433 
 
 6488 
 
 6588 
 
 6688 
 
 6789 
 
 6889 
 
 6989 
 
 7089 
 
 7189 
 
 7290 
 
 7390 
 
 100 
 
 
 
 434 
 
 7490 
 
 7590 
 
 7690 
 
 7790 
 
 7890 
 
 7990 
 
 8090 
 
 8190 
 
 8290 
 
 8389 
 
 99 
 
 
 
 435 
 
 8489 
 
 8589 
 
 8689 
 
 8789 
 
 8888 
 
 8988 
 
 9088 
 
 9188 
 
 9287 
 
 9387 
 
 99 
 
 
 
 436 
 
 9486 
 
 9586 
 
 9686 
 
 9785 
 
 9885 
 
 9984 
 
 ..84 
 
 .183 
 
 .283 
 
 .382 
 
 99 
 
 
 
 437 
 
 640481 
 
 0581 
 
 0680 
 
 0779 
 
 0879 
 
 0978 
 
 1077 
 
 1177 
 
 1276 
 
 1375 
 
 99 
 
 
 
 438 
 
 1474 
 
 1573 
 
 1672 
 
 1771 
 
 1871 
 
 1970 
 
 2069 
 
 2168 
 
 2267 
 
 2866 
 
 99 
 
 
 
 439 
 
 2465 
 
 2503 
 3551 
 
 2662 
 3650 
 
 2761 
 3749 
 
 2860 
 
 2959 
 3946 
 
 3058 
 4044 
 
 3156 
 4143 
 
 3255 
 4242 
 
 33.54 
 4340 
 
 99 
 98 
 
 
 
 440 
 
 643453 
 
 3847 
 
 
 441 
 
 4439 
 
 4537 
 
 4636 
 
 4734 
 
 4832 
 
 4931 
 
 5029 
 
 5127 
 
 5226 
 
 5324 
 
 98 
 
 
 
 442 
 
 5422 
 
 5521 
 
 5619 
 
 5717 
 
 5815 
 
 5913 
 
 6011 
 
 6110 
 
 6208 
 
 6306 
 
 98 
 
 
 
 443 
 
 6404 
 
 6502 
 
 6600 
 
 6698 
 
 679G 
 
 6894 
 
 6992 
 
 7089 
 
 7187 
 
 7285 
 
 98 
 
 
 
 444 
 
 7383 
 
 7481 
 
 7579 
 
 7676 
 
 7774 
 
 7872 
 
 7969 
 
 8067 
 
 8166 
 
 8262 
 
 98 
 
 
 
 445 
 
 8360 
 
 8458 
 
 8555 
 
 86.53 
 
 8750 
 
 8848 
 
 8945 
 
 9043 
 
 9140 
 
 9237 
 
 97 
 
 
 
 446 
 
 9335 
 
 94:J2 
 
 9.530 
 
 9627 
 
 9724 
 
 9821 
 
 9919 
 
 ..16 
 
 .113 
 
 .210 
 
 97 
 
 
 
 447 
 
 650308 
 
 0405 
 
 0502 
 
 0599 
 
 0696 
 
 0793 
 
 0890 
 
 0987 
 
 1084 
 
 1181 
 
 97 
 
 
 
 44 S 
 
 1278 
 
 1375 
 
 1472 
 
 1.569 
 
 1666 
 
 1762 
 
 1859 
 
 19,56 
 
 2053 
 
 21.50 
 
 97 
 
 
 
 449 
 
 2246 
 
 2343 
 3309 
 
 2440 
 340.5 
 
 2.536 
 3502 
 
 2633 
 3598 
 
 2730 
 3695 
 
 2826 
 ,379! 
 
 2923 
 
 3888 
 
 3019 
 3984 
 
 3116 
 4080 
 
 97 
 96 
 
 
 
 450 
 
 653213 
 
 
 45 1 
 
 4177 
 
 4273 
 
 4369 
 
 4465 
 
 4562 
 
 4658 
 
 4754 
 
 4850 
 
 4946 
 
 6042 
 
 96 
 
 
 
 452 
 
 5138 
 
 5235 
 
 5331 
 
 5427 
 
 5523 
 
 .5619 
 
 57 15 
 
 .5810 
 
 5906 
 
 6002 
 
 96 
 
 
 
 4o3 
 
 6098 
 
 6194 
 
 6290 
 
 6386 
 
 6482 
 
 6577 
 
 6673 
 
 6769 
 
 6864 
 
 6960 
 
 96 
 
 
 
 4o4 
 
 7056 
 
 7152 
 
 7247 
 
 7343 
 
 74381 
 
 7534 
 
 7629 
 
 7725 
 
 7820 
 
 7916 
 
 96 
 
 
 
 liJO 
 
 son 
 
 8107 
 
 8-^03 
 
 8298 
 
 8393 
 
 8488 
 
 8584 
 
 8679 
 
 8774 
 
 8870 
 
 95 
 
 
 
 456 
 
 8965 
 
 9060 
 
 9155 
 
 9250 
 
 9.346 
 
 9441 
 
 9536 
 
 9631 
 
 9726 
 
 9821 
 
 95 
 
 
 
 457 
 
 9916 
 
 ..11 
 
 .106 
 
 .201 
 
 .296 
 
 ..391 
 
 .486 
 
 ..581 
 
 .676 
 
 .771 
 
 95 
 
 
 
 458 
 
 660865 
 
 0960 
 
 1055 
 
 11.50 
 
 1245 
 
 1339 
 
 1434 
 
 1529 
 
 1623 
 
 1718 
 
 96 
 
 
 
 45') 
 
 1813 1907' 20021 
 
 2096 
 
 2191 
 
 228(i 
 
 2380 
 
 24751 
 
 2569 
 
 2663 
 
 96 
 
 
 
 N. 1 
 
 <» 1 1 1 2 1 3 1 4 ! 5 1 6 1 7 1 8 1 9 1 D. 1 
 
 
 
 u ' 
 
 ■mffiSi 
 
 I 
 
I 
 
 i 
 
 f 
 
 ( 
 
 ■ : IK r 
 
 m 
 
 
 '!!•'' i 
 
 8 
 
 N. 
 
 4fi0 
 461 
 462 
 463 
 
 464 
 465 
 466 
 467 
 468 
 469 
 476 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 
 480 
 481 
 482 
 483 
 484 
 485 
 486 
 487 
 488 
 489 
 
 490 
 491 
 492 
 493 
 494 
 495 
 496 
 497 
 498 
 499 
 
 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 
 510 
 511 
 612 
 513 
 614 
 5!5 
 516 
 517 
 618 
 519 
 
 N. 
 
 A TABLE OP LOGABITHMS FROM 1 TO 10,000. 
 
 T 
 
 1 I a I 3 I 4 I 5 I 6 i 7 I 8 I 9 | D. 
 
 662758 
 
 2852 
 
 2947 
 
 3041 
 
 3135 
 
 3230, 
 
 3701 
 
 3795 
 
 3889 
 
 3983 
 
 4078 
 
 4172 
 
 4642 
 
 4736 
 
 4830 
 
 4924 
 
 5018 
 
 5112 
 
 5581 
 
 5675 
 
 5769 
 
 5862 5956 
 
 6050 
 
 6518 
 
 6612 
 
 6705 
 
 6799' 6892 
 
 6986 
 
 7t63 
 
 7546 
 
 7640 
 
 7733 
 
 7826 
 
 7920 
 
 8386 
 
 8479 
 
 8572 
 
 8665 
 
 8759 
 
 8852 
 
 9317 
 
 9410 
 
 9503 
 
 9596 
 
 9689 
 
 9782 
 
 670246 
 
 0339 
 
 0431 
 
 0524 
 
 0617 
 
 0710 
 
 1173 
 
 1265 
 
 1358 
 
 1451 
 
 1543 
 
 1636 
 
 C72098 
 
 2190 
 
 2283 
 
 2375 
 
 2467 
 
 2560 
 
 3021 
 
 3113 
 
 3205 
 
 3297 
 
 3390 
 
 3482 
 
 3942 
 
 4034 
 
 4126 
 
 4218 
 
 4310 
 
 4402 
 
 4861 
 
 4953 
 
 6045 
 
 6137 
 
 5228 
 
 6320 
 
 5778 
 
 5870 
 
 5962 
 
 6053 
 
 6145 
 
 6236 
 
 6694 
 
 6785 
 
 6876 
 
 6968 
 
 7059 
 
 7151 
 
 7607 
 
 7698 
 
 7789 
 
 7881 
 
 7972 
 
 8063 
 
 8518 
 
 8609 
 
 8700 
 
 8791 
 
 8882 
 
 8973 
 
 9428 
 
 9519 
 
 9610 
 
 9700 
 
 9791 
 
 9882 
 
 680336 
 
 0426 
 
 0517 
 
 0607 
 
 0698 
 
 0789 
 
 681241 
 
 1332 
 
 1422 
 
 1513 
 
 1603 
 
 1693 
 
 2145 
 
 2235 
 
 2326 
 
 24 T 
 
 2506 
 
 2596 
 
 3047 
 
 3137 
 
 3227 
 
 3317 
 
 3407 
 
 3497 
 
 8947 
 
 4037 
 
 4127 
 
 4217 
 
 4307 
 
 4396 
 
 4845 
 
 4935 
 
 5025 
 
 5114 
 
 5204 
 
 5294 
 
 5742 
 
 5831 
 
 5921 
 
 6010 
 
 6100 
 
 6189 
 
 6036 
 
 6726 
 
 6815 
 
 6904 
 
 6994 
 
 7083 
 
 7529 
 
 7618 
 
 7707 
 
 7796 
 
 7886 
 
 7975 
 
 8420 
 
 8509 
 
 8598 
 
 8687 
 
 8776 
 
 8865 
 
 9309 
 
 9398 
 0285 
 
 9486 
 0373 
 
 9575 
 0462 
 
 9664 
 0550 
 
 9753 
 0639 
 
 690196 
 
 1081 
 
 1170 
 
 1258 
 
 1347 
 
 1435 
 
 1524 
 
 1965 
 
 2063 
 
 2142 
 
 2230 
 
 2318 
 
 2406 
 
 2847 
 
 2935 
 
 3023 
 
 3111 
 
 3199 
 
 3287 
 
 3727 
 
 3815 
 
 3903 
 
 3991 
 
 4078 
 
 4166 
 
 4605 
 
 4693 
 
 4781 
 
 4868 
 
 4956 
 
 5044 
 
 5482 
 
 5569 
 
 5657 
 
 5744 
 
 5832 
 
 5919 
 
 6356 
 
 6444 
 
 6531 
 
 6618 
 
 6706 
 
 6793 
 
 7229 
 
 7317 
 
 7404 
 
 7491 
 
 7678 
 
 7665 
 
 8101 
 
 8188 
 9057 
 
 8275 
 9144 
 
 8362 
 
 8449 
 9317 
 
 8535 
 9404 
 
 698970 
 
 9231 
 
 9838 
 
 9924 
 
 ..11 
 
 ..98 
 
 .184 
 
 .271 
 
 700704 
 
 0790 
 
 0877 
 
 0963 
 
 1050 
 
 1136 
 
 1568 
 
 1654 
 
 1741 
 
 1827 
 
 1913 
 
 1999 
 
 2431 
 
 2617 
 
 2603 
 
 2689 
 
 2775 
 
 2861 
 
 3291 
 
 3377 
 
 3463 
 
 3549 
 
 3635 
 
 3721 
 
 4151 
 
 4236 
 
 4322 
 
 4408 
 
 4494 
 
 4579 
 
 5008 
 
 5094 
 
 5179 
 
 5265 
 
 5350 
 
 5436 
 
 6864 
 
 5949 
 
 6035 
 
 6120 
 
 6206 
 
 6291 
 
 6718 
 
 6803 
 7655 
 
 6888 
 7740 
 
 6974 
 
 7059 
 7911 
 
 7144 
 7996 
 
 707570 
 
 7826 
 
 8421 
 
 8506 
 
 8591 
 
 8676 
 
 8761 
 
 8846 
 
 9270 
 
 9355 
 
 9440 
 
 9524 
 
 9609 
 
 9694 
 
 710117 
 
 0202 
 
 0287 
 
 0371 
 
 0456 
 
 0540 
 
 0963 
 
 1048 
 
 1132 
 
 1217 
 
 1301 
 
 1385 
 
 1807 
 
 1S92 
 
 1976 
 
 2060 
 
 2H4 
 
 2229 
 
 2650 
 
 2734 
 
 2818 
 
 2902 
 
 1 2986 
 
 3070 
 
 3491 
 
 3575 
 
 3G50 
 
 3742 
 
 ! 3826 
 
 3910 
 
 4830 
 
 4414 
 
 4497 
 
 4581 
 
 1 4665 
 
 4749 
 
 5167 
 
 5251 
 
 5335 
 
 5418 
 
 ! 5502 
 
 5586 
 
 3324 1 
 
 4266 
 5206 
 6143 
 7079 
 8013 
 8945 
 9875 
 0802 
 1728 
 
 2652 
 3574 
 4494 
 5412 
 6328 
 7242 
 8154 
 9064 
 9973 
 0879 
 
 1784 
 2686 
 3587 
 4486 
 5383 
 6279 
 7172 
 8064 
 8953 
 9841 
 
 0728 
 1612 
 2494 
 3375 
 4254 
 5131 
 6007 
 6880 
 7752 
 8622 
 
 9491 
 .358 
 1222 
 2086 
 2947 
 3807 
 4665 
 5522 
 6376 
 7229 
 
 8081 
 8931 
 9779 
 0625 
 1470 
 23 1 3 
 3154 
 3994 
 4833 
 5669 
 
 3418 
 436': 
 5299 
 6237 
 7173 
 8106 
 9038 
 9967 
 0895 
 1821 
 
 2744 
 3666 
 4586 
 5503 
 6419 
 7333 
 8245 
 9155 
 ..63 
 0970 
 
 1874 
 2777 
 3677 
 4576 
 5473 
 6368 
 7261 
 8153 
 9042 
 9930 
 
 0816 
 1700 
 2583 
 3463 
 4342 
 5219 
 G994 
 6968 
 7839 
 8709 
 
 9578 
 .444 
 1309 
 2172 
 3033 
 3895 
 4751 
 5607 
 6462 
 7315 
 
 8160 
 9015 
 9863 
 0710 
 1554 
 2397 
 3238 
 4078 
 4916 
 5753 
 
 3512 
 4154 
 6393 
 6331 
 7266 
 8199 
 9131 
 ..60 
 0988 
 1913 
 
 2836 
 3758 
 4677 
 5595 
 6511 
 7424 
 8336 
 9246 
 .154 
 1060 
 
 1964 
 2867 
 3767 
 4666 
 5563 
 6458 
 7351 
 8242 
 9131 
 ^19 
 
 0905 
 1789 
 2671 
 3551 
 4430 
 5307 
 0182 
 7055 
 7926 
 8796 
 
 9664 
 .531 
 1J«5 
 2258 
 3119 
 3979 
 4837 
 5693 
 6547 
 740 
 
 8251 
 9100 
 9948 
 0794 
 1639 
 2481 
 3323 
 4162 
 5000 
 5836 
 
 3607, 
 4548 
 5487 
 6424 
 7360 
 8293 
 9224 
 .1.53 
 1080 
 2005 
 
 2929 
 3850 
 4769 
 5687 
 6602 
 7516 
 8427 
 9337 
 .245 
 n5l 
 
 2055 
 2957 
 3857 
 4756 
 5652 
 6547 
 7440 
 8331 
 9220 
 .107 
 
 0993 
 1877 
 2759 
 3639 
 4517 
 5394 
 6269 
 7142 
 8014 
 8883 
 
 9751 
 .617 
 
 1482 
 2344 
 3205 
 
 40G5 
 4922 
 5778 
 6632 
 
 7485 
 
 8336 
 9185 
 ,.33 
 0879 
 1723 
 2566 
 3407 
 4246 
 50S4 
 5920 
 
 1 I 2 I 3 
 
 5 ! 6 I 7'T 8 ! 9 
 
 94 
 94 
 94 
 94 
 94 
 93 
 93 
 93 
 93 
 
 92 
 92 
 92 
 92 
 92 
 91 
 91 
 91 
 91 
 91 
 
 90 
 90 
 90 
 90 
 90 
 89 
 89 
 89 
 89 
 89 
 
 89 
 88 
 88 
 88 
 88 
 88 
 87 
 87 
 87 
 87 
 
 87 
 87 
 86 
 86 
 86 
 86 
 86 
 86 
 85 
 85 
 
 85 
 85 
 85 
 85 
 84 
 8j 
 84 
 84 
 84 
 84 
 
 "57 
 
 N. 1 
 
 620 
 
 71 
 
 621 
 
 
 522 
 
 
 623 
 
 
 624 
 
 
 625 
 
 72 
 
 626 
 
 
 627 
 
 
 528 
 
 
 529 
 
 
 630 
 
 72 
 
 631 
 
 i 
 
 532 
 
 i 
 
 533 
 
 ( 
 
 534 
 
 •■ 
 
 .535 
 
 « 
 
 536 
 
 ( 
 
 637 
 
 J 
 
 538 
 
 73( 
 
 639 
 
 ] 
 
 540 
 
 73i 
 
 541 
 
 
 542 
 
 r 
 
 543 
 
 < 
 
 544 
 
 £ 
 
 645 
 
 e 
 
 546 
 
 7 
 
 547 
 
 7 
 
 648 
 
 8 
 
 549 
 
 9 
 
 550 
 
 74(J 
 
 561 
 
 1 
 
 562 
 
 1 
 
 653 
 
 2 
 
 554 
 
 a 
 
 555 
 
 4 
 
 566 
 
 5 
 
 .557 
 
 5 
 
 55» 
 
 6 
 
 559 
 
 7 
 
 560 
 
 748 
 
 561 
 
 8 
 
 662 
 
 9 
 
 563 
 
 750 
 
 564 
 
 1 
 
 565 
 
 2 
 
 566 
 
 2 
 
 567 
 
 3 
 
 568 
 
 4 
 
 ,569 
 
 6 
 
 570 
 
 755 
 
 671 
 
 6 
 
 572 
 
 7 
 
 673 
 
 8 
 
 574 
 
 8 
 
 CVR 
 
 n 
 
 
 £7 
 
 576 
 
 760 
 
 577 
 
 1 
 
 578 
 
 1 
 
 579 
 
 2 
 
 N. 1 
 
 
 
9 1 
 
 D. 
 
 fior 
 
 94 
 
 548 
 
 94 
 
 187 
 
 94 
 
 124 
 
 94 
 
 300 
 
 94 
 
 293 
 
 93 
 
 224 
 
 93 
 
 153 
 
 93 
 
 080 
 
 93 
 
 005 
 
 93 
 
 929 
 
 92 
 
 8n0 
 
 92 
 
 769 
 
 92 
 
 ()87 
 
 92 
 
 002 
 
 92 
 
 516 
 
 91 
 
 427 
 
 91 
 
 337 
 
 91 
 
 245 
 
 91 
 
 151 
 
 91 
 
 055 
 
 90 
 
 957 
 
 90 
 
 857 
 
 90 
 
 756 
 
 90 
 
 652 
 
 90 
 
 547 
 
 89 
 
 440 
 
 89 
 
 331 
 
 89 
 
 220 
 
 89 
 
 107 
 
 89 
 
 993 
 
 89 
 
 877 
 
 88 
 
 759 
 
 88 
 
 639 
 
 88 
 
 517 
 
 88 
 
 394 
 
 88 
 
 269 
 
 87 
 
 142 
 
 87 
 
 014 
 
 87 
 
 883 
 
 87 
 
 751 
 
 87 
 
 617 
 
 87 
 
 482 
 
 86 
 
 344 
 
 86 
 
 205 
 
 86 
 
 065 
 
 86 
 
 922 
 
 86 
 
 778 
 
 86 
 
 632 
 
 85 
 
 485 
 
 85 
 
 336 
 
 85 
 
 185 
 
 85 
 
 .33 
 
 85 
 
 879 
 
 85 
 
 723 
 
 84 
 
 566 
 
 8j 
 
 407 
 
 84 
 
 -246 
 
 84 
 
 0S4 
 
 84 
 
 )920 
 
 84 
 
 9 
 
 1 D. 
 
 A TABLE OF LOGARITHMS FROM 1 TO 10,000. 
 
 N. 
 
 1 |l|2|3|4|5|fi 7|8|»|D. 1 
 
 620 
 
 71600C 
 
 \ 608 < 
 
 r 6170 6251 
 
 [ 6337| 6421 
 
 650.i 
 
 [ 6.58(1 
 
 6671 
 
 6754 
 
 83 
 
 621 
 
 683^ 
 
 1 692 J 
 
 7004 708!: 
 
 1 7171 
 
 725^ 
 
 733f- 
 
 1 7421 
 
 7504 
 
 758? 
 
 83 
 
 522 
 
 7671 
 
 7754 
 
 i 7837 792C 
 
 1 8005 
 
 1 8086 
 
 816L 
 
 1 825."] 
 
 8336 
 
 «4H 
 
 83 
 
 623 
 
 850S 
 
 ! 858£ 
 
 » 866^ 
 
 1 8751 
 
 883^1 
 
 891? 
 
 ' 900(J 
 
 9083 
 
 9165 
 
 9248 
 
 83 
 
 624 
 
 9331 
 
 9414 
 
 t 949? 
 
 ' 958C 
 
 9663 
 
 974.': 
 
 982« 
 
 9911 
 
 9994 
 
 ..77 
 
 83 
 
 625 
 
 720168 
 
 • 024'^ 
 
 0325 
 
 040? 
 
 049U 
 
 0573 
 
 065.'] 
 
 0738 
 
 0H2I 
 
 0903 
 
 83 
 
 626 
 
 0986 
 
 ima 
 
 1151 
 
 1233 
 
 131C 
 
 1398 
 
 1481 
 
 1563 
 
 1646 
 
 1728 
 
 82 
 
 627 
 
 1811 
 
 i89;j 
 
 197.'5 
 
 2058 
 
 2140 
 
 2222 
 
 2305 
 
 2.387 
 
 2469 
 
 2552 
 
 82 
 
 628 
 
 2634 
 
 2716 
 
 2798 
 
 2881 
 
 2963 
 
 3045 
 
 3127 
 
 3209 
 
 .329 1 
 
 3374 
 
 82 
 
 629 
 630 
 
 3456 
 
 3538 
 4358 
 
 3620 
 4440 
 
 3702 
 4522 
 
 3784 
 4604 
 
 3866 
 4685 
 
 3948 
 4767 
 
 4030 
 4849 
 
 4112 
 4931 
 
 4194 
 50 1 3 
 
 82 
 82 
 
 724276 
 
 631 
 
 5095 
 
 6176 
 
 5258 
 
 5340 
 
 5422 
 
 5503 
 
 6585 
 
 6667 
 
 6748 
 
 5830 
 
 82 
 
 532 
 
 6912 
 
 5993 
 
 6075 
 
 6156 
 
 6238 
 
 6320 
 
 6401 
 
 6483 
 
 6564 
 
 6646 
 
 82 
 
 633 
 
 6727 
 
 6809 
 
 6890 
 
 69Y2 
 
 7053 
 
 7134 
 
 7216 
 
 7297 
 
 7379 
 
 7460 
 
 81 
 
 634 
 
 7541 
 
 7623 
 
 7704 
 
 7785 
 
 7866 
 
 7948 
 
 8029 
 
 8110 
 
 8i91 
 
 8273 
 
 81 
 
 535 
 
 8354 
 
 8435 
 
 8516 
 
 8597 
 
 8678 
 
 8759 
 
 8841 
 
 8922 
 
 9003 
 
 9084 
 
 81 
 
 536 
 
 9165 
 
 9246 
 
 9327 
 
 9408 
 
 9489 
 
 9570 
 
 9651 
 
 9732 
 
 9813 
 
 9893 
 
 81 
 
 637 
 
 9974 
 
 ..55 
 
 .136 
 
 .217 
 
 .298 
 
 .378 
 
 .459 
 
 •540 
 
 .621 
 
 . 702 
 
 81 
 
 538 
 
 730782 
 
 0863 
 
 0944 
 
 1024 
 
 1105 
 
 1186 
 
 1266 
 
 1.347 
 
 1428 
 
 1508 
 
 81 
 
 639 
 540 
 
 1589 
 
 1B69 
 2474 
 
 1750 
 2555 
 
 1830 
 2635 
 
 1911 
 2715 
 
 1991 
 2796 
 
 2072 
 
 2876 
 
 2152 
 2956 
 
 2233 
 3037 
 
 2313 
 3117 
 
 81 
 80 
 
 732394 
 
 541 
 
 3197 
 
 3278 
 
 3358 
 
 3438 
 
 3518 
 
 3598 
 
 3679 
 
 3759 
 
 3839 
 
 39 1 9 
 
 80 
 
 542 
 
 3999 
 
 4079 
 
 4160 
 
 4240 
 
 4320 
 
 4400 
 
 4480 
 
 4560 
 
 4640 
 
 47'>0 
 
 80 
 
 543 
 
 4800 
 
 4880 
 
 4960 
 
 5040 
 
 5120 
 
 5200 
 
 5279 
 
 5359 
 
 5439 
 
 5519 
 
 80 
 
 544 
 
 5599 
 
 5679 
 
 5759 
 
 6838 
 
 5918 
 
 5998 
 
 6078 
 
 6157 
 
 6237 
 
 6317 
 
 80 
 
 545 
 
 6397 
 
 6476 
 
 6556 
 
 6636 
 
 6715 
 
 6795 
 
 6874 
 
 69.54 
 
 7034 
 
 7113 
 
 80 
 
 546 
 
 7193 
 
 7272 
 
 7352 
 
 7431 
 
 7511 
 
 7590 
 
 7670 
 
 7749 
 
 7829 
 
 7908 
 
 79 
 
 547 
 
 7987 
 
 8067 
 
 8146 
 
 8225 
 
 8305 
 
 8384 
 
 8463 
 
 8543 
 
 8622 
 
 870 1 
 
 79 
 
 548 
 
 87>il 
 
 8860 
 
 8939 
 
 9018 
 
 9097 
 
 9177 
 
 9256 
 
 9335 
 
 9414 
 
 9493 
 
 79 
 
 549 
 
 9572 
 
 9651 
 
 9731 
 
 9810 
 
 9889 
 
 9968 
 
 ..47 
 
 .126 
 
 .205 
 
 .284 
 
 79 
 
 550 
 
 740363 
 
 0442 
 
 0521 
 
 0600 
 
 0678 
 
 0757 
 
 0836 
 
 0915 
 
 0994 
 
 1073 
 
 79 
 
 551 
 
 1162 
 
 1230 
 
 1309 
 
 1388 
 
 1467 
 
 1546 
 
 1624 
 
 1703 
 
 1782 
 
 1860 
 
 79 
 
 552 
 
 193! 
 
 2018 
 
 2096 
 
 2175 
 
 2254 
 
 2332 
 
 2411 
 
 2489 
 
 2568 
 
 2646 
 
 79 
 
 553 
 
 2725 
 
 2804 
 
 2882 
 
 2961 
 
 3039 
 
 3118 
 
 3196 
 
 3275 
 
 3.353 
 
 3431 
 
 78 
 
 554 
 
 3510 
 
 3588 
 
 3667 
 
 3745 
 
 3823 
 
 3902 
 
 3980 
 
 4058 
 
 41.36 
 
 4215 
 
 78 
 
 555 
 
 4293 
 
 4371 
 
 4449 
 
 4528 
 
 4606 
 
 4684 
 
 4762 
 
 4840 
 
 4919 
 
 4997 
 
 78 
 
 656 
 
 5075 
 
 5153 
 
 5231 
 
 5309 
 
 6387 
 
 5465 
 
 5543 
 
 .5621 
 
 5699 
 
 5777 
 
 78 
 
 557 
 
 5855 
 
 5933 
 
 6011 
 
 6089 
 
 6167 
 
 6245 
 
 6323 
 
 6401 
 
 6479 
 
 6.556 
 
 78 
 
 55H 
 
 6G34 
 
 6712 
 
 6790 
 
 6868 
 
 6945 
 
 7023 
 
 7101 
 
 7179 
 
 7256 
 
 7334 
 
 78 
 
 559 
 560 
 
 7412 
 
 7489 
 8266 
 
 7567 
 8343 
 
 7645 
 8421 
 
 7722 
 8498 
 
 7800 
 8576 
 
 7878 
 8653 
 
 7955 
 8731 
 
 8033 
 
 8808 
 
 8110 
 8885 
 
 78 
 77 
 
 748188 
 
 561 
 
 8963 
 
 9040 
 
 9118 
 
 9195 
 
 9272 
 
 9350 
 
 9427 
 
 9504 
 
 9582 
 
 9659 
 
 77 
 
 562 
 
 9736 
 
 9814 
 
 9891 
 
 9968 
 
 ..45 
 
 .123 
 
 .200 
 
 .277 
 
 .3.54 
 
 .431 
 
 77 
 
 563 
 
 750508 
 
 0586 
 
 0663 
 
 0740 
 
 0817 
 
 0894 
 
 0971 
 
 1048 
 
 1125 
 
 1202 
 
 77 
 
 564 
 
 1279 
 
 1356 
 
 1433 
 
 1510 
 
 1587 
 
 1664 
 
 1741 
 
 1818 
 
 1895 
 
 1972 
 
 77 
 
 565 
 
 2048 
 
 2125 
 
 2202 
 
 2279 
 
 2356 
 
 2433 
 
 2509 
 
 2586 
 
 2663 
 
 2740 
 
 77 
 
 566 
 
 2816 
 
 2893 
 
 2970 
 
 3047 
 
 3123 
 
 3200 
 
 3277 
 
 3353 
 
 3430; 
 
 3506 
 
 77 
 
 567 
 
 3583 
 
 3660 
 
 3736 
 
 3813 
 
 3889 
 
 3966 
 
 4042 
 
 4119 
 
 4! 95] 
 
 4272 
 
 77 
 
 568 
 
 4348 
 
 4425 
 
 4501 
 
 4578 
 
 4654 
 
 4730 
 
 4807 
 
 4883 
 
 4960 
 
 5036 
 
 76 
 
 569 
 570 
 
 5112 
 
 5189 
 6951 
 
 5265 
 6027 
 
 5341 
 6103 
 
 5417 
 6180 
 
 5494 
 6256 
 
 5570 
 6332 
 
 5646 
 6408 
 
 5722 
 6484 
 
 5799 
 6560 
 
 76 
 76 
 
 755875 
 
 671 
 
 6636 
 
 6712 
 
 6788 
 
 6864 
 
 6940 
 
 7016 
 
 7092 
 
 7168 
 
 7244 
 
 7320 
 
 76 
 
 572 
 
 7396 
 
 7472 
 
 7548 
 
 7624 
 
 7700 
 
 7775 
 
 7851 
 
 7927 
 
 8003 
 
 8079 
 
 76 
 
 573 
 
 8155 
 
 8230 
 
 8306 
 
 8382 
 
 8458 
 
 8533 
 
 8609 
 
 8685 
 
 8761 
 
 8836 
 
 76 
 
 574 
 
 8912 
 
 8988 
 
 9063 
 
 9139 
 
 9214 
 
 9290 
 
 9.366 
 
 9441 
 
 9517 
 
 9592 
 
 76 
 
 575 
 
 9688 
 
 V 1 'to 
 
 9819 
 
 9894 
 
 9970 
 
 . .45 
 
 .121 
 
 .196 
 
 . 272 
 
 .347 
 
 75 
 
 576 
 
 760422 
 
 0498 
 
 0573 
 
 0649 
 
 0724 
 
 0799 
 
 0875 
 
 0950 
 
 1025| 
 
 1101 
 
 75 
 
 577 
 
 1176 
 
 1251 
 
 1326 
 
 1402 
 
 1477 
 
 1552 
 
 1627 
 
 1702 
 
 1778 
 
 18.53 
 
 75 
 
 bV8 
 
 1928 
 
 2003 
 
 2078 
 
 2153 
 
 2228 
 
 2303 
 
 2378 
 
 2453 
 
 2529: 26041 
 
 75 
 
 579 
 
 2679 
 
 2754 
 
 2829 
 
 2904129781 
 
 3053 3128' 
 
 3203 
 
 3278: 3353' 
 
 75 
 
 N. 1 
 
 1 1 2 1 3 1 4 1 
 
 5 1 H 1 7 1 8 1 9 1 D. 1 
 
 I 
 
in 
 
 A TABLE OF LOOARITIIMS PflOM 1 TO 10,000. 
 
 i 
 
 t 
 
 , 
 
 '*:- .!, 
 
 1.^ 
 
 
 N. 
 
 1 |lf2|8|4|filfi 7|H|9|D. j 
 
 580 
 
 763428 
 
 3503 
 
 3578 
 
 3653 
 
 3727 
 
 3802 3877 
 
 3952 
 
 4027 
 
 4101 
 
 75 
 
 581 
 
 4176 
 
 4251 
 
 4326 
 
 4400 
 
 4475 
 
 4550 4624 
 
 4699 
 
 4774 
 
 4848 
 
 75 
 
 58'2 
 
 4923 
 
 4998 
 
 6072 
 
 5147 
 
 5221 
 
 5296 5370 
 
 5445 
 
 5520 
 
 5594 
 
 75 
 
 583 
 
 6669 
 
 5743 
 
 5818 
 
 5892 
 
 5966 
 
 0041 6115 
 
 6190 
 
 6264 
 
 6338 
 
 74 
 
 584 
 
 6413 
 
 6487 
 
 6562 
 
 6636 
 
 6710 
 
 6785' 6859 
 
 "933 
 
 7007 
 
 7082 
 
 74 
 
 585 
 
 7156 
 
 7230 
 
 730-1 
 
 7379 
 
 7453 
 
 7527 
 
 7601 
 
 7675 
 
 7749 
 
 7823 
 
 74 
 
 58« 
 
 7898 
 
 7972 
 
 8046 
 
 8120 
 
 8194 
 
 8'<»6.^ 
 
 ' 8342 
 
 8416 
 
 8490 
 
 8564 
 
 74 
 
 587 
 
 8638 
 
 8712 
 
 8786 
 
 8860 
 
 8934 
 
 90(1 n 
 
 9082 
 
 9156 
 
 9230 
 
 9303 
 
 74 
 
 588 
 
 9377 
 
 9451 
 
 9525 
 
 9599 
 
 9673 
 
 9746 
 
 9820 
 
 PS 94 
 
 9968 
 
 ..42 
 
 74 
 
 58 a 
 
 770115 
 
 0189 
 
 0263 
 
 0336 
 
 0410 
 
 0484 
 
 0557 
 
 0631 
 
 0705 
 
 0778 
 
 74 
 
 590 
 
 770852 
 
 0926 
 
 0999 
 
 1073 
 
 1146 
 
 1220 
 
 1293 
 
 1367 
 
 1440 
 
 1514 
 
 74 
 
 591 
 
 1587 
 
 1661 
 
 1734 
 
 1808 
 
 1881 
 
 1955 
 
 2029 
 
 2102 
 
 2175 
 
 2248 
 
 73 
 
 592 
 
 2322 
 
 2395 
 
 2468 
 
 2542 
 
 2615 
 
 2688 
 
 2762 
 
 2835 
 
 2908 
 
 2981 
 
 73 
 
 593 
 
 3055 
 
 3128 
 
 3201 
 
 3274 
 
 3348 
 
 3421 
 
 3494 
 
 3567 
 
 3640 
 
 3713 
 
 73 
 
 59'1 
 
 3786 
 
 3860 
 
 3933 
 
 4006 
 
 4079 
 
 4152 
 
 4225 
 
 4298 
 
 4371 
 
 4444 
 
 73 
 
 595 
 
 4517 
 
 4590 
 
 4663 
 
 4736 
 
 4809 
 
 4882 
 
 4955 
 
 5028 
 
 5100 
 
 5173 
 
 73 
 
 596 
 
 6246 
 
 5319 
 
 5392 
 
 5465 
 
 5538 
 
 5610 
 
 5683 
 
 5756 
 
 5829 
 
 5902 
 
 73 
 
 597 
 
 5974 
 
 6047 
 
 6120 
 
 6193 
 
 6265 
 
 6338 
 
 6411 
 
 6483 
 
 6556 
 
 6629 
 
 73 
 
 598 
 
 6701 
 
 6774 
 
 6846 
 
 6919 
 
 6992 
 
 7064 
 
 7137 
 
 7209 
 
 7282 
 
 7354 
 
 73 
 
 599 
 
 7427 
 
 7499 
 
 7572 
 
 7644 
 
 7717 
 
 7789 
 
 7862 
 
 7934 
 
 80^6 
 
 8079 
 
 72 
 
 600 
 
 778151 
 
 8224 
 
 8296 
 
 8368 
 
 8441 
 
 8513 
 
 8585 
 
 8658 
 
 8730 
 
 8802 
 
 72 
 
 601 
 
 8874 
 
 8947 
 
 9019 
 
 9091 
 
 9163 
 
 9236 
 
 9308 
 
 9380 
 
 9452 
 
 9524 
 
 72 
 
 602 
 
 9596 
 
 9669 
 
 9741 
 
 9813 
 
 98S5 
 
 9957 
 
 ..29 
 
 .101 
 
 .173 
 
 .24=i 
 
 72 
 
 603 
 
 780317 
 
 0389 
 
 0461 
 
 0533 
 
 0605 
 
 0677 
 
 0749 
 
 0821 
 
 0893 
 
 0905 
 
 72 
 
 604 
 
 r037 
 
 1109 
 
 1181 
 
 1253 
 
 1324 
 
 1396 
 
 1468 
 
 1540 
 
 1612 
 
 1684 
 
 72 
 
 605 
 
 1755 
 
 1827 
 
 1899 
 
 1971 
 
 2042 
 
 2114 
 
 2186 
 
 2258 
 
 2329 
 
 2401 
 
 72 
 
 606 
 
 2473 
 
 2544 
 
 2616 
 
 2G88 
 
 2759 
 
 2831 
 
 2902 
 
 2974 
 
 3046 
 
 3117 
 
 72 
 
 607 
 
 3189 
 
 3260 
 
 3332 
 
 3403 
 
 3475 
 
 3546 
 
 3618 
 
 3689 
 
 3761 
 
 3832 
 
 71 
 
 608 
 
 3904 
 
 39VO 
 
 4046 
 
 4118 
 
 4189 
 
 4261 
 
 4332 
 
 4403 
 
 4475 
 
 4546 
 
 71 
 
 609 
 610 
 
 4617 
 
 4689 
 5401 
 
 '.'760 
 5472 
 
 4S31 
 5543 
 
 4902 
 5615 
 
 4974 
 5686 
 
 5045 
 
 5757 
 
 5116 
 
 5828 
 
 5187 
 5899 
 
 5259 
 5970 
 
 71 
 71 
 
 785330 
 
 611 
 
 6041 
 
 6112 
 
 6183 
 
 6254 
 
 6325 
 
 6396 
 
 6467 
 
 6538 
 
 6609 
 
 6680 
 
 71 
 
 612 
 
 6751 
 
 6822 
 
 6893 
 
 6964 
 
 7035 
 
 7106 
 
 7177 
 
 7248 
 
 7319 
 
 7390 
 
 71 
 
 613 
 
 7460 
 
 7531 
 
 7602 
 
 7673 
 
 7744 
 
 7815 
 
 7885 
 
 7956 
 
 8027 
 
 8098 
 
 71 
 
 614 
 
 8168 
 
 8239 
 
 8310 
 
 8381 
 
 8451 
 
 8522 
 
 8593 
 
 8663 
 
 8734 
 
 8804 
 
 71 
 
 615 
 
 8875 
 
 8946 
 
 9016 
 
 9087 
 
 9157 
 
 9228 
 
 9299 
 
 9369 
 
 9440 
 
 9510 
 
 71 
 
 616 
 
 ^581 
 
 9651 
 
 9722 
 
 9792 
 
 9863 
 
 9933 
 
 ...4 
 
 ..74 
 
 .144 
 
 .215 
 
 70 
 
 617 
 
 790285 
 
 0356 
 
 0426 
 
 0496 
 
 0567 
 
 0637 
 
 0707 
 
 0778 
 
 0848 
 
 0918 
 
 70 
 
 618 
 
 0988 
 
 1059 
 
 1129 
 
 1199 
 
 1269 
 
 1340 
 
 1410 
 
 1480 
 
 1550 
 
 1620 
 
 70 
 
 619 
 
 1691 
 
 1761 
 
 1831 
 
 1901 
 
 1971 
 
 2041 
 
 2111 
 
 2181 
 
 2252 
 
 2322 
 
 70 
 
 620 
 
 792392 
 
 2462 
 
 2532 
 
 2602 
 
 2672 
 
 2742 
 
 2812 
 
 2882 
 
 2952 
 
 3022 
 
 70 
 
 621 
 
 3092 
 
 3162 
 
 323 ij 
 
 3301 
 
 3371 
 
 3441 
 
 3511 
 
 3581 
 
 3651 
 
 3721 
 
 70 
 
 622 
 
 3790 
 
 3860 
 
 3930 
 
 4000 
 
 4070 
 
 4139 
 
 4209 
 
 4279 
 
 4349 
 
 4418 
 
 70 
 
 623 
 
 4488 
 
 4558 
 
 4627 
 
 4697 
 
 4767 
 
 4836 
 
 4906 
 
 4976 
 
 5045 
 
 5115 
 
 70 
 
 624 
 
 5185 
 
 5254 
 
 5324 
 
 5393 
 
 5463 
 
 5532 
 
 5602 
 
 5672 
 
 5741 
 
 5811 
 
 70 
 
 625 
 
 5880 
 
 5949 
 
 6019 
 
 608f 
 
 6158 
 
 6227 
 
 6297 
 
 6366 
 
 6436 
 
 6505 
 
 69 
 
 626 
 
 6574 
 
 6644 
 
 6713 
 
 6782 
 
 6852 
 
 6921 
 
 6990 
 
 7060 
 
 7129 
 
 7198 
 
 69 
 
 627 
 
 7268 
 
 7337 
 
 7406 
 
 7475 
 
 7545: 76141 
 
 7683i 
 
 7752 
 
 7821 
 
 7890 
 
 69 
 
 628 
 
 7960 
 
 8029 
 
 8098 
 
 8167 
 
 8238' 
 
 8305 
 
 8374 8443 
 
 8513 
 
 8582 
 
 69 
 
 629 
 
 8651 
 
 8720 
 
 8789 
 
 8858 
 
 8927 
 
 8996 
 
 9065 9134 
 
 9203 
 
 9272 
 
 69 
 
 630 
 
 799341! 
 
 9409 
 
 9478 
 
 9547 
 
 9616 
 
 9685 
 
 975^ 9823 
 
 9892 
 
 9961 
 
 69 
 
 631 
 
 800029 0098 
 
 0167 
 
 0236 
 
 0305! 
 
 0373 
 
 0442 0511 
 
 0580 
 
 0648 
 
 69 
 
 632 
 
 07n 0786 
 
 0854 
 
 0923 
 
 0992' 
 
 1061 
 
 1129 1198 
 
 1266 
 
 1335 
 
 69 
 
 633 
 
 1404 
 
 1472 
 
 1541 
 
 1609| 
 
 1678 
 
 1747 
 
 1S15 1884 
 
 1952 
 
 2021 
 
 69 
 
 634 
 
 2089 
 
 2158 
 
 2226 
 
 2295! 
 
 2363! 
 
 2432 
 
 2500 2568 
 
 2637 
 
 2705 
 
 69 
 
 635 
 
 2774 
 
 2842 
 
 2910 
 
 2979 1 
 
 3047: 31161 
 
 3184 
 
 3252 
 
 3321 
 
 3389 
 
 68 
 
 636 
 
 3457! 
 
 3525' 35941 
 
 36621 
 
 3730 3798! 
 
 3867! 
 
 3935 
 
 4003 
 
 4071 
 
 68 
 
 637 
 
 4139 
 
 420814276 
 
 43441 
 
 4412; 4480 
 
 4548 
 
 4616 
 
 4685 
 
 4753 
 
 68 
 
 638 
 
 4821 
 
 4889' 4957 
 
 5025 
 
 5093 5161 
 
 5229 
 
 5297 
 
 5365 
 
 5433 
 
 68 
 
 639 
 
 5501 
 
 5569' 5637 
 
 5705 
 
 5773' 5LU 590Si 
 
 5976 
 
 6044 
 
 6112 
 
 68 
 
 N. I 
 
 I 1 1 2 I G 1 4 i 5 1 6 1 7 8 I 9 1 D. i 
 
 F 
 
 1 
 
 640 
 
 806 
 
 641 
 
 6. 
 
 642 
 
 7. 
 
 643 
 
 8' 
 
 641 
 
 8t 
 
 645 
 
 9. 
 
 646 
 
 810; 
 
 647 
 
 01 
 
 648 
 
 ].' 
 
 619 
 
 2: 
 
 6.'j0 
 
 812< 
 
 651 
 
 3f 
 
 652 
 
 45 
 
 653 
 
 4< 
 
 654 
 
 5f 
 
 655 
 
 65 
 
 656 
 
 6( 
 
 657 
 
 7J 
 
 658 
 
 85 
 
 659 
 
 8f 
 
 660 
 
 819f 
 
 661 
 
 8205 
 
 662 
 
 0* 
 
 663 
 
 1.' 
 
 664 
 
 2 
 
 665 
 
 2.'' 
 
 666 
 
 3 
 
 667 
 
 4 
 
 668 
 
 4- 
 
 669 
 
 5-1 
 
 670 
 
 826( 
 
 671 
 
 6' 
 
 672 
 
 1{ 
 
 073 
 
 8( 
 
 674 
 
 8( 
 
 675 
 
 91 
 
 676 
 
 9J 
 
 677 
 
 830.' 
 
 678 
 
 15 
 
 679 
 
 U 
 
 680 
 
 83?? 
 
 681 
 
 3 
 
 682 
 
 3- 
 
 683 
 
 4-1 
 
 684 
 
 5{ 
 
 685 
 
 66 
 
 686 
 
 6? 
 
 687 
 
 6r 
 
 688 
 
 7f 
 
 689 
 
 82 
 
 690 
 
 838S 
 
 691 
 
 94 
 
 692 
 
 8401 
 
 693 
 
 0? 
 
 694 
 
 i:^ 
 
 r)H;i 
 
 H 
 
 696 
 
 2r 
 
 697 
 
 32 
 
 69,S 
 
 38 
 
 699 
 
 44 
 
 N. 1 
 
 
 
1 D.j 
 
 01 
 
 Tf) 
 
 18 
 
 75 
 
 J'i 
 
 75 
 
 m 
 
 74 
 
 H'2 
 
 74 
 
 i'.i 
 
 74 
 
 R'l 
 
 74 
 
 [):j 
 
 74 
 
 12 
 
 74 
 
 78 
 
 74 
 
 14 
 
 74 
 
 18 
 
 73 
 
 il 
 
 73 
 
 13 
 
 73 
 
 14 
 
 73 
 
 ra 
 
 73 
 
 )2 
 
 73 
 
 i9 
 
 73 
 
 ■A 
 
 73 
 
 m 
 
 72 
 
 )2 
 
 72 
 
 24 
 
 72 
 
 I'S 
 
 72 
 
 >5 
 
 72 
 
 M 
 
 72 
 
 )1 
 
 72 
 
 7 
 
 72 
 
 J2 
 
 71 
 
 6 
 
 71 
 
 )9 
 
 71 
 
 ro 
 
 71 
 
 )0 
 
 71 
 
 )0 
 
 71 
 
 »8 
 
 71 
 
 )4 
 
 71 
 
 
 
 71 
 
 5 
 
 70 
 
 8 
 
 70 
 
 ,0 
 
 70 
 
 2 
 
 70 
 
 2 
 
 70 
 
 1 
 
 70 
 
 8 
 
 70 
 
 5 
 
 70 
 
 1 
 
 70 
 
 5 
 
 6g 
 
 8 
 
 69 
 
 
 
 69 
 
 2 
 
 69 
 
 2 
 
 69 
 
 i 
 
 69 
 
 8 
 
 69 
 
 5 
 
 69 
 
 1 
 
 69 
 
 5 
 
 69 
 
 9 
 
 68 
 
 1 
 
 68 
 
 3 
 
 68 
 
 3 
 
 68 
 
 2 
 
 68 
 
 lD.i 
 
 A TAHLE OF LO(;AniTUMS FiJOM f TO 10,000. 
 
 f! 
 
 
 64() 
 
 |0 1|2|3 4 5|6 71819 U. 1 
 
 806180 
 
 6248 
 
 6316 63-14 
 
 6451 
 
 65 19 
 
 6587 
 
 6655 
 
 6,23 
 
 6790 
 
 68 
 
 641 
 
 6858 
 
 6926 
 
 6994 7061 
 
 712J 
 
 7197 
 
 7264 
 
 7332 
 
 7400 
 
 7467 
 
 68 
 
 612 
 
 7535 
 
 7603 
 
 7670 773ft 
 
 7806 
 
 7873 
 
 7941 
 
 8008 
 
 8076 
 
 8143 
 
 68 
 
 643 
 
 8211 
 
 8279 
 
 8346 
 
 8414 
 
 8481 
 
 8549 
 
 8616 
 
 8684 
 
 8751 
 
 881S 
 
 67 
 
 644 
 
 8886 
 
 8953 
 
 9021 
 
 9088 
 
 9156 
 
 9223 
 
 9290 
 
 9358 
 
 9425 
 
 9492 
 
 67 
 
 645 
 
 9560 
 
 9627 
 
 9094 
 
 9762 
 
 9829 
 
 9896 
 
 9964 
 
 ..31 
 
 ..98 
 
 .165 
 
 67 
 
 046 
 
 810233 
 
 0300 
 
 0367 
 
 0434 
 
 0501 
 
 0569 
 
 0636 
 
 0703 
 
 0770 
 
 0837 
 
 67 
 
 647 
 
 0904 
 
 0971 
 
 1039 
 
 1106 
 
 1173 
 
 1240 
 
 1307 
 
 1374 
 
 1441 
 
 1508 
 
 67 
 
 648 
 
 1575 
 
 1642 
 
 1709 
 
 1776 
 
 1843 
 
 l.tlO 
 
 1977 
 
 2044 
 
 2111 
 
 2178 
 
 67 
 
 619 
 650 
 
 2245 
 
 2980 
 
 237C 
 3047 
 
 2445 
 3114 
 
 2512 
 3181 
 
 2579 
 3247 
 
 2646 
 3.il4 
 
 2713 
 3381 
 
 2780 
 3448 
 
 2847 
 3514 
 
 67 
 67 
 
 812913 
 
 651 
 
 3581 
 
 3648 
 
 3714 
 
 3781 
 
 3S48 
 
 3914 
 
 3981 
 
 4048 
 
 4114 
 
 4181 
 
 67 
 
 652 
 
 4248 
 
 4314 
 
 4381 
 
 4447 
 
 4514 
 
 4581 
 
 4647 
 
 4714 
 
 4780 
 
 4847 
 
 67 
 
 653 
 
 4913 
 
 4980 
 
 5046 
 
 5113 
 
 5179 
 
 5246 
 
 5312 
 
 5378 
 
 .5445 
 
 5511 
 
 66 
 
 654 
 
 5578 
 
 5644 
 
 5711 
 
 5777 
 
 5843 
 
 5910 
 
 5976 
 
 6042 
 
 6109 
 
 6175 
 
 86 
 
 655 
 
 6241 
 
 6308 
 
 6374 
 
 6440 
 
 6506 
 
 6573 
 
 6639 
 
 6705 
 
 6771 
 
 «)838 
 
 66 
 
 656 
 
 6904 
 
 6970 
 
 7036 
 
 7102 
 
 7169 
 
 7235 
 
 7301 
 
 7367 
 
 7433 
 
 7499 
 
 66 
 
 657 
 
 7565 
 
 7631 
 
 7698 
 
 7764 
 
 7830 
 
 7896 
 
 7962 
 
 8028 
 
 8094 
 
 8160 
 
 66 
 
 658 
 
 8226 
 
 8292 
 
 8358 
 
 8424 
 
 8490 
 
 8556 
 
 8622 
 
 8688 
 
 8754 
 
 8820 
 
 66 
 
 659 
 660 
 
 8885 
 
 8951 
 9610 
 
 9017 
 9676 
 
 9083 
 9741 
 
 9149 
 
 9807 
 
 9215 
 9873 
 
 9281 
 9939 
 
 9346 
 ...4 
 
 9412 
 ..70 
 
 9478 
 . 136 
 
 66 
 66 
 
 819544 
 
 661 
 
 82020! 
 
 0267 
 
 0333 
 
 0399 
 
 0464 
 
 0530 
 
 0595 
 
 0661 
 
 0727 
 
 0792 
 
 66 
 
 662 
 
 0858 
 
 0924 
 
 0989 
 
 1055 
 
 1120 
 
 1186 
 
 1251 
 
 1317 
 
 1382 
 
 1448 
 
 66 
 
 663 
 
 1514 
 
 1579 
 
 1645 
 
 1710 
 
 K75 
 
 1841 
 
 1906 
 
 1972 
 
 2037 
 
 2103 
 
 65 
 
 664 
 
 2168 
 
 2233 
 
 2299 
 
 236-1 
 
 2430 
 
 2495 
 
 2560 
 
 2626 
 
 2691 
 
 2756 
 
 65 
 
 665 
 
 2822 
 
 2887 
 
 2952 
 
 3018 
 
 3083 
 
 3148 
 
 3213 
 
 3279 
 
 3344 
 
 3409 
 
 65 
 
 666 
 
 3474 
 
 3539 
 
 3605 
 
 3670 
 
 3735 
 
 3800 
 
 3865 
 
 3930 
 
 3996 
 
 4061 
 
 65 
 
 667 
 
 4126 
 
 4191 
 
 4256 
 
 4321 
 
 4386 
 
 4451 
 
 4516 
 
 4581 
 
 4646 
 
 4711 
 
 65 
 
 668 
 
 4776 
 
 4841 
 
 4906 
 
 4971 
 
 5036 
 
 5101 
 
 5166 
 
 5231 
 
 5296 
 
 5361 
 
 65 
 
 669 
 670 
 
 5426 
 
 5491 
 6140 
 
 5556 
 6204 
 
 5621 
 6269 
 
 5686 
 6334 
 
 .^75' 
 639J 
 
 5815 
 6464 
 
 5880 
 6528 
 
 5945 
 6593 
 
 6010 
 6658 
 
 65 
 65 
 
 826075 
 
 671 
 
 6723 
 
 6787 
 
 6852 
 
 6917 
 
 6981 
 
 7046 
 
 7111 
 
 7175 
 
 7240 
 
 7-->()5 
 
 05 
 
 672 
 
 7369 
 
 7434 
 
 7499 
 
 7563 
 
 7628 
 
 7692 
 
 7757 
 
 7821 
 
 7886 
 
 7951 
 
 65 
 
 673 
 
 8015 
 
 8080 
 
 8144 
 
 8209 
 
 8273 
 
 8338 
 
 8402 
 
 8467 
 
 85:31 
 
 8595 
 
 64 
 
 674 
 
 8660 
 
 8724 
 
 8789 
 
 8853 
 
 8918 
 
 8982 
 
 9046 
 
 9111 
 
 9i75 
 
 9239 
 
 64 
 
 675 
 
 9304 
 
 9368 
 
 0432 
 
 9497 
 
 9561 
 
 9625 
 
 9690 
 
 9754 
 
 9818 
 
 9882 
 
 64 
 
 676 
 
 9947 
 
 ..11 
 
 ..75 
 
 .139 
 
 .204 
 
 .268 
 
 .3.32 
 
 •396 
 
 .400 
 
 .525 
 
 64 
 
 677 
 
 830589 
 
 0653 
 
 0717 
 
 0781 
 
 0845 
 
 0909 
 
 0973 
 
 1037 
 
 1102 
 
 1166 
 
 64 
 
 678 
 
 1230 
 
 1294 
 
 1358 
 
 1422 
 
 1486 
 
 1550 
 
 1014 
 
 1678 
 
 1742 
 
 1806 
 
 64 
 
 679 
 
 1870 
 
 1934 
 
 1998 
 
 2062 
 
 2126 
 
 2189 
 
 2253 
 
 2317 
 
 2381 
 
 2445 
 
 64 
 
 680 
 
 83?509 
 
 2573 
 
 2637 
 
 2700 
 
 2764 
 
 2828 
 
 2892 
 
 2956 
 
 3020 
 
 3083 
 
 64 
 
 681 
 
 3147 
 
 3211 
 
 3275 
 
 3338 
 
 3402 
 
 3466 
 
 3530 
 
 3593 
 
 3657 
 
 3721 
 
 64 
 
 682 
 
 3784 
 
 3848 
 
 3912 
 
 3975 
 
 4039 
 
 4103 
 
 •'^.66 
 
 4230 
 
 4294 
 
 4357 
 
 64 
 
 683 
 
 4421 
 
 4484 
 
 4548 
 
 4611 
 
 4675 
 
 4739 
 
 4805> 
 
 4866 
 
 4929 
 
 4993 
 
 64 
 
 684 
 
 5056 
 
 5120 
 
 5183 
 
 5247 
 
 5310 
 
 5373 
 
 5137 
 
 5500 
 
 5564 
 
 5627 
 
 63 
 
 685 
 
 5691 
 
 5754 
 
 5817 
 
 5881 
 
 5944 
 
 6007 
 
 6071 
 
 6134 
 
 6197 
 
 6261 
 
 63 
 
 686 
 
 6324 
 
 6387 
 
 6451 
 
 6514 
 
 6577 
 
 6641 
 
 6704 
 
 6767 
 
 6830 
 
 6894 
 
 63 
 
 687 
 
 6957 
 
 7020 
 
 7083 
 
 7146 
 
 7210 
 
 7273 
 
 7336 
 
 7399 
 
 746^ 
 
 7.525 
 
 63 
 
 688 
 
 7588 
 
 7652 
 
 7715 
 
 7778 
 
 7841 
 
 7904 
 
 7967 
 
 8030 
 
 8093 
 
 SI 56 
 
 63 
 
 689 
 
 8219 
 
 8282 
 
 8345 
 
 8408 
 
 8471 
 
 8534 
 
 8597 
 
 8660 
 
 8723 
 
 8786 
 
 63 
 
 690 
 
 838849 
 
 8912 
 
 8975 
 
 9038 
 
 9101 
 
 9164 
 
 9227 
 
 9289 
 
 9352 
 
 9415 
 
 63 
 
 691 
 
 9478 
 
 9541 
 
 9604 
 
 9667 
 
 9729 
 
 9792 
 
 9855 
 
 9918 
 
 9981 
 
 ..43 
 
 63 
 
 692 
 
 840106 
 
 0169 
 
 0232 
 
 0294 
 
 0357 
 
 0420 
 
 0482 
 
 0545 
 
 0608 
 
 0671 
 
 63 
 
 693 
 
 0733 
 
 0796 
 
 0859 
 
 0921 
 
 0984 
 
 1046 
 
 1109 
 
 1172 
 
 1234 
 
 1297 
 
 63 
 
 694 
 
 1359 
 
 1422 
 
 1485 
 
 1547 
 
 1610 
 
 1672 
 
 1735 
 
 1797 
 
 1860 
 
 1922 
 
 63 
 
 r)H;i 
 
 1 nsp. 
 
 2047 
 
 2110 
 
 2172 
 
 2235 
 
 2297 
 
 1.1 fiO 
 
 2422 
 
 2484 
 
 2547 
 
 62 
 
 696 
 
 2609 
 
 2672 
 
 2734 
 
 2796 
 
 2859 
 
 2921 
 
 2983 
 
 3046 
 
 3108 
 
 3170 
 
 62 
 
 697 
 
 3233 
 
 3295 
 
 3357 
 
 3420 
 
 3482 
 
 3544 
 
 3606 
 
 3669 
 
 3731 
 
 3793 
 
 62 
 
 rm 
 
 3855 
 
 3918 
 
 3980 
 
 4042 
 
 4104 
 
 4J66 
 
 4229 
 
 4291 
 
 4353 
 
 4415 
 
 62 
 
 699 
 
 4477 
 
 4539 
 
 4601 
 
 4664 
 
 4726 
 
 4788 
 
 4850 
 
 4912 
 
 4974 
 
 5036 
 
 62 
 
 N. t 
 
 1 1 1 
 
 2 3 i 4 1 5 1 6 ' 
 
 
 8 1 
 
 " 
 
 D. 
 
I 
 
 
 1 *< 
 
 ! H 
 
 
 il 
 
 rii 
 
 •I 
 
 
 Hi 
 
 ,f !i 
 
 12 
 
 A TABLE OF LOOAKITIIMS FROM 1 TO 10,000. 
 
 N. 
 
 1 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 'H 9 1 D. 1 
 
 700 
 
 845098 
 
 5160i 5222 
 
 5284 
 
 5346 
 
 5408 
 
 5470 
 
 5532 
 
 5594 
 
 5658 
 
 62 
 
 701 
 
 5718 
 
 5780 
 
 5842 
 
 5904 
 
 5966 
 
 6028 
 
 6090 
 
 6151 
 
 6213 
 
 6275 
 
 82 
 
 702 
 
 6337 
 
 6399 
 
 6461 
 
 6523 
 
 6585 
 
 6646 
 
 6708 
 
 6770 
 
 6832 
 
 8894 
 
 82 
 
 703 
 
 6955 
 
 7017 
 
 7079 
 
 7141 
 
 7202 
 
 7264 
 
 7326 
 
 7388 
 
 7449 
 
 7511 
 
 82 
 
 704 
 
 7573 
 
 7634 
 
 7696 
 
 7758 
 
 7819 
 
 7881 
 
 7943 
 
 8004 
 
 8066 
 
 8128 
 
 62 
 
 705 
 
 8189 
 
 8251 
 
 8312 
 
 8374 
 
 8435 
 
 8497 
 
 8559 
 
 8620 
 
 8682 
 
 8743 
 
 62 
 
 706 
 
 8805 
 
 8866 
 
 8928 
 
 8989 
 
 9051 
 
 9112 
 
 9174 
 
 9235 
 
 9297 
 
 9358 
 
 61 
 
 707 
 
 9419 
 
 9481 
 
 9542 
 
 9604 
 
 9665 
 
 9726 
 
 9788 
 
 9849 
 
 9911 
 
 9972 
 
 61 
 
 708 
 
 850033 
 
 0095 
 
 0156 
 
 0217 
 
 0279 
 
 0340 
 
 0401 
 
 0462 
 
 05':4 
 
 0.585 
 
 •:i 
 
 709 
 710 
 
 0646 
 
 0707 
 
 0769 
 1381 
 
 0830 
 1442 
 
 0891 
 
 0952 
 
 1014 
 
 1075 
 
 1138 
 1747 
 
 1197 
 1809 
 
 6~1 
 
 851258 
 
 1320 
 
 1503 
 
 1564 
 
 1625 
 
 1686 
 
 711 
 
 1870 
 
 1931 
 
 1992 
 
 2053 
 
 2114 
 
 2175 
 
 2236 
 
 2297 
 
 2358 
 
 2419 
 
 61 
 
 712 
 
 2480 
 
 2541 
 
 2602 
 
 2663 
 
 2724 
 
 2785 
 
 2846 
 
 2907 
 
 2968 
 
 3029 
 
 61 
 
 713 
 
 3090 
 
 3150 
 
 3211 
 
 3272 
 
 3333 
 
 3394 
 
 3455 
 
 .3516 
 
 3577 
 
 3637 
 
 61 
 
 714 
 
 3898 
 
 3759 
 
 3820 
 
 3881 
 
 3941 
 
 4002 
 
 4063 
 
 4124 
 
 4185 
 
 4245 
 
 61 
 
 715 
 
 4308 
 
 4367 
 
 4428 
 
 4488 
 
 4549 
 
 4610 
 
 4670 
 
 4731 
 
 4792 
 
 4852 
 
 81 
 
 716 
 
 4913 
 
 4974 
 
 5034 
 
 5095 
 
 5156 
 
 5216 
 
 5277 
 
 5337 
 
 5398 
 
 5459 
 
 81 
 
 717 
 
 5519 
 
 5580 
 
 5640 
 
 5701 
 
 5761 
 
 5822 
 
 5882 
 
 5943 
 
 6003 
 
 6084 
 
 61 
 
 718 
 
 6124 
 
 6185 
 
 6245 
 
 6306 
 
 6366 
 
 6427 
 
 6487 
 
 6548 
 
 6808 
 
 6888 
 
 80 
 
 719 
 720 
 
 6729 
 
 6789 
 
 6850 
 
 6910 
 7513 
 
 6970 
 
 7031 
 7634 
 
 V091 
 7894 
 
 7152 
 7755 
 
 7212 
 
 7272 
 7875 
 
 80 
 00 
 
 857332 
 
 7393 
 
 7453 
 
 75'-''4 
 
 7815 
 
 721 
 
 7935 
 
 7995 
 
 8056 
 
 8116 
 
 81'3 
 
 8236 
 
 8297 
 
 8357 
 
 8417 
 
 8477 
 
 60 
 
 722 
 
 8537 
 
 8597 
 
 8657 
 
 8718 
 
 8778 
 
 8833 
 
 8898 
 
 8958 
 
 9018 
 
 9078 
 
 80 
 
 723 
 
 9138 
 
 9198 
 
 9258 
 
 9318 
 
 9379 
 
 9439 
 
 9499 
 
 9559 
 
 9619 
 
 9879 
 
 80 
 
 724 
 
 9739 
 
 9799 
 
 9859 
 
 9918 
 
 99 /•'8 
 
 ..38 
 
 ..98 
 
 .158 
 
 .218 
 
 .278 
 
 80 
 
 725 
 
 860338 
 
 0398 
 
 0458 
 
 0518 
 
 0578 
 
 0637 
 
 0697 
 
 0757 
 
 0817 
 
 0877 
 
 60 
 
 726 
 
 0937 
 
 0996 
 
 1056 
 
 1116 
 
 1176 
 
 1236 
 
 1295 
 
 1355 
 
 1415 
 
 1475 
 
 80 
 
 727 
 
 1534 
 
 15')4 
 
 1654 
 
 1714 
 
 • 773 
 
 1833 
 
 1893 
 
 1952 
 
 2012 
 
 2072 
 
 60 
 
 728 
 
 2131 
 
 2191 
 
 2251 
 
 2310 
 
 2370 
 
 2430 
 
 2489 
 
 2549 
 
 2608 
 
 2688 
 
 80 
 
 729 
 730 
 
 2728 
 
 2787 
 
 2847 
 
 2906 
 
 2966 
 
 3025 
 
 3085 
 3680 
 
 3144 
 3739 
 
 320 i 
 
 371*9 
 
 3263 
 
 3858 
 
 60 
 59 
 
 863323 
 
 3382 
 
 3442 
 
 3501 
 
 3561 
 
 3620 
 
 731 
 
 3917 
 
 3977 
 
 4036 
 
 40O6 
 
 4155 
 
 4214 
 
 4274 
 
 4333 
 
 4392 
 
 4452 
 
 59 
 
 732 
 
 4511 
 
 4570 
 
 4630 
 
 4689 
 
 4748 
 
 4808 
 
 4867 
 
 4926 
 
 4985 
 
 5045 
 
 59 
 
 733 
 
 5104 
 
 5163 
 
 5222 
 
 5282 
 
 5341 
 
 5400 
 
 54.': 1 
 
 5519 
 
 f)578 
 
 5837 
 
 59 
 
 734 
 
 5696 
 
 5755 
 
 5814 
 
 5874 
 
 5933 
 
 5992 
 
 6051 
 
 6110 
 
 6169 
 
 (1228 
 
 59 
 
 735 
 
 6287 
 
 6346 
 
 6405 
 
 6465 
 
 6524 
 
 6583 
 
 6842 
 
 6701 
 
 6760 
 
 6819 
 
 59 
 
 73(» 
 
 6878 
 
 6937 
 
 6996 
 
 7055 
 
 7114 
 
 7173 
 
 7232 
 
 7291 
 
 7350 
 
 7409 
 
 59 
 
 737 
 
 7467 
 
 7526 
 
 7585 
 
 76'44 
 
 7703 
 
 7762 
 
 7821 
 
 7880 
 
 7939 
 
 7998 
 
 59 
 
 738 
 
 8056 
 
 8115 
 
 8174 
 
 8233 
 
 8292 
 
 8350 
 
 8409 
 
 8488 
 
 8527 
 
 8588 
 
 59 
 
 759 
 740 
 
 8644 
 
 8703 
 
 8762 
 
 .8521 
 
 8879 
 9466 
 
 8938 
 9525 
 
 8997 
 9584 
 
 9056 
 9642 
 
 9114 
 
 9173 
 9780 
 
 59 
 59 
 
 809232 
 
 9290 
 
 9349 
 
 9408 
 
 9701 
 
 741 
 
 9818 
 
 9877 
 
 9935 
 
 9994 
 
 ..53 
 
 .111 
 
 .170 
 
 .228 
 
 .287 
 
 .345 
 
 59 
 
 742 
 
 870404 
 
 0462 
 
 0521 
 
 0579 
 
 0638 
 
 0896 
 
 0755 
 
 0813 
 
 0872 
 
 0930 
 
 58 
 
 743 
 
 ^^989 
 
 1047 
 
 1106 
 
 1164 
 
 1223 
 
 1281 
 
 1339 
 
 1398 
 
 1456 
 
 1515 
 
 58 
 
 744 
 
 1573 
 
 1631 
 
 1690 
 
 1748 
 
 1808 
 
 1865 
 
 1923 
 
 1981 
 
 2040 
 
 2098 
 
 58 
 
 745 
 
 2156 
 
 2215 
 
 2273 
 
 2331 
 
 2389 
 
 2448 
 
 2506 
 
 2504 
 
 2622 
 
 2681 
 
 58 
 
 746 
 
 2739 
 
 2797 
 
 2855 
 
 2913 
 
 2972 
 
 3030 
 
 3088 
 
 3146 
 
 3204 
 
 i'^-'82 
 
 58 
 
 747 
 
 3321 
 
 3379 
 
 3437 
 
 3495 
 
 3553 
 
 3611 
 
 3669 
 
 3727 
 
 3785 
 
 3814 
 
 58 
 
 748 
 
 3902 
 
 3960 
 
 4018 
 
 4076 
 
 4134 
 
 4192 
 
 4250 
 
 4308 
 
 4366 
 
 4424 
 
 58 
 
 749 
 750 
 
 4482 
 
 4540 
 5119 
 
 4598 
 
 4658 
 
 4714 
 5293 
 
 4772 
 5351 
 
 4830 
 5409 
 
 4888 
 5466 
 
 4945 
 
 5003 
 
 5582 
 
 58 
 58 
 
 87506 1 
 
 5177 
 
 5235 
 
 5524 
 
 751 
 
 5640 
 
 5698 
 
 5756 
 
 5813 
 
 5871 
 
 592'^ 
 
 5987 
 
 6045 
 
 6102 
 
 6160 
 
 58 
 
 752 
 
 6218 
 
 6276 
 
 6333 
 
 6391 
 
 6449 
 
 6507 
 
 6564 
 
 6822 
 
 8680 
 
 6737 
 
 58 
 
 753 
 
 6795 
 
 6853 
 
 6910 
 
 6968 
 
 7026 
 
 708;' 
 
 7141 
 
 7199 
 
 7256 
 
 7314 
 
 58 
 
 754 
 
 7371 
 
 7429 
 
 7487 
 
 7544 
 
 7602 
 
 7659 
 
 7717 
 
 7774 
 
 7832 
 
 7889 
 
 58 
 
 755 
 
 7947 
 
 8004 
 
 8082 
 
 8119 
 
 8177 
 
 8234 
 
 8292 
 
 8349 
 
 8407 
 
 8464 
 
 57 
 
 750 
 
 8522 
 
 8579 
 
 8637 
 
 8634 
 
 8752 
 
 SHOO 
 
 8866 
 
 S924 
 
 8981 
 
 9039 
 
 0/ 
 
 757 
 
 9096 
 
 9153 
 
 9211 
 
 9268 
 
 9325 
 
 9383 
 
 9440 
 
 9497 
 
 9555 
 
 9812 
 
 57 
 
 758 
 
 9869 
 
 9726 
 
 9784 
 
 98J' 
 
 9898 
 
 9956 
 
 ..13 
 
 ..70 
 
 .127 
 
 .185 
 
 57 
 
 759 
 
 880243 
 
 0299 
 
 0356 
 
 J413 
 
 0471 
 
 052S 
 
 0585 
 
 0642 
 
 0899 
 
 07h8 
 
 57 
 
 N. 
 
 1 1 1 2 1 3 1 4 1 5 !() 1 7 1 8 1 9 1 D. 1 
 
 # 
 
 
 N. 
 
 i < 
 
 760 
 
 88u 
 
 761 
 
 1 
 
 762 
 
 1 
 
 763 
 
 2 
 
 764 
 
 3 
 
 765 
 
 3 
 
 766 
 
 4 
 
 767 
 
 4 
 
 768 
 
 5 
 
 769 
 
 5 
 
 770 
 
 886 
 
 771 
 
 7 
 
 772 
 
 7 
 
 773 
 
 8 
 
 774 
 
 8 
 
 775 
 
 9, 
 
 776 
 
 9i 
 
 777 
 
 890' 
 
 778 
 
 Oi 
 
 779 
 
 1.' 
 
 780 
 
 892( 
 
 781 
 
 2f 
 
 782 
 
 35 
 
 783 
 
 3< 
 
 784 
 
 4r 
 
 785 
 
 4S 
 
 786 
 
 5'j 
 
 787 
 
 5( 
 
 788 
 
 or 
 
 789 
 
 7C 
 
 790 
 
 897P 
 
 791 
 
 81 
 
 792 
 
 87 
 
 793 
 
 92 
 
 794 
 
 98 
 
 795 
 
 9003 
 
 790 
 
 09 
 
 797 
 
 14 
 
 798 
 
 20 
 
 799 
 
 25 
 
 800 
 
 9030 
 
 801 
 
 36 
 
 802 
 
 41 
 
 803 
 
 47 
 
 804 
 
 52 
 
 805 
 
 57 
 
 808 
 
 63 
 
 807 
 
 68 
 
 808 
 
 74 
 
 809 
 
 79 
 
 810 
 
 9084 
 
 811 
 
 90 
 
 812 
 
 95 
 
 813 
 
 9100 
 
 814 
 
 06 
 
 815 
 
 111 
 
 8!H 
 
 18' 
 
 817 
 
 22" 
 
 818 
 
 27, 
 
 819 
 
 32{ 
 
 N. 1 
 
 U 
 
i 1 
 
 D. 
 
 of) 
 
 62 
 
 75 
 
 62 
 
 91 
 
 62 
 
 11 
 
 62 
 
 28 
 
 62 
 
 4:3 
 
 02 
 
 58 
 
 61 
 
 72 
 
 61 
 
 85 
 
 •:i 
 
 97 
 
 f'l 
 
 09 
 
 61 
 
 19 
 
 61 
 
 29 
 
 61 
 
 37 
 
 61 
 
 45 
 
 61 
 
 52 
 
 61 
 
 59 
 
 61 
 
 04 
 
 61 
 
 (58 
 
 60 
 
 72 
 
 60 
 
 75 
 
 60 
 
 77 
 
 60 
 
 78 
 
 60 
 
 79 
 
 60 
 
 78 
 
 60 
 
 77 
 
 60 
 
 75 
 
 60 
 
 72 
 
 60 
 
 68 
 
 60 
 
 Si'A 
 
 60 
 
 i58 
 
 59 
 
 t52 
 
 59 
 
 )45 
 
 59 
 
 )37 
 
 59 
 
 !28 
 
 59 
 
 il9 
 
 59 
 
 t09 
 
 59 
 
 )98 
 
 59 
 
 )86 
 
 59 
 
 73 
 
 59 
 
 row 
 
 59 
 
 J45 
 
 59 
 
 )30 
 
 58 
 
 )15 
 
 58 
 
 )98 
 
 58 
 
 581 
 
 58 
 
 M52 
 
 58 
 
 HI 
 
 58 
 
 124 
 
 58 
 
 )03 
 
 58 
 
 i82 
 
 58 
 
 1(50 
 
 58 
 
 m 
 
 58 
 
 514 
 
 58 
 
 ■IS9 
 
 58 
 
 164 
 
 57 
 
 )?.<J 
 
 
 512 
 
 57 
 
 185 
 
 57 
 
 /h(5 
 
 57 
 
 9 
 
 Id. 
 
 
 rrr 
 
 A TABLE OF LOGARITHMS ITROM 1 TO 10,000. 
 
 13 
 
 
 
 1 
 
 760 
 701 
 762 
 763 
 764 
 765 
 766 
 767 
 768 
 769 
 
 770 
 771 
 772 
 773 
 774 
 775 
 776 
 777 
 778 
 779 
 
 780 
 781 
 782 
 783 
 784 
 785 
 786 
 787 
 788 
 789 
 
 880814 
 1385 
 1955 
 2525 
 3093 
 3661 
 4229 
 4795 
 5361 
 6926 
 
 886491 
 7054 
 7617 
 8179 
 8741 
 9302 
 9862 
 
 890421 
 0980 
 1537 
 
 790 
 791 
 792 
 793 
 794 
 795 
 796 
 797 
 798 
 799 
 
 800 
 801 
 802 
 803 
 804 
 805 
 806 
 807 
 808 
 809 
 
 892095 
 2651 
 3207 
 3762 
 43i6 
 4870 
 5423 
 5975 
 6r,26 
 7077 
 
 897627 
 8176 
 8725 
 9273 
 9821 
 
 900367 
 0913 
 1458 
 2003 
 2547 
 
 0871 
 1442 
 2013 
 2581 
 3150 
 3718 
 4285 
 ''852 
 6418 
 5983 
 
 6547 
 7111 
 7674 
 8236 
 8797 
 9358 
 9918 
 0477 
 1035 
 1693 
 
 0928 
 1499 
 2069 
 2638 
 3207 
 3776 
 4342 
 4909 
 6474 
 6039 
 
 2150 
 2707 
 3262 
 3817 
 4371 
 4925 
 5478 
 6030 
 6681 
 7132 
 
 6604 
 
 7167 
 
 7730 
 
 8292 
 
 8863 
 
 9414 
 
 9974 
 
 0533 
 
 1091 
 
 1649 
 
 0985 
 1556 
 2126 
 2695 
 3264 
 3832 
 4399 
 4965 
 5531 
 6096 
 
 4 I 6 I 6 I 7 1 8 I 9 I D. 
 
 903090 
 3633 
 4174 
 4716 
 6256 
 5796 
 6335 
 6874 
 7411 
 _- 7949 
 810 908485 
 
 811 
 812 
 813 
 814 
 815 
 «!6 
 817 
 818 
 SJ_9 
 
 7682 
 8231 
 8780 
 9328 
 9875 
 0422 
 0968 
 1513 
 2057 
 2601 
 
 9021 
 9556 
 910091 
 0624 
 1158 
 1690 
 2222 
 2753 
 3284 
 
 
 
 3144 
 3687 
 4229 
 4770 
 5310 
 5860 
 6389 
 6927 
 7466 
 8002 
 
 8539 
 9074 
 9610 
 0144 
 0678 
 1211 
 1743 
 2276 
 2806 
 3337 
 
 2206 
 2762 
 3318 
 3873 
 4^127 
 4980 
 5533 
 6085 
 6636 
 7187 
 
 7737 
 8286 
 8835 
 9383 
 9930 
 0476 
 1022 
 1567 
 2112 
 2655 
 
 6660 
 7223 
 7786 
 8348 
 8909 
 9470 
 ..30 
 0589 
 1147 
 1705 
 
 1042 
 1613 
 2183 
 2752 
 3321 
 3888 
 4456 
 .5022 
 5587 
 6152 
 
 6716 
 7280 
 7842 
 8404 
 8966 
 9526 
 ..86 
 0646 
 1203 
 1760 
 
 1099 
 1670 
 2240 
 2809 
 3377 
 3946 
 4512 
 6078 
 5644 
 6209 
 
 22fi'^ 
 28i» 
 3373 
 3928 
 4482 
 5036 
 5588 
 6140 
 6692 
 7242 
 
 3199 
 3741 
 4283 
 4824 
 5364 
 5904 
 6443 
 6981 
 7519 
 8056 
 
 8593 
 9128 
 9663 
 0197 
 0731 
 1264 
 1797 
 2328 
 2859 
 3390 
 
 7792 
 8.341 
 8890 
 9437 
 9985 
 0.531 
 1077 
 1622 
 2166 
 2710 
 
 2317 
 2873 
 3429 
 3984 
 4538 
 5091 
 5644 
 6196 
 6747 
 7297 
 
 3263 
 3795 
 4337 
 4878 
 .5418 
 6958 
 6497 
 7035 
 7573 
 8110 
 
 7847 
 8396 
 8944 
 J492 
 ..39 
 0686 
 1131 
 1676 
 2221 
 2764 
 
 6773 
 
 7336 
 
 7898 
 
 8460 
 
 9021 
 
 958-. 
 
 .J41 
 
 0700 
 
 1269 
 
 1816 
 
 1156 
 1727 
 2297 
 2866 
 3434 
 4002 
 4569 
 6135 
 6700 
 6265 
 
 2373 
 2929 
 3484 
 4039 
 4593 
 5146 
 5699 
 6251 
 6802 
 7352 
 
 6829 
 7392 
 7966 
 863 6 
 9077 
 '638 
 .197 
 0756 
 1314 
 1872 
 
 1213 
 1784 
 2354 
 2923 
 3491 
 4059 
 4625 
 6192 
 5757 
 6321 
 
 8646 
 9181 
 9716 
 0251 
 0784 
 13)7 
 1850 
 2381 
 2913 
 3443 
 
 3307 
 3849 
 4391 
 4932 
 6472 
 6012 
 6551 
 7089 
 7626 
 8163 
 
 7902 
 8461 
 8999 
 9547 
 ..94 
 0640 
 1186 
 1731 
 2276 
 2818 
 
 8699 
 9236 
 9770 
 0304 
 0838 
 1371 
 1903 
 2436 
 2966 
 3496 
 
 3361 
 3904 
 4445 
 4986 
 6526 
 6066 
 6604 
 7143 
 7680 
 8217 
 
 2429 
 2985 
 3640 
 4094 
 i648 
 6201 
 5754 
 6306 
 6857 
 7407 
 
 6885 
 7449 
 8011 
 8673 
 9134 
 9694 
 .253 
 0812 
 1370 
 1928 
 
 7957 
 8506 
 9054 
 9602 
 .149 
 0695 
 1240 
 178d 
 232S 
 2873 
 
 8763 
 9289 
 9823 
 0358 
 0891 
 1424 
 i9&G 
 2488 
 3019 
 3549 
 
 3416 
 3968 
 4499 
 5040 
 5580 
 6119 
 6658 
 7196 
 7734 
 8270 
 
 2484 
 3040 
 3596 
 4150 
 4704 
 6257 
 5809 
 6361 
 6912 
 7462 
 
 1271 
 1841 
 2411 
 2980 
 3548 
 4 1 15 
 4682 
 5248 
 5813 
 6378 
 
 6942 
 7505 
 8067 
 8629 
 9190 
 9750 
 .309 
 0868 
 1426 
 1983 
 
 8012 
 8561 
 9109 
 9656 
 .203 
 0749 
 1295 
 1840 
 2384 
 2927 
 
 2640 
 3096 
 3651 
 4206 
 4759 
 .5312 
 5864 
 6416 
 6967 
 7617 
 
 8807 
 9342 
 9877 
 0411 
 0944 
 1477 
 2009 
 2.541 
 3072 
 3602 
 
 3470 
 4012 
 4653 
 5094 
 6634 
 6173 
 6712 
 7250 
 7787 
 8324 
 
 8860 
 9396 
 9930 
 0464 
 0998 
 1.530 
 2063 
 2594 
 3125 
 36551 
 
 8067 
 8616 
 9164 
 9711 
 .2.58 
 0804 
 1349 
 1894 
 2438 
 2981 
 
 1328 
 1898 
 2468 
 3037 
 3605 
 41V2 
 4739 
 6305 
 5870 
 6434 
 
 6998 
 7561 
 8123 
 8685 
 9246 
 9806 
 .365 
 0924 
 1482 
 2039 
 
 2595 
 3151 
 3706 
 4261 
 4814 
 6367 
 5920 
 6471 
 7022 
 7672 
 
 3524 
 
 r 
 
 «i'*8 
 5688 
 6227 
 6766 
 7304 
 7841 
 8378 
 
 8914 
 9449 
 9984 
 0518 
 1051 
 1584 
 2116 
 2647 
 3178 
 3708 
 
 8122 
 8670 
 9218 
 9766 
 .312 
 0859 
 1404 
 1948 
 2492 
 3036 
 
 3578 
 4120 
 4661 
 6202 
 5742 
 6281 
 6820 
 7358 
 7896 
 8431 
 
 8967 
 9603 
 ..37 
 0671 
 1104 
 1637 
 2169 
 2700 
 3231 
 3761 
 
 67 
 
 57 
 57 
 67 
 57 
 67 
 57 
 57 
 57 
 66 
 
 56 
 56 
 56 
 56 
 56 
 66 
 66 
 56 
 56 
 66 
 
 56 
 66 
 56 
 55 
 55 
 65 
 55 
 66 
 65 
 55 
 
 66 
 55 
 55 
 55 
 55 
 55 
 55 
 64 
 54 
 64 
 
 64 
 54 
 54 
 64 
 54 
 54 
 54 
 54 
 54 
 64 
 
 54 
 54 
 63 
 53 
 53 
 53 
 53 
 53 
 53 
 53 
 
 fi I 7 I 8 I 9 I D. 
 
S '" 
 
 f 
 
 ill n ' 
 
 1.' 
 
 H I 
 
 ;i 
 
 
 ^. i \ 
 
 lip' 
 
 II 
 
 la:* 
 
 14 A TABLE OP LOGARITHMS FROM I TO 10,000. 
 
 N. 1 
 
 ll!2|3|4|5l6|7|8|9lD. 1 
 
 820 
 
 913814 38671 
 
 3920 
 
 3973 
 
 4026 
 
 4079 
 
 4132 
 
 4184 
 
 4237 
 
 42901 53 1 
 
 821 
 
 4343 
 
 4396 
 
 4449 
 
 4502 
 
 4555 
 
 4608 
 
 4660 
 
 4713 
 
 4766 
 
 4819 "" 
 
 53 
 
 822 
 
 4872 
 
 4925 
 
 4977 
 
 5030 
 
 5083 
 
 5136 
 
 6189 
 
 5241 
 
 5294 
 
 5347 
 
 63 
 
 823 
 
 5400 
 
 5453 
 
 5505 
 
 5558 
 
 5611 
 
 5664 
 
 5716 
 
 6769 
 
 5822 
 
 58Vb 
 
 53 
 
 824 
 
 5927 
 
 5980 
 
 6033 
 
 6085 
 
 6138 
 
 6191 
 
 6243 
 
 6296 
 
 6349 
 
 6401 
 
 53 
 
 825 
 
 6454 
 
 6507 
 
 6559 
 
 6612 
 
 6664 
 
 6717 
 
 6770 
 
 6822 
 
 6875 
 
 6927 
 
 53 
 
 82G 
 
 6930 
 
 7033 
 
 7085 
 
 7138 
 
 7190 
 
 7243 
 
 7295 
 
 7348 
 
 7400 
 
 7453 
 
 53 
 
 827 
 
 7506 
 
 7558 
 
 7611 
 
 7663 
 
 7716 
 
 7768 
 
 7820 
 
 7873 
 
 7925 
 
 7978 
 
 52 
 
 828 
 
 8030 
 
 8083 
 
 8185 
 
 8188 
 
 8240 
 
 8293 
 
 8345 
 
 8397 
 
 8450 
 
 8502 
 
 52 
 
 829 
 830 
 
 8555 
 
 8607 
 9130 
 
 8659 
 9183 
 
 8712 
 9235 
 
 8764 
 9287 
 
 8816 
 9340 
 
 8869 
 
 8921 
 9444 
 
 89V3 
 9496 
 
 9026 
 9549 
 
 52 
 52 
 
 019078 
 
 9392 
 
 831 
 
 9601 
 
 9653 
 
 9706 
 
 9758 
 
 9810 
 
 9862 
 
 9914 
 
 996V 
 
 ..19 
 
 ..71 
 
 52 
 
 832 
 
 920123 
 
 0176 
 
 0228 
 
 0280 
 
 0332 
 
 0384 
 
 0436 
 
 0489 
 
 054 1 
 
 0593 
 
 52 
 
 833 
 
 0645 
 
 0697 
 
 0749 
 
 0801 
 
 0853 
 
 0906 
 
 0958 
 
 1010 
 
 1062 
 
 1114 
 
 52 
 
 834 
 
 1166J 
 
 1218 
 
 1270 
 
 1322 
 
 1374 
 
 1426 
 
 1478 
 
 1530 
 
 1582 
 
 1634 
 
 52 
 
 835 
 
 1686 
 
 1 738 
 
 1790 
 
 1842 
 
 1894 
 
 1946 
 
 1998 
 
 2050 
 
 2102 
 
 2154 
 
 52 
 
 836 
 
 2206 
 
 2258 
 
 2310 
 
 2362 
 
 2414 
 
 2466 
 
 2518 
 
 2570 
 
 2622 
 
 2674 
 
 52 
 
 837 
 
 2725 
 
 2777 
 
 2829 
 
 2881 
 
 2933 
 
 2985 
 
 3037 
 
 3089 
 
 3140 
 
 3192 
 
 52 
 
 838 
 839 
 
 840 
 
 3244 
 
 3296 
 
 3348 
 
 3399 
 
 3451 
 
 3503 
 
 3555 
 
 3607 
 
 3658 
 
 3V10 
 
 52 
 
 3762 
 
 3814 
 4331 
 
 3865 
 4383 
 
 3917 
 4434 
 
 3969 
 
 4486 
 
 4021 
 4538 
 
 4072 
 
 4124 
 4641 
 
 41V6 
 4693 
 
 4228 
 
 52 
 
 52 
 
 924279 
 
 4589 
 
 4744 
 
 841 
 
 4796 
 
 4848 
 
 4899 
 
 4951 
 
 5003 
 
 5054 
 
 5106 
 
 5157 
 
 5209 
 
 5261 
 
 52 
 
 842 
 
 5312 
 
 5364 
 
 5415 
 
 5467 
 
 5518 
 
 5570 
 
 5621 
 
 5673 
 
 5725 
 
 5VVb 
 
 52 
 
 843 
 
 5828 
 
 5879 
 
 5931 
 
 5982 
 
 60.34 
 
 6085 
 
 6137 
 
 6188 
 
 6240 
 
 6291 
 
 51 
 
 844 
 
 6342 
 
 6394 
 
 6445 
 
 6497 
 
 6548 
 
 6600 
 
 6651 
 
 6702 
 
 6754 
 
 6805 
 
 51 
 
 845 
 
 6857 
 
 6908 
 
 6959 
 
 7011 
 
 7062 
 
 7114 
 
 7165 
 
 7216 
 
 7268 
 
 7319 
 
 51 
 
 840 
 
 7370 
 
 7422 
 
 7473 
 
 7524 
 
 7576 
 
 7627 
 
 7678 
 
 V730 
 
 7781 
 
 7832 
 
 51 
 
 847 
 
 7883 
 
 7935 
 
 7986 
 
 8037 
 
 8088 
 
 8140 
 
 8191 
 
 8242 
 
 8293 
 
 8345 
 
 51 
 
 848 
 
 8396 
 
 8447 
 
 8498 
 
 8549 
 
 8601 
 
 86.52 
 
 8703 
 
 8754 
 
 8805 
 
 885V 
 
 51 
 
 849 
 850 
 
 8908 
 
 8959 
 9470 
 
 9010 
 9521 
 
 9061 
 9572 
 
 9112 
 9623 
 
 9163 
 9674 
 
 9215 
 9725 
 
 9266 
 9776 
 
 9317 
 
 9827 
 
 9368 
 9879 
 
 51 
 51 
 
 929419 
 
 851 
 
 9930 
 
 9981 
 
 ..32 
 
 ..83 
 
 .134 
 
 .185 
 
 .236 
 
 .287 
 
 .338 
 
 .389 
 
 51 
 
 852 
 
 930440 
 
 0491 
 
 0542 
 
 0592 
 
 0643 
 
 0694 
 
 0745 
 
 0796 
 
 084V 
 
 0898 
 
 51 
 
 853 
 
 0949 
 
 1000 
 
 1051 
 
 1102 
 
 1153 
 
 1204 
 
 1?54 
 
 1305 
 
 1356 
 
 1407 
 
 51 
 
 854 
 
 1458 
 
 1509 
 
 1,560 
 
 1610 
 
 1661 
 
 1712 
 
 : . ■ /< 
 
 1814 
 
 1865 
 
 1915 
 
 51 
 
 855 
 
 1966 
 
 2017 
 
 20b8 
 
 2118 
 
 2169 
 
 2220 
 
 2271 
 
 2322 
 
 23V2 
 
 2423 
 
 51 
 
 856 
 
 2474 
 
 2524 
 
 2575 
 
 2626 
 
 2677 
 
 2727 
 
 2778 
 
 2829 
 
 2879 
 
 2930 
 
 61 
 
 857 
 
 2981 
 
 3031 
 
 3082 
 
 3133 
 
 3183 
 
 3234 
 
 3285 
 
 333b 
 
 3386 
 
 3437 
 
 51 
 
 858 
 
 3487 
 
 3538 
 
 3589 
 
 36.39 
 
 3690 
 
 3740 
 
 3791 
 
 3841 
 
 3892 
 
 3943 
 
 51 
 
 359 
 860 
 
 3993 
 934498 
 
 4044 
 4549 
 
 4094 
 4599 
 
 4145 
 4650 
 
 4195 
 4700 
 
 4246 
 4751 
 
 4296 
 4801 
 
 4347 
 
 4852 
 
 4397 
 
 4448 
 49.53 
 
 51 
 50 
 
 4902 
 
 861 
 
 5003 
 
 5054 
 
 5104 
 
 5154 
 
 5205 
 
 5255 
 
 .5306 
 
 5356 
 
 5406 
 
 .5457 
 
 50 
 
 862 
 
 5507 
 
 55;i8 
 
 5608 
 
 5658 
 
 5709 
 
 5759 
 
 5809 
 
 5860 
 
 5910 
 
 5960 
 
 50 
 
 863 
 
 6011 
 
 6061 
 
 6111 
 
 6162 
 
 6212 
 
 6262' 6313 
 
 6363 
 
 6413 
 
 6463 
 
 50 
 
 864 
 
 6514 
 
 6564 
 
 6614 
 
 6665 
 
 6715 
 
 6765 
 
 6815 
 
 6865 
 
 6916 
 
 6966 
 
 50 
 
 86 1 
 
 7016 
 
 7066 
 
 7117 
 
 7167 
 
 7217 
 
 7267 
 
 7317 
 
 7367 
 
 7418 
 
 7468 
 
 50 
 
 866 
 
 7518 
 
 756ft 
 
 7618 
 
 7668 
 
 77i8 
 
 7769 
 
 7819 
 
 7869 
 
 7919 
 
 7969 
 
 50 
 
 867 
 
 8019 
 
 8069 
 
 8119 
 
 8169 
 
 8219 
 
 8269 
 
 8320 
 
 8370 
 
 8420 
 
 8470 
 
 50 
 
 868 
 
 8520 
 
 8570 
 
 8620 
 
 8670 
 
 8720 
 
 8770 
 
 8820 
 
 8870 
 
 8920 
 
 8970 
 
 50 
 
 869 
 
 9020 
 
 9070 
 
 9120 
 
 9170 
 
 9220 
 
 9270 
 
 9320 
 
 9369 
 
 9419 
 
 9469 
 
 50 
 
 870 
 
 939519 
 
 9569 
 
 9619 
 
 9669 
 
 9719 
 
 9769 
 
 9819 
 
 9869 
 
 9918 
 
 9968 
 
 50 
 
 871 
 
 940018 
 
 0068 
 
 0118 
 
 0168 
 
 0218 
 
 0267 
 
 0317 
 
 0367 
 
 0417 
 
 0467 
 
 50 
 
 872 
 
 0516 
 
 0566 
 
 0616 
 
 0666 
 
 0716 
 
 0765 
 
 0815 
 
 0865 
 
 091.5 
 
 0964 
 
 50 
 
 878 
 
 1014 
 
 1064 
 
 - 1114 
 
 1163 
 
 1213 
 
 1263 
 
 1313 
 
 1362 
 
 I4iy 
 
 146-^ 
 
 60 
 
 874 
 
 1. 11 
 
 1561 
 
 1611 
 
 166(1 
 
 171C 
 
 1760 
 
 1809 
 
 1859 
 
 190y 
 
 19,5H 
 
 50 
 
 875 
 
 200H 
 
 2058 
 
 t 210? 
 
 ' 2157 
 
 2?07 
 
 ' 225G 
 
 2306 
 
 2355 
 
 2405 
 
 245.T 
 
 . 50 
 
 876 
 
 2504 
 
 - 2554 
 
 2602 
 
 1 265S 
 
 1 270S 
 
 ! 2752 
 
 2801 
 
 2851 
 
 2901 
 
 295C 
 
 1 50 
 
 877 
 
 30011 
 
 304i: 
 
 1 309i 
 
 1 3l4(! 
 
 319i« 
 
 ! 3247 
 
 ' 3297 
 
 ' 334t 
 
 3391 
 
 > 344 f 
 
 ) 49 
 
 87 
 
 , 349£ 
 
 > 3544 
 
 359r 
 
 ( 364.^ 
 
 3695 
 
 ! 374S 
 
 , 3791 
 
 3841 
 
 3891 
 
 ) 393i 
 
 ) 49 
 
 879 
 
 ' 398t 
 
 > 403t 
 
 ) 4088 
 
 !Ul3? 
 
 ' 4186 
 
 ) 423f 
 
 ) 428f 
 
 ) 433f 
 
 ) 438^ 
 
 \ 4433' 49 1 
 
 N. 
 
 i 1 i 2 1 3 1 4 1 5 1 1 7 1 8 1 9 1 13. ! 
 
 I l< 
 
 N. 
 
 
 880 
 
 94 
 
 
 881 
 
 
 
 882 
 
 
 
 883 
 
 
 
 884 
 
 
 
 885 
 
 
 
 886 
 
 
 
 887 
 
 
 
 888 
 
 
 
 889 
 
 
 
 890 
 
 94 
 
 
 891 
 
 
 
 892 
 
 95 
 
 
 893 
 
 
 
 894 
 
 
 
 895 
 
 
 
 896 
 
 
 
 897 
 
 
 
 898 
 
 
 
 899 
 
 
 
 900 
 
 95^ 
 
 
 901 
 
 
 
 902 
 
 
 1903 
 
 
 1 904 
 
 
 
 905 
 
 
 
 906 
 
 
 
 907 
 
 
 
 908 
 
 8 
 
 
 909 
 
 8 
 
 
 910 
 
 959 
 
 
 911 
 
 9 
 
 
 912 
 
 9 
 
 
 913 
 
 960 
 
 
 914 
 
 
 
 
 915 
 
 ] 
 
 
 916 
 
 1 
 
 917 
 
 2 
 
 918 
 
 2 
 
 919 
 
 3 
 
 920 
 
 963 
 
 
 921 
 
 4 
 
 
 922 
 
 4 
 
 
 923 
 
 6 
 
 
 924 
 
 6 
 
 
 925 
 
 6 
 
 
 926 
 
 6 
 
 
 927 
 
 7 
 
 
 928 
 
 7 
 
 
 929 
 
 8 
 
 
 930 
 
 968 
 
 
 931 
 
 8 
 
 
 932 
 
 9 
 
 
 933 
 
 9i 
 
 
 934 
 
 970. 
 
 
 935 
 
 0) 
 
 
 936 
 
 1' 
 
 
 ao-y 
 
 r 
 
 
 <j\j t j 
 
 
 938 
 
 2- 
 
 
 939 
 
 2( 
 
 
 N. 1 
 
 
 
Id. 1 
 
 90 
 
 53 
 
 19 
 
 53 
 
 47 
 
 63 
 
 75 
 
 53 
 
 01 
 
 53 
 
 27 
 
 53 
 
 53 
 
 53 
 
 78 
 
 52 
 
 03 
 
 52 
 
 26 
 
 52 
 
 49 
 
 52 
 
 71 
 
 52 
 
 911 
 
 52 
 
 14 
 
 52 
 
 34 
 
 52 
 
 54 
 
 52 
 
 74 
 
 52 
 
 92 
 
 52 
 
 10 
 
 52 
 
 960 
 
 50 
 
 463 
 
 50 
 
 966 
 
 50 
 
 468 
 
 50 
 
 969 
 
 50 
 
 470 
 
 50 
 
 970 
 
 50 
 
 469 
 
 50 
 
 968 
 
 50 
 
 467 
 
 50 
 
 964 
 
 50 
 
 462 
 
 50 
 
 958 
 
 50 
 
 4iyO 
 
 50 
 
 950 
 
 50 
 
 445 
 
 49 
 
 939 
 
 49 
 
 433 
 
 49 
 
 9 
 
 1 ». 
 
 A TAI/;E OP LOOARITIIMS FEOM I TO 10,000. 
 
 15 
 
 N. 
 
 
 
 880 
 881 
 882 
 883 
 
 884 
 885 
 886 
 887 
 888 
 889 
 
 890 
 891 
 892 
 893 
 894 
 895 
 896 
 897 
 898 
 899 
 
 900 
 901 
 902 
 903 
 904 
 905 
 906 
 907 
 908 
 909 
 
 910 
 911 
 912 
 913 
 914 
 915 
 916 
 917 
 918 
 919 
 
 • 920 
 921 
 922 
 923 
 924 
 925 
 926 
 927 
 928 
 929 
 
 930 
 931 
 932 
 933 
 934 
 935 
 936 
 
 :ju t 
 
 938 
 939 
 
 944483 
 4976 
 6469 
 5961 
 6452 
 6943 
 7434 
 7924 
 8413 
 8902 
 
 IM2|3|4|5|6|7|8|9;d. 
 
 949390 
 9878 
 
 950365 
 0851 
 1338 
 1823 
 2308 
 2792 
 3276 
 3760 
 
 453 
 
 5025 
 
 6518 
 
 6010 
 
 6501 
 
 6992 
 
 7483 
 
 7973 
 
 8462 
 
 895_l_ 
 
 9439: 9488 
 9926 9975 
 
 4581 
 6074 
 5567 
 6059 
 6551 
 7041 
 7532 
 8022 
 8511 
 8999 
 
 0414 
 0900 
 1386 
 1872 
 2356 
 2841 
 3325 
 3808 
 
 954243 
 4725 
 5207 
 5688 
 6168 
 6649 
 7128 
 7607 
 8086 
 8564 
 
 959041 
 9518 
 9995 
 
 960471 
 0946 
 1421 
 1895 
 2369 
 2843 
 3316 
 
 4291 
 4773 
 5255 
 5736 
 6216 
 6697 
 7176 
 7655 
 8134 
 8612 
 
 963788 
 4260 
 4731 
 6202 
 5672 
 6142 
 6611 
 7080 
 7548 
 8016 
 
 968483 
 8950 
 9416 
 9882 
 
 97034r 
 0812 
 1276 
 
 2203 
 2666 
 
 9089 
 9566 
 ..42 
 0518 
 0994 
 1489 
 1943 
 2417 
 2S90 
 3363 
 
 0462 
 0949 
 1435 
 1920 
 2405 
 2889 
 3373 
 3856 
 
 4631 
 5124 
 5616 
 6108 
 6600 
 7090 
 7581 
 8070 
 8560 
 9048 
 
 4339 
 
 4821 
 5303 
 
 5784 
 
 626r>6313 
 
 3835 
 4307 
 4778 
 5249 
 5719 
 6189 
 6658 
 7127 
 7595 
 8062 
 
 8530 
 8996 
 9463 
 9928 
 0393 
 0858 
 1322 
 17S6 
 2249 
 2712 
 
 6745 
 7224 
 7703 
 
 8181 
 8659 
 
 9137 
 9614 
 ..90 
 0566 
 1041 
 1516 
 1990 
 2464 
 2937 
 3410 
 
 9536 
 ..24 
 0511 
 0997 
 1483 
 1969 
 2453 
 2938 
 3421 
 3905 
 
 4680 
 5173 
 5665 
 6157 
 6649 
 7140 
 7630 
 8119 
 8609 
 9097 
 
 4387 
 4869 
 5351 
 
 5832 
 
 6793 
 
 7272 
 7751 
 8229 
 8707 
 
 3882 
 4354 
 4825 
 5296 
 5766 
 6236 
 6705 
 7173 
 7642 
 8109 
 
 8576 
 9043 
 9509 
 9975 
 0440 
 0904 
 1369 
 1832 
 2295 
 2758 
 
 9185 
 9661 
 .138 
 0613 
 1089 
 1563 
 2038 
 2511 
 2985 
 3457 
 
 9585 
 ..73 
 0560 
 1046 
 1532 
 2017 
 2502 
 2986 
 3470 
 3953 
 
 4729 
 5222 
 5715 
 6207 
 6698 
 7189 
 7679 
 8168 
 8657 
 9146 
 
 4435 
 4918 
 5399 
 5880 
 6361 
 6840 
 7320 
 7799 
 8277 
 8755 
 
 9634 
 .121 
 0608 
 1095 
 1580 
 2066 
 2550 
 3034 
 3518 
 4001 
 
 4779 
 5272 
 5764 
 6256 
 6747 
 7238 
 7728 
 8217 
 8706 
 9195 
 
 3929 
 4401 
 4872 
 5343 
 5813 
 6283 
 6752 
 7220 
 7688 
 8156 
 
 9232 
 9709 
 .185 
 0661 
 1136 
 1611 
 2085 
 2559 
 3032 
 3504 
 
 3977 
 
 4448 
 
 4484 
 4966 
 5447 
 5928 
 6409 
 6888 
 7368 
 7847 
 8325 
 8803 
 
 9683 
 .170 
 0657 
 1143 
 1629 
 2114 
 2599 
 3083 
 3566 
 4049 
 
 4828 
 5321 
 5813 
 6306 
 6796 
 7287 
 7777 
 8266 
 8755 
 9244 
 
 4877 
 6370 
 5862 
 6354 
 6845 
 7336 
 7826 
 8315 
 8804 
 9292 
 
 9280 
 9757 
 .233 
 0709 
 1184 
 1658 
 2132 
 2606 
 3079 
 3552 
 
 4532 
 5014 
 5495 
 5976 
 6457 
 6936 
 7416 
 7894 
 8373 
 8850 
 
 9731 
 .219 
 0706 
 1192 
 1677 
 2163 
 2647 
 3131 
 3615 
 4098 
 
 8623 
 9090 
 9556 
 ..21 
 0486 
 0951 
 3415 
 1879 
 2342 
 2804 
 
 4024 
 4495 
 4919 4966 
 5390 6437 
 
 5860 
 6329 
 6799 
 7267 
 7735 
 8203 
 
 8670 
 9136 
 9602 
 ..68 
 0533 
 0997 
 1461 
 1925 
 2388 
 2851 
 
 5907 
 6376 
 6845 
 7314 
 
 7782 
 8249 
 
 9328 
 9804 
 .280 
 0756 
 1231 
 1706 
 2180 
 2653 
 3126 
 3599 
 
 0716 
 9183 
 9649 
 .114 
 0579 
 1044 
 1508 
 1971 
 2434 
 2897 
 
 4071 
 4542 
 5013 
 5484 
 5954 
 6423 
 6892 
 7361 
 7829 
 8296 
 
 4580 
 5062 
 5543 
 
 6024 
 6505 
 6984 
 7464 
 7942 
 8421 
 8898 
 
 9375 
 9852 
 .328 
 0804 
 1279 
 1753 
 2227 
 2701 
 3174 
 3646 
 
 9780 
 .267 
 0754 
 1240 
 1726 
 2211 
 2696 
 3180 
 3663 
 4146 
 
 4628 
 5110 
 5592 
 6072 
 6553 
 7032 
 7512 
 7990 
 8468 
 8946 
 
 4927 
 5419 
 5912 
 6403 
 
 6894 
 7385 
 7875 
 8364 
 8853 
 9341 
 
 9829 
 .316 
 0803 
 1289 
 1775 
 2260 
 2744 
 3229 
 3711 
 4194 
 
 9423 
 9900 
 .376 
 0851 
 K}26 
 180.1 1 1848 
 
 4677 
 5158 
 5640 
 6120 
 6601 
 7080 
 7559 
 8038 
 8516 
 8994 
 
 9471 
 9947 
 .423 
 0899 
 1374 
 
 8763 
 9229 
 9695 
 .161 
 0626 
 1090 
 1654 
 2018 
 2481 
 2943 
 
 4118 
 4590 
 6061 
 5531 
 6001 
 6470 
 6939 
 7408 
 7875 
 8343 
 
 8810 
 9276 
 9742 
 .207 
 0672 
 1137 
 1601 
 2064 
 2527 
 2989 
 
 2275 
 2748 
 3221 
 3693 
 
 4165 
 4637 
 5108 
 6578 
 6048 
 6517 
 6'>86 
 7454 
 7922 
 8390 
 
 8856 
 9323 
 9789 
 .264 
 0719 
 1183 
 1647 
 2110 
 2573 
 3035 
 
 2322 
 2795 
 3268 
 3741 
 
 2212 
 4684 
 5155 
 5625 
 6095 
 6564 
 7033 
 7501 
 7969 
 8436 
 
 8903 
 9369 
 9835 
 .300 
 0765 
 1229 
 1693 
 2167 
 2619 
 3082 
 
 49 
 49 
 49 
 49 
 49 
 49 
 49 
 49 
 49 
 J9 
 
 49 
 49 
 49 
 49 
 
 49 
 
 48 
 48 
 48 
 48 
 
 jlS 
 
 48 
 48 
 48 
 
 48 
 
 4 .-1 
 
 to 
 48 
 48 
 48 
 48 
 48 
 
 48 
 48 
 48 
 48 
 47 
 47 
 47 
 47 
 47 
 47 
 
 47 
 47 
 47 
 47 
 47 
 47 
 47 
 47 
 47 
 47 
 
 47 
 47 
 47 
 47 
 40 
 46 
 /L(i 
 46 
 46 
 46 
 
 tai 
 
16 
 
 A TABIiE OP tOGABITHMS FROM 1 TO 10,000. 
 
 1* i ' 
 
 t : 
 
 In- 
 
 i ^ 
 
 f 
 
 •^ ! i 
 
 
 1 ' 
 
 i 
 
 t 1 
 
 N. 1 |l 2|3|4|6|6|7|8l9|D. 1 
 
 940 
 
 973128 
 
 3174 
 
 3220 
 
 3266 
 
 33131 
 
 3359 
 
 .3405 
 
 3451 
 
 3497 
 
 3543 
 
 46 
 
 941 
 
 3590 
 
 3636 
 
 3682 
 
 3728 
 
 3774 
 
 3820 
 
 3866 
 
 .3913 
 
 3959 
 
 4005 
 
 46 
 
 942 
 
 4051 
 
 4097 
 
 4143 
 
 4189 
 
 4235 
 
 4281 
 
 4327 
 
 4374 
 
 4420 
 
 4466 
 
 46 
 
 943 
 
 4512 
 
 4558 
 
 4604 
 
 4650 
 
 4696 
 
 4742 
 
 4788 
 
 4834 
 
 4880 
 
 4926 
 
 46 
 
 944 
 
 4972 
 
 5018 
 
 5064 
 
 5110 
 
 5156 
 
 5202 
 
 5248 
 
 6294 
 
 5340 
 
 5386 
 
 46 
 
 943 
 
 5432 
 
 5478 
 
 5524 
 
 5570 
 
 6616 
 
 5662 
 
 5707 
 
 5753 
 
 5799 
 
 5845 
 
 46 
 
 946 
 
 5891 
 
 5937 
 
 5983 
 
 6029 
 
 6075 
 
 6121 
 
 6167 
 
 6212 
 
 6258 
 
 6304 
 
 46 
 
 947 
 
 6350 
 
 6396 
 
 6442 
 
 6488 
 
 6533 
 
 6579 
 
 6625 
 
 6671 
 
 6717 
 
 6763 
 
 46 
 
 948 
 
 6808 
 
 6854 
 
 6900 
 
 6946 
 
 6992 
 
 7037 
 
 7083 
 
 7129 
 
 7175 
 
 7220 
 
 46 
 
 949 
 950 
 
 7266 
 
 7312 
 7769 
 
 7358 
 7815 
 
 7403 
 
 7861 
 
 7449 
 7906 
 
 7495 
 7952 
 
 7541 
 7998 
 
 7586 
 8043 
 
 7632 
 
 8089 
 
 7678 
 8135 
 
 46 
 46 
 
 977724 
 
 951 
 
 8181 
 
 8226 
 
 8272 
 
 8317 
 
 8363 
 
 8409 
 
 8454 
 
 8500 
 
 8546 
 
 8591 
 
 46 
 
 952 
 
 8637 
 
 8683 
 
 8728 
 
 8774 
 
 8819 
 
 8865 
 
 8911 
 
 8956 
 
 9002 
 
 904V 
 
 46 
 
 953 
 
 9093 
 
 9138 
 
 9184 
 
 9230 
 
 9275 
 
 9321 
 
 9366 
 
 9412 
 
 9457 
 
 9o03 
 
 46 
 
 954 
 
 9548 
 
 9594 
 
 9639 
 
 9685 
 
 9730 
 
 9776 
 
 9821 
 
 9867 
 
 9912 
 
 99.18 
 
 46 
 
 955 
 
 9S0003 
 
 0049 
 
 0094 
 
 0140 
 
 0185 
 
 0231 
 
 0276 
 
 0322 
 
 0367 
 
 0412 
 
 46 
 
 95fi 
 
 0458 
 
 0503 
 
 0549 
 
 0594 
 
 0640 
 
 0685 
 
 0730 
 
 0776 
 
 0821 
 
 086Y 
 
 45 
 
 957 
 
 0912 
 
 0957 
 
 1003 
 
 1048 10931 
 
 1139 
 
 1184 
 
 1229 
 
 1275 
 
 1320 
 
 45 
 
 958 
 
 1366 
 
 1411 
 
 1456 
 
 1501 
 
 1547 
 
 1592 
 
 1637 
 
 1683 
 
 1728 
 
 17V3 
 
 45 
 
 959 
 960 
 
 1819 
 
 1864 
 2316 
 
 1909 
 2362 
 
 1954 
 2407 
 
 2000 
 2452 
 
 2045 
 2497 
 
 2090 
 2543 
 
 2135 
 
 2588 
 
 2181 
 2633 
 
 2226 
 2678 
 
 45 
 
 45 
 
 982271 
 
 961 
 
 2723 
 
 2769 
 
 2814 
 
 2859 
 
 2904 
 
 2949 
 
 2994 
 
 3040 
 
 3085 
 
 3130 
 
 45 
 
 962 
 
 3175 
 
 3220 
 
 :265 
 
 3310 
 
 3356 
 
 3401 
 
 3446 
 
 3491 
 
 3536 
 
 3581 
 
 45 
 
 963 
 
 3626 
 
 3671 
 
 3716 
 
 3762 
 
 3807 
 
 3852 
 
 3S97 
 
 3942 
 
 3987 
 
 4032 
 
 45 
 
 964 
 
 4077 
 
 4122 
 
 4167 
 
 4212 
 
 4257 
 
 4302 
 
 HP 
 
 47&7 
 
 4392 
 
 4437 
 
 4482 
 
 45 
 
 965 
 
 4527 
 
 4572 
 
 4617 
 
 4662 
 
 4707 
 
 4752 
 
 4842 
 
 4887 
 
 4932 
 
 45 
 
 966 
 
 4977 
 
 5022 
 
 5067 
 
 5112 
 
 5157 
 
 5202 
 
 5^47 
 
 5292 
 
 5337 
 
 5382 
 
 45 
 
 967 
 
 54'* 6 
 
 5471 
 
 5516 
 
 5561 
 
 5606 
 
 .5651 
 
 5696 
 
 5741 
 
 5786 
 
 5830 
 
 45 
 
 968 
 
 5875 
 
 5920 
 
 5965 
 
 6010 
 
 6055 
 
 6100 
 
 6144 
 
 6189 
 
 6234 
 
 6279 
 
 45 
 
 969 
 970 
 
 6324 
 
 6369 
 6817 
 
 6413 
 6861 
 
 6458 
 6906 
 
 6503 
 6951 
 
 6548 
 6996 
 
 6593 
 7040 
 
 6637 
 
 7085 
 
 6682 
 7130 
 
 bV2V 
 7175 
 
 45 
 45 
 
 986772 
 
 971 
 
 7219 
 
 7264 
 
 7309 
 
 7353 
 
 7398 
 
 7443 
 
 7488 
 
 7532 
 
 7577 
 
 V622 
 
 45 
 
 972 
 
 7666 
 
 7711 
 
 7756 
 
 7800 
 
 7845 
 
 7890 
 
 7934 
 
 7979 
 
 8024 
 
 8068 
 
 45 
 
 973 
 
 8113 
 
 8157 
 
 8202 
 
 8247 
 
 8291 
 
 8336 
 
 8381 
 
 8425 
 
 8470 
 
 8Di4 
 
 45 
 
 974 
 
 8559 
 
 8604 
 
 8648 
 
 8693 
 
 8737 
 
 8782 
 
 8826 
 
 8871 
 
 8916 
 
 8960 
 
 45 
 
 975 
 
 9005 
 
 9049 
 
 9094 
 
 9138 
 
 9183 
 
 9227 
 
 9272 
 
 9316 
 
 9361 
 
 9405 
 
 45 
 
 976 
 
 9450 
 
 9494 
 
 9539 
 
 9583 
 
 9628 
 
 9672 
 
 9717 
 
 9761 
 
 9806 
 
 9850 
 
 44 
 
 977 
 
 9895 
 
 9939 
 
 9983 
 
 ..28 
 
 ..72 
 
 .117 
 
 .161 
 
 .206 
 
 .250 
 
 .294 
 
 44 
 
 978 
 
 990339 
 
 0383 
 
 0428 
 
 0472 
 
 0516 
 
 0561 
 
 0605 
 
 0650 
 
 0694 
 
 0V38 
 
 44 
 
 979 
 
 980 
 
 0783 
 
 0827 
 1270 
 
 0871 
 1315 
 
 0916 
 1359 
 
 0960 
 1403 
 
 1004 
 
 1448 
 
 1049 
 1492 
 
 1093 
 1536 
 
 1137 
 1580 
 
 1182 
 1625 
 
 44 
 44 
 
 991226 
 
 981 
 
 1669 
 
 1713 
 
 1758 
 
 1802 
 
 1846 
 
 1890 
 
 1935 
 
 1979 
 
 2023 
 
 2067 
 
 44 
 
 982 
 
 2111 
 
 2156 
 
 2200 
 
 2244 
 
 2288 
 
 2333 
 
 2377 
 
 2421 
 
 2465 
 
 2!509 
 
 44 
 
 983 
 
 2554 
 
 2598 
 
 2642 
 
 2686 
 
 2730 
 
 2774 
 
 2819 
 
 2863 
 
 2907 
 
 2951 
 
 44 
 
 984 
 
 2995 
 
 3039 
 
 3083 
 
 3127 
 
 3172 
 
 3216 
 
 3260 
 
 3304 
 
 3348 
 
 3392 
 
 44 
 
 985 
 
 3436 
 
 3480 
 
 3524 
 
 3568 
 
 3613 
 
 3657 
 
 3701 
 
 3745 
 
 3789 
 
 3833 
 
 44 
 
 986 
 
 3877 
 
 3921 
 
 3965 
 
 4009 
 
 4053 
 
 4097 
 
 4141 
 
 4185 
 
 4229 
 
 4273 
 
 44 
 
 987 
 
 4317 
 
 4361 
 
 4405 
 
 4449 
 
 4493 
 
 4537 
 
 4.581 
 
 4625 
 
 4669 
 
 47 13 
 
 44 
 
 988 
 
 4757 
 
 4801 
 
 4845 
 
 4889 
 
 4933 
 
 4977 
 
 5021 
 
 5065 
 
 5108 
 
 51.W 
 
 44 
 
 989 
 990 
 
 6196 
 
 5240 
 5679 
 
 5284 
 5723 
 
 5328 
 5767 
 
 5372 
 .5811 
 
 6416 
 
 5854 
 
 5460 
 5898 
 
 5504 
 5942 
 
 5547 
 6986 
 
 5591 
 603C 
 
 44 
 44 
 
 995635 
 
 991 
 
 6074 
 
 6117 
 
 6161 
 
 6205 
 
 6249 
 
 629S 
 
 6337 
 
 6380 
 
 6424 
 
 6461^ 
 
 44 
 
 992 
 
 6512 
 
 6555 
 
 6599 
 
 6643 
 
 G687 
 
 6731 
 
 6774 
 
 6818 
 
 6862 
 
 690t 
 
 44 
 
 993 
 
 6949 
 
 6993 
 
 703? 
 
 708C 
 
 712^ 
 
 7l6g 
 
 7212 
 
 7255 
 
 7299 
 
 734t 
 
 1 44 
 
 994 
 
 7386 
 
 7430 
 
 7474 
 
 - 7517 
 
 7561 
 
 760.^ 
 
 . 764S 
 
 7695i 
 
 7736 
 
 77VL 
 
 1 44 
 
 995 
 
 7823 
 
 7867 
 
 791C 
 
 1 7954 
 
 - 7998 
 
 8041 
 
 8085 
 
 8128 
 
 8172 
 
 82 U 
 
 ) 44 
 
 996 
 
 fi9?10 
 
 sfiny 
 
 8347 
 
 ' 8?iur 
 
 8434 
 
 L R4.7'; 
 
 r Hii21 
 
 8564 
 
 . 8608 
 
 86.5i 
 
 J 44 
 
 997 
 
 8695 
 
 8731J 
 
 8785; 
 
 , 8826 
 
 886C 
 
 1 891? 
 
 \ 8956 
 
 » 900( 
 
 1 9043 
 
 gos-i 
 
 f 44 
 
 998 
 
 9131 
 
 9174 
 
 921.^ 
 
 92-61 
 
 930f 
 
 ) 934^ 
 
 i 9395 
 
 ! 9435 
 
 . 9479 
 
 952i 
 
 J 44 
 
 999 
 
 9565 
 
 960r 
 
 1 965i 
 
 t 969( 
 
 . 973' 
 
 ) 978[ 
 
 ) 98261 9870 
 
 ) 991.*3 
 
 995'/ 
 
 f 43 
 
 N. |0|l|2|3l4l5 6 7|8 «! D.J 
 
^ 
 
 46 
 46 
 46 
 46 
 46 
 46 
 46 
 46 
 46 
 46 
 
 € 
 
 932 
 
 4b 
 45 
 
 382 
 
 45 
 
 830 
 
 45 
 
 279 
 
 45 
 
 727 
 
 45 
 
 '175 
 
 45 
 
 '622 
 
 45 
 
 !068 
 
 45 
 
 S514 
 
 45 
 
 ^960 
 
 45 
 
 )405 
 
 45 
 
 )850 
 
 44 
 
 294 
 
 44 
 
 )738 
 
 44 
 
 1182 
 
 44 
 
 1625 
 
 44 
 
 2067 
 
 44 
 
 2509 
 
 44 
 
 2951 
 
 44 
 
 «92 
 
 44 
 
 3833 
 
 44 
 
 1273 
 
 44 
 
 4713 
 
 44 
 
 5152 
 
 44 
 
 5591 
 
 44 
 
 6030 
 
 44 
 
 6468 
 
 44 
 
 6906 
 
 44 
 
 7343 
 
 44 
 
 7779 
 
 44 
 
 8216 
 
 44 
 
 8652 
 
 44 
 
 9087 
 
 44 
 
 9522 
 
 44 
 
 9957 
 
 43 
 
 9 
 
 i P. 1 
 
 j 
 
 A TABLE 
 
 OP 
 
 LOGARITHMIC 
 SINES *AND TANGENTS 
 
 FOR ETEHT 
 
 DEGREE AND MINUTE 
 
 or THE QUADRANT. 
 
 N. B Tae minutes in the left-hand column of each page, 
 increasing downwards, belong to the degrees at the top ; and 
 those increasing upwards, in the right-hand column, belong to 
 the degrees below. 
 
i t 
 
 Mi 
 
 •\\ 
 
 I h 
 
 I! il' 
 
 18 
 
 (0 Degree.) a table of logarithmic 
 
 M. 
 
 Sine 
 
 D. 
 
 Cosine 
 
 Tang. 
 
 D. 
 
 CoianR. 
 
 
 1 
 2 
 3 
 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 
 11 
 12 
 \Z 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 GO 
 
 O.OOUUOOI 
 6.463726 
 764756 
 940847 
 7.065786 
 162696 
 241877 
 308824 
 366816 
 417968 
 463725 
 
 7.505118 
 542906 
 577668 
 609853 
 639816 
 667845 
 694173 
 718997 
 742477 
 764754 
 
 .'ioirn 
 
 293485 
 
 208231 
 
 161517 
 
 131968 
 
 111575 
 
 96653 
 
 85254 
 
 76263 
 
 68988 
 
 7.785943 
 806146 
 825451 
 843934 
 861662 
 878695 
 895085 
 910879 
 926119 
 940842 
 
 7.955082 
 968870 
 982233 
 995198 
 
 8.007787 
 020021 
 031919 
 043501 
 054781 
 065776 
 
 8.076500 
 086965 
 097183 
 107167 
 116926 
 126471 
 135810 
 144953 
 153907 
 16 2681 
 
 8.171280 
 179713 
 187985 
 196102 
 204070 
 211895 
 219581 
 227134 
 234557 
 241855 
 
 Co.'iine I 
 
 10.090000 
 000000 
 000000 
 000000 
 000000 
 000000 
 9.999999 
 999999 
 999999 
 999999 
 999998 
 
 62981 
 57936 
 53641 
 49938 
 46714 
 43881 
 41372 
 39135 
 37127 
 35315 
 
 33672 
 32175 
 30805 
 29547 
 28388 
 27317 
 26323 
 25399 
 24538 
 23733 
 
 9.999998 
 999997 
 999997 
 999995 
 999996 
 999995 
 999995 
 999994 
 999993 
 999993 
 
 22980 
 22273 
 21608 
 20981 
 203901 
 19831 
 19302 
 18801 
 18325 
 17872 
 
 9.999992 
 999991 
 999990 
 999989 
 999988 
 999988 
 999987 
 999986 
 999985 
 999983 
 
 9.999982 
 999981 
 999980 
 999979 
 999977 
 999976 
 999975 
 999973 
 999972 
 999971 
 
 00 
 00 
 00 
 00 
 00 
 01 
 01 
 01 
 01 
 Oj_ 
 
 01 
 01 
 01 
 01 
 01 
 01 
 01 
 01 
 01 
 
 21 
 
 01 
 01 
 01 
 02 
 02 
 02 
 02 
 02 
 02 
 02 
 
 02 
 02 
 02 
 02 
 02 
 02 
 02 
 02 
 02 
 02 
 
 0.000000 
 6.403726 
 764756 
 940847 
 7.065786 
 162696 
 241878 
 308825 
 366817 
 417970 
 463727 
 
 501717 
 
 293483 
 
 208231 
 
 161617 
 
 131969 
 
 111578 
 
 99653 
 
 852.')4 
 
 76263 
 
 68988 
 
 7.. 505 120 
 542909 
 577672 
 609857 
 639820 
 667849 
 694179 
 719003 
 742484 
 764761 
 
 62981 
 
 57933 
 
 53642 
 
 49939 
 
 46715 
 
 4388 
 
 41373 
 
 39136 
 
 37128 
 
 35136 
 
 7.785951 
 806155 
 825460 
 843944 
 861674 
 878708 
 895099 
 910894 
 926134 
 940858 
 
 iiiiiiiiio. 
 
 13.536274 
 235244 
 059153 
 
 12.934214 
 837.304 
 758122 
 691175 
 633183 
 582030 
 536273 
 
 12 
 
 .494880 
 4.57091 
 422328 
 390143 
 360180 
 332151 
 305821 
 280997 
 257616 
 235239 
 
 17441 
 17031 
 16639 
 16265 
 15908 
 15566 
 15238 
 14924 
 14622 
 1433 3 
 
 14054 
 
 1.3786 
 
 13529 
 
 132.S0; 
 
 130411 
 
 12310 
 
 12587! 
 
 12372 
 
 12164 
 
 11963 
 
 9.999969 
 999968 
 999966 
 999964 
 999963 
 999961 
 999959 
 999958 
 999956 
 
 999954 
 
 9,'jy9952 
 999950 
 999948 
 999946 
 999944 
 999942 
 ; '9940 
 9;i;>'138 
 i; 99936 
 *ii!'j'934 
 
 7.955100 
 968889 
 982253 
 995219 
 
 8.007809 
 020045 
 031945 
 043527 
 054809 
 065806 
 
 33673 
 32176 
 30806 
 29549 
 28390 
 27318 
 26325 
 25401 
 24540 
 23735 
 
 02 
 
 02 
 
 02 
 
 03 
 
 03 
 
 03 
 
 03 
 
 03 
 
 03 1 
 
 03 
 
 03 
 03 
 03 
 03 
 
 (^3 
 ('4 
 04 
 04 
 04 
 04 
 
 8,076.531 
 086997 
 097217 
 107202 
 116963 
 126510 
 135851 
 144996 
 1.53952 
 162727 
 
 12.214049 
 193845 
 174540 
 156056 
 138326 
 121292 
 104901 
 089106 
 073866 
 059142 
 
 60 
 59 
 58 
 57 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 
 12 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 7 
 
 22981 
 22275 
 21610 
 20983 
 20392 
 19833 
 19305 
 18803 
 18327 
 1787 4 
 
 17444 
 17034 
 16642 
 16268 
 15910 
 15568 
 15241 
 14927 
 14627 
 14336 
 
 12.044900 
 031111 
 017747 
 004781 
 
 11.992191 
 9799.55 
 968055 
 956473 
 945191 
 934194 
 
 8.171328 
 179763 
 188036 
 196156 
 204126 
 2119,53 
 219641 
 227195 
 2.34621 
 241921 
 
 11.923469 
 913003 
 902783 
 892797 
 883037 
 873490 
 864149 
 855004 
 846048 
 837273 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19' 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 14057 
 13790 
 13532 
 1.3284 
 13044 
 12814 
 12590 
 12376 
 12168 
 11967 
 
 11 
 
 828672 
 
 8202371 
 
 811964 
 
 8038441 
 
 795R74 
 
 788047 
 
 780359 
 
 772805 
 
 765379 
 
 758079 
 
 Sine 
 
 (J'jlang. 
 
 Taiic. 
 
 M. 
 
 8U Uogreoii. 
 
 M. 
 
 e 
 
 
 
 8.2 
 
 1 
 
 2 
 
 2 
 
 2 
 
 3 
 
 2 
 
 4 
 
 2 
 
 5 
 
 2 
 
 6 
 
 7 
 
 2 
 9 
 
 51 
 
 8.50 
 
 52 
 
 51 
 
 53 
 
 51 
 
 54 
 
 52( 
 
 n n 
 
 
 (J<i 
 
 0* 
 
 56 
 
 52J 
 
 57 
 
 53 
 
 58 
 
 53f 
 
 59 
 
 53( 
 
 60 
 
 54S 
 
 Cosi 
 
;i- 1 1 
 
 u. 
 
 60 
 
 274 
 
 59 
 
 iU 
 
 58 
 
 15:5 
 
 57 
 
 214 
 
 56 
 
 ^04 
 
 65 
 
 122 
 
 54 
 
 175 
 
 53 
 
 183 
 
 52 
 
 1)3() 
 
 51 
 
 273 
 
 50 
 
 S8() 
 
 49 
 
 091 
 
 48 
 
 328 
 
 47 
 
 143 
 
 46 
 
 ISO 
 
 45 
 
 151 
 
 44 
 
 821 
 
 43 
 
 997 
 
 42 
 
 616 
 
 41 
 
 239 
 
 4') 
 
 049 
 
 39 
 
 845 
 
 38 
 
 540 
 
 37 
 
 056 
 
 36 
 
 or 
 
 3844 
 
 1 
 
 8 
 
 5874 
 
 6 
 
 8047 
 
 4 
 
 0359 
 
 3 
 
 '2805 
 
 2 
 
 55379 
 
 1 
 
 )8079 
 
 
 
 SINES AND TA voENTs. (1 Degree.) 
 
 19 
 
 M. 
 
 Sine 
 
 
 1 
 2 
 3 
 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 
 11 
 12 
 13 
 
 i4 
 15 
 16 
 17 
 18 
 '0 
 
 21 
 
 23 
 24 
 25 
 20 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 4-8 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 
 8.241855 
 249033 
 256094 
 263042 
 269881 
 276014 
 283243 
 289773 
 296207 
 302546 
 308794 
 
 8,314954 
 321027 
 327016 
 :".2924 
 338753 
 344504 
 350181 
 355783 
 361315 
 366777 
 
 8.372171 
 3771i)9 
 382762 
 387962 
 393101 
 398179 
 403199 
 408161 
 413068 
 417919 
 
 8.422717 
 427462 
 432156 
 436''00 
 441394 
 445941 
 450440 
 454893 
 459301 
 463665 
 
 8 
 
 467985 
 472263 
 476498 
 480693 
 484848 
 488963 
 493040 
 497078 
 501080 
 505045 
 
 .508974 
 512867 
 516726 
 520551 
 521343 
 528102 
 531828 
 535523 
 539186 
 542819 
 
 D. 
 
 Cosine | P. | Tang. [ I) | 
 
 11963 
 11768 
 i 1.580 
 11398 
 11221 
 11050 
 10883 
 10721 
 10565 
 10413 
 10266 
 
 Coinng. 
 
 10122 
 9982 
 9847 
 9714 
 9586 
 9460 
 9338 
 9219 
 9103 
 8990 
 
 8880 
 8772 
 8667 
 
 8564 
 8464 
 8366 
 8271 
 8177 
 8086 
 7996 
 
 7909 
 7823 
 7740 
 7657 
 7577 
 7499 
 7422 
 7346 
 7273 
 7200 
 
 7129 
 7060 
 6991 
 6924 
 6859 
 6794 
 6731 
 6669 
 6608 
 6548 
 
 6489 
 6431 
 6375 
 6319 
 62G4 
 6211 
 6158 
 6106 
 6055 
 6004 
 
 9.999934 
 999932 
 999929 
 999927 
 999925 
 999922 
 999920 
 999918 
 999915 
 999913 
 999910 
 
 9.999907 
 999905 
 999902 
 999899 
 999897 
 999894 
 999891 
 999888 
 999885 
 999882 
 
 9.999879 
 999876 
 999873 
 999870 
 999867 
 999864 
 999861 
 999858 
 999854 
 999851 
 
 9.999848 
 999844 
 999841 
 999838 
 999834 
 999831 
 999827 
 999823 
 999820 
 999816 
 
 9.999812 
 999809 
 999805 
 999801 
 999797 
 999793 
 999790 
 999788 
 999782 
 999778 
 
 9.999774 
 999769 
 999765 
 999761 
 999757 
 999753 
 999748 
 999744 
 999740 
 999735 
 
 04 
 04 
 04 
 04 
 04 
 04 
 04 
 04 
 04 
 04 
 04 
 
 04 
 04 
 04 
 0") 
 05 
 05 
 05 
 05 
 05 
 05 
 
 05 
 05 
 05 
 05 
 05 
 05 
 05 
 05 
 05 
 06 
 
 06 
 06 
 06 
 06 
 06 
 06 
 06 
 06 
 06 
 06 
 
 06 
 06 
 06 
 06 
 07 
 07 
 07 
 07 
 07 
 07 
 
 07 
 07 
 07 
 07 
 07 
 07 
 07 
 07 
 07 
 07 
 
 8.241921 
 249102 
 25<" ' 65 
 26311.'; 
 269956 
 276691 
 283323 
 289850 
 296292 
 302634 
 308884 
 
 11967 
 11772 
 11584 
 11402 
 11225 
 11054 
 10887 
 10726 
 10570 
 10418 
 10270 
 
 8.315046 
 321122 
 327114 
 333025J 
 338856 
 344610 
 350289 
 355895 
 361430 
 366895 
 
 8.372292 
 377622 
 382889 
 388092 
 393234 
 398315 
 403338 
 408304 
 413213 
 418068 
 
 10126 
 9987 
 9851 
 9719 
 9590 
 9465 
 9343 
 9224 
 9108 
 8995 
 
 8.422869 
 427618 
 432315 
 436962 
 441560 
 446110 
 
 8885 
 8777 
 8672 
 8570 
 8470 
 8371 
 8276 
 8182 
 8091 
 8002 
 
 7914 
 7830 
 7745 
 7663 
 7583 
 7505 
 
 450613 
 
 7428 
 
 455070 
 
 7352 
 
 459481 
 
 7279 
 
 463849 
 
 7206 
 
 8.468172 
 
 71.'^:> 
 
 472454 
 
 7066 
 
 476693 
 
 6998 
 
 480892 
 
 6931 
 
 485050 
 
 6865 
 
 489170 
 
 6801 
 
 493250 
 
 6738 
 
 497293 
 
 6676 
 
 501298 
 
 6615 
 
 505267 
 
 6555 
 
 8.509200 
 
 6496 
 
 513098 
 
 6439 
 
 516961 
 
 6382 
 
 520790 
 
 6326 
 
 524580 
 
 6272 
 
 628349 
 
 6218 
 
 532080 
 
 6165 
 
 535779 
 
 6113 
 
 539447 
 
 6062 
 
 543081 
 
 6012 
 
 Cosine 
 
 Sine 
 
 Cotaiig. 
 
 11 
 
 . 7.08079 
 750898 
 74383.' 
 736885 
 730044 
 723309 
 716677 
 710144 
 703708 
 697366 
 691116 
 
 11.684954 
 678878 
 672886 
 666975 
 661144 
 6.55390 
 619711 
 644105 
 638570 
 633105 
 
 11.627708 
 622378 
 617111 
 
 60 
 59 
 58 
 57 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 
 6119081,36 
 
 606766 
 601685 
 696662 
 591696 
 586787 
 581932 
 
 11.577131 
 6723821 
 567685 
 563038 
 558440 
 553890 
 649.387 
 644930 
 640519 
 536151 
 
 11 
 
 531828 
 527.546 
 623307 
 519108 
 614950 
 510830 
 506750 
 502707 
 498702 
 491733 
 
 11.490800 
 486902 
 483039 
 479210 
 47.5414 
 471651 
 467920 
 464221 
 460553 
 456916 
 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29- 
 
 28 
 
 27 
 
 26 
 
 25 
 
 24 
 
 23 
 
 22 
 
 21 
 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 8 
 7 
 B 
 5 
 4 
 3 
 2 
 I 
 
 
 4 
 
 Tang. 
 
 Degrees. 
 
 M. 
 
i : 
 
 i 
 
 1 ' 
 
 1 "'* 
 
 !;; 
 
 
 20 
 
 M. 
 
 (2 Degrees.) a table op logarithmic 
 
 diue 
 
 !). 
 
 ('osiiie 
 
 D. 
 
 Tftnp. 
 
 D. 
 
 ("lotaiiR. 
 
 S 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 
 U 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 5^ 
 56 
 67 
 58 
 59 
 60 
 
 .542819 
 646122 
 549'J95 
 553539 
 557054 
 560540 
 663999 
 567431 
 570836 
 574214 
 577566 
 
 6004 
 6955 
 5906 
 68)8 
 5811 
 5765 
 6719 
 6674 
 f630 
 />587 
 5544 
 
 .5808!)2 
 584193 
 687469 
 6907il 
 693948 
 59715'i 
 600332 
 603489 
 606623 
 609734 
 
 .612823 
 615891 
 618937 
 621962 
 624965 
 627948 
 630911 
 633854 
 636776 
 639680 
 
 .642563 
 645428 
 648274 
 651102 
 653911 
 656702 
 659475 
 662230 
 664968 
 667689 
 
 .670393" 
 .73080 
 675751 
 678405 
 681043 
 683665 
 686272 
 688863 
 691438 
 693998 
 
 8.696543 
 699073 
 701589 
 704090 
 706577 
 709049 
 711507 
 713952 
 716383 
 718800 
 
 6502 
 5460 
 5419 
 5379 
 6339 
 6300 
 5261 
 6223 
 5186 
 5149 
 
 6112 
 6076 
 5041 
 6006 
 4972 
 4933 
 4904 
 4871 
 4839 
 4806 
 
 4775 
 4743 
 4712 
 4682 
 4652 
 4622 
 4592 
 4563 
 4535 
 450 6 
 
 4479' 
 
 4451 
 
 4424 
 
 4397 
 
 4370 
 
 4344 
 
 4318 
 
 4292 
 
 4267 
 
 4242 
 
 4217 
 4192 
 4168 
 4144 
 4121 
 4097 
 4074 
 4051 
 4029 
 4006 
 
 9.999735 
 999731 
 999726 
 999722 
 999717 
 999713 
 999708 
 999704 
 999699 
 999694 
 999689 
 
 9.999685 
 999680 
 999675 
 999670 
 
 ' 999665 
 999660 
 999655 
 999650 
 999645 
 999640 
 
 .999035 
 999629 
 999624 
 999619 
 999614 
 999608 
 999603 
 999597 
 999592 
 999586 
 
 9.999581 
 999575 
 999570 
 999564 
 9995.1S 
 9995^3 
 999547 
 999541 
 999535 
 999529 
 
 9.99~9524 
 999518 
 999512 
 999506 
 999500 
 999493 
 999487 
 999481 
 999475 
 999469 
 
 .999463 
 999456 
 999450 
 999443 
 999437 
 999431 
 999424 
 999418 
 999411 
 999404 
 
 07 
 07 
 07 
 
 08 
 08 
 08 
 08 
 08 
 08 
 08 
 08 
 
 08 
 
 08 
 
 08 
 
 08 
 
 
 
 08 
 
 08 
 
 08 
 
 09 
 
 09 
 
 09 
 09 
 09 
 09 
 09 
 09 
 09 
 09 
 09 
 09 
 
 09 
 09 
 09 
 09 
 10 
 10 
 10 
 10 
 10 
 10 
 
 10 
 10 
 10 
 10 
 10 
 10 
 10 
 10 
 10 
 10 
 
 11 
 11 
 11 
 11 
 11 
 11 
 11 
 u 
 11 
 11 
 
 8.543084 
 646691 
 550268 
 553817 
 557336 
 560828 
 564291 
 667727 
 571137 
 574520 
 577877 
 
 8.581208 
 684514 
 587795 
 .591051 
 694283 
 597492 
 600677 
 603839 
 606978 
 610094 
 
 8, 
 
 613189 
 r 16262 
 619313 
 622343 
 625352 
 628340 
 631308 
 634256 
 637184 
 640093 
 
 .642982 
 645853 
 648704 
 651537 
 654352 
 657149 
 659928 
 662689 
 665433 
 668160 
 
 8.670870 
 673563 
 676239 
 678900 
 681544 
 684172 
 686784 
 689331 
 691963 
 694529 
 
 8.697081 
 699617 
 702139 
 704646 
 707140 
 709618 
 712083 
 714534 
 716972 
 719396 
 
 6012 
 6962 
 5914 
 5866 
 5819 
 6773 
 6727 
 6682 
 6638 
 5.595 
 6552 
 
 111, 
 
 5510 
 5468 
 6427 
 6387 
 5347 
 5308 
 5270 
 5232 
 5194 
 5158 
 
 5121 
 5085 
 5050 
 6015 
 4981 
 4947 
 4913 
 4880 
 4848 
 4816 
 
 4784 
 4753 
 4722 
 4691 
 4661 
 4631 
 4602 
 4573 
 4544 
 4526 
 
 4488 
 4461 
 4434 
 4417 
 4380 
 4354 
 4328 
 4303 
 4877 
 4262 
 
 4228 
 4203 
 4179 
 4155 
 413--4 
 4108 
 4085 
 4062 
 4040 
 4017 
 
 456916 
 453309 
 449732 
 446183 
 442664 
 439172 
 435709 
 432273 
 428863 
 425480 
 422123 
 
 11 
 
 .418792 
 415486 
 412205 
 408949 
 405717 
 402508 
 399323 
 396161 
 393022 
 389906 
 
 11.386811 
 383738 
 380687 
 377657 
 374648 
 371660 
 368692 
 365744 
 362816 
 359907 
 
 11.357018 
 354147 
 351296 
 348463 
 .345648 
 342851 
 340072 
 337311 
 334567 
 331840 
 
 11.329130 
 326437 
 323761 
 321100 
 318456 
 315828 
 313216 
 310619 
 308037 
 305471 
 
 11.302919 
 300383 
 297861 
 295354 
 *rr2S60 
 290382 
 287917 
 285465 
 283028 
 280304 
 
 60 
 59 
 58 
 57 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 1 
 
 
 Cosine 
 
 Sine 
 
 Cotanc. 
 
 Tang. 
 
 87 Degreefl. 
 
 M 
 
 1 Sii 
 
 
 
 d.7U 
 
 1 
 
 72 
 
 2 
 
 721 
 
 3 
 
 72{ 
 
 4 
 
 72t 
 
 6 
 
 73( 
 
 6 
 
 73r 
 
 7 
 
 73£ 
 
 8 
 
 737 
 
 9 
 
 73£ 
 
 10 
 
 745 
 
 11 
 
 8.744 
 
 12 
 
 746 
 
 13 
 
 74fl 
 
 14 
 
 761 
 
 15 
 
 752 
 
 16 
 
 75S 
 
 17 
 
 757 
 
 18 
 
 760 
 
 19 
 
 762 
 
 20 
 21 
 
 764 
 
 8.766 
 
 22 
 
 768 
 
 23 
 
 770 
 
 24 
 
 773 
 
 25 
 
 775 
 
 26 
 
 777 
 
 27 
 
 779 
 
 28 
 
 781 
 
 29 
 
 783 
 
 30 
 31 
 
 786 
 
 8.787 
 
 32 
 
 789 
 
 33 
 
 791 
 
 34 
 
 793 
 
 35 
 
 795 
 
 36 
 
 797 
 
 37 
 
 799 
 
 38 
 
 801 
 
 39 
 
 803 
 
 40 
 41 
 
 805 
 
 8.807 
 
 42 
 
 809 
 
 43 
 
 811 
 
 44 
 
 813 
 
 45 
 
 815 
 
 46 
 
 817 
 
 47 
 
 819 
 
 48 
 
 821. 
 
 49 
 
 823' 
 
 50 
 
 825 
 
 51 
 
 8.827( 
 
 52 
 
 828J 
 
 53 
 
 830' 
 
 54 
 
 832( 
 
 55 
 
 834^ 
 
 56 
 
 8365 
 
 57 
 
 838] 
 
 58 
 
 839f 
 
 59 
 
 8417 
 
 60 
 
 843£ 
 
R- 1 1 
 
 )916 
 
 60 
 
 1309 
 
 f)9 
 
 1732 
 
 58 
 
 )183 
 
 57 
 
 5664 
 
 56 
 
 )172 
 
 55 
 
 )709 
 
 54 
 
 5273 
 
 53 
 
 i863 
 
 52 
 
 vl80 
 
 51 
 
 5123 
 
 50 
 
 ^792 
 
 49 
 
 i486 
 
 48 
 
 2205 
 
 47 
 
 ^949 
 
 46 
 
 5717 
 
 45 
 
 i.008 
 
 44 
 
 J323 
 
 43 
 
 1161 
 
 42 
 
 3022 
 
 41 
 
 3906 
 
 40 
 
 7018 
 
 29 
 
 4147 
 
 28 
 
 1296 
 
 27 
 
 8463 
 
 26 
 
 5648 
 
 25 
 
 2851 
 
 24 
 
 0072 
 
 23 
 
 7311 
 
 22 
 
 4567 
 
 21 
 
 1840 
 
 20 
 
 9130 
 
 19 
 
 6437 
 
 18 
 
 3761 
 
 17 
 
 1100 
 
 16 
 
 8456 
 
 15 
 
 5828 
 
 14 
 
 3216 
 
 13 
 
 0619 
 
 12 
 
 8037 
 
 11 
 
 5471 
 
 10 
 
 2919 
 
 9 
 
 0383 
 
 8 
 
 7861 
 
 7 
 
 5354 
 
 6 
 
 2860 
 
 
 
 10382 
 
 4 
 
 7917 
 
 3 
 
 5465 
 
 2 
 
 3028 
 
 1 
 
 !0304 
 
 
 
 ig- 
 
 jmJ 
 
 SINES AND TANGENTS. (3 Degrees.; 
 
 fit 
 
 M. 
 
 Sine 
 
 D. 
 
 Cosine I). 
 
 'i: 
 
 .■•lie. 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 
 8.718800 
 721204 
 723595 
 725972 
 728337 
 730688 
 733027 
 735354 
 737667 
 739969 
 742259 
 
 n. 
 
 8.744536 
 746802 
 749055 
 751297 
 753528 
 755747 
 757955 
 760151 
 762337 
 764511 
 
 8.766675 
 768828 
 770970 
 773101 
 775223 
 777333 
 779434 
 781524 
 783605 
 785675 
 
 8.787736 
 789787 
 791828 
 793859 
 795881 
 797894 
 799897 
 801892 
 803876 
 805852 
 
 8.807819 
 809777 
 811726 
 813667 
 815599 
 817522 
 819436 
 821343 
 823240 
 825130 
 
 8.827011 
 828884 
 830749 
 832607 
 834456 
 836297 
 838130 
 839956 
 841774 
 843585 
 
 4006 
 3984 
 3962 
 3941 
 3919 
 3898 
 3877 
 3857 
 3836 
 3816 
 3796 
 
 3776 
 3756 
 3737 
 3717 
 3698 
 3679 
 3661 
 3642 
 3624 
 3606 
 
 3588 
 3570 
 3553 
 3535 
 3518 
 3501 
 3484 
 3467 
 3451 
 3431 
 
 3418 
 3402 
 3386 
 3370 
 3354 
 3339 
 3323 
 3308 
 3293 
 3278 
 
 3263 
 3249 
 3234 
 3219 
 3205 
 3191 
 3177 
 3163 
 3149 
 3135 
 
 3122 
 3108 
 3095 
 3082 
 3069 
 3056 
 3043 
 3030 
 3017 
 3000 
 
 9.999404 
 999398 
 999391 
 999384 
 999378 
 999371 
 999364 
 999357 
 999350 
 999343 
 999336 
 
 9.999329 
 999322 
 999315 
 999308 
 999301 
 999294 
 999286 
 999270 
 999272 
 999265 
 
 9.999257 
 999250 
 999242 
 999235 
 999227 
 999220 
 999212 
 999205 
 999197 
 
 • 999189 
 
 1118.719396 
 
 9.999181 
 999174 
 999166 
 999158 
 999150 
 999142 
 999134 
 999126 
 999118 
 999110 
 
 9.999102 
 999094 
 999086 
 999077 
 999069 
 999061 
 999053 
 999044 
 999036 
 999027 
 
 9.999019 
 999010 
 999002 
 998993 
 
 998976 
 998967 
 998958 
 998950 
 998941 
 
 11 
 
 11 
 11 
 11 
 11 
 12 
 12 
 12 
 12 
 12 
 
 12 
 12 
 12 
 12 
 12 
 12 
 12 
 12 
 12 
 12 
 
 12 
 13 
 13 
 13 
 13 
 13 
 13 
 13 
 13 
 13 
 
 13 
 13 
 13 
 13 
 13 
 13 
 13 
 13 
 13 
 13 
 
 13 
 14 
 14 
 14 
 14 
 14 
 14 
 14 
 14 
 U 
 
 14 
 14 
 14 
 14 
 14 
 14 
 15 
 15 
 15 
 15 
 
 721806 
 724204 
 726588 
 728959 
 731317 
 733663 
 735996 
 738317 
 740626 
 742922 
 
 8.745207 
 747479 
 749740 
 751989 
 7.54227 
 756453 
 758668 
 760872 
 763065 
 765246 
 
 8.767417 
 769578 
 771727 
 773866 
 775995 
 778114 
 780222 
 782320 
 784408 
 786486 
 
 8.788554 
 790613 
 792662 
 794701 
 796731 
 798752 
 800763 
 802765 
 804758 
 806742 
 
 8.808717 
 810683 
 812641 
 814589 
 816529 
 818461 
 820384 
 822298 
 824205 
 826103 
 
 8.827992 
 829874 
 831748 
 833613 
 
 837321 
 839163 
 840998 
 842825 
 844644 
 
 ("otanB. 
 
 4017 
 3995 
 3974 
 3952 
 3930 
 3909 
 3889 
 3868 
 3848 
 3827 
 3807 
 
 3787 
 3768 
 3749 
 3729 
 3710 
 3692 
 3673 
 36t)5 
 3636 
 3618 
 
 11.2806041 60 
 278194' 5!» 
 275796 
 273412 
 271041 
 268683 
 266337 
 264004 
 261683 
 259374 
 257078 
 
 11 
 
 3600 
 3583 
 3565 
 3548 
 3531 
 3514 
 3497 
 3480 
 3464 
 3447 
 
 254793 
 2.52521 
 250260 
 243011 
 245773 
 243547 
 241332 
 239128 
 236935 
 234754 
 
 58 
 57 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 
 11.232583 
 ,230422 
 f'28273 
 r 26 134 
 224005 
 221886 
 219778 
 217680 
 215592 
 213514 
 
 3431 
 3414 
 3399 
 3383 
 3368 
 3352 
 3337 
 3322 
 3307 
 3292 
 
 3278 
 3262 
 3248 
 3233 
 3219 
 3205 
 3191 
 3177 
 3163 
 _31^50_ 
 
 3136 
 3123 
 3110 
 3096 
 ouoo 
 3070 
 3067 
 3045 
 3032 
 3019 
 
 11.211446 
 209387 
 207338 
 205299 
 203269 
 201248 
 199237 
 197235 
 195242 
 1932.58 
 
 11.191283 
 1893J7 
 187359 
 185411 
 183471 
 181539 
 179616 
 177702 
 175795 
 173897 
 
 11.172008 
 170126 
 168252 
 166387 
 1 64529 
 162679 
 160837 
 159002 
 167175 
 155366 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 1 
 
 
 II 
 
 86 Degrees. 
 
 14 
 
23 
 
 (4 Degrees.') a table op LooAniTiiMicj 
 
 M. 
 
 Siiiti 
 
 ' I. 
 
 i 
 
 / » 
 
 
 I- 
 
 
 1 
 2 
 
 ;j 
 4 
 
 5 
 
 
 7 
 
 R 
 
 9 
 
 10 
 
 11 
 12 
 
 i;} 
 
 M 
 if) 
 Ifi 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 
 [34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 S.HiarvM;') 
 Hir,3M7 
 847183 
 818971 
 8r)07r)l 
 852.W5 
 854291 
 8r)(;()19 
 85780 1 
 85951fi 
 
 _8(512t[3 
 
 8.S(';iOri 
 8(i4738 
 8(56455 
 808165 
 869868 
 871565 
 873255 
 874938 
 876615 
 878285 
 
 8.879949 
 881607 
 883258 
 884903 
 886542 
 888174 
 889801 
 891421 
 893035 
 894643 
 
 I). 
 
 '3005 
 2992 
 29H0 
 2967 
 2955 
 2943 
 293 1 
 2919 
 2907 
 2896 
 288 i_ 
 
 ',1873 
 2861 
 2850 
 2839 
 2828 
 2817 
 2806 
 2795 
 2786 
 2773 
 
 ,896246 
 897842 
 899432 
 901017 
 902596 
 904169 
 905736 
 907297 
 908853 
 910404 
 
 41 8 
 
 42 
 
 43 
 
 44 
 
 45 
 
 46 
 
 47 
 
 48 
 
 49 
 
 50 
 
 61 8 
 
 52 
 
 53 
 
 54 
 
 ub 
 
 56 
 
 57 
 
 58 
 
 59 
 
 60 
 
 ,911949 
 913488 
 915022 
 916550 
 918073 
 919591 
 921103 
 922610 
 924112 
 925609 
 
 ,927100 
 928587 
 930068 
 931544 
 933015 
 934481 
 935942 
 937398 
 938850 
 94029 6 
 
 Cosine 
 
 27(53 
 2752 
 2742 
 2731 
 2721 
 2711 
 2700 
 2690 
 2ti80 
 2670 
 
 2660 
 
 2651 
 
 2641 
 
 2631 
 
 2622 
 
 2612 
 
 2603 
 
 2593 
 
 2584 
 
 2575 
 
 2566 
 2556 
 2547 
 2538 
 2529 
 2520 
 2512 
 2503 
 2494 
 2486 
 
 CoHliie i 
 
 9 . 99894 i 
 998932 
 9!)H923 
 998914 
 998905 
 99889(5 
 998887 
 998878 
 9988(59 
 9988(50 
 998851 
 
 I). 
 
 'I'aiiR. 
 
 9 
 
 ,998841 
 998832 
 998823 
 998813 
 998801 
 998795 
 998785 
 998776 
 9987(56 
 99 8757 
 
 9.998747 
 998738 
 998728 
 998718 
 998708 
 998699 
 998689 
 998679 
 998669 
 998659 
 
 2477 
 2469 
 2460 
 2452 
 2'i'io 
 2435 
 2427 
 2419 
 2411 
 2403 
 
 9.998649 
 998639 
 998629 
 998619 
 998609 
 998599 
 998589 
 998578 
 998568 
 9 9 8558 
 
 9.998548 
 998537 
 998527 
 998516 
 998506 
 998495 
 998485 
 998474 
 998464 
 998453 
 
 9.998442 
 998431 
 998421 
 
 !5 
 15 
 15 
 15 
 15 
 15 
 15 
 15 
 15 
 15 
 ]5 
 
 15 
 15 
 16 
 16 
 16 
 16 
 16 
 10 
 16 
 16 
 
 16 
 16 
 16 
 16 
 16 
 16 
 16 
 16 
 17 
 17 
 
 17 
 17 
 17 
 17 
 17 
 17 
 17 
 17 
 17 
 17 
 
 17 
 17 
 17 
 18 
 18 
 18 
 18 
 18 
 18 
 18 
 
 18 
 18 
 18 
 
 8.844644 
 81(5455 
 818260 
 850057 
 85 181 (5 
 853(528 
 855403 
 857 1 7 1 
 858932 
 860(58(5 
 862433 
 
 8.864173 
 86590(5 
 867(532 
 869351 
 8710(54 
 872770 
 874469 
 8761(52 
 877849 
 879529 
 
 8.881202 
 882869 
 884530 
 886185 
 887833 
 889476 
 891112 
 892742 
 894366 
 89 5984 
 
 8.897596 
 899203 
 900803 
 902398 
 903987 
 905570 
 907147 
 908719 
 910285 
 911846 
 
 "^3019 
 3007 
 2995 
 
 2982 
 2970 
 2958 
 2946 
 2935 
 2923 
 29 1 1 
 2900 
 
 8 
 
 998410 18 
 
 998388 
 998377 
 998366 
 998355 
 998344 
 
 18 
 18 
 18 
 18 
 18 
 
 .913401 
 914951 
 916495 
 918034 
 919568 
 921096 
 922819 
 924136 
 925649 
 927156 
 
 8.928658 
 930155 
 931647 
 933134 
 934616 
 936093 
 937565 
 939032 
 940494 
 941952 
 
 "117155356"' 
 153.545 
 151740 
 149943 
 1481.54 
 146372 
 144597 
 142829 
 1410t;8 
 
 2888 
 2877 
 2866 
 2854 
 2843 
 283?. 
 2821 
 2811 
 2800 
 2789 
 
 2779 
 2768 
 2758 
 2747 
 2737 
 2727 
 2717 
 2707 
 2097 
 2687 
 
 2677 
 2667 
 2658 
 2648 
 ^638 
 2629 
 2620 
 2610 
 2601 
 2592 
 
 11. 
 
 139314 
 _nr/5(57 
 
 135827 
 134094 
 132368 
 130(549 
 128936 
 127230 
 12.5.531 
 123838 
 122151 
 120471 
 
 11.118798 
 117131 
 115470 
 113815 
 112167 
 110524 
 108888 
 1072.58 
 105634 
 101016 
 
 2583 
 2574 
 2565 
 25.56 
 2547 
 2538 
 2530 
 2521 
 2512 
 2503 
 
 2495 
 2486 
 2478 
 2470 
 2461 
 2453 
 2445 
 2437 
 2430 
 2421 
 
 11.102404 
 100797 
 099197 
 097602 
 096013 
 094430 
 092853 
 091281 
 089715 
 088154 
 
 GO 
 59 
 58 
 57 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 
 4!> 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 
 38 
 
 37 
 
 3(5 
 
 35 
 
 34 
 
 33 
 
 32 
 
 31 
 
 30 
 
 29 
 
 28 
 
 27 
 
 26 
 
 25 
 
 24 
 
 23 
 
 22 
 
 21 
 
 20 
 
 11.086599 
 085049 
 083505 
 081966 
 080432 
 078904 
 07738 1 
 075864 
 074351 
 072844 
 
 11.0 1342 
 009845 
 068353 
 066866 
 065384 
 063907 
 062435 
 060968 
 059506 
 058048 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 1 
 
 
 M 
 
 "IT 
 1 
 
 2 
 3 
 
 4 
 5 
 6 
 t 
 
 8 
 
 9 
 
 10 
 
 IJ 
 12 
 13 
 
 14 
 15 
 16 
 
 17 i 
 18 
 19 
 '^0 
 
 21 
 2i> 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 .30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 8.9 
 9 
 9' 
 9 
 9'1 
 91 
 91 
 
 9: 
 
 9.^ 
 9^ 
 
 8.95 
 d5 
 95 
 9(i 
 9(i 
 9(5 
 I 96 
 9(5 
 96 
 JM5 
 
 8". 96 
 97 
 97 
 97; 
 97 
 97( 
 97' 
 97* 
 98( 
 98] 
 
 8.98i 
 98^ 
 98f 
 98f 
 98fc 
 981] 
 990 
 991 
 993 
 991 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 
 Sine 
 
 Colang. 
 
 Tang. 
 
 M. 
 
 8.995 
 997 
 
 91; s 
 
 099 
 9.000 
 002 
 003 
 OOti 
 OOfil 
 00 7( 
 
 9.008; 
 009.' 
 010' 
 0111 
 013] 
 OW, 
 01. 5f 
 
 oioe 
 
 018C 
 019S 
 
 Cosine 
 
 85 Degree*. 
 
K' i 
 
 
 •AM] 
 
 f.O 
 
 Mf) 
 
 na 
 
 710 
 
 58 
 
 91 :j 
 
 r)7 
 
 IM 
 
 f>r) 
 
 M-Z 
 
 nr, 
 
 r)'j7 
 
 r)4 
 
 Hi>U 
 
 M 
 
 OfiH 
 
 r)a 
 
 :n4 
 r)()7 
 
 f)! 
 
 f)!) 
 
 BINES AND TANOKN'M. (5 DogroOS.) 
 
 23 
 
 M 
 
 Hino 
 
 I). 
 
 ('osliio 
 
 I). 
 
 
 1 
 2 
 .1 
 
 4 
 6 
 fi 
 t 
 
 8 
 
 i) 
 
 H) 
 
 11 
 12 
 U) 
 11 
 IT) 
 Hi 
 17 
 I 18 
 lit 
 'ii) 
 
 21 
 
 2!) 
 
 21 
 25 
 
 20 
 27 
 
 28 
 
 2a 
 
 30 
 
 iii 
 
 .12 
 33 
 31 
 3;-) 
 30 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 
 TaiiK. 
 
 I>. 
 
 8.910296 
 91 1 738 
 913171 
 911606 
 916034 
 917456 
 948874 
 950287 
 95169( 
 953100 
 
 _9544J>9 
 
 8.955894 
 957284 
 958670 
 960052 
 961429 
 962801 
 964170 
 965531 
 966893 
 96'I249 
 
 8.969600 
 970947 
 972289 
 973628 
 974962 
 976293 
 977619 
 978941 
 980259 
 981573 
 
 8.982883 
 984189 
 98.5491 
 986789 
 988083 
 989374 
 990660 
 991943 
 9932221 
 994497 
 
 2103 
 2394 
 2387 
 2379 
 2371 
 2363 
 23.55 
 2348 
 2340 
 2332 
 2325 
 
 2317 
 2310 
 
 2302 
 2295 
 2288 
 2280 
 2273 
 2266 
 2259 
 2252 
 
 8 
 
 ,99.5768 
 997'>36 
 91; ,i99 
 099560 
 000816 
 002069 
 003318 
 004563 
 005805 
 007044 
 
 2244 
 2238 
 223 1 
 2224 
 2217 
 2210 
 2203 
 2197 
 2190 
 2183 
 
 2177 
 2170 
 2163 
 2157 
 3150 
 2144 
 21.38 
 2131 
 2125 
 2119 
 
 .008278 
 009510 
 010737 
 011962 
 013182 
 014400 
 01,5613 
 016824 
 018031 
 019235 
 
 2112 
 2106 
 2100 
 2094 
 2087 
 2082 
 2076 
 2070 
 2064 
 20.58 
 
 2052 
 2046 
 2040 
 2034 
 2029 
 2023 
 2017 
 2012 
 2006 
 2000 
 
 9,998314 
 998333 
 998322 
 998311 
 998300 
 998289 
 998277 
 998266 
 998255 
 998243 
 99 8232 
 
 9.998220 
 998209 
 998197 
 998186 
 998174 
 998163 
 998151 
 998139 
 998128 
 998116 
 
 9.998104 
 998092 
 998080 
 998068 
 998056 
 998044 
 998032 
 998020 
 998008 
 997996 
 
 19 
 19 
 19 
 19 
 19 
 19 
 19 
 19 
 19 
 19 
 j9 
 
 19 
 19 
 19 
 19 
 19 
 19 
 19 
 20 
 20 
 20 
 
 9.997984 
 997972 
 997959 
 997947 
 997935 
 997922 
 997910 
 997897 
 997885 
 997872 
 
 .997860 
 997847 
 997835 
 997822 
 997809 
 997797 
 997784 
 997771 
 997758 
 997745 
 
 .997732 
 997719 
 997706 
 997693 
 997nrt0 
 997667 
 9976.54 
 997641 
 997628 
 997614122 
 
 20 
 20 
 20 
 20 
 20 
 20 
 20 
 20 
 20 
 20 
 
 20 
 20 
 20 
 20 
 21 
 21 
 21 
 21 
 21 
 21 
 
 21 
 
 21 
 21 
 21 
 21 
 21 
 21 
 21 
 21 
 21 
 
 21 
 21 
 21 
 22 
 22 
 
 22 
 
 22 
 22 
 22 
 
 8.9419.52 
 94310J 
 944852 
 . 946295 
 917734 
 949168 
 9.50597 
 952021 
 95.34 1 1 
 954856 
 956267 
 
 8.9.57674 
 959075 
 9()0473 
 961866 
 963255 
 964639 
 966019 
 967394 
 968766 
 970133 
 
 8.971496 
 972855 
 974209 
 9755C.0 
 970906 
 978248 
 979.586 
 980921 
 98225 1 
 983577 
 
 8.984899 
 986217 
 987532 
 9888421 
 990149 
 991451 
 992750 
 994045 
 995.337 
 996624 
 
 8.997908 
 999188 
 
 9.000465 
 001738 
 003007 
 004272 
 005534 
 006792 
 008047 
 009298 
 
 9.010.546 
 011790 
 01.3031 
 014268 
 ni?i5n9 
 
 016732 
 017959 
 019183 
 020403 
 021620 
 
 4'()tiiti|{. 
 
 2421 
 2113 
 2405 
 2.397 
 2390 
 2382 
 2374 
 2366 
 2360 
 2351 
 2344 
 
 2337 
 2329 
 2323 
 2314 
 2307 
 2300 
 2293 
 2286 
 2279 
 2271 
 
 2265 
 2257 
 2251 
 2244 
 2237 
 2230 
 2223 
 2217 
 2210 
 2204 
 
 2197 
 2191 
 2184 
 2178 
 2171 
 2165 
 21.58 
 2152 
 3146 
 2140 
 
 21.34 
 2127 
 2121 
 2115 
 2109 
 2103 
 2097 
 2091 
 2085 
 2080 
 
 2074 
 2068 
 2062 
 2056 
 3051 
 2045 
 2040 
 2033 
 2028 
 2023 
 
 Jopine 
 
 Sine 
 
 Cotang. 
 
 111.0.58048 
 I 056596 
 055148 
 053705 
 05226(i 
 0.50832 
 049403 
 047979 
 040559 
 045144 
 0^3733 
 
 11.042326 
 040<)25 
 039527 
 038134 
 036745 
 035361 
 03398 1 
 032606 
 031234 
 029807 
 
 11.028.501 
 027145 
 025791 
 024440 
 023094 
 0217.52 
 020414 
 019079 
 017749 
 016423 
 
 11.015101 
 013783 
 012468 
 0111.58 
 009851 
 008.549 
 007250 
 005955 
 004663 
 003376 
 
 10 
 
 11,002092 
 000812 
 , 999535 
 998262 
 996993 
 995728 
 994466 
 993208 
 9919.53 
 
 9 90702 
 
 10.9894.54 
 988210 
 986969 
 985732 
 
 98.3268 
 982041 
 98081/ 
 979597 
 978380 
 
 60 
 
 59 
 
 58 
 
 57 
 
 56 
 
 55 
 
 54 
 
 63 
 
 52 
 
 51 
 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 .30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 23 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 ~9 
 8 
 7 
 6 
 
 u 
 
 4 
 3 
 2 
 1 
 
 
 X 
 
 64i)egrees, 
 
 I Tang. I M 
 
 
24 
 
 (6 Degrees.) A TABLE OF LOGARmiMIC 
 
 
 
 iih 
 
 M 
 
 Hliie 
 
 D. 
 
 Comno 1 1). 
 
 Tang. 1 
 
 D. 
 
 Cutang. 1 1 
 
 
 
 9.019235 
 
 2000 
 
 9.997614 
 
 22 
 
 9.021620 
 
 2023 
 
 10.978380 
 
 '60 
 
 1 
 
 0204;ir) 
 
 1995 
 
 997601 
 
 22 
 
 022834 
 
 2017 
 
 977166 
 
 69 
 
 2 
 
 O'ZUy.VZ 
 
 1989 
 
 997588 
 
 22 
 
 024044 
 
 2011 
 
 975956 
 
 58 
 
 3 
 
 022825 
 
 1984 
 
 997574 
 
 22 
 
 025251 
 
 2006 
 
 974749 
 
 57 
 
 4 
 
 024016 
 
 1978 
 
 997561 
 
 22 
 
 026455 
 
 2000 
 
 973545 
 
 56 
 
 6 
 
 025203 
 
 :?73 
 
 997547 
 
 22 
 
 027655 
 
 1995 
 
 972345 
 
 55 
 
 6 
 
 0263H6 
 
 1967 
 
 997534 
 
 23 
 
 028852 
 
 1990 
 
 971148 
 
 54 
 
 7 
 
 0275f)7 
 
 1962 
 
 997520 
 
 23 
 
 030046 
 
 1985 
 
 969954 
 
 53 
 
 8 
 
 028744 
 
 1957 
 
 997507 
 
 23 
 
 031237 
 
 1979 
 
 968763 
 
 52 
 
 9 
 
 029918 
 
 1951 
 
 997493 
 
 23 
 
 032425 
 
 1974 
 
 967575 
 
 51 
 
 10 
 11 
 
 031089 
 9.0;J2257 
 
 1947 
 
 997480 
 9.997466 
 
 23 
 23 
 
 033609 
 
 1909 
 
 966391 
 10.965209 
 
 50 
 49 
 
 1941 
 
 9.034791 
 
 1964 
 
 12 
 
 033421 
 
 1936 
 
 997452 
 
 23 
 
 035969 
 
 1958 
 
 964031 
 
 48 
 
 13 
 
 034582 
 
 1930 
 
 997439 
 
 23 
 
 037 44 
 
 1953 
 
 96285^ 
 
 47 
 
 14 
 
 035741 
 
 1925 
 
 997425 
 
 23 
 
 038316 
 
 1948 
 
 96168. ifil 
 
 15 
 
 036896 
 
 1920 
 
 997411 
 
 23 
 
 039485 
 
 1943 
 
 960515 
 
 4.1 
 
 16 
 
 038048 
 
 1915 
 
 997397 
 
 23 
 
 040651 
 
 1938 
 
 959349 
 
 44 
 
 17 
 
 039197 
 
 1910 
 
 997383 
 
 23 
 
 041813 
 
 1933 
 
 958187 
 
 43 
 
 18 
 
 040342 
 
 1905 
 
 997369 
 
 23 
 
 042973 
 
 1928 
 
 957027 
 
 42 
 
 19 
 
 041485 
 
 1899 
 
 9973{;^ 
 
 23 
 
 044130 
 
 1923 
 
 955870 
 
 41 
 
 20 
 
 042625 
 
 1894 
 
 997341 
 
 23 
 
 24 
 
 045284 
 
 1918 
 
 954716 
 
 40 
 39 
 
 9.043762 
 
 1889 
 
 9.997327 
 
 9.046434 
 
 1913 
 
 lO.tJ.^3566 
 
 22 
 
 044895 
 
 1884 
 
 997313 
 
 24 
 
 047682 
 
 1908 
 
 952418 
 
 38 
 
 23 
 
 046026 
 
 1879 
 
 997299 
 
 24 
 
 048727 
 
 1903 
 
 951273 
 
 37 
 
 24 
 
 047154 
 
 1875 
 
 997285 
 
 24 
 
 049869 
 
 1898 
 
 950131 
 
 36 
 
 25 
 
 048279 
 
 1870 
 
 997271 
 
 24 
 
 051008 
 
 1893 
 
 948992 
 
 35 
 
 20 
 
 049400 
 
 1865 
 
 997257 
 
 24 
 
 052144 
 
 1889 
 
 947856 
 
 34 
 
 27 
 
 050519 
 
 1860 
 
 997242 
 
 24 
 
 053277 
 
 1884 
 
 946723 
 
 33 
 
 28 
 
 051635 
 
 1855 
 
 997228 
 
 24 
 
 054407 
 
 1879 
 
 945593 
 
 32 
 
 29 
 
 05274;; 
 
 1850 
 
 997214 
 
 24 
 
 055535 
 
 1874 
 
 944465 
 
 31 
 
 30 
 31 
 
 0538.')9 
 
 1845 
 
 997199 
 9.997185 
 
 24 
 24 
 
 056659 
 9.0,57781 
 
 1870 
 1865 
 
 943341 
 
 30 
 
 29 
 
 054966 
 
 1841 
 
 10.942219 
 
 32 
 
 056071 
 
 1836 
 
 997170 
 
 24 
 
 058900 
 
 1869 
 
 941100 
 
 28 
 
 33 
 
 057172 
 
 1831 
 
 997156 
 
 24 
 
 060016 
 
 1855 
 
 939984 
 
 27 
 
 34 
 
 058271 
 
 1827 
 
 997141 
 
 24 
 
 061130 
 
 1851 
 
 938870 
 
 26 
 
 35 
 
 059367 
 
 1822 
 
 997127 
 
 24 
 
 062240 
 
 1846 
 
 937760 
 
 25 
 
 36 
 
 060460 
 
 1817 
 
 997112 
 
 24 
 
 063348 
 
 1842 
 
 936652 
 
 24 
 
 37 
 
 061551 
 
 1813 
 
 997098 
 
 24 
 
 064453 
 
 1837 
 
 935547 
 
 23 
 
 38 
 
 002639 
 
 1803 
 
 997083 
 
 25 
 
 065556 
 
 1833 
 
 9344 '4 
 
 22 
 
 39 
 
 063724 
 
 1804 
 
 997068 
 
 25 
 
 066655 
 
 1828 
 
 933345 
 
 21 
 
 40 
 41 
 
 064806 
 9.065885 
 
 1799 
 
 997053 
 
 25 
 
 25 
 
 067752 
 
 1824 
 
 932248 
 
 20 
 19 
 
 1794 
 
 9.997039 
 
 9.068846 
 
 1819 
 
 10.9311.54 
 
 42 
 
 066962 
 
 1790 
 
 997024 
 
 25 
 
 069938 
 
 1815 
 
 930062 
 
 18 
 
 43 
 
 068036 
 
 1786 
 
 997009 
 
 25 
 
 071027 
 
 1810 
 
 928973 
 
 17 
 
 44 
 
 069107 
 
 1781 
 
 996994 
 
 25 
 
 072113 
 
 1806 
 
 927887 
 
 16 
 
 45 
 
 070176 
 
 1777 
 
 996979 
 
 25 
 
 073197 
 
 1802 
 
 926803 
 
 15 
 
 46 
 
 07 1 242 
 
 1772 
 
 996964 
 
 25 
 
 074278 
 
 1797 
 
 925722 
 
 14 
 
 47 
 
 072306 
 
 1768 
 
 996949 
 
 25 
 
 075356 
 
 1793 
 
 924644 
 
 13 
 
 48 
 
 073366 
 
 1763 
 
 996934 
 
 25 
 
 076432 
 
 1789 
 
 923568 
 
 12 
 
 49 
 
 074424 
 
 1759 
 
 996919 
 
 25 
 
 077505 
 
 1784 
 
 922495 
 
 11 
 
 50 
 51 
 
 075480 
 
 1755 
 
 996904 
 9.996889 
 
 25 
 25 
 
 078576 
 i 9.079644 
 
 1780 
 
 921424 
 
 10 
 9 
 
 9.076533 
 
 1750 
 
 1776 
 
 10.920356 
 
 62 
 
 077583 
 
 1746 
 
 996874 
 
 25 
 
 080710 
 
 1772 
 
 919290 
 
 8 
 
 53 
 
 078031 
 
 1742 
 
 996858 
 
 25 
 
 081773 
 
 1767 
 
 918227 
 
 7 
 
 64 
 
 079676 
 
 1738 
 
 996843 
 
 25 
 
 082833 
 
 1763 
 
 917167 
 
 6 
 
 55 
 
 080719 
 
 1733 
 
 996828 
 
 25 
 
 088891 
 
 1759 
 
 916109 
 
 5 
 
 56 
 
 081759 
 
 1729 
 
 996812 
 
 26 
 
 084947 
 
 17.55 
 
 Q15053 
 
 4 
 
 57 
 
 0a27fl7 
 
 1725 
 
 996797 
 
 26 
 
 OAROOO 
 
 1751 
 
 M/lfiOQ 
 
 s 
 
 58 
 
 083832 
 
 1721 
 
 996782 
 
 26 
 
 087050 
 
 1747 
 
 91295C 
 
 2 
 
 69 
 
 084864 
 
 1717 
 
 996766 
 
 26 
 
 088098 
 
 1743 
 
 911902 
 
 1 
 
 60 
 
 085894 
 
 1713 
 
 996751 
 
 26 
 
 089144 
 
 1738 
 
 910856 
 
 
 
 1 Cosine 
 
 
 Sine 
 
 1 (Jotanij. 
 
 
 I Tang. 1 M. 1 
 
 lif ; 
 
 83 Degrees. 
 
 M 
 
 1 8 
 
 U 
 
 y.ol 
 
 1 
 
 Oi 
 
 2 
 
 Of 
 
 3 
 
 1 
 
 4 
 
 1 
 
 5 
 
 r .J. 
 
 b 
 
 I ')' 
 
 7 
 
 
 8 
 
 (," 
 
 9 
 
 \J. 
 
 10 
 
 rr 
 
 11 
 
 •K. 
 
 12 
 13 
 14 
 
 Ud 
 
 09 
 
 10 
 
 -5 
 
 10 
 
 16 
 
 10 
 
 17 
 
 10 
 
 18 
 
 10 
 
 19 
 
 10 
 
 20 
 
 10 
 
 21 
 
 9.10 
 
 22 
 
 10 
 
 23 
 
 10 
 
 24 
 
 10 
 
 25 
 
 11 
 
 26 
 
 11 
 
 27 
 
 11 
 
 28 
 
 11 
 
 29 
 
 11 
 
 30 
 
 11 
 
 31 
 
 9.11 
 
 32 
 
 11 
 
 33 
 
 11 
 
 34 
 
 11 
 
 35 
 
 12( 
 
 36 
 
 12 
 
 37 
 
 12 
 
 38 
 
 12; 
 
 39 
 
 12' 
 
 40 
 
 12i 
 
 41 
 
 9.12f 
 
 B-^^ 
 
 12' 
 
 43 
 
 12' 
 
 44 
 
 12f 
 
 45 
 
 12f 
 
 46 
 
 13< 
 
 47 
 
 131 
 
 48 
 
 1.3S 
 
 49 
 
 l.^.*^ 
 
 50 
 
 VM 
 
 51 
 
 9.13E 
 
 52 
 
 136 
 
 53 
 
 137 
 
 54 
 
 138 
 
 55 
 
 13t] 
 
 56 
 
 13fJ 
 
 r r/ 
 
 
 kM 
 
 14u 
 
 58 
 
 141 
 
 59 
 
 142 
 
 60 
 
 143 
 
 
 
1 1 
 
 so 
 
 60 
 
 w 
 
 60 
 
 )(\ 
 
 58 
 
 1!> 
 
 57 
 
 If) 
 
 56 
 
 IS 
 
 55 
 
 18 
 
 54 
 
 54 
 
 53 
 
 ^n 
 
 52 
 
 75 
 
 51 
 
 91 
 
 50 
 
 D'J 
 
 49 
 
 n 
 
 48 
 
 5r 
 
 47 
 
 ?. i6| 
 
 15 
 
 4a 
 
 19 
 
 44 
 
 87 
 
 43 
 
 27 
 
 42 
 
 70 
 
 41 
 
 16 
 
 40 
 
 0(5 
 
 39 
 
 IH 
 
 38 
 
 73 
 
 37 
 
 31 
 
 36 
 
 92 
 
 35 
 
 50 
 
 34 
 
 23 
 
 33 
 
 93 
 
 32 
 
 65 
 
 31 
 
 41 
 
 30 
 
 19 
 
 29 
 
 00 
 
 28 
 
 84 
 
 27 
 
 70 
 
 26 
 
 60 
 
 25 
 
 52 
 
 24 
 
 47 
 
 23 
 
 'A 
 
 22 
 
 45 
 
 21 
 
 48 
 
 20 
 
 54 
 
 19 
 
 62 
 
 18 
 
 73 
 
 17 
 
 87 
 
 16 
 
 03 
 
 15 
 
 22 
 
 14 
 
 44 
 
 13 
 
 68 
 
 12 
 
 95 
 
 11 
 
 24 
 
 10 
 
 56 
 
 9 
 
 ,90 
 
 8 
 
 !27 
 
 7 
 
 67 
 
 6 
 
 09 
 
 5 
 
 )53 
 
 4 
 
 >0Q 
 
 3 
 
 )5C 
 
 2 
 
 )02 
 
 1 
 
 i5G 
 
 
 
 |M. 
 
 ♦aWEfl AND TANGENTS. (7 DcgrCf)3.) 
 
 2b 
 
 M. 
 
 Sine 
 
 I D. I r<w inB I I). I 
 
 TniiK. 
 
 I). 
 
 
 
 1 
 
 2 
 3 
 4 
 
 5 
 b 
 7 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 -5 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 -42 
 
 43 
 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 
 o t 
 
 58 
 59 
 60 
 
 y. 086894 
 086922 
 087947 
 
 '. '-u, 
 08!;9frj 
 U0!.'.)8 
 0<>'^024 
 
 >!»;>, ^37 
 
 0<Mt i7 
 
 u,».//:56 
 
 _rnfi062 
 
 '>.»l9:;)65 
 U98066 
 099065 
 100062 
 101056 
 102048 
 103037 
 104025 
 105010 
 
 __105992 
 
 9.106973 
 107951 
 108927 
 109901 
 110873 
 111842 
 112809 
 113774 
 114737 
 115698 
 
 9.116656 
 117613 
 118567 
 119519 
 120469 
 121417 
 122362 
 123306 
 124248 
 125187 
 
 .126125 
 127060 
 127993 
 128925 
 129854 
 130781 
 131706 
 132630 
 133551 
 134470 
 
 9.135CS7 
 136303 
 137210 
 138128 
 139037 
 139944 
 1408.j0 
 1417.54 
 142656 
 143555 
 
 1713 
 1709 
 1704 
 1700 
 1696 
 1692 
 1688 
 1684 
 1680 
 1676 
 1673 
 
 1668 
 1665 
 1661 
 1657 
 1653 
 1649 
 1645 
 1641 
 1638 
 1634 
 
 1630 
 1627 
 1623 
 1619 
 1616 
 1612 
 1608 
 1605 
 1601 
 1597 
 
 1594 
 1590 
 1587 
 1683 
 1.580 
 1576 
 1.573 
 1569 
 1.566 
 1.562 
 
 1,559 
 
 1.5.56 
 
 1552 
 
 1549 
 
 1545 
 
 1.542 
 
 1539 
 
 1.535- 
 
 1532 
 
 1.529 
 
 1.525 
 1.522 
 1519 
 1516 
 1512 
 1.509 
 150G 
 1.503 
 1500 
 1496 
 
 9.996751 
 996735 
 996 720 
 996704 
 996688 
 99667 1 
 996657 
 99664 1 
 996625 
 996610 
 986594 
 
 9.996578 
 9965C2 
 996546 
 996530 
 996514 
 996498 
 996482 
 996465 
 996449 
 996433 
 
 9.996417 
 996400 
 996o84 
 996368 
 99635 1 
 996335 
 996318 
 996302 
 996285 
 996269 
 
 9.9962.52 
 996235 
 996219 
 996202 
 996185 
 996168 
 996151 
 996134 
 996117 
 996100 
 
 .996083 
 996066 
 996049 
 9960.32 
 J'^6015 
 995998 
 995980 
 995963 
 995946 
 995928 
 
 9.99.5911 
 995P94 
 99J876 
 995859 
 995841 
 995823 
 995806 
 995788 
 995771 
 995753 
 
 26 
 26 
 26 
 26 
 26 
 20 
 26 
 26 
 26 
 26 
 26 
 
 27 
 27 
 27 
 27 
 27 
 27 
 27 
 27 
 27 
 27 
 
 27 
 27 
 27 
 27 
 27 
 27 
 27 
 28 
 28 
 28 
 
 28 
 28 
 28 
 28 
 28 
 28 
 28 
 28 
 28 
 28 
 
 29 
 29 
 29 
 29 
 29 
 29 
 29 
 29 
 29 
 29 
 
 29 
 29 
 29 
 29 
 29 
 29 
 29 
 29 
 29 
 29 
 
 I <^>l«tlR, ( 
 
 9.089144 
 090187 
 091228 
 092266 
 093302 
 094336 
 095367 
 096395 
 097422 
 098446 
 09946S 
 
 9.100487 
 101504 
 102519 
 103532 
 104.542 
 105550 
 106556 
 107559 
 108560 
 109559 
 
 9. 
 
 110.556 
 1U55I 
 112.543 
 1136.33 
 114.521 
 115.507 
 116491 
 117472 
 118452 
 1 19429 
 
 .120404 
 121377 
 122348 
 12.3317 
 124284 
 125249 
 126211 
 127172 
 128130 
 129087 
 
 9.130041 
 1.30994 
 131944 
 132893 
 133839 
 1.34784 
 135726 
 136667 
 137605 
 lo8542 
 
 9.1.39476 
 140409 
 141340 
 142269 
 143196 
 144121 
 145044 
 145966 
 146885 
 147803 
 
 1738 
 734 
 1730 
 1727 
 1722 
 1719 
 1715 
 1711 
 1707 
 1703 
 1699 
 
 1695 
 1691 
 1687 
 1684 
 1680 
 1676 
 1672 
 1669 
 1665 
 1661 
 
 1658 
 16.54 
 1650 
 1646 
 1643 
 1639 
 1633 
 16.32 
 1629 
 1625 
 
 1622 
 1613 
 1615 
 1311 
 1607 
 1604 
 1601 
 1.597 
 1594 
 1591 
 
 10.910856 
 909813 
 908772 
 907734 
 906698 
 905664 
 904633 
 903605 
 90 .;i78 
 9015.54 
 900532 
 
 10.899513 
 898496 
 897481 
 896468 
 895458 
 894450 
 893444 
 89244 1 
 891440 
 890441 
 
 1587 
 1.584 
 1581 
 1577 
 1574 
 1571 
 1.567 
 1564 
 1.561 
 1658 
 
 10.889444 
 888449 
 8874.57 
 886467 
 885479 
 884493 
 883509 
 882528 
 881.548 
 880571 
 
 10.879596 
 
 29 
 
 878623 
 
 28 
 
 8776.52 
 
 27 
 
 376683 
 
 26 
 
 87.5716 
 
 26 
 
 874751 
 
 24 
 
 873789 
 
 23 
 
 872828 
 
 22 
 
 871870 
 
 21 
 
 870913 
 
 20 
 
 60 
 59 
 58 
 57 
 56 
 55 
 64 
 53 
 62 
 51 
 50 
 
 ''9 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 19 
 18 
 17 
 16 
 16 
 14 
 13 
 12 
 
 1.555 
 1551 
 1548 
 1545 
 1.542 
 1539 
 1535 
 1532 
 1.529 
 1.526 
 
 10.8;/>959 
 86'i, 06 
 86ft .06 
 867107 
 866161 
 865216 
 864274 
 863333 
 862395 11 
 861458 10 
 
 9 
 8 
 7 
 6 
 5 
 4. 
 
 3 
 
 2 
 
 1 
 
 
 10.860624 
 8.59591 
 858660 
 857731 
 856804 
 8.55879 
 854956 
 854034 
 863115 
 852197 
 
 Oosini! 
 
 Cotang. 
 
 Tung. 
 
 |M. 
 
Wf 
 
 
 r- '-' 
 
 t 
 
 26 
 
 (« 
 
 Degrees. ) a table of LOGARixiimc 
 
 
 
 
 
 ■ 
 
 M. 
 
 Sine 
 
 D. 1 
 
 Cosine 1 D. | 
 
 Taii^'. 1 D. 1 
 
 Cotai^;. 1 i 
 
 
 prr 
 
 
 
 
 9.143555 
 
 1496 
 
 9 . 995753 
 
 30 • 
 
 9,147803 1526 
 
 10.8.52197 
 
 60 
 
 019 
 
 
 1 
 
 — 
 1 
 9 
 
 M4453 
 
 1493 
 
 995735 
 
 30 
 
 148718 1523 
 
 851282 
 
 59 
 
 
 1 
 
 
 
 
 145349 
 
 1490 
 
 995717 
 
 30 
 
 149632 
 
 1520 
 
 8.50368 
 
 58 
 
 
 r 
 
 
 
 
 3 
 
 140243 
 
 1437 
 
 995099 
 
 30 
 
 150541 
 
 1517 
 
 849456 
 
 57 
 
 
 
 .I 
 
 
 
 
 4 
 
 147136 
 
 1484 
 
 995681 
 
 30 
 
 151454 
 
 1514 
 
 818.540 
 
 56 1 
 
 
 4 
 
 
 M 
 
 
 5 
 
 148026 
 
 1481 
 
 995604 
 
 30 
 
 1.52303 
 
 1611 
 
 847637 
 
 55 
 
 
 
 5 
 
 
 
 
 C 
 
 148915 
 
 1478 
 
 995040 
 
 30 
 
 153269 
 
 1608 
 
 846731 
 
 54 
 
 
 
 6 
 
 
 
 t 
 
 7 
 
 149802 
 
 1476 
 
 995028 
 
 30 
 
 154174 
 
 1505 
 
 845820 
 
 53 
 
 
 
 7 
 
 
 
 
 8 
 
 150686 
 
 1472 
 
 995610 
 
 30 
 
 15.5077 
 
 1502 
 
 84^1923 
 
 52 
 
 
 
 8 
 
 
 
 
 9 
 
 151569 
 
 1469 
 
 995.591 
 
 30 
 
 155978 
 
 1499 
 
 844022 
 
 21 
 
 
 
 9 
 
 
 nM 
 
 
 * 1 
 
 10 
 11 
 
 152451 
 
 1466 
 1403 
 
 995573 
 9.9955,55 
 
 30 
 30 
 
 156877 
 9.157775 
 
 1496 
 
 843123 
 
 49 
 
 
 
 10 
 ] 1 
 
 
 Ml 
 
 9 153330 
 
 1493 
 
 10.842225 
 
 9 
 
 f;" 
 
 
 12 
 
 154208 
 
 1460 
 
 995537 
 
 30 
 
 168671 
 
 1490 
 
 841329 
 
 48 
 
 
 
 12' 
 
 r . 
 
 
 lo 
 
 155083 
 
 1457 
 
 995519 
 
 30 
 
 159565 
 
 1487 
 
 840435 
 
 47 
 
 
 
 13 
 
 
 
 
 14 
 
 155957 
 
 1454 
 
 995501 
 
 31 
 
 160457 
 
 1484 
 
 839543 
 
 46 
 
 
 
 14 
 
 
 1 
 
 15 
 
 156830 
 
 1451 
 
 995482 
 
 31 
 
 161.347 
 
 1481 
 
 838653 
 
 45 
 
 
 
 15 
 
 
 
 
 16 
 
 157700 
 
 1448 
 
 995464 
 
 31 
 
 102236 
 
 1479 
 
 837764 
 
 44 
 
 
 
 16 
 
 
 
 1 
 
 17 
 
 158509 
 
 1^*45 
 
 995446 
 
 31 
 
 163123 
 
 1476 
 
 830877 
 
 43 
 
 
 
 17 
 
 
 1:^ 
 
 18 
 
 150' 35 
 
 1442 
 
 995427 
 
 31 
 
 164008 
 
 1473 
 
 835992 
 
 42 
 
 
 
 18 
 
 
 1 '■ 
 
 19 
 
 100301 
 
 1439 
 
 99.5400 
 
 31 
 
 104892 
 
 1470 
 
 835108 
 
 41 
 
 
 
 19 
 
 
 ■ 
 
 20 
 21 
 
 161164 
 
 1436 
 1433 
 
 995390 
 
 3' 
 
 31 
 
 165774 
 9.166054 
 
 1467 
 1404 
 
 834226 
 
 40 
 39 
 
 
 
 20 
 
 21 
 
 
 9.162025 
 
 9.995372 
 
 10.833340 
 
 9. 
 
 !;■■ 
 
 \- 
 
 22 
 
 162885 
 
 1430 
 
 995353 
 
 31 
 
 16i'532 
 
 1401 
 
 832408 
 
 38 
 
 
 
 22 
 
 
 '^1 
 
 23 
 
 163743 
 
 1427 
 
 995334 
 
 31 
 
 168409 
 
 14.58 
 
 83159' 
 
 37 
 
 
 
 23 
 
 
 l! 
 
 24 
 
 164600 
 
 1424 
 
 99.5316 
 
 31 
 
 109284 
 
 1455 
 
 830716 
 
 36 
 
 
 
 24 
 
 
 
 25 
 
 165454 
 
 1422 
 
 995297 
 
 31 
 
 170157 
 
 1453 
 
 829843 
 
 35 
 
 
 
 25 
 
 
 
 26 
 
 106307 
 
 1-^19 
 
 995278 
 
 31 
 
 171029 
 
 14.50 
 
 828971 
 
 34 
 
 
 
 26 
 
 
 
 27 
 
 167159 
 
 1416 
 
 995260 
 
 31 
 
 171899 
 
 1447 
 
 828101 
 
 33 
 
 
 
 27 
 
 
 
 28 
 
 168008 
 
 1413 
 
 995241 
 
 32 
 
 172707 
 
 1444 
 
 827233 
 
 32 
 
 
 
 28 
 
 
 
 2j 
 
 168850 
 
 1410 
 
 995222 
 
 32 
 
 173634 
 
 1442 
 
 826366 
 
 31 
 
 
 
 29 
 
 
 
 30 
 31 
 
 169702 
 
 1407 
 1405 
 
 995203 
 
 32 
 32 
 
 174499 
 
 1439 
 1430 
 
 82.5.501 
 
 CO 
 
 29 
 
 
 
 80 
 31 
 
 
 
 9.170547 
 
 9.995184 
 
 9.175362 
 
 10.824038 
 
 9? 
 
 
 32 
 
 171389 
 
 1402 
 
 995165 
 
 32 
 
 1 70224 
 
 1433 
 
 823770 
 
 28 
 
 
 
 32 
 
 
 
 33 
 
 172230 
 
 1399 
 
 995140 
 
 32 
 
 177084 
 
 1431 
 
 822916 
 
 27 
 
 
 
 33 
 
 
 
 34 
 
 173070 
 
 1396 
 
 995127 
 
 32 
 
 177942 
 
 1428 
 
 822058 
 
 26 
 
 
 
 34 
 
 
 
 35 
 
 173908 
 
 1394 
 
 995108 
 
 ijf-* 
 
 178799 
 
 1425 
 
 821201 
 
 25 
 
 
 
 35 
 
 
 
 36 
 
 174744 
 
 1391 
 
 995089 
 
 32 
 
 1796.55 
 
 1423 
 
 820345 
 
 24 
 
 
 
 36 
 
 
 
 
 37 
 
 175578 
 
 1388 
 
 995070 
 
 32 
 
 180508 
 
 1420 
 
 819492 
 
 23 
 
 
 
 3/ 
 
 
 
 
 38 
 
 176411 
 
 1386 
 
 99.5051 
 
 32 
 
 181360 
 
 1417 
 
 SI 8640 
 
 22 1 1 
 
 
 38 
 
 « 
 
 
 
 39 
 
 177242 
 
 1383 
 
 996032 
 
 32 
 
 182211 
 
 1415 
 
 817789 
 
 21 
 
 
 39 
 
 < 
 
 
 
 40 
 41 
 
 178072 
 9.1789«)0 
 
 1380 
 1377 
 
 99.5013 
 
 33 
 32 
 
 1830.'^,9 
 
 1412 
 
 816941 
 10.810093 
 
 20 
 19 
 
 
 
 40 
 41 
 
 ( 
 
 
 9.994993 
 
 9.183907 
 
 1409 
 
 Q i 
 
 
 • ■ ; 
 
 42 
 
 179726 
 
 1.374 
 
 994974 
 
 32 
 
 184752 
 
 1407 
 
 81.5248 
 
 18 
 
 
 
 a: 1 
 
 42 
 
 i7 * A 
 
 s . 
 
 i 
 
 43 
 
 180551 
 
 1372 
 
 994955 
 
 32 
 
 185.597 
 
 1404 
 
 814403 
 
 17 
 
 
 
 43 
 
 A 
 
 
 
 44 
 
 181374 
 
 1369 
 
 994935 
 
 32 
 
 180439 
 
 1402 
 
 813501 
 
 16 
 
 
 
 44 
 
 
 
 
 45 
 
 182196 
 
 1366 
 
 994916 
 
 33 
 
 187280 
 
 139 J 
 
 812720 
 
 15 
 
 
 
 45 
 
 A 
 
 K 
 
 
 46 
 
 183016 
 
 1304 
 
 99-1896 
 
 33 
 
 188120 
 
 1390 
 
 811880 
 
 14 
 
 
 
 40 
 
 S 
 2 
 2 
 
 
 47 
 
 183834 
 
 1361 
 
 C94877 
 
 33 
 
 188958 
 
 1393 
 
 811042 
 
 13 
 
 
 
 47 
 
 
 48 
 
 184651 
 
 1359 
 
 994857 
 
 33 
 
 189794 
 
 ' 1391 
 
 810200 
 
 12 
 
 
 
 48 
 
 
 49 
 
 185460 
 
 1350 
 
 994838 
 
 33 
 
 190629 
 
 1389 
 
 809371 
 
 11 
 
 
 
 ''9 
 
 
 50 
 51 
 
 186280 
 
 ] 353 
 1.351 
 
 994818 
 
 33 
 33 
 
 191462 
 9.192294 
 
 13S6 
 f384 
 
 808538 
 
 10 
 9 
 
 
 
 50 
 
 51 
 
 'I 
 
 
 9.187092 
 
 9.994798 
 
 10.H0770r 
 
 972 
 
 
 
 52 
 
 187903 
 
 1348 
 
 994779 
 
 33 
 
 193124 
 
 1381 
 
 800876 
 
 8 
 
 
 
 52 
 
 
 
 53 
 
 188712 
 
 1346 
 
 994759 
 
 33 
 
 193953 
 
 1379 
 
 806047 
 
 ' 7 
 
 
 
 53 
 
 
 
 
 54 
 
 189519 
 
 1343 
 
 994739 
 
 33 
 
 194780 
 
 1376 
 
 80522( 
 
 I 6 
 
 
 
 54 
 
 2 
 2 
 2 
 
 
 
 55 
 
 190325 
 
 1341 
 
 994719 
 
 133 
 
 195600 
 
 1374 
 
 80439' 
 
 \ 5 
 
 
 
 55 
 
 
 
 56 
 
 191130 
 
 1338 
 
 99470( 
 
 33 
 
 - 190430 
 
 1371 
 
 803571 
 
 » 4 
 
 
 
 56 
 
 
 
 57 
 
 191933 
 
 1330 
 
 994G80 
 
 33 
 
 197253 
 
 1369 
 
 802747 
 
 ^ 3 
 
 
 
 VI 
 
 
 
 
 1927-W 
 
 1333 
 
 994060 
 
 33 
 
 1 08074 
 
 1306 
 
 «0192f 
 
 ) 2 
 
 
 
 * f 
 
 A, 
 
 
 69 
 
 193534 
 
 1330 
 
 994640 
 
 33 
 
 198891 
 
 1304 
 
 soiioe 
 
 ) 1 
 
 
 
 
 
 60 
 
 194332 
 
 1328 
 
 994620 
 
 33 
 
 199711 
 
 ! 1361 
 
 800287 
 
 1 
 
 
 ( 
 
 io 2: 
 
 
 i 
 
 
 1 Cosine 
 
 1 
 
 1 ^'"^' i 
 
 1 (Jiitaiig. 
 
 1 'J'liiii.'. j M- 
 
 1 (Jot 
 
 ' !l 
 
 
 
 
 tjl 
 
 Uesjf 
 
 ees. 
 
 
 
 
 
 
^"P- 1 1 
 
 )2197 
 
 60 
 
 )1282 
 
 59 
 
 J0308 
 
 58 
 
 94r)(; 
 
 57 
 
 8540 
 
 56 
 
 .7637 
 
 55 
 
 16731 
 
 54 
 
 15826 
 
 53 
 
 t4923 
 
 52 
 
 14022 
 
 21 
 
 13123 
 
 5t> 
 
 12225 
 
 49 
 
 H329 
 
 48 
 
 10435 
 
 47 
 
 39543 
 
 46 
 
 38653 
 
 45 
 
 37764 
 
 44 
 
 36877 
 
 43 
 
 15992 
 
 42 
 
 35 108 
 
 41 
 
 34226 
 
 40 
 
 33346 
 
 39 
 
 32468 
 
 38 
 
 3159' 
 
 37 
 
 30716 
 
 36 
 
 29843 
 
 35 
 
 28971 
 
 34 
 
 28101 
 
 33 
 
 27233 
 
 32 
 
 26366 
 
 31 
 
 25501 
 
 CO 
 
 29 
 
 24638 
 
 23770 
 
 28 
 
 22916 
 
 27 
 
 22058 
 
 26 
 
 21201 
 
 25 
 
 20345 
 
 24 
 
 19492 
 
 23 
 
 18640 
 
 22 
 
 17789 
 
 21 
 
 16941 
 
 20 
 19 
 
 16093 
 
 515248 
 
 18 
 
 i 14403 
 
 17 
 
 ! 13561 
 
 16 
 
 112720 
 
 15 
 
 ! 11880 
 
 14 
 
 ! 11042 
 
 13 
 
 n0206 
 
 12 
 
 W9371 
 
 11 
 
 ^08538 
 
 10 
 
 <0770r 
 
 9 
 
 ^06876 
 
 8 
 
 ^06047 
 
 ' 7 
 
 B0522( 
 
 I 6 
 
 30439' 
 
 t 5 
 
 303571 
 
 ) 4 
 
 302741 
 
 f 3 
 
 ■i0192f 
 
 ) 2 
 
 BOiioe 
 
 ) 1 
 
 300281 
 
 r 
 
 'iii.i.'. j M- 1 
 
 f 
 
 SINES AND TANGFNTS. (9 DcgrCCS 
 
 
 1 
 
 2 
 3 
 4 
 5 
 6 
 V 
 8 
 9 
 U) 
 
 II 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 80 
 
 31 
 32 
 33 
 34 
 35 
 36 
 3/ 
 38 
 39 
 40 
 
 9.19433 
 195129 
 195925 
 196719 
 197511 
 198302 
 199091 
 199879 
 200666 
 201451 
 20223'i 
 
 41 
 42 
 43 
 14 
 45 
 40 
 47 
 48 
 19 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 
 9.203017 
 203797 
 204577 
 205354 
 2<)6131 
 206906 
 207679 
 208452 
 209222 
 209992 
 
 9.210760 
 211526 
 212291 
 21.3055 
 21.3818 
 214579 
 21.5.338 
 216097 
 216854 
 
 _2r7609 
 
 K 2 18363 
 219116 
 219868 
 220618 
 221.367 
 222115 
 222861 
 223606 
 224349 
 225092 
 
 9.22,58.33 
 226573 
 227.111 
 
 228048 
 228784 
 2295 1 8 
 230252 
 230984 
 231714 
 _232444 
 
 9.ii3.3172 
 233899 
 234625 
 23.5.349 
 236073 
 236795 
 237515 
 
 1328 
 1326 
 1323 
 1 32 1 
 1318 
 1316 
 1313 
 1311 
 1308 
 1.306 
 J^.304 
 
 1301" 
 
 1299 
 
 1296 
 
 1294 
 
 . 1292 
 
 1289 
 1287 
 1285 
 1282 
 1280 
 
 1278 
 1275 
 12V 3 
 1271 
 1268 
 1206 
 1264 
 1261 
 12,59 
 J257_ 
 
 12,55 
 1253 
 1250 
 1248 
 1246 
 1244 
 J 242 
 1239 
 1237 
 1 235 
 
 12.33 
 1231 
 1228 
 1220 
 1224 
 1222 
 1220 
 1218 
 1216 
 _1^2M_ 
 
 1212 
 1209 
 1207 
 1205 
 1203 
 1201 
 1199 
 1197 
 
 1 I or: 
 
 9 
 
 9 
 
 94600 
 9945H0 
 994560 
 994,540 
 994519 
 994499 
 994479 
 994459 
 994438 
 _994418 
 
 . 994397 
 994377 
 994357 
 994336 
 994316 
 994295 
 994274 
 9942.54 
 994233 
 994212 
 
 ^994 191 
 994171 
 9941.50 
 994129 
 9941 OH 
 994087 
 994066 
 994045 
 994024 
 994003 
 
 .993981 
 993960 
 993939 
 993918 
 993896 
 993875 
 993854 
 993832 
 99.3811 
 _ ^9.3789 
 
 9.993768 
 993746 
 993725 
 9!)3703 
 9: 13681 
 993860 
 993638 
 n936l6 
 993594 
 __99;j572 
 9.993550 
 993528 
 993506 
 993484 
 99.3462 
 993440 
 993418 
 y93396 
 993374 
 993351 
 
 33 
 33 
 33 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 34 
 
 34 
 34 
 34 
 34 
 34 
 34 
 35 
 35 
 35 
 35 
 
 35 
 35 
 35 
 35 
 35 
 
 35 
 35 
 35 
 35 
 35 
 
 35 
 35 
 35 
 35 
 36 
 36 
 36 
 36 
 36 
 36 
 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 36 
 37 
 .37 
 
 ■37 
 37 
 37 
 37 
 37 
 37' 
 37 
 37 
 37 
 37 
 
 201.345 
 202159 
 202971 
 203782 
 204592 
 205400 
 206207 
 207013 
 _207817 
 
 9.208619 
 200420 
 210220 
 211018 
 211815 
 212611 
 213405 
 214198 
 214989 
 
 215J780 
 
 9.216568 
 217356 
 218142 
 218926 
 219710 
 220492 
 221272 
 222052 
 222830 
 
 _223606 
 
 E». 224382 
 225156 
 225929 
 226700 
 227471 
 228239 
 229007 
 229773 
 23053'! 
 231,3(»2 
 
 1.3.54 
 
 1352 
 1.349 
 1.347 
 1345 
 1342 
 1340 
 J338_ 
 1.3.35 
 1.333 
 1,331 
 1328 
 1326 
 1324 
 1321 
 1319 
 1317 
 1315 
 
 797841 
 797029 
 796218 
 70.5408 
 794600 
 793793 
 792987 
 792183 
 
 1312 
 1310 
 1308 
 1305 
 1303 
 1301 
 1299 
 1297 
 1294 
 1292 
 
 10.791381 
 
 790580 
 789780 
 788982 
 788185 
 7873S9 
 786595 
 78,5802 
 785011 
 784220 
 
 10 
 
 9.232065 
 232826 
 233586 
 234345 
 235103 
 235859 
 236614 
 237368 
 238120 
 238872 
 
 1290 
 1288 
 1286 
 1284 
 1281 
 1279 
 1277 
 1275 
 1273 
 1271 
 
 ,783432 
 
 782644 
 7818.58 
 781074 
 780290 
 779508 
 778728 
 777948 
 777170 
 776394 
 
 60 
 
 69 
 
 5S 
 
 57 
 
 56 
 
 55 
 
 54 
 
 53 
 
 52 
 
 51 
 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 .30 
 
 9 
 
 1269 
 1267 
 1265 
 1262 
 1260 
 12.58 
 12,56 
 1254 
 1252 
 12,50 
 
 10.775618 
 
 29 
 
 774844 
 
 28 
 
 774071 
 
 27 
 
 773300 
 
 26 
 
 772529 
 
 25 
 
 771761 
 
 24 
 
 770993 
 
 23 
 
 770227 
 
 22 
 
 769461 
 
 21 
 
 .23'96;;i' 
 
 1248 
 
 240371 
 
 1246 
 
 ',41118 
 
 1244 
 
 241865 
 
 1242 
 
 242610 
 
 1240 
 
 243354 
 
 1238 
 
 244097 
 
 1236 
 
 244839 
 
 12.34 
 
 245579 
 
 1232 
 
 2463 1 9 
 
 1230 
 
 768698 20 
 
 10.76793,5 19 
 767174 18 
 766414 17 
 765655 16 
 764897 15 
 764141 141 
 763386 13^ 
 762632! 12 
 761880 11 
 761128 10 
 
 9 
 
 8 
 
 7 
 
 6 
 
 5 
 
 4 
 
 3 
 o 
 
 1 
 
 
 
 10.760378 
 759630 
 7588«2 
 7.58135 
 757390 
 7566-16 
 5003 
 
 Cotaiii;. 
 
 7550 
 755161 
 754421 
 7.5.368 1 
 
 IM. 
 
 fcO Degree's. 
 

 28 
 
 (10 Degrees.) a table op logarithmic 
 
 M. 
 
 smu 
 
 D. I Cosine 
 
 D. 
 
 Taiic. 
 
 D. 
 
 Coiaiig. 
 
 
 I 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 
 ao 
 
 21 
 22 
 23 
 
 24 
 25 
 26 
 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 
 42 
 43 
 
 14 
 45 
 46 
 47 
 48 
 49 
 50 
 
 9.239670 
 2403^" 
 241 iO 
 2418x4 
 242526 
 243237 
 243947 
 244656 
 245363 
 246069 
 246775 
 
 .247478 
 248181 
 248883 
 249583 
 250282 
 250980 
 251677 
 252373 
 253067 
 2.53761 
 
 1193 
 1191 
 1189 
 1187 
 1185 
 1183 
 1181 
 1179 
 1177 
 1175 
 1173 
 
 1171" 
 
 1169 
 
 1167 
 
 1165 
 
 1163 
 
 1161 
 
 1159 
 
 1158 
 
 1150 
 
 1154 
 
 9.2544.53 
 255144 
 255834 
 256523 
 2.57211 
 257898 
 258583 
 259268 
 259951 
 260633 
 
 9.261314 
 261994 
 262673 
 263351 
 264027 
 264703 
 265377 
 266051 
 266723 
 267395 
 
 9.268065 
 268734 
 269402 
 270069 
 270735 
 271400 
 272064 
 272726 
 273388 
 274049 
 
 51 
 
 52 
 53 
 54 
 55 
 56 
 
 58 
 
 59 I 
 
 60 I 
 
 9.274708 
 275367 
 276024 
 276681 
 277337 
 277991 
 278644 
 279297 
 279948 
 280599 
 
 11.52 
 1150 
 1148 
 1146 
 1144 
 1142 
 1141 
 1139 
 1137 
 J135 
 
 1133 
 1131 
 1130 
 1128 
 1126 
 1124 
 1122 
 1120 
 1119 
 1117 
 
 1115 
 1113 
 
 nil 
 
 1110 
 1108 
 1106 
 1105 
 1103 
 1101 
 1099 
 
 .993351 
 993329 
 993307 
 99C285 
 993262 
 993i:0 
 993217 
 993195 
 993172 
 993149 
 993127 
 
 9.993104 
 993081 
 993059 
 993036 
 993013 
 992990 
 9r,'>967 
 9.f2944 
 992921 
 992898 
 
 9.992875 
 992852 
 992829 
 992806 
 992783 
 992759 
 992730 
 992713 
 992690 
 992660 
 
 9.992643 
 992619 
 992596 
 992572 
 992549 
 992525 
 992501 
 992478 
 992454 
 992430 
 
 1098 
 1096 
 1094 
 1092 
 1091 
 1089 
 1087 
 1086 
 1084 
 1082 
 
 9.992406 
 992382 
 992359 
 992335 
 992311 
 992287 
 992263 
 992239 
 992214 40 
 992190 40 
 
 37 
 37 
 37 
 37 
 37 
 37 
 38 
 38 
 38 
 38 
 38 
 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 38 
 
 38 
 38 
 39 
 39 
 39 
 39 
 39 
 39 
 39 
 39 
 
 39 
 39 
 39 
 39 
 39 
 39 
 39 
 40 
 40 
 40 
 
 40 
 40 
 40 
 40 
 40 
 40 
 40 
 '0 
 
 9.246319 
 247057 
 247794 
 248530 
 249264 
 249998 
 2.50730 
 251461 
 252191 
 252920 
 253648 
 
 9.254374 
 2.55100 
 255824 
 256.547 
 257269 
 257990 
 2.58710 
 259429 
 260146 
 260863 
 
 .261.578 
 262292 
 263005 
 263717 
 264428 
 2651.38 
 26.5847 
 5^66555 
 267261 
 267967 
 
 1230 
 1228 
 1226 
 1224 
 1222 
 1220 
 1218 
 1217 
 1215 
 1213 
 1211 
 
 9.268671 
 269375 
 270077 
 270779 
 271479 
 272178 
 272876 
 273573 
 274269 
 274964 
 
 9 
 
 ,992166 
 992142 
 992117 
 992093 
 992069 
 992044 
 992020 
 991996 
 991971 
 99194? 
 
 40 
 40 
 41 
 41 
 41 
 41 
 41 
 41 
 41 
 41 
 
 9.2756.58 
 276351 
 277043 
 277734 
 278424 
 279113 
 279801 
 280488 
 281174 
 281858 
 
 1209 
 1207 
 1205 
 1203 
 1201 
 1200 
 1198 
 1190 
 1194 
 1192 
 
 9.282542 
 283225 
 283907 
 284588 
 285268 
 285947 
 286024 
 2H?301 
 287977 
 288652 
 
 10.753681 
 752943 
 752206 
 751470 
 7.50736 
 750002 
 749270 
 748539 
 747809 
 747080 
 746352 
 
 10 
 
 1190 
 1189 
 1187 
 1185 
 1183 
 1181 
 1179 
 1178 
 1176 
 1174 
 
 1172' 
 1170 
 1169 
 1167 
 1165 
 1164 
 1162 
 1160 
 11.58 
 11.57 
 
 ,745626 
 744900 
 744176 
 743453 
 742731 
 742010 
 741290 
 740571 
 7398.54 
 739137 
 
 10 
 
 ,738422 
 737708 
 736995 
 736283 
 735572 
 734862 
 7341.53 
 733445 
 732739 
 732033 
 
 1155 
 1153 
 1151 
 1150 
 1148 
 1147 
 1145 
 1143 
 1141 
 1140 
 
 1138 
 1130 
 1135 
 1133 
 1131 
 1130 
 1128 
 il2G 
 1125 
 1123 
 
 10.731329 
 ?30625 
 729923 
 729221 
 728.521 
 727822 
 727124 
 726427 
 72573 1 
 725036 
 
 10 
 
 ,724342 
 723649 
 722957 
 7222( 6 
 721576 
 720887 
 720199 
 719512 
 718826 
 718142 
 
 10 
 
 ,7174.58 
 716775 
 716093 
 71.5412 
 714732 
 7140,53 
 713376 
 7i2x';99 
 712023 
 711348 
 
 Cosine I 
 
 Bine 
 
 Cotani;. 
 
 Tanc 
 
 i 
 
 97 Degrees 
 
 M. 
 
 ~0 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 10 
 
 U 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 
 119 
 
 120 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 
 /:j 
 
 'M 
 
 ■t ■;■ I 
 
 ■*bi 
 
 4V 
 
 48 
 
 49 
 
 50 
 
 IS 
 
 54 
 
 59 
 jOO^ 
 
 IZJI 
 
 H 
 
"^- 1 1 
 
 J681 
 
 60 
 
 IMS 
 
 59 
 
 5206 
 
 68 
 
 470 
 
 57 
 
 )736 
 
 56 
 
 )002 
 
 55 
 
 )270 
 
 54 
 
 ^539 
 
 53 
 
 ?809 
 
 52 
 
 ro80 
 
 51 
 
 3352 
 
 50 
 
 )626 
 
 49 
 
 1900 
 
 48 
 
 1176 
 
 47 
 
 3453 
 
 46 
 
 2731 
 
 4"= 
 
 2010 
 
 'i i 
 
 1290 
 
 43 
 
 0571 
 
 42 
 
 9854 
 
 41 
 
 9137 
 
 40 
 
 8422 
 
 39 
 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 W5 
 15 
 14 
 13 
 12 
 1' 
 JO 
 
 9 
 8 
 7 
 6 
 5 
 4 
 3 
 
 1 
 01 
 
 IM. 
 
 I 
 
 i 
 
 SIMES 
 
 AND TANGENTS, (ll Degrees.) 
 
 9.280599 
 281248 
 281897 
 282544 
 283190 
 283836 
 284480 
 285124 
 285766 
 286408 
 287048 
 
 9.287687 
 288326 
 288964 
 289600 
 290236 
 ?90870 
 291504 
 292137 
 292768 
 293399 
 
 1082 
 
 1081 
 
 1079 
 
 1077 
 
 1076 
 
 1074 
 
 1072 
 
 1071 
 
 1069 
 
 1067 
 
 1066 
 
 . 294029 
 294658 
 295280 
 295913 
 296539 
 297164 
 297788 
 298412 
 299034 
 299655 
 
 1064 
 
 1063 
 
 1061 
 
 1059 
 
 1058 
 
 1056 
 
 1054 
 
 1053- 
 
 1051 
 
 1050 
 
 'M 
 
 .300276 
 300895 
 301514 
 302132 
 302748 
 303364. 
 303979 
 304593 
 305207 
 305819 
 
 1018 
 1046 
 1045 
 i043 
 1042 
 1040 
 1039 
 1037 
 1036 
 1034 
 
 9.991947 
 991922 
 991897 
 991873 
 991848 
 991823 
 991799 
 991774 
 991749 
 991724 
 991699 
 
 9.991674 
 991649 
 991624 
 991599 
 991574 
 991549 
 991524 
 991498 
 991473 
 991448 
 
 1.288652 
 289326 
 289999 
 290671 
 391342 
 292013 
 292682 
 293350 
 294017 
 294684 
 295349 
 
 o')7041 
 307f:50 
 308^59 
 ■■U(88G7 
 :''^9474 
 3 1 0080 
 3106S5 
 311289 
 31 1893 
 
 9.312495 
 31^097 
 313698 
 314297 
 314897 
 3! 5'! 05! 
 316()<>'jj 
 316689 
 3 17284! 
 317879' 
 
 1032 
 1031 
 1029 
 1028 
 1026 
 1025 
 1023 
 1022 
 1020 
 lOiO 
 
 .991422 
 991397 
 991372 
 991346 
 991321 
 991295 
 991270 
 991244 
 991218 
 991193 
 
 1017 
 1016 
 1014 
 1013 
 1011 
 1010 
 1008 
 1007 
 1005 
 1004 
 
 1003 
 
 1001 
 
 1000 
 
 998 
 
 997 
 
 99n 
 
 994 
 993 
 991 
 990 
 
 .991167 
 991141 
 991115 
 991090 
 991064 
 991038 
 991012 
 990986 
 990960 
 990934 
 
 9.990908 44 
 990882! 44 
 990855! 44 
 990829; 44 
 990803 44 
 990777, 44 
 990750 44 
 990724 44 
 990697; 44 
 990671 
 
 9 
 
 44 
 
 .990644 44 
 990618 44 
 99«»59I 44 
 990565 44 
 9905-'8 44 
 
 90;..:; 1 45 
 
 .-^90485 4f 
 990458 45 
 990431 45 
 990404 45 
 
 1.296013 
 296677 
 297339 
 298001 
 298662 
 2i;9322 
 299980 
 300638 
 301295 
 301951 
 
 9.302607 
 303261 
 303914 
 304567 
 305218 
 305869 
 306519 
 307168 
 307815 
 30 8463 
 
 9.309109 
 309754 
 310398 
 811042 
 311685 
 312327 
 312967 
 313608 
 314247 
 
 __31.188oj 
 
 }.3155'?3 
 316 1. ')9! 
 3167951 
 317430 
 3180641 
 3186971 
 319329 
 3199611 
 320592; 
 _3'>!2J22! 
 
 .3i>l85I 
 
 322179 
 
 323106 
 
 323733 
 
 324358 
 
 124983 
 
 .::5607 
 
 3'362.'l 
 
 326853 
 
 •J27475i 
 
 1123 
 
 1122 
 
 1120 
 
 1118 
 
 1117 
 
 1115 
 
 1114 
 
 1112 
 
 1111 
 
 1109 
 
 1107 
 
 10.711348 
 710674 
 710001 
 7093J29 
 708658 
 707987 
 707318 
 706650 
 705983 
 705316 
 704651 
 
 1106 
 1104 
 1103 
 1101 
 1100 
 1098 
 1096 
 1095 
 1093 
 1092 
 
 1090" 
 
 1089 
 
 1087 
 
 1086 
 
 1084 
 
 1083 
 
 1081 
 
 1080 
 
 1078 
 
 1077 
 
 10.703987 
 703323 
 702661 
 701999 
 701338 
 700678 
 700020 
 699362 
 698705 
 
 60 
 
 59 
 
 58 
 
 57 
 
 56 
 
 55 
 
 54 
 
 53 
 
 52 
 
 51 
 
 50 
 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 
 1<^75 
 1074 
 1073 
 1071 
 1070 
 1068 
 1067 
 1005 
 1061 
 1062_ 
 
 1061 
 1060 
 1058 
 J 057 
 055 
 1054 
 1053 
 1051 
 1050 
 1048 
 
 1047 
 1045 
 1044 
 1043 
 
 6980491 40 
 
 39 
 
 38 
 
 37 
 
 36 
 
 35 
 
 34 
 
 33 
 
 32 
 
 31 
 
 30 
 
 10.697393 
 696739 
 696086 
 695433 
 694782 
 694 1. J 1 
 693481 
 692832 
 692185 
 691537 
 
 10.690891 29 
 
 690246 
 
 689602 
 
 688958 
 688315 
 68 : ;373! 24 
 687033 23 
 G8639?' i2 
 
 •8 
 27 
 26 
 
 2''^ 
 
 685753 
 685115 
 
 10.G8447' 
 683S41 
 68320 
 
 ;^ .•<36 
 
 681303 
 680671 
 680039 
 
 ?^7<?;'(i8 
 
 () 1^778 
 
 ,".0 
 
 1041 
 iO-iO 
 1. ^9 
 1037 
 
 10' ; 
 
 103;. 
 
 678149 
 677521 
 676894 
 676267 
 675642 
 6750171 
 6743931 
 67.1,69' 
 673147 
 67252: 
 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 
 8 
 
 7 
 
 6 
 
 5 
 
 4 
 
 3 
 
 2 
 
 1 
 
 
 
 78 t) .^'■ivfi 
 
 i:' 
 
 
 Jh. 
 
 ..''•.,^i- #■ 
 
Iff 
 
 u 
 
 t 
 
 30 "(12 Degrees.) a table of rooARiTHMic 
 
 M. 
 
 Sine 
 
 D. 
 
 Cimlne 
 
 I). 
 
 Tans. 
 
 I). 
 
 Cotaiiff- 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 !0 
 
 11 
 12 
 13 
 14 
 
 16 
 17 
 18 
 19 
 20 
 
 21 
 
 22 
 
 23 
 
 24 
 
 25 
 
 2() 
 
 27 
 
 28 
 
 29 
 
 30 
 
 31 
 32 
 33 
 31 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 
 42 
 
 43 
 
 44 
 
 45 
 
 46 
 
 47 
 
 48 
 
 49 
 
 60 
 
 51 
 
 52 
 
 53 
 
 54 
 
 55 
 
 56 
 
 u7 
 
 58 
 
 59 
 
 60 
 
 3.3178791 
 318473 
 319066 
 319658 
 320249 
 320840 
 321430 
 322019 
 322607 
 323194 
 323780 
 
 9.324366 
 324950 
 325534 
 326117 
 326700 
 327281 
 327862 
 328442 
 329021 
 329599 
 
 990 
 988 
 987 
 986 
 984 
 983 
 982 
 980 
 979 
 977 
 976 
 
 9 
 
 ,330176 
 .380753 
 331329 
 331903 
 332478 
 333051 
 333624 
 334195 
 334766 
 335337 
 
 9.335906 
 336475 
 337043 
 337610 
 338176 
 338742 
 339306 
 339871 
 340434 
 340996 
 
 9.341558 
 342119 
 342679 
 343239 
 343797 
 344355 
 344912 
 345469 
 346024 
 
 9.347134 
 347687 
 348240 
 348792 
 349343 
 349893 
 350443 
 350992 
 351540 
 352088 
 
 975 
 973 
 972 
 970 
 969 
 968 
 966 
 965 
 964 
 962 
 
 961 
 960 
 958 
 957 
 956 
 954 
 953 
 952 
 950 
 949 
 
 948 
 946 
 945 
 944 
 943 
 941 
 940 
 939 
 937 
 936 
 
 935 
 934 
 932 
 931 
 930 
 929 
 927 
 926 
 925 
 924 
 
 [). 990404] 
 990378 
 990351 1 
 990324 
 990297 
 990270 
 990243 
 990215 
 990188 
 990161 
 990134 
 
 9.990107 
 990079 
 990052 
 990025 
 
 989997 
 989870 
 989942 
 9899 1 5 
 989887 
 989860 
 
 9.989832 
 989804 
 989777 
 989749 
 989721 
 989693 
 989665 
 989637 
 989609 
 
 __989582 
 
 9.989'^ 3 
 9 
 
 989413 
 989.384 
 989356 
 989328 
 989300 
 
 922 
 921 
 920 
 919 
 917 
 916 
 916 
 914 
 913 
 911 
 
 9.327474 
 328095 
 328715 
 329334 
 329953 
 330570 
 331187 
 331803 
 332418 
 333033 
 333646 
 
 1035 
 1033 
 1032 
 1030 
 1029 
 1028 
 1026 
 1025 
 1024 
 1023 
 1021 
 
 9.334259 
 334871 
 335482 
 336093 
 336702 
 337311 
 337919 
 338527 
 339133 
 339739 
 
 97340344 
 340948 
 341552 
 342155 
 342757 
 343358 
 343958 
 344558 
 345157 
 345755 
 
 9.346363 
 346949 
 347545 
 348141 
 348735 
 349329 
 349922 
 350514 
 351106 
 351697 
 
 9.989271 47 
 989243 
 989214 
 989186 
 983157 
 989128 
 989100 
 989071 
 989042 
 989014 
 
 9.988985 
 988956 
 988927 
 
 988898 
 988869 
 9S8840; 48 
 9S8Si ii 49 
 988782' 49 
 988753 49 
 9887241 49 
 
 9.3.52287 
 352876 
 353465 
 354053 
 ? 54640 
 355227 
 i55813 
 356398 
 356982 
 357566 
 
 9.358149 
 358731 
 35931'.! 
 359893 
 360474 
 361053 
 3G1632 
 362210 
 362787 
 363364 
 
 10 
 
 1020 
 1019 
 1017 
 1016 
 1015 
 1013 
 1012 
 1011 
 1010 
 1008 
 
 1007' 
 
 1006 
 
 1004 
 
 1003 
 
 1002 
 
 1000 
 
 999 
 
 998 
 
 997 
 
 996 
 
 672526' 
 67l90i". 
 671285 
 670666 
 670047 
 669430 
 668813 
 668197 
 667582 
 666967 
 6663M 
 
 10.66.5741 
 665129 
 664518 
 663907 
 663298 
 662689 
 662081 
 661473 
 660867 
 660261 
 
 994 
 993 
 992 
 991 
 990 
 988 
 987 
 986 
 985 
 983 
 
 982 
 
 981 
 
 980 
 
 979 
 
 977 
 
 976 
 
 975 
 
 974 
 
 '.,73 
 
 971 
 
 10 
 
 ,6.59656 
 659052 
 658448 
 657845 
 65/213 
 656642 
 656042 
 655442 
 C54843 
 654245 
 
 10.653647 
 6.53051 
 6,52455 
 651859 
 651265 
 650071 
 650078 
 649480 
 648894 
 _648303 
 
 10.647713 
 647124 
 646535 
 645947 
 645360 
 644773 
 644187 
 643602 
 643018 
 642434 
 
 970 
 969 
 968 
 967 
 966 
 965 
 
 962 
 961 
 960 
 
 10 
 
 .641851 
 641269 
 640687 
 640107 
 639.526 
 638947 
 
 •63Har.R 
 637 790 
 637213 
 636636 
 
 «T l>.«ree». 
 
 M.t ! 
 
 
 
 
 
 9.: 
 
 1 
 
 
 2 
 
 
 3 
 
 
 A 
 
 
 ; ■ 
 
 9.3 
 
 52 
 
 3 
 
 53 
 
 3; 
 
 54 
 
 3! 
 
 55 
 
 3; 
 
 56 
 
 3J 
 
 57 
 
 3J 
 
 [iS 
 
 3^ 
 
 59 
 
 3.' 
 
 60 
 
 3i! 
 
SINES AND TANGENTS. (^13 Degrees.) 
 
 31 
 
 252"rv 
 190f. 
 1285 
 0606 
 0047 
 9430 
 i88l3 
 18197 
 i7582 
 16967 
 ^354 
 
 1574 1 
 
 >5129 
 
 )4518 
 
 53907 
 
 53298 
 
 32689 
 
 i208l 
 
 51473 
 
 30867 
 
 B026 1 
 
 59656 
 
 59052 
 
 58448 
 
 57845 
 
 5/243 
 
 56642 
 
 560421 
 
 i55442| 
 
 ;54843 
 
 15424 5 
 
 153647 
 
 i.53051 
 
 )i>2455 
 
 5518.59 
 
 551265 
 
 550671 
 
 550078 
 
 549-180 
 
 B48894 
 
 648303 
 
 60 
 59 
 
 58 
 57 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 
 28 
 
 27 
 
 261 
 
 251 
 
 24 
 
 23 
 
 22 
 
 21 
 
 20 
 
 (547713 
 647124 
 646535 
 645947 
 645360 
 644773 
 644187 
 643602 
 643018 
 642434 
 
 '641851] 
 641269 
 640687 
 640107 
 639.526 
 638947 
 •698368 
 63'^t790 
 637213 
 6 36636 
 
 Tuns I M. 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 
 9 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 1 
 
 
 
 M. 
 
 1 Sine 
 
 1 D. 
 
 1 Cosine 1 1). 
 
 1 'I'aiiK. 
 
 I 1^- 
 
 (!()iaii^. j 
 
 
 
 
 9.3.52(W8 
 
 911 
 
 9.988724 
 
 49 
 
 9.. 363364 
 
 960 
 
 I0.6.3663r 
 
 60 
 
 
 I 
 
 352635 
 
 910 
 
 988695 
 
 49 
 
 363940 
 
 9.59 
 
 636060 
 
 59 
 
 
 2 
 
 353181 
 
 909 
 
 988666 
 
 49 
 
 364515 
 
 958 
 
 6354815 
 
 58 
 
 
 3 
 
 3.53726 
 
 908 
 
 988630 
 
 49 
 
 365090 
 
 957 
 
 6.34910 
 
 57 
 
 
 4 
 
 ,3.54271 
 
 907 
 
 988607 
 
 49 
 
 365664 
 
 955 
 
 634336 
 
 56 
 
 
 5 
 
 3.54815 
 
 905 
 
 988578 
 
 49 
 
 366237 
 
 9.54 
 
 633763 
 
 ' 55 
 
 
 6 
 
 355358 
 
 904 
 
 988.548 
 
 49 
 
 366810 
 
 953 
 
 6.33190 
 
 54 
 
 
 7 
 
 355901 
 
 903 
 
 988519 
 
 49 
 
 367382 
 
 952 
 
 632618 
 
 53 
 
 
 8 
 
 356143 
 
 902 
 
 988489 
 
 49 
 
 367953 
 
 951 
 
 632047 
 
 52 
 
 
 9 
 
 356984 
 
 901 
 
 988460 
 
 49 
 
 368524 
 
 950 
 
 631476 
 
 5! 
 
 
 10 
 11 
 
 357524 
 9.358064 
 
 899 
 
 988430 
 
 49 
 49 
 
 369094 
 9.369663 
 
 949 
 
 630906 
 
 50 
 49 
 
 
 898 
 
 9.988401 
 
 948 
 
 10.630.337 
 
 
 12 
 
 358603 
 
 897 
 
 98B371 
 
 49 
 
 370232 
 
 946 
 
 629768 
 
 48 
 
 
 13 
 
 359141 
 
 896 
 
 988342 
 
 49 
 
 370799 
 
 945 
 
 629201 
 
 47 
 
 
 14 
 
 359678 
 
 895 
 
 988312 
 
 50 
 
 371367 
 
 944 
 
 628633 
 
 46 
 
 
 15 
 
 360215 
 
 893 
 
 988282 
 
 50 
 
 371933 
 
 943 
 
 628067 
 
 45 
 
 
 16 
 
 3607.52 
 
 892 
 
 98S252 
 
 50 
 
 372499 
 
 942 
 
 627.501 
 
 44 
 
 
 17 
 
 301287 
 
 891 
 
 988223 
 
 50 
 
 373064 
 
 941 
 
 626936 
 
 43 
 
 
 18 
 
 361822 
 
 890 
 
 988193 
 
 50 
 
 373629 
 
 940 
 
 626371 
 
 42 
 
 
 19 
 
 362356 
 
 889 
 
 988163 
 
 50 
 
 374193 
 
 939 
 
 62.5807 
 
 41 
 
 
 20 
 
 21 
 
 362S89 
 
 888 
 887 
 
 988133 
 9.988103 
 
 50 
 50' 
 
 374756 
 
 938 
 
 625244 
 
 40 
 
 r,9 
 
 
 9.363122 
 
 9.375319 
 
 937 
 
 10.624681 
 
 
 22 
 
 363954 
 
 885 
 
 988073 
 
 50 
 
 37.5881 
 
 935 
 
 624119 
 
 38 
 
 
 23 
 
 304485 
 
 884 
 
 988043 
 
 50 
 
 376442 
 
 934 
 
 623558 
 
 37 
 
 
 24 
 
 365016 
 
 883 
 
 988013 
 
 50 
 
 377003 
 
 933 
 
 622997 
 
 36 
 
 
 25 
 
 365.546 
 
 882 
 
 987983 
 
 50 
 
 377563 
 
 932 
 
 622437 
 
 35 
 
 
 26 
 
 366075 
 
 881 
 
 987953 
 
 50 
 
 378122 
 
 931 
 
 621878 
 
 34 
 
 
 27 
 
 366604 
 
 880 
 
 987922 
 
 50 
 
 378681 
 
 930 
 
 621319 
 
 33 
 
 
 28 
 
 367131 
 
 879 
 
 987892 
 
 50 
 
 379239 
 
 929 
 
 620761 
 
 32 
 
 
 29 
 
 367659 
 
 87r 
 
 987862 
 
 50 
 
 379797 
 
 928 
 
 620203 
 
 31 
 
 
 30 
 31 
 
 368185 
 9.368711 
 
 876 
 
 987832 
 9.987801 
 
 51 
 51 
 
 380354 
 
 927 
 
 619646 
 
 30 
 
 29 
 
 
 875 
 
 9.380910 
 
 926 
 
 10.619090 
 
 
 32 
 
 369236 
 
 874 
 
 987771 
 
 51 
 
 381466 
 
 925 
 
 618534 
 
 28 
 
 
 33 
 
 369761 
 
 873 
 
 987740 
 
 51 
 
 382020 
 
 924 
 
 617980 
 
 27 
 
 
 34 
 
 370285 
 
 872 
 
 987710 
 
 51 
 
 382575 
 
 923 
 
 617425 
 
 26 
 
 
 35 
 
 370808 
 
 871 
 
 987679 
 
 51 
 
 383129 
 
 i;22 
 
 616871 
 
 25 
 
 
 36 
 
 371330 
 
 870 
 
 987649 
 
 51 
 
 383682 
 
 921 
 
 616318 
 
 34 
 
 
 3/ 
 
 371852 
 
 869 
 
 987618 
 
 51 
 
 384234 
 
 920 
 
 615766 
 
 23 
 
 
 38 
 
 372373 
 
 867 
 
 987588 
 
 51 
 
 384786 
 
 919 
 
 615214 
 
 22 
 
 
 39 
 
 372894 
 
 866 
 
 987557 
 
 51 
 
 385337 
 
 918 
 
 614663 
 
 31 
 
 
 40 
 41 
 
 37.3414 
 9.373933 
 
 865 
 
 987526 
 9.987496 
 
 51 
 
 .51 
 
 38,5888 
 
 917 
 
 614112 
 
 20 
 19 
 
 
 864 
 
 9.38643S 
 
 915 
 
 10.613562 
 
 
 42 
 
 374452 
 
 863 
 
 987465 
 
 51 
 
 386987 
 
 914 
 
 613013 
 
 18 
 
 
 43 
 
 374970 
 
 862 
 
 987434 
 
 51 
 
 387.5,36 
 
 913 
 
 612464 
 
 17 
 
 
 44 
 
 375487 
 
 861 
 
 987403 
 
 52 
 
 388084 
 
 913 
 
 611916 
 
 16 
 
 
 45 
 
 376003 
 
 860 
 
 987372 
 
 52 
 
 388631 
 
 911 
 
 611369 
 
 15 
 
 46 
 
 376519 
 
 859 
 
 987341 
 
 52 
 
 389178 
 
 910 
 
 610822 
 
 14 
 
 47 
 
 377035 
 
 8.58 
 
 997310 
 
 52 
 
 389724 
 
 909 
 
 610276 
 
 13 
 
 !^ 
 
 377549 
 
 857 
 
 987279 
 
 52 
 
 390270 
 
 908 
 
 609730 
 
 12 
 
 49 
 
 378063 
 
 856 
 
 987248 
 
 52 
 
 .390815 
 
 907 
 
 609185 
 
 11 
 
 
 .h!.. . 
 
 378577 
 9.379089 
 
 854 
 
 9S7217 
 9.987186 
 
 52 
 52 
 
 391360 
 
 906 
 
 608640 
 
 10 
 9 
 
 
 853 
 
 9.391903 
 
 905 
 
 10.608097 
 
 
 i)2 
 
 379601 
 
 8.52 
 
 9871.55 
 
 52 
 
 392447 
 
 904 
 
 607553 
 
 8 
 
 
 i)3 
 
 380113 
 
 851 
 
 987124 
 
 52 
 
 392989 
 
 903 
 
 607011 
 
 7 
 
 
 54 
 
 380624 
 
 850 
 
 987092 
 
 52 
 
 393531 
 
 902 
 
 606469 
 
 6 
 
 
 55 
 
 381134 
 
 849 
 
 987061 
 
 52 
 
 394073 
 
 901 
 
 605927 
 
 5 
 
 56 
 
 57 
 
 381613 
 
 848 
 
 987030 
 
 52 
 
 394614 
 
 900 
 
 605386 
 
 4 
 
 382152 
 
 847 
 
 986998 
 
 52 
 
 395154 
 
 899 
 
 604 S4 6 
 
 3 
 
 58 
 
 3S2661 
 
 846 
 
 986967 
 
 52 
 
 395694 
 
 898 
 
 604306 
 
 2 
 
 59 
 
 383 1 68 
 
 845 
 
 986936 
 
 52 
 
 396233 
 
 897 
 
 603767| 1 1 
 
 
 bO 1 
 
 3S367;')| 
 
 844 
 
 986904 
 
 52 
 
 396771 
 
 896 
 
 603,:2;>' 
 
 
 
 .?; 
 
 ■!■ -It 
 
 .1. 
 
 CiwitiH 
 
 hiiip 
 
 Cotiiiu;. 
 
 I am'. 
 
 M. 
 
 70 Dt'greea. 
 
Ill 
 
 1 
 
 ■ I 
 
 i 
 
 32 (14 Degrees.) a table of logarf' '"ic 
 
 M.| 
 
 SiriR I 
 
 I). 1 
 
 () 
 
 9.383075 
 
 844 
 
 1 
 
 384182 
 
 843 
 
 2 
 
 384687 
 
 842 
 
 3 
 
 385192 
 
 841 
 
 4 
 
 385697 
 
 840 
 
 fi 
 
 386201 
 
 «»39 
 
 6 
 
 396704 
 
 838 
 
 7 
 
 387207 
 
 837 
 
 8 
 
 387709 
 
 836 
 
 » 
 
 388210 
 
 835 
 
 10 
 
 388711 
 
 834 
 
 Cosine 
 
 D. 
 
 Tang. 
 
 I). 
 
 Cotung. 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 
 2a 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 
 9.389211 
 389711 
 390210 
 390708 
 391206 
 391703 
 392199 
 392695 
 393191 
 393685 
 
 9 
 
 833 
 832 
 831 
 830 
 
 828 
 827 
 826 
 825 
 824 
 823 
 
 y.9H6904 
 986873 
 986841 
 986809 
 986778 
 986746 
 986714 
 986683 
 986651 
 986619 
 986587 
 
 .394179 
 894673 
 395166 
 395658 
 396150 
 396641 
 397132 
 397621 
 398111 
 _398600 
 
 '.399088 
 399 )75 
 400062 
 400549 
 401035 
 401520 
 402005 
 402489 
 402972 
 403455 
 
 822 
 821 
 820 
 819 
 818 
 817 
 817 
 816 
 815 
 814 
 
 813 
 812 
 811 
 810 
 809 
 808 
 807 
 806 
 805 
 804 
 
 9.403938 
 404420 
 404901 
 405382 
 405862 
 406341 
 406S20 
 407299 
 407777 
 408254 
 
 iT 40,^7311 
 409i.H)7i 
 409682' 
 4101571 
 410632 
 4! 1106 
 411579, 
 4120521 
 4125241 
 412996' 
 
 52 
 53 
 53 
 53 
 63 
 53 
 53 
 53 
 53 
 53 
 ^ 63 
 
 9.9865551 53 
 
 986.5231 53 
 
 986491,53 
 
 9864591 53 
 
 986427 
 
 986395 
 
 986363 
 
 986331 
 
 986299 
 
 986266 
 
 .396771 
 397309 
 397846 
 398383 
 398919 
 399455 
 399990 
 400.524 
 401058 
 401591 
 402124 
 
 803 
 802 
 801 
 800 
 799 
 798 
 797 
 796 
 795 
 794 
 
 794 
 793 
 792 
 791 
 790 
 7S9 
 V88 
 787 
 786 
 785 
 
 53 
 53 
 
 54 
 54 
 54 
 54 
 
 97986231 54 
 986202 .54 
 986169 
 986137 
 986104 
 986072 
 9S6039 
 986007 
 985974 
 985942 
 
 9.402656 
 403187 
 403718 
 404249 
 404778 
 405308 
 405836 
 406364 
 406892 
 407419 
 
 .985909 
 985876 
 985843 
 98.5811 
 985778 
 985745 
 985712 
 98567S 
 985646 
 98.5613 
 
 54 
 54 
 54 
 54 
 54 
 54 
 54 
 54 
 
 55 
 55 
 55 
 55 
 55 
 55 
 55 
 55 
 55 
 55 
 
 .407945 
 408471 
 408997 
 409.V21 
 410045 
 410.569 
 411092 
 411615 
 412137 
 412658 
 
 9.985.580 
 985547 
 985514 
 985480 
 985447 
 985414 
 9H5380 
 985347 
 985314 
 985280 
 
 9 . 985247 
 98.5213 
 985180 
 985146 
 985113 
 985079 
 985045 
 98.5011 
 984978 
 984944 
 
 9.413179 
 413699 
 414219 
 414738 
 41.5257 
 415775 
 416293 
 416810 
 41V326 
 417842 
 
 55 
 55 
 55 
 55 
 56 
 56 
 56 
 56 
 5_6 
 
 56 
 56 
 56 
 56 
 56 
 56 
 56 
 56 
 56 
 56 
 
 9 
 
 896 
 896 
 895 
 894 
 893 
 892 
 891 
 890 
 889 
 888 
 887 
 
 .418358 
 418873 
 419387 
 419901 
 420415 
 420927 
 421440 
 4219.52 
 422463 
 422974 
 
 .423484 
 423993 
 424503 
 49.5011 
 425519 
 426027 
 426531 
 427041 
 427547 
 
 42805 
 
 886 
 885 
 884 
 883 
 882 
 881 
 880 
 879 
 878 
 877 
 
 876 
 875 
 874 
 874 
 873 
 672 
 871 
 870 
 869 
 868 
 
 867 
 866 
 865 
 864 
 864 
 863 
 862 
 861 
 860 
 859 
 
 8.58 
 8.57 
 858 
 855 
 8.55 
 854 
 8.53 
 8.52 
 851 
 850 
 
 lU. 603229 
 602691 
 6021.54 
 601617 
 601081 
 600545 
 600010 
 599476 
 598942 
 598409 
 
 697876 
 
 10.597344 
 696813 
 696282 
 595751 
 695222 
 694692 
 594164 
 593636 
 593108 
 592.581 
 
 60 
 59 
 58 
 67 
 56 
 65 
 64 
 53 
 52 
 51 
 60 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 10.. 592055 
 591,529 
 691003 
 690479 
 689955 
 589431 
 .588908 
 688385 
 587863 
 587342 
 
 10.586821 
 586301 
 58578 1 
 685262 
 584743 
 584225 
 583707 
 583190 
 682674 
 .582158 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 10 
 
 849 
 848 
 848 
 847 
 846 
 845 
 844 
 843 
 843 
 
 842 
 
 ,.581642 
 .581127 
 580613 
 680099 
 679585 
 579073 
 578560 
 578048 
 577537 
 577026 
 
 10 
 
 ,576516 
 676007 
 575-^97 
 .574989 
 674481 
 573973 
 5734f)0 
 672959 
 {;72453 
 571948 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 
 8 
 7 
 6 
 5 
 
 75 Degrees. 
 
 M,l t 
 
 
 
 9.4 
 
 1 
 
 4 
 
 2 
 
 4 
 
 3 
 
 4 
 
 4 
 4 
 
ii*^9 
 G91 
 154 
 617 
 081 
 545 
 010 
 476 
 942 
 409 
 '876 
 
 344 
 
 1813 
 1282 
 )751 
 )222 
 1692 
 U64 
 3636 
 J108 
 2581 
 
 60 
 59 
 58 
 67 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 2055 
 1529 
 1003 
 0479 
 9955 
 9431 
 8908 
 8385 
 7863 
 7342 
 
 6821 
 
 6301 
 
 1578 1 
 
 15262 
 
 !4743 
 
 !4225 
 
 13707 
 
 53190 
 
 J2674 
 
 J2158 
 
 ^642 
 31127 
 30613 
 30099 
 79585 
 79073 
 78560 
 78048 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 
 77537 
 
 11 
 
 77026 
 
 10 
 9 
 
 76516 
 
 76007 
 
 8 
 
 75197 
 
 7 
 
 74989 
 
 6 
 
 74481 
 
 5 
 
 73973 
 
 4 
 
 734611 
 
 a 
 
 .72959 
 
 2 
 
 ,72453 
 
 1 
 
 .71948 
 
 
 
 ang 
 
 EJ 
 
 SINES AND TA1SGENTS. (15 Dcgrees.) 
 
 MUJ aiiie I D. I Coaine | D. | Tang. 
 
 33 
 
 D. 
 
 C(.taiie. 
 
 
 1 
 2 
 3 
 4 
 6 
 6 
 7 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 
 44 
 45 
 46 
 47 
 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 5V 
 
 58 
 59 
 60 
 
 9.412996 
 413467 
 413938 
 414408 
 414878 
 415347 
 415815 
 416283 
 416751 
 417217 
 417684 
 
 9.418150 
 418615 
 419079 
 419544 
 420007 
 420470 
 420933 
 421395 
 4218.57 
 422318 
 
 9 422778 
 423238 
 423697 
 424156 
 424615 
 425073 
 425530 
 425987 
 426443 
 426899 
 
 9.427,354 
 427809 
 428263 
 428717 
 429170 
 429623 
 430075 
 430527 
 430978 
 431429 
 
 9.431879 
 432329 
 432778 
 433226 
 433675 
 434122 
 434569 
 43.5016 
 435462 
 
 785 
 784 
 783 
 783 
 782 
 781 
 780 
 779 
 778 
 777 
 770 
 
 775 
 774 
 773 
 773 
 772 
 771 
 770 
 769 
 768 
 767 
 
 9.984944)67 
 
 984910 
 984876 
 984842 
 984808 
 984774 
 984740 
 984706 
 984672 
 984637 
 984603 
 
 .984569 
 984535 
 984.500 
 98446s< 
 984432 
 984397 
 984363 
 984328 
 984294 
 984269 
 
 767 
 766 
 765 
 764 
 763 
 762 
 761 
 760 
 760 
 759 
 
 758 
 757 
 756 
 755 
 754 
 753 
 752 
 752 
 751 
 750 
 
 9.984224 
 984190 
 9841.55 
 984120 
 984085 
 984050 
 984015 
 983981 
 983946 
 983911 
 
 435908 
 
 742 
 
 9.436.3.')3 
 
 741 
 
 436798 
 
 740 
 
 437242 
 
 740 
 
 437686 
 
 739 
 
 438129 
 
 738 
 
 438572 
 
 737 
 
 /iQQm.i 
 
 •yon 
 
 439456 
 
 736 
 
 439897 
 
 735 
 
 440338 
 
 734 1 
 
 749 
 749 
 
 748 
 747 
 746 
 745 
 744 
 744 
 743 
 
 9.983875 
 983840 
 983805 
 983770 
 9837351 59 
 
 67 
 57 
 57 
 67 
 57 
 57 
 67 
 67 
 57 
 ^ 
 
 67 
 57 
 57 
 57 
 
 58 
 58 
 58 
 58 
 58 
 58 
 
 58 
 58 
 58 
 58 
 58 
 58 
 58 
 68 
 58 
 58 
 
 58 
 59 
 59 
 69 
 
 983700 
 983664 
 983629 
 983594 
 983558 
 
 9.983.523 
 9834S7 
 983452 
 98.3416 
 98.3381 
 983345 
 983309 
 983273 60 
 
 59 
 59 
 59 
 69 
 59 
 
 59 
 59 
 59 
 59 
 69 
 59 
 59 
 
 9.4280.52 
 428557 
 429062 
 429666 
 430070 
 430573 
 431075 
 431577 
 432079 
 432.580 
 4.33080 
 
 9.433580 
 434080 
 4,34579 
 435078 
 435676 
 436073 
 436570 
 437067 
 437663 
 43 8059 
 
 9.438.5.54 
 439048 
 439543 
 440036 
 440529 
 441022 
 441514 
 442006 
 442497 
 442988 
 
 9.443479 
 443968 
 444458 
 444947 
 445435 
 445923 
 446411 
 446898 
 447384 
 447870 
 
 983238 
 983202 
 
 60 
 60 
 
 9.983166 60 
 983130] 60 
 983094 
 983058 
 983022 
 982986 
 
 60 
 60 
 60 
 60 
 
 9.448366 
 
 448841 
 449326 
 449810 
 450294 
 450777 
 451260 
 451743 
 452225 
 452706 
 
 982914 
 982878 
 982842 
 
 60 
 60 
 60 
 
 9.453187 
 453668 
 4.54148 
 4i34628 
 4.55107 
 4.55586 
 
 456542 
 4.57019 
 457496 
 
 I C(wine | 
 
 Sine 
 
 842 
 841 
 840 
 839 
 838 
 838 
 837 
 836 
 835 
 834 
 883 
 
 832 
 832 
 831 
 830 
 
 829 
 828 
 828 
 827 
 826 
 825 
 
 824 
 823 
 823 
 822 
 821 
 820 
 819 
 819 
 818 
 817 
 
 816 
 816 
 815 
 814 
 813 
 812 
 812 
 811 
 810 
 809 
 
 809 
 808 
 807 
 806 
 806 
 805 
 804 
 803 
 802 
 802 
 
 801 
 800 
 799 
 799 
 798 
 797 
 795 
 796 
 795 
 794 
 
 10.571948 
 671443 
 570938 
 570434 
 669930 
 669427 
 668925 
 568423 
 567921 
 567420 
 56G920 
 
 10.666420 
 665920 
 56.5421 
 564922 
 564424 
 563927 
 563430 
 562933 
 562437 
 561941 
 
 10.561446 
 660962 
 560457 
 559964 
 659471 
 558978 
 558486 
 557994 
 557503 
 567012 
 
 10.6.56521 
 556032 
 655542 
 555053 
 554565 
 654077 
 553589 
 553102 
 552616 
 552130 
 
 10.551644 
 551159 
 560674 
 650190 
 549706 
 549323 
 548740 
 548257 
 547775 
 
 647294 
 
 iO.. 5468 13 
 546332 
 545852 
 545372 
 544893 
 514414 
 643930 
 54.3458 
 542981 
 542504 i 
 
 Tail?. 
 
 60 
 
 59 
 
 58 
 
 57 
 
 56 
 
 55 
 
 54 
 
 53 
 
 52 
 
 51 
 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 1 
 
 
 M. 
 
 I 
 
 li Degrees. 
 
MV 
 
 '1 4f 
 
 34 
 
 (16 Degrees.) a tatile op logarithmic 
 
 M. 
 
 Sine 
 
 I). 
 
 Cosine 
 
 D- 
 
 TnuR. I D. I Cot:ii!(j ( 
 
 
 1 
 2 
 3 
 
 4 
 6 
 6 
 7 
 8 
 9 
 10 
 
 II 
 
 ly 
 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 
 9.440338 
 440778 
 441218 
 441658 
 442096 
 442535 
 442973 
 443410 
 443847 
 444284 
 444720 
 
 9.445155 
 445590 
 446025 
 446459 
 446893 
 447326 
 447759 
 448191 
 448623 
 44 9054 
 
 9.449485 
 449915 
 450345 
 450775 
 451204 
 451632 
 452060 
 452488 
 452915 
 453342 
 
 .453768 
 454194 
 454619 
 455044 
 455469 
 455893 
 456316 
 456739 
 457162 
 457584 
 
 .458006 
 458427 
 45S848 
 459268 
 459688 
 460108 
 460527 
 460940 
 461364 
 461782 
 
 .462199 
 462616 
 463032 
 463448 
 463864 
 464279 
 4fi4r)04 
 
 465108 
 465522 
 465935 
 
 734 
 733 
 732 
 
 731 
 731 
 730 
 
 729 
 728 
 727 
 727 
 726 
 
 725 
 
 724 
 723 
 723 
 722 
 721 
 720 
 720 
 719 
 718 
 
 717 
 716 
 716 
 715 
 714 
 713 
 713 
 712 
 711 
 710 
 
 710 
 709 
 708 
 707 
 707 
 706 
 705 
 704 
 704 
 703 
 
 702 
 701 
 701 
 700 
 699 
 698 
 698 
 697 
 696 
 695 
 
 .982842 
 982805 
 982769 
 982733 
 982696 
 982660 
 982624 
 982587 
 982551 
 982514 
 982477 
 
 9.982441 
 982404 
 982367 
 982331 
 982294 
 982257 
 982220 
 982183 
 982146 
 982109 
 
 9.982072 
 982035 
 981998 
 981961 
 981924 
 981886 
 981849 
 981812 
 981774 
 981737 
 
 9.981699 6 
 
 60 
 60 
 61 
 61 
 61 
 61 
 61 
 61 
 61 
 61 
 61 
 
 61 
 61 
 61 
 61 
 61 
 61 
 62 
 62 
 62 
 62 
 
 62 
 62 
 62 
 62 
 62 
 62 
 62 
 62 
 02 
 62 
 
 981662 
 981625 
 981587 
 981549 
 981512 
 981474 
 981436 
 981399 
 981361 
 
 .981323 
 981285 
 981247 
 98 J 209 
 981171 
 981133 
 981095 
 981057 
 981019 
 980981 
 
 695 
 
 9.980942 
 
 694 
 
 980904 
 
 693 
 
 980866 
 
 693 
 
 980827 
 
 692 
 
 980789 
 
 691 
 
 980750 
 
 690 
 
 980712 
 
 690 
 
 980673 
 
 689 
 
 980635 
 
 688 
 
 980596 
 
 63 
 63 
 63 
 03 
 63 
 63 
 6o 
 63 
 63 
 
 63 
 63 
 63 
 63 
 63 
 64 
 64 
 64 
 64 
 64 
 
 64 
 64 
 04 
 64 
 64 
 64 
 64 
 64 
 64 
 
 9.457496 
 457973 
 458449 
 458925 
 459400 
 459875 
 460349 
 460823 
 461297 
 461770 
 462242 
 
 .462714 
 463180 
 463658 
 464129 
 464599 
 465069 
 465539 
 466008 
 466476 
 466945 
 
 .467413 
 467880 
 468347 
 468814 
 469280 
 469746 
 470211 
 470676 
 471141 
 471005 
 
 794 
 793 
 793 
 792 
 791 
 790 
 790 
 789 
 788 
 788 
 
 131. 
 
 786 
 
 785 
 
 785 
 
 784 
 
 783 
 
 783 
 
 782 
 
 781 
 
 7S0 
 
 780 
 
 9.472068 
 472532 
 472995 
 473457 
 47,3919 
 474381 
 474842 
 475303 
 475763 
 476223 
 
 9.476683 
 477142 
 477601 
 478059 
 
 779 
 778 
 778 
 777 
 776 
 775 
 775 
 774 
 773 
 7T3 
 
 772 
 771 
 771 
 770 
 769 
 769 
 768 
 767 
 767 
 766 
 
 765 
 765 
 
 764 
 763 
 
 478517 
 
 763 
 
 478975 
 
 762 
 
 479432 
 
 761 
 
 479889 
 
 761 
 
 480345 
 
 760 
 
 480801 
 
 759 
 
 9.481257 
 
 759 
 
 481712 
 
 758 
 
 482167 
 
 757 
 
 482621 
 
 757 
 
 483075 
 
 756 
 
 483529 
 
 755 
 
 483982 
 
 755 
 
 484435 
 
 754 
 
 484887 
 
 753 
 
 485339 
 
 753 
 
 10.642504 
 542027 
 541.551 
 541075 
 540600 
 540125 
 639651 
 539177 
 538703 
 538230 
 
 6 37758 
 
 10.537286 
 530814 
 536342 
 .53.5871 
 63.5401 
 .534931 
 534461 
 633992 
 533524 
 
 5330.55 
 
 10.532587 
 532120 
 .531653 
 531186 
 530720 
 530254 
 629789 
 529324 
 528859 
 
 528395 
 
 10.527932 
 527468 
 527005 
 526543 
 526081 
 525619 
 625158 
 624697 
 524237 
 623 777 
 
 10.. 5233 17 
 522858 
 522399 
 521941 
 621483 
 521025 
 520568 
 520111 
 519655 
 51919 9 
 
 "518743 
 518288 
 617833 
 617379 
 516925 
 516471 
 616018 
 515565 
 515113 
 5M66I 
 
 10. 
 
 
 60 
 59 
 58 
 57 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 
 38 
 
 37 
 
 36 I 
 
 351 
 
 b^ 
 
 33 
 
 32 
 
 31 
 
 30 
 
 29 
 '^8 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 
 I (Jo.~iue I 
 
 Sine 
 
 Cotang. 
 
 Tang. 
 
 M. 
 
 73 Degrees. 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 
 55 
 
 4«/ 
 
 488 
 
 56 
 
 488 
 
 5''' 
 
 A DO 
 
 
 •iOO 
 
 .')8 
 
 489' 
 
 59 
 
 489. 
 
 60 
 
 489! 
 
 1 
 
 Cusin( 
 
 K« 
 
(iO 
 59 
 58 
 57 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 
 38 
 
 37 
 
 36 I 
 
 351 
 
 i>4 
 
 33 
 
 32 
 
 31 
 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 
 
 0111 
 
 i2 
 
 9655 
 
 11 
 
 9199 
 
 10 
 
 8743 
 
 9 
 
 8288 
 
 8 
 
 7833 
 
 7 
 
 7379 
 
 6 
 
 6925 
 
 5 
 
 L6471 
 
 4 
 
 6018 
 
 3 
 
 5565 
 
 2 
 
 15113 
 
 1 
 
 MfiBI 
 
 
 
 ang. 
 
 M. 
 
 SINES 7iND TANGfeNTs. (l7 Dcgrees.) 
 
 35 
 
 M. 
 
 >r<iiio 
 
 I) 
 
 Cosine 
 
 I). 
 
 
 
 1 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 3f 
 32 
 33 
 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 TaiiR. 
 
 D. 
 
 .465935 
 466348 
 466761 
 467173 
 467585 
 467996 
 468407 
 468817 
 469227 
 469637 
 4700.16 
 
 9.470455 
 470863 
 471271 
 471679 
 472086 
 472492 
 472898 
 473304 
 473710 
 474115 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 5? 
 58 
 59 
 60 
 
 9.474519 
 474923 
 475327 
 475730 
 476133 
 476536 
 476938 
 477340 
 477741 
 47814 2 
 
 9.478542 
 478942 
 479342 
 479741 
 480140 
 480539 
 480937 
 481334 
 481731 
 482128 
 
 9.482525 
 482921 
 48.3316 
 483712 
 
 484107 
 484501 
 484895 
 485289 
 485682 
 486075 
 
 9.486467 
 486860 
 487251 
 487643 
 
 488034 
 488424 
 
 A OODl \ 
 
 -tooo I 'J 
 
 489204 
 489593 
 489982 
 
 Cosine 
 
 688 
 688 
 087 
 686 
 685 
 685 
 684 
 683 
 683 
 682 
 _68Jl_ 
 
 68"0 
 680 
 679 
 678 
 678 
 677 
 676 
 676 
 675 
 674 
 
 674 
 673 
 672 
 672 
 671 
 670 
 669 
 669 
 668 
 667 
 
 667 
 
 666 
 
 665 
 
 665 
 
 664 
 
 663 
 
 663 
 
 662 
 
 661 
 
 661 
 
 600 
 659 
 659 
 658 
 657 
 657 
 656 
 665 
 655 
 654 
 
 ) . 980596 
 980558 
 980519 
 980480 
 980442 
 980'J03 
 980364 
 980325 
 980286 
 980247 
 980208 
 
 T 980 1 69 
 980130 
 980091 
 9800.52 
 980012 
 979973 
 979934 
 979895 
 979855 
 979816 
 
 Cotang. 
 
 9.979776 
 979737 
 979697 
 979658 
 979618 
 979579 
 979539 
 979499 
 979459 
 979420 
 
 64 
 
 64 
 
 65 
 
 65 
 
 65 
 
 65 
 
 65 
 
 65 
 
 65 
 
 6.'^ 
 
 65 
 
 65 
 65 
 65 
 65 
 65 
 65 
 66 
 66 
 66 
 66 
 
 .485339 
 485791 
 486242 
 486693 
 487143 
 487593 
 488043 
 488492 
 488941 
 489390 
 489838 
 
 755 
 752 
 761 
 751 
 750 
 749 
 740 
 748 
 747 
 747 
 746 
 
 9.979.380 
 979340 
 979300 
 979260 
 979220 
 979180 
 979140 
 979100 
 979059 
 979019 
 
 9.978979 
 978939 
 978898 
 978858 
 978817 
 978777 
 978736 
 978696 
 978655 
 978615 
 
 653 
 653 
 652 
 651 
 651 
 650 
 
 649 
 
 /.Jr. 
 
 648 
 
 9.978.574 68 
 
 97853 
 
 978493 
 
 978452 
 
 978411 
 
 978370 
 
 97S329 
 
 978288 
 
 978247 
 
 978206 
 
 66 
 66 
 66 
 66 
 66 
 66 
 66 
 66 
 66 
 66 
 
 06 
 66 
 67 
 67 
 67 
 67 
 67 
 67 
 67 
 67 
 
 67 
 67 
 67 
 67 
 67 
 67 
 67 
 68 
 68 
 68 
 
 9.490286 
 490733 
 491180 
 491627 
 492073 
 492519 
 492965 
 493410 
 4938.54 
 494299 
 
 9.494743 
 495186 
 495030 
 496073 
 496515 
 496957 
 497399 
 497841 
 498282 
 498722 
 
 746 
 745 
 744 
 744 
 743 
 743 
 742 
 741 
 740 
 740 
 
 9.499163 
 499603 
 500042 
 500481 
 500920 
 601359 
 601797 
 502235 
 602672 
 603109 
 
 68 
 68 
 68 
 68 
 68 
 08 
 68 
 68 
 68 
 
 Sine 
 
 ■^ 
 
 9.503546 
 503982 
 504418 
 504854 
 605289 
 505724 
 506169 
 506593 
 507027 
 507460 
 
 3.607893 
 508326 
 608759 
 509191 
 609622 
 610054 
 510485 
 610916 
 611346 
 51177 6 
 
 Cotaiig. 
 
 740 
 739 
 738 
 737 
 737 
 736 
 736 
 735 
 734 
 j;34 
 
 733~ 
 
 733 
 
 732 
 
 731 
 
 731 
 
 730 
 
 730 
 
 729 
 
 728 
 
 728 
 
 727 
 727 
 726 
 725 
 725 
 724 
 724 
 723 
 722 
 722 
 
 721 
 721 
 720 
 719 
 719 
 718 
 718 
 717 
 716 
 716 
 
 10.514661 60 
 
 514209 S9 
 
 6137.58 68 
 513.307 67 
 612857 56 
 512407 65 
 611957 64 
 611508 .53 
 
 6110.59 62 
 610610 61 
 610162 50 
 
 10 .509714 49 
 
 509267 48 
 
 608820 47 
 
 608373 46 
 
 607927 45 
 
 507481 44 
 
 607035 43 
 
 5065S0 42 
 
 506146 41 
 
 505701 40 
 
 10.505257 39 
 
 604814 38 
 
 504370 37 
 
 503927 36 
 
 603485 36 
 
 603043 34 
 
 502601 33 
 
 502159 32 
 
 601718 31 
 
 501278 30 
 
 10.500837 29 
 600397 28 
 499958 27 
 499519 26 
 499080 25 
 498641 24 
 498203 2^3 
 497765 22 
 497328 I 21 
 496891 I 20 
 
 10.496454 19 
 
 496018 
 495582 
 495146 
 494711 
 494276 
 493841 
 493407 
 492973 
 492640 
 
 10.492107 
 491674 
 491241 
 490809 
 490378 
 489946 
 489515 
 489084 
 488654 
 488224 
 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 
 8 
 
 7 
 
 6 
 
 g 
 
 4 
 
 8 
 
 2 
 
 1 
 
 
 
 'i'ang. { M. 
 
ir" 
 
 lit 
 
 fl^f 
 
 se 
 
 (18 Degrees.) a 
 
 TABLfl or LOOAKmtMIC 
 
 
 M.| 
 
 Sine 1 
 
 I). i 
 
 Cosine 1). 
 
 'I'miR. 1 
 
 D. 
 
 Ciitiine. 1 
 
 
 
 9.489982 
 
 648 
 
 9.978206 
 
 68 
 
 9.511776 
 
 716 
 
 10.488224 
 
 60 
 
 1 
 
 490371 
 
 648 
 
 978165 
 
 68 
 
 512206 
 
 716 
 
 487794 
 
 59 
 
 2 
 
 490759 
 
 647 
 
 978124 
 
 68 
 
 512635 
 
 715 
 
 487365 
 
 58 
 
 l) 
 
 491147 
 
 646 
 
 978083 
 
 69 
 
 513064 
 
 714 
 
 486936 
 
 57 
 
 4 
 
 491535 
 
 646 
 
 978 ' J 
 
 69 
 
 613493 
 
 714 
 
 486507 
 
 56 
 
 5 
 
 491922 
 
 645 
 
 978t' 
 
 69 
 
 513921 
 
 713 
 
 486079 
 
 55 
 
 6 
 
 492308 
 
 644 
 
 97795.) 
 
 69 
 
 514349 
 
 713 
 
 485651 
 
 54 
 
 7 
 
 492695 
 
 644 
 
 977918 
 
 61) 
 
 514777 
 
 712 
 
 485223 
 
 53 
 
 8 
 
 493081 
 
 643 
 
 977877 
 
 69 
 
 515204 
 
 713 
 
 484796 
 
 52 
 
 9 
 
 493466 
 
 642 
 
 977835 
 
 69 
 
 515631 
 
 711 
 
 484369 
 
 51 
 
 10 
 11 
 
 493851 
 
 642 
 
 977794 
 
 69 
 69 
 
 616057 
 9.616484 
 
 710 
 
 483943 
 10.483516 
 
 50 
 49 
 
 9.494236 
 
 641 
 
 9.977752 
 
 710 
 
 12 
 
 494621 
 
 641 
 
 977711 
 
 69 
 
 516910 
 
 709 
 
 483090 
 
 48 
 
 13 
 
 496005 
 
 640 
 
 977669 
 
 69 
 
 517335 
 
 709 
 
 4826()5 
 
 47 
 
 14 
 
 495388 
 
 639 
 
 977628 
 
 69 
 
 517761 
 
 708 
 
 4822;i9 
 
 46 
 
 15 
 
 495772 
 
 f.39 
 
 977.586 
 
 69 
 
 518185 
 
 708 
 
 481815 
 
 45 
 
 Ifi 
 
 496154 
 
 638 
 
 977544 
 
 70 
 
 ^18610 
 
 707 
 
 481390 
 
 44 
 
 17 
 
 496537 
 
 637 
 
 977503 
 
 70 
 
 /) 19034 
 
 706 
 
 480966 
 
 43 
 
 IR 
 
 496919 
 
 637 
 
 977461 
 
 70 
 
 519458 
 
 706 
 
 480542 
 
 42 
 
 19 
 
 497301 
 
 636 
 
 977419 
 
 70 
 
 619882 
 
 705 
 
 480118 
 
 41 
 
 20 
 21 
 
 497682 
 
 636 
 
 977377 
 
 70 
 70 
 
 520305 
 
 705 
 
 479695 
 10.479272 
 
 40 
 39 
 
 9.498064 
 
 635 
 
 9.977335 
 
 9.520728 
 
 704 
 
 22 
 
 498444 
 
 634 
 
 977293 
 
 70 
 
 521151 
 
 703 
 
 478849 
 
 38 
 
 23 
 
 498825 
 
 634 
 
 977251 
 
 70 
 
 521573 
 
 703 
 
 478427 
 
 37 
 
 24 
 
 499204 
 
 633 
 
 977209 
 
 70 
 
 521995 
 
 703 
 
 478005 
 
 36 
 
 25 
 
 499584 
 
 632 
 
 977167 
 
 70 
 
 522417 
 
 702 
 
 477583 
 
 35 
 
 26 
 
 499963 
 
 632 
 
 977125 
 
 70 
 
 522838 
 
 702 
 
 477162 
 
 34 
 
 27 
 
 600342 
 
 631 
 
 977083 
 
 70 
 
 623259 
 
 701 
 
 476741 
 
 33 
 
 28 
 
 500721 
 
 631 
 
 977041 
 
 70 
 
 523680 
 
 701 
 
 476320 
 
 32 
 
 29 
 
 501099 
 
 630 
 
 976999 
 
 70 
 
 524100 
 
 700 
 
 475900 
 
 31 
 
 30 
 31 
 
 501476 
 
 629 
 
 976957 
 
 70 
 70 
 
 524520 
 
 699 
 
 47.5480 
 10.47.5061 
 
 30 
 29 
 
 9.501854 
 
 629 
 
 9.976914 
 
 9.524939 
 
 699 
 
 32 
 
 502231 
 
 628 
 
 976872 
 
 71 
 
 525359 
 
 698 
 
 474641 
 
 28 
 
 33 
 
 502607 
 
 628 
 
 976830 
 
 71 
 
 625778 
 
 698 
 
 474222 
 
 27 
 
 34 
 
 602984 
 
 627 
 
 976787 
 
 71 
 
 526197 
 
 697 
 
 473803 
 
 26 
 
 35 
 
 503360 
 
 026 
 
 976745 
 
 71 
 
 526615 
 
 697 
 
 473385 
 
 25 
 
 30 
 
 5(K1735 
 
 626 
 
 976702 
 
 71 
 
 527033 
 
 696 
 
 472967 
 
 24 
 
 37 
 
 504110 
 
 625 
 
 976660 
 
 71 
 
 527451 
 
 696 
 
 472549 
 
 23 
 
 38 
 
 504485 
 
 625 
 
 976617 
 
 71 
 
 527868 
 
 695 
 
 472132 
 
 22 
 
 39 
 
 504860 
 
 624 
 
 976574 
 
 71 
 
 528285 
 
 695 
 
 471715 
 
 21 
 
 40 
 41 
 
 505234 
 
 623 
 
 976532 
 
 71 
 71 
 
 528702 
 
 694 
 
 471298 
 0.470881 
 
 20 
 19 
 
 9.505608 
 
 623 
 
 9.976489 
 
 9.529119 
 
 693 
 
 42 
 
 505981 
 
 622 
 
 976446 
 
 71 
 
 529535 
 
 693 
 
 470465 
 
 18 
 
 43 
 
 506354 
 
 622 
 
 976404 
 
 71 
 
 529950 
 
 693 
 
 470050 
 
 17 
 
 44 
 
 506727 
 
 621 
 
 976361 
 
 71 
 
 530366 
 
 692 
 
 469634 
 
 16 
 
 45 
 
 507099 
 
 620 
 
 976318 
 
 71 
 
 530781 
 
 691 
 
 469219 
 
 15 
 
 46 
 
 507471 
 
 620 
 
 976275 
 
 71 
 
 531196 
 
 691 
 
 468804 
 
 14 
 
 47 
 
 507843 
 
 619 
 
 976232 
 
 72 
 
 531611 
 
 690 
 
 468389 
 
 13 
 
 48 
 
 508214 
 
 619 
 
 976189 
 
 72 
 
 532025 
 
 690 
 
 467975 
 
 12 
 
 49 
 
 508585 
 
 618 
 
 976146 
 
 72 
 
 532439 
 
 689 
 
 467561 
 
 11 
 
 50 
 51 
 
 508956 
 9.509326 
 
 618 
 
 976103 
 
 72 
 
 72 
 
 532853 
 
 689 
 
 467147 
 
 10 
 9 
 
 617 
 
 9.976060 
 
 9.533266 
 
 688 
 
 10.466734 
 
 52 
 
 509696 
 
 616 
 
 976017 
 
 72 
 
 533679 
 
 688 
 
 466321 
 
 8 
 
 53 
 
 510065 
 
 616 
 
 975974 
 
 72 
 
 534092 
 
 687 
 
 465908 
 
 7 
 
 54 
 
 510434 
 
 615 
 
 975930 
 
 72 
 
 634504 
 
 687 
 
 465496 
 
 6 
 
 55 
 
 510803 
 
 615 
 
 975887 
 
 72 
 
 534916 
 
 686 
 
 465084 
 
 6 
 
 56 
 
 511172 
 
 614 
 
 975844 
 
 72 
 
 535328 
 
 686 
 
 464672 
 
 4 
 
 57 
 
 511540 
 
 613 
 
 975800 
 
 72 
 
 635739 
 
 685 
 
 464261 
 
 8 
 
 58 
 
 511907 
 
 613 
 
 975707 
 
 72 
 
 53615(J 
 
 QHii 
 
 403S0U 
 
 2 
 
 59 
 
 612275 
 
 612 
 
 975714 
 
 72 
 
 636561 
 
 684 
 
 463439 
 
 1 
 
 60 
 
 512642 
 
 612 
 
 975670 
 
 72 
 
 536972 
 
 684 
 
 463028 
 
 
 
 L 
 
 ; Cosine 
 
 1 
 
 1 
 
 1 Bine | 
 
 1 Cotaiig. 
 
 1 
 
 1 Tang. M. | 
 
 71 
 
 M. 
 
 
 
 9..' 
 
 1 
 
 
 2 
 
 
 3 
 
 
 4 
 
 
 5 
 
 
 6 
 7 
 
 
,.. 1 
 
 i'ZU 
 
 60 
 
 ?75M 
 
 59 
 
 ^365 
 
 58 
 
 3936 
 
 57 
 
 3507 
 
 56 
 
 3079 
 
 55 
 
 i651 
 
 54 
 
 3223 
 
 53 
 
 1796 
 
 52 
 
 I3(i'j 
 
 51 
 
 3943 
 
 50 
 
 3516 
 
 49 
 
 3090 
 
 48 
 
 26t)5 
 
 47 
 
 i'ZMi 
 
 46 
 
 1815 
 
 45 
 
 1390 
 
 44 
 
 1)966 
 
 43 
 
 )542 
 
 42 
 
 [)118 
 
 41 
 
 1695 
 
 40 
 
 J272 
 
 39 
 
 H849 
 
 38 
 
 8427 
 
 37 
 
 8005 
 
 36 
 
 7583 
 
 35 
 
 7162 
 
 34 
 
 6741 
 
 33 
 
 6320 
 
 32 
 
 5900 
 
 31 
 
 5480 
 
 30 
 
 5061 
 
 29 
 
 4641 
 
 28 
 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 
 8804 
 
 14 
 
 8389 
 
 13 
 
 7975 
 
 12 
 
 7561 
 
 11 
 
 7147 
 
 10 
 
 6734 
 
 9 
 
 .6321 
 
 8 
 
 •5908 
 
 7 
 
 .5496 
 
 6 
 
 .5084 
 
 5 
 
 54672 
 
 4 
 
 54261 
 
 3 
 
 Job jU 
 
 X 
 
 53439 
 
 1 
 
 53028 
 
 
 
 iig. 
 
 M. 
 
 M. 
 
 Blue 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 
 ii 
 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 :!,> 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 
 44 
 45 
 46 
 47 
 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 f.O 
 
 9.512642 
 513009 
 5 1 3375 
 513711 
 514107 
 611472 
 6M837 
 515202 
 615566 
 515930 
 516294 
 
 SINES AND TANOENT8. (10 DeglCea.) 
 
 1>- I THny. I 1). I Ci„^i^ 
 
 a? 
 
 Conine 
 
 9 
 
 516657 
 517020 
 517382 
 517745 
 518107 
 518468 
 518829 
 519190 
 619551 
 519911 
 
 520271 
 520631 
 520990 
 521349 
 521707 
 522066 
 522424 
 522781 
 623138 
 623495 
 
 .523852 
 524208 
 524564 
 624920 
 525275 
 625630 
 525984 
 526339 
 526693 
 527046 
 
 9.527400 
 527753 
 628105 
 528458 
 528810 
 629161 
 629513 
 529864 
 530215 
 530565 
 
 9.530915 
 531265 
 531614 
 631963 
 532312 
 632661 
 533009 
 533.?.57 
 533704 
 534052 
 
 Cosine I 
 
 612 
 611 
 611 
 610 
 609 
 609 
 608 
 608 
 607 
 607 
 606 
 
 605 
 605 
 604 
 604 
 603 
 a03 
 602 
 601 
 601 
 
 6oo 
 
 600 
 599 
 599 
 598 
 598 
 597 
 596 
 596 
 595 
 595 
 
 594 
 594 
 593 
 693 
 592 
 591 
 591 
 590 
 590 
 589 
 
 589 
 588 
 588 
 687 
 687 
 586 
 586 
 685 
 585 
 584 
 
 584 
 583 
 582 
 582 
 581 
 581 
 580 
 
 5m 
 
 579 
 
 578 
 
 .975670 
 975627 
 975583 
 975539 
 975496 
 975452 
 975408 
 975365 
 975321 
 975277 
 975233 
 
 9.975189 
 975145 
 975101 
 975057 
 375013 
 974969 
 974925 
 974880 
 974836 
 974792 
 
 9.974748 
 974703 
 974659 
 974614 
 974570 
 974525 
 974481 
 974436 
 974391 
 974347 
 
 9.974302 
 974257 
 974212 
 974167 
 974122 
 974077 
 974032 
 973987 
 973942 
 973897 
 
 9.973852 
 973807 
 973761 
 973716 
 973&n 
 973625 
 973580 
 973535 
 973489 
 
 _973444 
 
 9.973398 
 973352 
 973307 
 973261 
 973215 
 973169 
 973124 
 97307S 
 973032 
 972986 
 
 73 
 73 
 73 
 73 
 73 
 73 
 73 
 73 
 73 
 73 
 73 
 
 73 
 73 
 73 
 73 
 73 
 74 
 74 
 74 
 74 
 74 
 
 74 
 74 
 74 
 74 
 74 
 74 
 74 
 74 
 74 
 75 
 
 75 
 75 
 75 
 75 
 75 
 75 
 75 
 75 
 75 
 75 
 
 75 
 75 
 75 
 76 
 76 
 76 
 76 
 76 
 76 
 76 
 
 76 
 76 
 76 
 76 
 
 76 
 76 
 76 
 
 76 
 77 
 
 77 
 
 9.536972 
 637382 
 537792 
 538202 
 5.38611 
 539020 
 639429 
 639837 
 640245 
 540653 
 .54 1061 
 
 9.. 54 1468 
 541875 
 '4228 1 
 .)42688 
 543094 
 643499 
 643905 
 644310 
 644715 
 545119 
 
 9.54.5524 
 545928 
 546331 
 546735 
 547138 
 547540 
 647943 
 648345 
 548747 
 649149 
 
 9.649550 
 549951 
 550352 
 550752 
 5511.52 
 651.5.52 
 651952 
 652351 
 552750 
 563149 
 
 9.. 5,5,3548 
 553946 
 654344 
 554741 
 5,55139 
 555536 
 555933 
 556329 
 656725 
 557121 
 
 .5.57517 
 .5.57913 
 558308 
 658702 
 659097 
 5.59491 
 659885 
 5G0279 
 560673 
 561066 
 
 684 
 683 
 683 
 682 
 '82 
 
 680 
 680 
 679 
 679 
 
 10 
 
 I 
 
 Siiio 
 
 Until ngr. 
 
 678 
 678 
 677 
 677 
 676 
 676 
 675 
 675 
 674 
 674 
 
 673 
 673 
 672 
 672 
 671 
 671 
 670 
 670 
 669 
 669 
 
 .463028 
 462618 
 46220H 
 461798 
 461989 
 460980 
 460571 
 460163 
 459 A5b 
 459347 
 458939 
 
 668 
 668 
 667 
 667 
 666 
 666 
 665 
 665 
 665 
 664 
 
 664 
 663 
 663 
 662 
 662 
 661 
 661 
 660 
 660 
 659 
 
 659 
 6.59 
 658 
 658 
 657 
 657 
 6.56 
 656 
 655 
 655 
 
 10.4.58.532 
 4.58125 
 457719 
 457312 
 456906 
 4.56.501 
 456095 
 465690 
 4.55285 
 
 454881 
 
 10.4.54476 
 454072 
 453669 
 453265 
 452862 
 452460 
 452057 
 451655 
 461253 
 4.50861 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 16 
 14 
 13 
 12 
 11 
 10 
 
 9 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 I 
 
 
 10.4504,50 
 450049 
 449648 
 449248 
 448848 
 448448 
 448048 
 447649 
 447250 
 446851 
 
 10.4464.52 
 446054 
 445656 
 445259 
 441861 
 444464 
 444067 
 443671 
 443275 
 442879 
 
 10.442483 
 442087 
 441692 
 441298 
 440903 
 440509 
 440115 
 439721 
 439327 
 438934 
 
 Tana. 
 
 M. 
 
 70 Dct'rees 
 
 u 
 
^> # ^ 
 
 IMAGE EVALUATION 
 TEST TARGET (MT-3) 
 
 1.0 
 
 I.I 
 
 1.25 
 
 • 56 I 3.2 |||ll /^ n 
 
 I! iSi^ ~ 
 
 ? ■- Ills 
 
 111= 
 
 U IIIIII.6 
 
 Photographic 
 
 Sciences 
 Corporation 
 
 m 
 
 
 iV 
 
 ^^^ 
 
 \\ 
 
 ^ 
 <* 
 
 
 % 
 
 n> #1 
 
 9>'- 
 
 23 WEST MAIN STREET 
 
 WEBSTER, NY. 14580 
 
 (716) 872-4503 
 

 ¥ m 
 
 >' i^.- 
 
 px 
 
 1 
 
 I 
 
■P—HjHI— ■ 
 
 38 
 
 (20 Degi 
 
 ees.) A 
 
 TABLE or LOGARITHMIC 
 
 
 M. 
 
 1 Bine 
 
 1 D. 
 
 ! Cosine IX 
 
 1 Tang. 
 
 1 n. 
 
 CotiinR. 1 1 
 
 
 
 9.534052 
 
 578 
 
 19.972986 
 
 77 
 
 > 9.561066 
 
 6.55 
 
 10.438934 
 
 60 
 
 1 
 
 534339 
 
 577 
 
 973940 
 
 77 
 
 561459 
 
 654 
 
 438541 
 
 59 
 
 2 
 
 534745 
 
 577 
 
 972894 
 
 77 
 
 ')61351 
 
 6.54 
 
 438149 
 
 58 
 
 a 
 
 £35092 
 
 577 
 
 972848 
 
 77 
 
 563244 
 
 653 
 
 437756 
 
 57 
 
 4 
 
 535438 
 
 676 
 
 972803 
 
 77 
 
 533636 
 
 653 
 
 437364 
 
 56 
 
 5 
 
 535783 
 
 576 
 
 973755 
 
 77 
 
 563028 
 
 653 
 
 436972 
 
 55 
 
 6 
 
 536129 
 
 575 
 
 972709 
 
 77 
 
 563419 
 
 652 
 
 436,581 
 
 54 
 
 7 
 
 536474 
 
 574 
 
 973663 
 
 77 
 
 563811 
 
 652 
 
 436189 
 
 53 
 
 8 
 
 536818 
 
 574 
 
 972617 
 
 77 
 
 564302 
 
 651 
 
 435798 
 
 .52 
 
 9 
 
 537103 
 
 573 
 
 973570 
 
 77 
 
 564592 
 
 651 
 
 435408 
 
 51 
 
 10 
 11 
 
 537507 
 
 573 
 
 973534 
 9.973478 
 
 77 
 77 
 
 564983 
 
 650 
 
 435017 
 
 50 
 49 
 
 9.537851 
 
 572 
 
 9..56537S 
 
 650 
 
 10.434027 
 
 12 
 
 538194 
 
 573 
 
 972431 
 
 78 
 
 565763 
 
 649 
 
 43423" 
 
 48! 
 
 13 
 
 538538 
 
 571 
 
 972385 
 
 78 
 
 5661,53 
 
 649 
 
 433847 
 
 47 
 
 14 
 
 538880 
 
 571 
 
 973338 
 
 78 
 
 566542 
 
 649 
 
 433458 
 
 46 
 
 15 
 
 539333 
 
 570 
 
 972351 
 
 78 
 
 56G932 
 
 648 
 
 433068 
 
 45 
 
 16 
 
 539565 
 
 570 
 
 973245 
 
 78 
 
 567320 
 
 648 
 
 432680 
 
 44 
 
 17 
 
 539907 
 
 569 
 
 972198 
 
 78 
 
 567709 
 
 647 
 
 432291 
 
 43 
 
 18 
 
 540249 
 
 669 
 
 973151 
 
 78 
 
 568098 
 
 647 
 
 431902 
 
 42 
 
 19 
 
 540590 
 
 568 
 
 973105 
 
 79 
 
 568486 
 
 646 
 
 431514 
 
 41 
 
 20 
 2T 
 
 540931 
 
 568 
 
 973058 
 
 78 
 78 
 
 568873 
 
 646 
 
 431127 
 10.430739 
 
 40 
 39 
 
 9.541272 
 
 567 
 
 9.973011 
 
 9.569261 
 
 645 
 
 22 
 
 541613 
 
 567 
 
 971964 
 
 78 
 
 569648 
 
 645 
 
 430353 
 
 38 
 
 23 
 
 541953 
 
 566 
 
 971917 
 
 78 
 
 570035 
 
 645 
 
 429965 
 
 37 
 
 24 
 
 542293 
 
 566 
 
 971.870 
 
 78 
 
 570433 
 
 644 
 
 429578 
 
 36 
 
 25 
 
 542632 
 
 505 
 
 971833 
 
 78 
 
 570809 
 
 644 
 
 429191 
 
 35 
 
 26 
 
 542971 
 
 565 
 
 971776 
 
 78 
 
 571195 
 
 643 
 
 428805 
 
 34 
 
 27 
 
 543310 
 
 564 
 
 971729 
 
 79 
 
 571.581 
 
 643 
 
 428419 
 
 33 
 
 28 
 
 543649 
 
 564 
 
 971682 
 
 79 
 
 .571967 
 
 642 
 
 4300J3 
 
 32 
 
 29 
 
 543987 
 
 563 
 
 971635 
 
 79 
 
 572353 
 
 642 
 
 437648 
 
 31 
 
 30 
 31 
 
 541325 
 9.544663 
 
 563 
 
 971588 
 
 79 
 79 
 
 573738 
 
 642 
 
 427262 
 
 30 
 29 
 
 562 
 
 9.971540 
 
 9.573123 
 
 641 
 
 10.426877 
 
 32 
 
 545000 
 
 562 
 
 971493 
 
 79 
 
 573.507 
 
 641 
 
 426493 
 
 28 
 
 33 
 
 545338 
 
 561 
 
 971446 
 
 79 
 
 573892 
 
 640 
 
 426108 
 
 27 
 
 34 
 
 545674 
 
 561 
 
 971398 
 
 79 
 
 574276 
 
 640 
 
 425734 
 
 26 
 
 35 
 
 646011 
 
 560 
 
 971351 
 
 79 
 
 674660 
 
 639 
 
 425340 
 
 25 
 
 36 
 
 546347 
 
 560 
 
 971303 
 
 79 
 
 575044 
 
 639 
 
 424950 
 
 24 
 
 37 
 
 546683 
 
 559 
 
 971256 
 
 79 
 
 575427 
 
 639 
 
 424573 
 
 23 
 
 38 
 
 547019 
 
 559 
 
 971308 
 
 79 
 
 575810 
 
 638 
 
 424190 
 
 22 
 
 39 
 
 547354 
 
 558 
 
 971161 
 
 79 
 
 576193 
 
 638 
 
 423807 
 
 21 
 
 40 
 
 41 
 
 547689 
 
 558 
 
 971113 
 9.971066 
 
 79 
 
 80 
 
 676576 
 
 637 
 
 423424 
 
 20 
 19 
 
 9.548024 
 
 557 
 
 9.576958 
 
 637 
 
 10.423041 
 
 42 
 
 548359 
 
 5.57 
 
 971018 
 
 80 
 
 577.341 
 
 636 
 
 422659 
 
 18 
 
 43 
 
 548693 
 
 556 
 
 970970 
 
 80 
 
 577723 
 
 636 
 
 422277 
 
 17 
 
 44 
 
 .549027 
 
 550 
 
 970933 
 
 80 
 
 578104 
 
 636 
 
 421896 
 
 16 
 
 45 
 
 549360 
 
 556 
 
 970874 
 
 80 
 
 578486 
 
 635 
 
 421514 
 
 15 
 
 46 
 
 549693 
 
 555 
 
 970837 
 
 80 
 
 578867 
 
 635 
 
 421133 
 
 14 
 
 47 
 
 550036 
 
 554 
 
 970779 
 
 80 
 
 579348 
 
 634 
 
 420752 
 
 13 
 
 48 
 
 550359 
 
 554 
 
 970731 
 
 80 
 
 579629 
 
 634 
 
 420371 
 
 12 
 
 49 
 
 550692 
 
 553 
 
 970683 
 
 80 
 
 580009 
 
 634 
 
 419991 
 
 11 
 
 50 
 51 
 
 551024 
 
 553 
 
 970635 
 
 80 
 80 
 
 580389 
 
 63,: 
 633 
 
 419611 
 10.419231 
 
 10 
 9 
 
 9.5513,56 
 
 552 
 
 9.970586 
 
 9.580769 
 
 52 
 
 551687 
 
 552 
 
 97'\538 
 
 80 
 
 581149 
 
 632 
 
 418851 
 
 8 
 
 53 
 
 552018 
 
 5.52 
 
 970*90 
 
 80 
 
 581528 
 
 632 
 
 418472 
 
 7 
 
 54 
 
 552349 
 
 551 
 
 970443 
 
 80 
 
 581907 
 
 632 
 
 418093 
 
 6 
 
 6b 
 
 552680 
 
 .551 
 
 970394 
 
 80 
 
 582286 
 
 631 
 
 417714 
 
 5 
 
 56 
 
 553010 
 
 550 
 
 970345 
 
 81 
 
 583665 
 
 631 
 
 417335 
 
 4 
 
 bV 
 
 553341 
 
 550 
 
 970397 
 
 81 
 
 583043 
 
 630 
 
 416957 
 
 3 
 
 58 
 
 553670 
 
 649 
 
 970349 
 
 81 
 
 583432 
 
 630 
 
 416578 
 
 2 
 
 59 
 
 554000 
 
 549 
 
 970200 
 
 81 
 
 583800 
 
 629 
 
 416200 
 
 1 
 
 ou 
 
 004339 
 
 r)4S 
 
 970152 
 
 81 
 
 584177 
 
 629 
 
 415N33 
 
 u 
 
 ma 
 
 (^'osiue 1 
 
 
 Sine I 1 
 
 Cotanp. 1 
 
 
 Tani'. M. 1 
 
 M.| 
 
 t 
 
 1 9 
 
 1 
 
 
 2 
 
 
 3 
 
 
 4 
 
 
 6 
 
 
 6 
 
 
 7 
 
 
 8 
 
 
 9 
 
 
 10 
 11 
 
 
 9 
 
 13 
 
 
 13 
 
 
 14 
 
 
 15 
 
 
 16 
 
 
 17 
 
 
 18 
 
 
 19 
 
 
 20 
 
 
 21 
 22 
 
 9. 
 
 
 |23 
 
 
 24 
 
 
 25 
 
 
 26 
 
 
 27 
 
 
 28 
 
 
 29 
 
 
 30 
 
 
 31 
 
 9. 
 
 32 
 
 
 33 
 
 
 34 
 
 
 35 
 
 
 36 
 
 
 37 
 
 ( 
 
 38 
 
 ( 
 
 39 
 
 t 
 
 40 
 
 t 
 
 41 
 
 9.f 
 
 42 
 
 r 
 
 43 
 
 f- 
 
 44 
 
 r- 
 
 45 
 
 f 
 
 46 
 
 R 
 t^ 
 
 47 
 
 .'i 
 
 48 
 
 ,'■ 
 
 49 
 
 5 
 
 50 
 
 5 
 
 51 
 
 9.5 
 
 52 
 
 5 
 
 53 
 
 5 
 
 54 
 
 5 
 
 55 
 
 5 
 
 56 
 
 5 
 
 57 
 
 5 
 
 58 
 
 5 
 
 59 
 
 5 
 
 60 
 
 5 
 
 1 
 
 Co 
 
 09 Det^rtes. 
 
inp. 1 1 
 
 38934 
 
 60 
 
 38541 
 
 59 
 
 38149 
 
 58 
 
 37756 
 
 o7 
 
 37364 
 
 56 
 
 36972 
 
 55 
 
 30581 
 
 54 
 
 36189 
 
 53 
 
 i5798 
 
 S2 
 
 35408 
 
 51 
 
 35017 
 
 50 
 
 49 
 
 34027 
 
 3423" 
 
 48 !j 
 
 33847 
 
 47 
 
 33458 
 
 46 
 
 J3008 
 
 45 
 
 J26S0 
 
 44 
 
 }229i 
 
 43 
 
 U902 
 
 42 
 
 U514 
 
 41 
 
 J1127 
 
 40 
 
 i0739 
 
 39 
 
 10352 
 
 38 
 
 •9965 
 
 37 
 
 59578 
 
 36 
 
 19191 
 
 35 
 
 J8805 
 
 34 
 
 !8419 
 
 33 
 
 S80J3 
 
 32 
 
 !7648 
 
 31 
 
 J7202 
 
 30 
 
 ,6877 
 
 29 
 
 !6493 
 
 28 
 
 ,6108 
 
 27 
 
 ,5724 
 
 26 
 
 ,5340 
 
 25 
 
 ,4950 
 
 24 
 
 4573 
 
 23 
 
 4190 
 
 22 
 
 3807 
 
 21 
 
 3424 
 
 20 
 
 3041 
 
 19 
 
 2059 
 
 18 
 
 2277 
 
 17 
 
 1896 
 
 16 
 
 1514 
 
 15 
 
 1133 
 
 14 
 
 0752 
 
 13 
 
 0371 
 
 12 
 
 9991 
 
 11 
 
 9611 
 
 10 
 
 9231 
 
 9 
 
 8851 
 
 8 
 
 8472 
 
 7 
 
 8093 
 
 B 
 
 7714 
 
 5 
 
 7335 
 
 4 
 
 6957 
 
 3 
 
 6578 
 
 2 
 
 6200 
 
 1 
 
 5823 
 
 u 
 
 ns- 
 
 M. 
 
 SINES AND 
 
 M. 
 
 TANGENTS. (21 Degrees.; 
 
 39 
 
 Sine 
 
 D. 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 50 
 57 
 58 
 59 
 60 
 
 9.554329 
 554658 
 554987 
 655315 
 555643 
 555971 
 556299 
 550626 
 556953 
 557280 
 557006 
 
 Conine | D. | Tnng. | 
 
 D. 
 
 9 
 
 557932 
 558258 
 558583 
 558909 
 559234 
 659558 
 559883 
 560207 
 660531 
 _560855 
 
 .561178 
 561501 
 561824 
 562146 
 562468 
 562790 
 .563112 
 563433 
 563755 
 56407.' 
 
 9 . 564396 
 .')64710 
 505036 
 66,5356 
 565676 
 565995 
 .560314 
 500032 
 500951 
 507209 
 
 9.. 50 758 7 
 567904 
 508222 
 508539 
 508850 
 509172 
 509488 
 509804 
 570120 
 57043S 
 
 9 
 
 ,570751 
 571060 
 571380 
 571095 
 572003 
 572323 
 572036 
 5729.^0 
 573203 
 6735751 
 
 548 
 548 
 647 
 547 
 546 
 546 
 545 
 545 
 644 
 644 
 643 
 
 543 
 543 
 642 
 542 
 641 
 .541 
 540 
 540 
 539 
 539 
 
 9.9^0152 
 970103 
 970055 
 970006 
 969957 
 969909 
 969860 
 909811 
 969702 
 969714 
 969665 
 
 538 
 638 
 637 
 537 
 636 
 636 
 536 
 635 
 635 
 534 
 
 634 
 633 
 533 
 .532 
 532 
 531 
 531 
 531 
 530 
 _530_ 
 
 529 
 529 
 528 
 628 
 528 
 527 
 627 
 526 
 626 
 525 
 
 81 
 81 
 81 
 81 
 81 
 81 
 81 
 81 
 81 
 81 
 81 
 
 82 
 82 
 82 
 82 
 82 
 82 
 82 
 82 
 82 
 82 
 
 82 
 82 
 82 
 82 
 83 
 83 
 83 
 83 
 83 
 83 
 
 9.968028 83 
 968578 83 
 968528 83 
 
 Cotang. 
 
 9.969616 
 969507 
 909518 
 969469 
 969420 
 969370 
 969321 
 969272 
 969223 
 969173 
 
 9.969124 
 969075 
 969025 
 968976 
 968920 
 908877 
 968827 
 968777 
 908728 
 908078 
 
 908479 
 908429 
 908379 
 908^29 
 
 908278 
 908228 
 968178 
 
 525 
 
 524 
 
 524 
 
 523 
 
 523 
 
 623 
 
 522 
 
 522 
 
 521 
 
 621 
 
 83 
 
 83 
 83 
 83 
 83 
 
 84 
 84 
 
 84 
 84 
 84 
 84 
 84 
 84 
 84 
 84 
 84 
 84 
 
 9.908128 
 968078 
 968027 
 967977 
 967927 
 967876 
 967826 
 967775 
 967725 
 96 7074 
 
 9.907024 
 967573 
 Gr,7.522 
 907471 
 907421 
 967370 
 967319 
 967268185 
 907217! 85 
 
 967166185 
 
 84 
 84 
 85 
 85 
 86 
 85 
 85 
 
 .684177 
 584555 
 684932 
 685309 
 685686 
 586062 
 686439 
 586815 
 687190 
 687566 
 587941 
 
 9.588316 
 688091 
 689066 
 689440 
 589814 
 690188 
 690502 
 590935 
 .591.308 
 .591681 
 
 9.592054 
 692426 
 592798 
 693170 
 693542 
 593914 
 594286 
 694656 
 59502V 
 695398 
 
 9.59.5768 
 696138 
 696508 
 696878 
 597247 
 597610 
 597985 
 598354 
 598722 
 699091 
 
 9 
 
 ''199459 
 •99827 
 000194 
 600502 
 000929 
 601296 
 001002 
 002029 
 60239.-) 
 602761 
 
 9.603127 
 603493 
 003858 
 604223 
 604588 
 004953 
 605317 
 605682 
 000040 
 0004 lu 
 
 629 
 629 
 628 
 628 
 627 
 627 
 627 
 026 
 626 
 625 
 625 
 
 625 
 624 
 624 
 623 
 623 
 623 
 622 
 322 
 622 
 621 
 
 10.416823 
 415445 
 41.5068 
 414691 
 414314 
 413938 
 413661 
 4131S5 
 412810 
 412434 
 
 
 621 
 620 
 620 
 619 
 619 
 618 
 618 
 618 
 617 
 617 
 
 617 
 616 
 616 
 616 
 615 
 615 
 615 
 614 
 614 
 613 
 
 613 
 613 
 612 
 612 
 611 
 Gil 
 611 
 610 
 610 
 610 
 
 609 
 609 
 609 
 608 
 608 
 607 
 607 
 607 
 GOG 
 606 
 
 60 
 59 
 
 58 
 57 
 56 
 65 
 54 
 53 
 62 
 5 
 412059 I 60 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 36 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 26 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 lo 
 14 
 13 
 12 
 11 
 10 
 
 9 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 1 
 
 
 10.411684 
 411309 
 410934 
 410560 
 410186 
 409812 
 409438 
 409085 
 408692 
 
 4 0831 9 
 
 10.407946 
 407574 
 407202 
 406829 
 400458 
 406086 
 405715 
 405344 
 404973 
 404602 
 
 10.404232 
 403862 
 403492 
 403122 
 402753 
 402384 
 402015 
 401646 
 401278 
 400909 
 
 10.400541 
 400 17r 
 39980b 
 3994.38 
 399071 
 398704 
 398338 
 397971 
 397605 
 
 39723 9 
 
 10.396873 
 390507 
 390142 
 395777 
 395412 
 395047 
 394683 
 394318 
 393954 
 393590 
 
 
m 
 
 
 40 
 
 (22 Degrees.; a 
 
 VABliE OP LOGARITHMIC 
 
 
 M. 
 
 1 Bine 
 
 1 D. 
 
 1 C'oaine j D. 
 
 Tang. 
 
 D. 
 
 Coiling. 
 
 •^ 
 
 U 
 
 9. 573575 
 
 1 621 
 
 9.967166 
 
 86 
 
 9.606410 
 
 606 
 
 10.39.3590 
 
 60 
 
 1 
 
 673888 
 
 620 
 
 967115 
 
 85 
 
 606773 
 
 606 
 
 393227 
 
 59 
 
 2 
 
 674200 
 
 620 
 
 967064 
 
 85 
 
 607137 
 
 605 
 
 392863 
 
 58 
 
 3 
 
 574512 
 
 619 
 
 967013 
 
 85 
 
 607500 
 
 605 
 
 392500 
 
 57 
 
 4 
 
 674824 
 
 619 
 
 966961 
 
 85 
 
 607863 
 
 604 
 
 392137 
 
 56 
 
 5 
 
 575136 
 
 519 
 
 966910 
 
 85 
 
 608225 
 
 604 
 
 391775 
 
 55 
 
 6 
 
 675447 
 
 618 
 
 966859 
 
 85 
 
 608588 
 
 604 
 
 391412 
 
 54 
 
 7 
 
 575758 
 
 618 
 
 966808 
 
 85 
 
 608950 
 
 603 
 
 391050 
 
 53 
 
 8 
 
 576069 
 
 517 
 
 966756 
 
 86 
 
 609312 
 
 603 
 
 390688 
 
 52 
 
 9 
 
 576379 
 
 617 
 
 966705 
 
 86 
 
 C09674 
 
 603 
 
 390326 
 
 51 
 
 10 
 
 11 
 
 576689 
 
 616 
 
 966653 
 
 86 
 86 
 
 610036 
 9.610397 
 
 602 
 
 389964 
 10.389603 
 
 :,o 
 
 49 
 
 9.576999 
 
 616 
 
 9.966602 
 
 602 
 
 12 
 
 577309 
 
 516 
 
 966550 
 
 86 
 
 610759 
 
 602 
 
 389241 
 
 48 
 
 13 
 
 577618 
 
 615 
 
 966499 
 
 86 
 
 611120 
 
 601 
 
 388880 
 
 47 
 
 14 
 
 677927 
 
 615 
 
 966447 
 
 86 
 
 611480 
 
 601 
 
 388520 
 
 46 
 
 15 
 
 578236 
 
 514 
 
 966395 
 
 86 
 
 611841 
 
 00 r 
 
 388159 
 
 45 
 
 16 
 
 578545 
 
 514 
 
 966344 
 
 86 
 
 612201 
 
 600 
 
 387799 
 
 44 
 
 17 
 
 578853 
 
 513 
 
 966292 
 
 86 
 
 612561 
 
 600 
 
 387439 
 
 43 
 
 18 
 
 579162 
 
 613 
 
 966240 
 
 86 
 
 612921 
 
 600 
 
 387079 
 
 42 
 
 19 
 
 579470 
 
 513 
 
 966188 
 
 86 
 
 613281 
 
 699 
 
 386719 
 
 41 
 
 20 
 21 
 
 579777 
 9.. 580085 
 
 612 
 
 966136 
 
 86 
 87 
 
 613641 
 
 599 
 
 386359 
 10.386000 
 
 40 
 39 
 
 612 
 
 9 966085 
 
 9.614000 
 
 598 
 
 22 
 
 580392 
 
 511 
 
 966033 
 
 87 
 
 614359 
 
 698 
 
 385641 
 
 38 
 
 23 
 
 580699 
 
 511 
 
 965981 
 
 87 
 
 614718 
 
 598 
 
 38.5282 
 
 37 
 
 24 
 
 581005 
 
 611 
 
 965928 
 
 87 
 
 616077 
 
 697 
 
 384923 
 
 36 
 
 25 
 
 581312 
 
 510 
 
 965876 
 
 87 
 
 615435 
 
 697 
 
 384565 
 
 35 
 
 26 
 
 681618 
 
 510 
 
 965824 
 
 87 
 
 615793 
 
 597 
 
 384207 
 
 34 
 
 27 
 
 681924 
 
 509 
 
 965772 
 
 87 
 
 616151 
 
 596 
 
 383849 
 
 33 
 
 28 
 
 582229 
 
 509 
 
 965720 
 
 87 
 
 610509 
 
 596 
 
 383491 
 
 32 
 
 29 
 
 582535 
 
 509 
 
 165668 
 
 87 
 
 616867 
 
 596 
 
 383133 
 
 31 
 
 30 
 31 
 
 582840 
 
 508 
 
 965615 
 
 87 
 87 
 
 617224 
 
 595 
 
 382776 
 10.382418 
 
 30 
 29 
 
 9.583145 
 
 508 
 
 9.965563 
 
 9 617582 
 
 595 
 
 32 
 
 583449 
 
 507 
 
 965511 
 
 87 
 
 617939 
 
 595 
 
 382061 
 
 28 
 
 33 
 
 583754 
 
 507 
 
 965458 
 
 87 
 
 618295 
 
 594 
 
 381705 
 
 27 
 
 34 
 
 584058 
 
 606 
 
 96.5406 
 
 87 
 
 618652 
 
 594 
 
 381348 
 
 26 
 
 35 
 
 684361 
 
 606 
 
 965353 
 
 88 
 
 619008 
 
 694 
 
 380992 
 
 25 
 
 36 
 
 684665 
 
 "^06 
 
 965301 
 
 88 
 
 619364 
 
 593 
 
 380636 
 
 24 
 
 37 
 
 584968 
 
 605 
 
 965248 
 
 88 
 
 619721 
 
 593 
 
 380279 
 
 23 
 
 38 
 
 585272 
 
 505 
 
 965195 
 
 88 
 
 620076 
 
 593 
 
 379924 
 
 22 
 
 39 
 
 585574 
 
 604 
 
 965143 
 
 88 
 
 620432 
 
 592 
 
 379568 
 
 21 
 
 40 
 41 
 
 685877 
 
 604 
 
 965090 
 
 88 
 
 88 
 
 620787 
 
 592 
 
 379213 
 
 10.378858 
 
 20 
 19 
 
 9.. 586 179 
 
 603 
 
 9.965037 
 
 9.621142 
 
 592 
 
 42 
 
 586482 
 
 503 
 
 964984 
 
 88 
 
 621497 
 
 591 
 
 378503 
 
 18 
 
 43 
 
 686783 
 
 503 
 
 964931 
 
 88 
 
 621852 
 
 591 
 
 378148 
 
 17 
 
 44 
 
 587085 
 
 502 
 
 964879 
 
 88 
 
 622207 
 
 690 
 
 377793 
 
 16 
 
 45 
 
 687386 
 
 502 
 
 964826 
 
 88 
 
 622561 
 
 590 
 
 377439 
 
 15 
 
 46 
 
 687688 
 
 .501 
 
 964773 
 
 88 
 
 622915 
 
 590 
 
 377085 
 
 14 
 
 47 
 
 587989 
 
 501 
 
 964719 
 
 88 
 
 623269 
 
 589 
 
 376731 
 
 13 
 
 48 
 
 688289 
 
 501 
 
 964666 
 
 89 
 
 623623 
 
 589 
 
 376377 
 
 12 
 
 49 
 
 688590 
 
 500 
 
 964613 
 
 89 
 
 623976 
 
 689 
 
 376024 
 
 11 
 
 50 
 51 
 
 588890 
 9.589190 
 
 500 
 
 964560 
 9.964507 
 
 89 
 89 
 
 624330 
 9.624683 
 
 588 
 
 375670 
 10.375317 
 
 10 
 9 
 
 499 
 
 588 
 
 52 
 
 589489 
 
 499 
 
 964454 
 
 89 
 
 625036 
 
 588 
 
 374904 
 
 8 
 
 53 
 
 689789 
 
 499 
 
 964400 
 
 89 
 
 625388 
 
 687 
 
 374612 
 
 1-/ 
 1 
 
 54 
 
 590088 
 
 498 
 
 964347 
 
 89 
 
 625741 
 
 687 
 
 374259 
 
 6 
 
 55 
 
 590387 
 
 498 
 
 964294 
 
 89 
 
 626093 
 
 587 
 
 373907 
 
 5 
 
 56 
 
 590686 
 
 497 
 
 964240 
 
 89 
 
 626445 
 
 586 
 
 37355a 
 
 4 
 
 57 
 
 590984 
 
 497 
 
 964187 
 
 89 
 
 626797 
 
 586 
 
 373203 
 
 3 
 
 58 
 
 591282 
 
 497 
 
 964133 
 
 89 
 
 627149 
 
 .586 
 
 372851 
 
 2 
 
 59 
 
 591580 
 
 498 
 
 964080 
 
 89 
 
 627501 
 
 585 
 
 372499 
 
 1 
 
 60 
 
 591878 
 
 496 
 
 9G4026'89 
 
 627852 
 
 .535 
 
 372 M-! 
 
 u 
 
 
 Co .le 1 
 
 
 Sine 
 
 C(it;iii),'. 1 
 
 
 Taiip. 1 M. [ 
 
 M. 
 
 '~0 
 1 
 2 
 3 
 4 
 6 
 
 8 
 
 9 
 
 10 
 
 11 
 12 
 13 
 14 
 16 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 
 3: 
 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 44i 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 61 
 153 
 I 53 
 54 
 55 
 56 
 57 
 58 
 6y 
 60 
 
 (iT Dcuit'ci 
 
irig. 
 
 
 359(r 
 
 60 
 
 3227 
 
 59 
 
 2863 
 
 58 
 
 2500 
 
 57 
 
 2137 
 
 56 
 
 1775 
 
 55 
 
 1412 
 
 54 
 
 1050 
 
 53 
 
 0688 
 
 52 
 
 0326 
 
 51 
 
 9964 
 
 :.o 
 
 9603 
 
 49 
 
 9241 
 
 48 
 
 8880 
 
 47 
 
 8520 
 
 46 
 
 8159 
 
 45 
 
 7799 
 
 44 
 
 7439 
 
 43 
 
 7079 
 
 42 
 
 3719 
 
 41 
 
 6359 
 
 40 
 
 GOOO 
 
 39 
 
 'i641 
 
 38 
 
 5282 
 
 37 
 
 4923 
 
 36 
 
 4565 
 
 35 
 
 42G7 
 
 34 
 
 3849 
 
 33 
 
 3491 
 
 32 
 
 3133 
 
 31 
 
 2776 
 
 30 
 
 3418 
 
 29 
 
 2061 
 
 28 
 
 1705 
 
 27 
 
 1348 
 
 26 
 
 0992 
 
 25 
 
 0636 
 
 24 
 
 0279 
 
 23 
 
 9924 
 
 22 
 
 9568 
 
 21 
 
 9213 
 
 20 
 
 8858 
 
 19 
 
 8503 
 
 18 
 
 8148 
 
 17 
 
 ?793 
 
 16 
 
 7439 
 
 15 
 
 7085 
 
 14 
 
 6731 
 
 13 
 
 6377 
 
 12 
 
 6024 
 
 11 
 
 5670 
 
 10 
 
 6317 
 
 9 
 
 4904 
 
 8 
 
 4612 
 
 1-/ 
 1 
 
 4259 
 
 6 
 
 3907 
 
 5 
 
 3555 
 
 4 
 
 3203 
 
 3 
 
 2851 
 
 2 
 
 2499 
 
 1 
 
 2M-i 
 
 
 
 
 iifi. 
 
 M. 
 
 M. 
 
 Sine 
 
 
 1 
 2 
 3 
 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 
 11 9.695T37 
 12^ 695432 
 595727 
 596021 
 596315 
 596609 
 596903 
 597196 
 597490 
 597783 
 
 9.591878 
 592176 
 692473 
 692770 
 693067 
 593363 
 693659 
 693955 
 594251 
 694547 
 594842 
 
 SINKS AM> ■^A^'(M;lv^s. (23 Degrees.; 
 
 _l !>■ I (.'osiiic I ]i, I Tarii.' | D. 
 
 41 
 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 3C 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 
 ^2 
 
 43 
 
 44 
 
 45 
 
 46 
 
 47 
 
 48 
 
 49 
 
 50 
 
 496 
 495 
 495 
 495 
 494 
 494 
 493 
 493 
 493 
 492 
 492 
 
 9.964026189 
 
 C()taii)(. 
 
 9.598075 
 598368 
 598660 
 698952 
 r'9244 
 099536 
 699827 
 600118 
 600409 
 600700 
 
 9.600990 
 601280 
 601570 
 601860 
 602150 
 602439 
 602728 
 603017 
 603305 
 603594 
 
 491 
 491 
 491 
 490 
 
 490 
 489 
 489 
 489 
 488 
 488 
 
 963972 
 963019 
 903865 
 963811 
 963757 
 963704 
 963650 
 963596 
 963542 
 963488 
 
 9.963434 
 963379 
 963325 
 963271 
 963217 
 9631631 90 
 963108 91 
 
 89 
 89 
 90 
 90 
 90 
 90 
 90 
 90 
 90 
 90 
 
 90 
 90 
 90 
 90 
 90 
 
 9.627852 
 628203 
 628554 
 628905 
 629255 
 629606 
 629956 
 6303(]o 
 630656 
 631005 
 631,355 
 
 487 
 487 
 487 
 486 
 486 
 485 
 485 
 485 
 484 
 484 
 
 484 
 
 483 
 
 483 
 
 482 
 
 482 
 
 482 
 
 481 
 
 481 
 
 481 
 
 480 
 
 963054 
 962999 
 962945 
 
 9.962890 
 962836 
 962781 
 962727 
 962672 
 962617 
 962562 
 962508 
 962453 
 962398 
 
 9 
 
 61 
 53 
 53 
 54 
 55 
 56 
 57 
 58 
 6y 
 60 
 
 .603882 
 604170 
 604457 
 604745 
 605032 
 605319 
 605606 
 605892 
 606179 
 606465 
 
 9 606751 
 607036 
 607322 
 607607 
 607892 
 608177 
 608461 
 608745 
 609029 
 609313 
 
 480 
 479 
 479 
 479 
 478 
 478 
 478 
 477 
 477 
 476 
 
 9.962343 
 962288 
 962233 
 962178 
 962123 
 962067 
 962012 
 961957 
 961902 
 961846 
 
 9.961791 
 961735 
 961680 
 961624 
 961569 
 961513 
 961458 
 961402 
 961.346 
 961290 
 
 476 
 478 
 475 
 475 
 474 
 474 
 474 
 473 
 473 
 473 
 
 9.961235 
 961179 
 961123 
 961067 
 961011 
 9609.55 
 960899 
 960843 
 960786 
 960730 
 
 91 
 91 
 91 
 
 91 
 91 
 91 
 91 
 91 
 91 
 91 
 91 
 91 
 92 
 
 92 
 92 
 92 
 92 
 92 
 92 
 92 
 92 
 92 
 92 
 
 93 
 92 
 92 
 93 
 93 
 93 
 93 
 93 
 93 
 93 
 
 93 
 93 
 93 
 93 
 93 
 93 
 93 
 94 
 94 
 94 
 
 9.631704 
 6320.53 
 632401 
 632750 
 633098 
 633447 
 633795 
 634143 
 634490 
 634838 
 
 585 
 685 
 585 
 584 
 584 
 683 
 583 
 583 
 583 
 582 
 582 
 
 lO.. 372 148 
 371797 
 371446 
 371095 
 370745 
 370394 
 370044 
 369694 
 369344 
 368995 
 368645 
 
 9.636185 
 635532 
 635879 
 636226 
 636572 
 636919 
 637265 
 637611 
 637956 
 638302 
 
 9.6.38fi47 
 63K992 
 63i)337 
 639682 
 640027 
 640371 
 640716 
 641060 
 641404 
 641747 
 
 9.642091 
 642434 
 642777 
 643120 
 613463 
 643806 
 644148 
 644490 
 644833 
 645174 
 
 Cosine 
 
 .645516 
 64.5857 
 646199 
 646540 
 646881 
 647233 
 647563 
 647903 
 648243 
 648583 
 
 Sine 
 
 I 
 
 583 
 581 
 581 
 581 
 560 
 580 
 580 
 679 
 579 
 _57o 
 
 578' 
 
 578 
 
 678 
 
 577 
 
 577 
 
 577 
 
 577 
 
 676 
 
 576 
 
 576 
 
 10.368296 
 367947 
 367599 
 367250 
 366902 
 366553 
 366205 
 365857 
 365510 
 
 365162 
 
 10.364815 
 364468 
 364121 
 363774 
 363428 
 363081 
 362735 
 362389 
 362044 
 361698 
 
 575 
 676 
 676 
 674 
 674 
 574 
 673 
 673 
 673 
 672 
 
 10.. 36 135;, 
 361008 
 360863 
 360318 
 359973 
 359629 
 359284 
 
 60 
 
 59 
 
 58 
 
 57 
 
 66 
 
 56 
 
 64 
 
 53 
 
 62 
 
 61 
 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 36 
 34 
 33 
 33 
 31 
 30 
 
 29 
 38 
 27 
 26 
 26 
 34 
 23 
 
 358940 23 
 
 673 
 5^3 
 572 
 671 
 571 
 671 
 670 
 570 
 570 
 669 
 
 669 
 .569 
 569 
 568 
 568 
 568 
 667 
 5B''' 
 567 
 .566 
 
 368696 
 368353 
 
 10.357909 
 357566 
 357323 
 356880 
 356537 
 3.56194 
 3r.5852 
 35.5610 
 355168 
 
 354626 
 
 10.354484 
 354143 
 353801 
 353460 
 353119 
 352778 
 352438 
 
 21 
 201 
 
 19 
 18 
 17 
 16 
 16 
 14 
 13 
 13 
 11 
 10 
 
 9 
 8 
 7 
 G 
 5 
 4 
 3 
 
 
 Cdtang. 
 
 3517571 I 
 351417. 
 
 1 riim- fir 
 
 6& Degrees, 
 
HP 
 
 42 
 
 (24 Degrees.") a table of logarithmic 
 
 M. 
 
 Sino 
 
 1 D. 
 
 1 Cobine 1 D. 
 
 Tang. 
 
 D. 
 
 Colarip. 1 1 
 
 U 
 
 9.609313 
 
 473 
 
 9.960730 
 
 94 
 
 9.648583 
 
 566 
 
 10.351417 
 
 60 
 
 1 
 
 609597 
 
 472 
 
 960674 
 
 94 
 
 648923 
 
 666 
 
 351077 
 
 59 
 
 2 
 
 609880 
 
 472 
 
 960618 
 
 94 
 
 649263 
 
 666 
 
 350737 
 
 58 
 
 3 
 
 610164 
 
 472 
 
 960561 
 
 94 
 
 649602 
 
 566 
 
 350398 
 
 57 
 
 4 
 
 610447 
 
 471 
 
 960505 
 
 94 
 
 649942 
 
 665 
 
 350058 
 
 56 
 
 6 
 
 610729 
 
 471 
 
 960448 
 
 94 
 
 6.50281 
 
 565 
 
 349719 
 
 55 
 
 6 
 
 611012 
 
 470 
 
 960392 
 
 94 
 
 650620 
 
 665 
 
 349380 
 
 54 
 
 7 
 
 611294 
 
 470 
 
 960335 
 
 94 
 
 650959 
 
 564 
 
 349041 
 
 53 
 
 8 
 
 611576 
 
 470 
 
 960279 
 
 94 
 
 661297 
 
 664 
 
 348703 
 
 52 
 
 
 
 611858 
 
 469 
 
 960222 
 
 94 
 
 661636 
 
 664 
 
 348364 
 
 51 
 
 10 
 
 11 
 
 612140 
 
 469 
 
 960165 
 
 94 
 95 
 
 651974 
 
 563 
 
 348026 
 10.347688 
 
 50 
 49 
 
 9.612421 
 
 469 
 
 9.960109 
 
 9.652312 
 
 663 
 
 12 
 
 612702 
 
 468 
 
 960052 
 
 95 
 
 652650 
 
 663 
 
 347350 
 
 48 
 
 13 
 
 612983 
 
 468 
 
 959995 
 
 95 
 
 652988 
 
 663 
 
 347012 
 
 47 
 
 14 
 
 613264 
 
 467 
 
 959938 
 
 95 
 
 653326 
 
 662 
 
 346674 
 
 46 
 
 15 
 
 613545 
 
 467 
 
 959882 
 
 95 
 
 653663 
 
 662 
 
 346337 
 
 45 
 
 1« 
 
 613825 
 
 467 
 
 959825 
 
 95 
 
 654000 
 
 662 
 
 346000 
 
 44 
 
 17 
 
 614105 
 
 466 
 
 959768 
 
 95 
 
 654337 
 
 661 
 
 345663 
 
 43 
 
 18 
 
 614385 
 
 466 
 
 959711 
 
 95 
 
 654674 
 
 561 
 
 345326 
 
 42 
 
 19 
 
 614665 
 
 466 
 
 959654 
 
 95 
 
 655011 
 
 661 
 
 344989 
 
 41 
 
 20 
 21 
 
 614944 
 
 465 
 
 959596 
 
 95 
 95 
 
 655348 
 
 661 
 
 344652 
 10.344316 
 
 40 
 39 
 
 9.615223 
 
 465 
 
 9.959539 
 
 9 . 655684 
 
 560 
 
 22 
 
 615502 
 
 465 
 
 959482 
 
 95 
 
 656020 
 
 560 
 
 343930 
 
 38 
 
 23 
 
 615781 
 
 464 
 
 959425 
 
 95 
 
 656356 
 
 560 
 
 343644 
 
 37 
 
 24 
 
 6 J 6060 
 
 464 
 
 959368 
 
 95 
 
 656692 
 
 659 
 
 343308 
 
 36 
 
 25 
 
 616338 
 
 464 
 
 959310 
 
 96 
 
 657028 
 
 559 
 
 342972 
 
 35 
 
 2(5 
 
 616616 
 
 463 
 
 959253 
 
 96 
 
 657364 
 
 559 
 
 342636 
 
 34 
 
 27 
 
 616894 
 
 463 
 
 959195 
 
 96 
 
 657699 
 
 559 
 
 342301 
 
 33 
 
 28 
 
 617172 
 
 462 
 
 959138 
 
 98 
 
 6580,?4 
 
 658 
 
 341966 
 
 32 
 
 29 
 
 617450 
 
 462 
 
 959081 
 
 96 
 
 658369 
 
 658 
 
 341631 
 
 31 
 
 30 
 31 
 
 617727 
 
 462 
 
 959023 
 
 96 
 96 
 
 658704 
 
 568 
 
 341296 
 10.340961 
 
 30 
 
 29 
 
 9.618004 
 
 461 
 
 9.958965 
 
 9.6.59039 
 
 658 
 
 32 
 
 618281 
 
 461 
 
 958908 
 
 96 
 
 659373 
 
 557 
 
 340627 
 
 28 
 
 33 
 
 618558 
 
 461 
 
 958850 
 
 96 
 
 659708 
 
 557 
 
 340292 
 
 27 
 
 34 
 
 618834 
 
 460 
 
 958792 
 
 96 
 
 660042 
 
 557 
 
 339958 
 
 26 
 
 35 
 
 619110 
 
 460 
 
 958734 
 
 96 
 
 660376 
 
 557 
 
 339624 
 
 25 
 
 36 
 
 619386 
 
 460 
 
 958677 
 
 96 
 
 660710 
 
 556 
 
 339290 
 
 24 
 
 37 
 
 619662 
 
 459 
 
 958619 
 
 96 
 
 661043 
 
 556 
 
 338957 
 
 23 
 
 38 
 
 619938 
 
 459 
 
 958561 
 
 96 
 
 661377 
 
 556 
 
 338623 
 
 22 
 
 39 
 
 620213 
 
 459 
 
 958503 
 
 97 
 
 661710 
 
 656 
 
 338290 
 
 21 
 
 40 
 
 41 
 
 62048P 
 
 458 
 
 958445 
 
 97 
 
 97 
 
 662043 
 
 655 
 
 337957 
 10.337624 
 
 20 
 19 
 
 9.620763 
 
 • 458 
 
 9.958387 
 
 9 662376 
 
 655 
 
 42 
 
 621038 
 
 457 
 
 958329 
 
 97 
 
 662709 
 
 554 
 
 337291 
 
 18 
 
 43 
 
 621313 
 
 457 
 
 958271 
 
 97 
 
 663042 
 
 554 
 
 336958 
 
 17 
 
 4-1 
 
 621587 
 
 457 
 
 958213 
 
 97 
 
 663375 
 
 654 
 
 336625 
 
 16 
 
 45 
 
 621861 
 
 456 
 
 958154 
 
 97 
 
 663707 
 
 554 
 
 336293 
 
 15 
 
 46 
 
 622135 
 
 456 
 
 958096 
 
 97 
 
 664039 
 
 663 
 
 335961 
 
 14 
 
 47 
 
 622409 
 
 456 
 
 958033 
 
 97 
 
 664371 
 
 553 
 
 335629 
 
 13 
 
 48 
 
 622682 
 
 455 
 
 957979 
 
 97 
 
 664703 
 
 553 
 
 335297 
 
 12 
 
 49 
 
 622956 
 
 455 
 
 95'!'921 
 
 97 
 
 665035 
 
 663 
 
 334965 
 
 11 
 
 60 
 51 
 
 623229 
 
 455 
 
 957863 
 
 97 
 9V 
 
 665366 
 9.665697 
 
 552 
 
 3346S4 
 10.334303 
 
 10 
 9 
 
 9.623502 
 
 454 
 
 9.957804 
 
 552 
 
 52 
 
 623774 
 
 454 
 
 957746 
 
 98 
 
 666029 
 
 552 
 
 333971 
 
 8 
 
 53 
 
 624047 
 
 454 
 
 957687 
 
 98 
 
 666360 
 
 551 
 
 333640 
 
 7 
 
 54 
 
 624319 
 
 453 
 
 957628 
 
 98 
 
 666691 
 
 551 
 
 .333309 
 
 6 
 
 55 
 
 624591 
 
 453 
 
 957570 
 
 98 
 
 667021 
 
 651 
 
 332979 
 
 5 
 
 56 
 
 624863 
 
 453 
 
 957511 
 
 98 
 
 667352 
 
 551 
 
 332648 
 
 4 
 
 67 
 
 625135 
 
 453 
 
 957452 
 
 98 
 
 6676S2 
 
 550 
 
 332318 
 
 3 
 
 68 
 
 625406 
 
 452 
 
 957393 
 
 98 
 
 668013 
 
 550 
 
 331987 
 
 2 
 
 59 
 
 625677 
 
 452 
 
 957335 
 
 98 
 
 668343 
 
 550 
 
 tin -I ffr »v 
 
 1 
 i 
 
 60 
 
 625918 
 
 451 
 
 957276 
 
 98 
 
 668672 
 
 550 
 
 33132S 
 
 
 
 
 1 Cosine 
 
 
 J Sine 1 
 
 Coiling. 
 
 1 
 
 1 Tang. 1 M. 1 
 
 M. 
 
 "o" 
 
 1 
 2 
 3 
 4 
 6 
 6 
 7 
 8 
 9 
 
 12 
 
 11 
 
 12 
 
 13 
 
 14 
 
 15 
 
 16 
 
 17 
 
 18 
 
 19 
 
 20 
 
 21 
 22 
 23 
 24 
 2b 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 S7 
 38 
 39 
 40- 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 53 
 
 54 
 55 
 66 
 57 
 
 58 I 
 
 60 I 
 
 65 Degrees. 
 
'^. 1 1 
 
 417 
 
 60 
 
 077 
 
 59 
 
 737 
 
 58 
 
 398 
 
 57 
 
 058 
 
 56 
 
 719 
 
 55 
 
 380 
 
 54 
 
 041 
 
 53 
 
 703 
 
 52 
 
 364 
 
 51 
 
 026 
 
 50 
 
 S88 
 
 49 
 
 350 
 
 48 
 
 012 
 
 47 
 
 674 
 
 46 
 
 337 
 
 45 
 
 OOO 
 
 44 
 
 663 
 
 43 
 
 326 
 
 42 
 
 989 
 
 41 
 
 652 
 
 40 
 
 316 
 
 39 
 
 980 
 
 38 
 
 644 
 
 37 
 
 308 
 
 3G 
 
 972 
 
 35 
 
 636 
 
 34 
 
 301 
 
 33 
 
 966 
 
 32 
 
 631 
 
 31 
 
 296 
 
 30 
 
 961 
 
 29 
 
 627 
 
 28 
 
 292 
 
 27 
 
 958 
 
 26 
 
 624 
 
 25 
 
 290 
 
 24 
 
 957 
 
 23 
 
 623 
 
 22 
 
 290 
 
 21 
 
 957 
 
 20 
 
 624 
 
 19 
 
 291 
 
 18 
 
 958 
 
 17 
 
 625 
 
 16 
 
 293 
 
 15 
 
 961 
 
 14 
 
 629 
 
 13 
 
 297 
 
 12 
 
 965 
 
 11 
 
 684 
 
 10 
 
 303 
 
 9 
 
 971 
 
 8 
 
 640 
 
 7 
 
 309 
 
 6 
 
 979 
 
 5 
 
 648 
 
 4 
 
 318 
 
 3 
 
 987 
 
 2 
 
 f^rrt^f 
 
 1 
 
 i}o; 
 
 i 
 
 328 
 
 
 
 iP- 
 
 |M. 
 
 SINES AND TANGENTS. (25 Degrees.) 43 
 
 
 
 1 
 
 2 
 3 
 
 4 
 6 
 6 
 7 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 2b 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 S7 
 38 
 39 
 40 
 
 41 
 42 
 43 
 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 9.625948 
 626219 
 626490 
 626760 
 627030 
 627300 
 627570 
 627840 
 628109 
 628378 
 _(i28647 
 
 9.6289161 
 629185 
 629453 
 629721 
 629989 
 630257 
 630524 
 630792 
 631059 
 
 _ ^1^?^ 
 9.631593 
 631859 
 632125 
 032392 
 632658 
 632923 
 633189 
 633454 
 633719 
 633984 
 
 451 
 451 
 451 
 450 
 460 
 450 
 449 
 449 
 449 
 448 
 448 
 
 .957276) 
 9572171 
 957158 
 957099 
 957040 
 956981 
 956921 
 956862 
 956803 
 956744 
 956684 
 
 447 9 
 
 447 
 
 447 
 
 446 
 
 446 
 
 446 
 
 446 
 
 445 
 
 445 
 
 445 
 
 9.634249 
 6.34514 
 634778 
 635042 
 635306 
 635570 
 635834 
 636097 
 636360 
 636623 
 
 444 
 444 
 444 
 443 
 443 
 443 
 442 
 442 
 442 
 441 
 
 . 956625 
 956566 
 956506 
 956447 
 956387 
 956327 
 956268 
 956208 
 956148 
 956089 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 ou 
 60 
 
 9.636886 
 637148 
 637411 
 637673 
 637935 
 638197 
 638458 
 638720 
 638981 
 639242 
 
 441 
 440 
 440 
 440 
 439 
 439 
 439 
 438 
 438 
 438 
 
 .956029 
 955969 
 955909 
 955849 
 955789 
 955729 
 955669 
 955609 
 955548 
 95.5488 
 
 9819.668673 
 981 669002 
 98 669332 
 98| 669661 
 669991 
 670320 
 670649 
 G70977 
 671.306 
 671634 
 671963 
 
 9.672291 
 672619 
 672947 
 673274 
 673602 
 673929 
 674257 
 674584 
 674910 
 675237 
 
 .955428 
 955368 
 955307 
 955247 
 955186 
 955126 
 955065 
 955005 
 954944 
 95488? 
 
 9.639503 
 639764 
 640024 
 640284 
 640544 
 640804 
 641064 
 641.324 
 G4 1 584 
 6418421 
 
 437 
 437 
 437 
 437 
 436 
 436 
 436 
 435 
 435 
 435 
 
 434 
 434 
 434 
 433 
 433 
 433 
 432 
 432 
 432 
 431 
 
 I 9.54823 
 954762 
 954701 
 954640 
 954579 
 954518 
 954457 
 954396 
 954335 
 954274 
 
 .954213 
 954152 
 954090 
 954029 
 953968 
 953906 
 953845 
 953783 
 953722 
 9536601 
 
 ). 675564 
 675890 
 676216 
 676543 
 676869 
 677194 
 677520 
 677846 
 678171 
 67 8496 
 
 9.678821 
 679146 
 679471 
 679795 
 680120 
 680444 
 680768 
 681092 
 681416 
 681740 
 
 9.682063 
 
 682387 
 682710 
 683033 
 683356 
 683679 
 684001 
 684324 
 684646 
 68496 8 
 
 9.685290 
 685612 
 685934 
 686255 
 686577 
 686898 
 687219 
 687540 
 687861 1 
 688182 
 
 5.50 
 549 
 549 
 549 
 
 548 
 548 
 548 
 548 
 547 
 547 
 647 
 
 10 
 
 547 
 546 
 546 
 646 
 546 
 645 
 545 
 545 
 544 
 544 
 
 .331327 
 330998 
 330668 
 330339 
 330009 
 329680 
 329351 
 329023 
 328694 
 328366 
 
 10 
 
 544 
 644 
 543 
 543 
 643 
 643 
 642 
 542 
 542 
 642 
 
 60 
 59 
 58 
 67 
 66 
 55 
 64 
 63 
 52 
 61 
 
 . 328037 50 
 
 .327709 
 327381 
 327053 
 326726 
 326398 
 326071 
 325743 
 32.5416 
 325090 
 324763 
 
 10 
 
 641 
 641 
 641 
 641 
 540 
 540 
 640 
 640 
 639 
 639 
 
 ,324436 
 324110 
 323784 
 323457 
 323131 
 322806 
 322480 
 322154 
 321829 
 321504 
 
 10 
 
 639 
 639 
 638 
 638 
 638 
 538 
 537 
 537 
 637 
 537 
 
 .321179 
 320854 
 320529 
 320205 
 319880 
 319,556 
 319232 
 318908 
 318584 
 318260 
 
 536 
 536 
 636 
 636 
 535 
 635 
 535 
 
 534 
 534 
 
 10 
 
 .317937 
 317613 
 317290 
 316967 
 316644 
 316321 
 31.5999 
 315676 
 31.5354 
 315032 
 
 10.314710 
 314388 
 314066 
 313745 
 313423 
 313102 
 312781 
 oi*4DU 
 312139 
 311818 
 
 49 
 48 
 47 
 46 
 4o 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 
 28 
 
 27 
 
 26 
 
 25 
 
 24 
 
 23 
 
 22 
 
 21 
 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 8 
 7 
 G 
 5 
 4 
 3 
 
 1 
 
 
 
 64 Degrees, 
 
[IK •*' 
 
 44 
 
 
 (26 Degrees.) a 
 
 TABLE OF LOOABITIIMIC 
 
 
 M. 
 
 Bine 
 
 D. 
 
 t CoHinu 1). 
 
 ■IV.tIL'. 1 
 
 I) 
 
 1 C.tttirig. 
 
 
 
 
 9.641842 
 
 431 
 
 U . 953660 
 
 103 
 
 9.688182 
 
 634 
 
 10.311818 
 
 60 
 
 1 
 
 642101 
 
 431 
 
 953599 
 
 103 
 
 088;j)2 
 
 534 
 
 311498 
 
 59 
 
 2 
 
 042360 
 
 431 
 
 9.13537 
 
 103 
 
 688823 
 
 634 
 
 311177 
 
 68 
 
 3 
 
 642618 
 
 430 
 
 953475 
 
 103 
 
 089143 
 
 533 
 
 310857 
 
 67 
 
 4 
 
 642877 
 
 430 
 
 953413 
 
 103 
 
 689463 
 
 633 
 
 310537 
 
 66 
 
 5 
 
 643135 
 
 430 
 
 953352 
 
 103 
 
 689783 
 
 533 
 
 310217 
 
 55 
 
 6 
 
 643893 
 
 430 
 
 953290 
 
 103 
 
 690103 
 
 533 
 
 309897 
 
 54 
 
 7 
 
 643650 
 
 429 
 
 953228 
 
 103 
 
 690423 
 
 533 
 
 309577 
 
 53 
 
 8 
 
 643908 
 
 429 
 
 953166 
 
 103 
 
 690742 
 
 532 
 
 309258 
 
 52 
 
 9 
 
 644165 
 
 429 
 
 953104 
 
 103 
 
 691062 
 
 632 
 
 308938 
 
 51 
 
 10 
 11 
 
 044423 
 9.644680 
 
 428 
 
 953042 
 
 103 
 104 
 
 691381 
 9. 69 1700 
 
 632 
 
 308619 
 10.308300 
 
 50 
 49 
 
 42S 
 
 9.952980 
 
 531 
 
 1*2 
 
 644936 
 
 428 
 
 952918 
 
 104 
 
 692019 
 
 631 
 
 307981 
 
 48 
 
 13 
 
 645193 
 
 427 
 
 952855 
 
 104 
 
 692338 
 
 631 
 
 307662 
 
 47 
 
 14 
 
 645450 
 
 427 
 
 952793 
 
 104 
 
 692656 
 
 531 
 
 307344 
 
 46 
 
 15 
 
 645706 
 
 427 
 
 952731 
 
 104 
 
 692975 
 
 631 
 
 307025 
 
 45 
 
 16 
 
 645962 
 
 426 
 
 952669 
 
 104 
 
 693293 
 
 530 
 
 306707 
 
 44 
 
 17 
 
 646218 
 
 426 
 
 952606 
 
 104 
 
 693612 
 
 530 
 
 306388 
 
 43 
 
 18 
 
 646474 
 
 426 
 
 952.544 
 
 104 
 
 693930 
 
 .530 
 
 306070 
 
 42 
 
 19 
 
 646729 
 
 425 
 
 952481 
 
 104 
 
 694248 
 
 630 
 
 305752 
 
 41 
 
 20 
 21 
 
 646984 
 
 425 
 
 952419 
 9.9.52356 
 
 104 
 104 
 
 694566 
 9.694883 
 
 ,529 
 
 305434 
 10.305117 
 
 40 
 39 
 
 9 . 6-! 
 
 t7240 
 
 425 
 
 529 
 
 22 
 
 6^ 
 
 7494 
 
 424 
 
 952294 
 
 104 
 
 69.5201 
 
 629 
 
 304799 
 
 38 
 
 23 
 
 6^ 
 
 17749 
 
 424 
 
 952231 
 
 104 
 
 69.5518 
 
 529 
 
 304482 
 
 37 
 
 24 
 
 6' 
 
 8004 
 
 424 
 
 9.52168 
 
 105 
 
 695836 
 
 629 
 
 304164 
 
 36 
 
 25 
 
 6^ 
 
 8258 
 
 424 
 
 952106 
 
 105 
 
 6961.53 
 
 528 
 
 303847 
 
 35 
 
 26 
 
 6^ 
 
 18512 
 
 423 
 
 9.52043 
 
 105 
 
 696470 
 
 528 
 
 303530 
 
 34 
 
 27 
 
 6' 
 
 8766 
 
 423 
 
 951980 
 
 105 
 
 696787 
 
 528 
 
 303213 
 
 33 
 
 28 
 
 G4 
 
 9020 
 
 423 
 
 951917 
 
 105 
 
 697103 
 
 528 
 
 302897 
 
 32 
 
 29 
 
 6^ 
 
 19274 
 
 422 
 
 9518.54 
 
 105 
 
 697420 
 
 627 
 
 302580 
 
 31 
 
 30 
 31 
 
 G-i 
 
 19527 
 
 422 
 
 951791 
 
 105 
 105 
 
 697736 
 9.6980.53 
 
 527 
 
 302264 
 10.301947 
 
 30 
 29 
 
 9.649781 
 
 422 
 
 9.951728 
 
 527 
 
 32 
 
 650034 
 
 422 
 
 951665 
 
 105 
 
 698369 
 
 627 
 
 301631 
 
 28 
 
 33 
 
 650287 
 
 421 
 
 951602 
 
 105 
 
 698685 
 
 .526 
 
 301315 
 
 27 
 
 34 
 
 650539 
 
 421 
 
 951.539 
 
 105 
 
 699001 
 
 626 
 
 300999 
 
 26 
 
 35 
 
 650792 
 
 421 
 
 951476 
 
 105 
 
 699316 
 
 526 
 
 300684 
 
 25 
 
 36 
 
 651044 
 
 420 
 
 951412 
 
 105 
 
 699632 
 
 626 
 
 30036b 
 
 24 
 
 37 
 
 651297 
 
 420 
 
 951349 
 
 106 
 
 699947 
 
 .526 
 
 300053 
 
 23 
 
 38 
 
 651549 
 
 420 
 
 951286 
 
 106 
 
 700263 
 
 625 
 
 299737 
 
 22 
 
 39 
 
 651800 
 
 419 
 
 951222 
 
 106 
 
 700578 
 
 525 
 
 299422 
 
 21 
 
 40 
 41 
 
 652052 
 9.652304 
 
 419 
 
 951159 
 
 106 
 
 106 
 
 700893 
 
 9.701208 
 
 625 
 
 299107 
 
 20 
 19 
 
 419 
 
 9.951096 
 
 524 
 
 10.298792 
 
 42 
 
 652555 
 
 418 
 
 951032 
 
 106 
 
 701.523 
 
 524 
 
 298477 
 
 18 
 
 43 
 
 652806 
 
 418 
 
 9.50968 
 
 106 
 
 7018.37 
 
 524 
 
 298163 
 
 17 
 
 44 
 
 653057 
 
 418 
 
 950905 
 
 106 
 
 702152 
 
 524 
 
 297848 
 
 16 
 
 45 
 
 653308 
 
 418 
 
 950841 
 
 106 
 
 702466 
 
 .524 
 
 297534 
 
 15 
 
 46 
 
 653558 
 
 417 
 
 9,50778 
 
 106 
 
 702780 
 
 52. 
 
 297220 
 
 14 
 
 47 
 
 653808 
 
 417 
 
 950714 
 
 106 
 
 70.3095 
 
 623 
 
 296905 
 
 13 
 
 48 
 
 G54059 
 
 417 
 
 950650 
 
 106 
 
 703409 
 
 523 
 
 296.591 
 
 12 
 
 49 
 
 654309 
 
 416 
 
 950586 
 
 106 
 
 703723 
 
 523 
 
 296277 
 
 11 
 
 50 
 
 51 
 
 654558 
 9.654808 
 
 416 
 
 950522 
 
 107 
 107 
 
 704036 
 9.7043,50 
 
 623 
 
 295964 
 10.29.5650 
 
 10 
 9 
 
 416 
 
 9.9.504,58 
 
 522 
 
 52 
 
 655058 
 
 416 
 
 950394 
 
 107 
 
 704663 
 
 522 
 
 295337 
 
 8 
 
 53 
 
 655307 
 
 415 
 
 9.50330 
 
 107 
 
 704977 
 
 522 
 
 295023 
 
 7 
 
 54 
 
 655556 
 
 415 
 
 950266 
 
 107 
 
 '^05290 
 
 522 
 
 294710 
 
 6 
 
 55 
 
 655805 
 
 415 
 
 950202 
 
 107 
 
 705603 
 
 521 
 
 294397 
 
 5 
 
 56 
 
 656054 
 
 414 
 
 9.501.38 
 
 107 
 
 705916 
 
 621 
 
 294084 
 
 4 
 
 57 
 
 656302 
 
 414 
 
 950074 
 
 107 
 
 706228 
 
 ,521 
 
 293772 
 
 3 
 
 58 
 
 656551 
 
 414 
 
 950010 
 
 10'^ 
 
 706541 
 
 521 
 
 293459 
 
 2 
 
 CO 
 
 658799 
 
 413 
 
 949945 
 
 10? 
 
 706854 
 
 S'- 
 
 
 1 
 
 60 
 
 657047 
 
 413 
 
 949881 
 
 107 
 
 707166 
 
 520 
 
 2928.34 
 
 
 
 _! 
 
 Cosine 
 
 
 Sine 1 
 
 Oota.ig. 
 
 1 I'ang. 1 M. J 
 
 63 Degrees. 
 
 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 
 11 
 
 12 
 
 13 
 
 14 
 
 15 
 
 16 
 
 17 
 
 18 
 
 191 
 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31" 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 
 »40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 60 
 
 51 
 
 9. 
 
 52 
 
 
 53 
 
 
 54 
 
 
 65 
 
 
 56 
 
 
 57 
 
 
 n» 
 
 t 
 
 59 
 
 ( 
 
 60 
 
 ( 
 
 ) 
 
 C( 
 
«■ 
 
 
 318 
 
 60 
 
 li»8 
 
 59 
 
 177 
 
 58 
 
 if>7 
 
 57 
 
 537 
 
 56 
 
 il7 
 
 55 
 
 397 
 
 54 
 
 577 
 
 53 
 
 ^58 
 
 52 
 
 ^38 
 
 51 
 
 619 
 
 50 
 
 100 
 
 49 
 
 981 
 
 48 
 
 662 
 
 47 
 
 344 
 
 46 
 
 1)25 
 
 45 
 
 707 
 
 44 
 
 188 
 
 43 
 
 [)70 
 
 42 
 
 752 
 
 41 
 
 434 
 
 40 
 
 117 
 
 39 
 
 799 
 
 38 
 
 482 
 
 37 
 
 164 
 
 36 
 
 847 
 
 35 
 
 530 
 
 34 
 
 213 
 
 33 
 
 897 
 
 32 
 
 580 
 
 31 
 
 264 
 
 30 
 
 947 
 
 29 
 
 631 
 
 28 
 
 315 
 
 27 
 
 999 
 
 26 
 
 684 
 
 25 
 
 368 
 
 24 
 
 053 
 
 23 
 
 737 
 
 22 
 
 422 
 
 21 
 
 107 
 
 20 
 
 792 
 
 19 
 
 477 
 
 18 
 
 163 
 
 17 
 
 848 
 
 16 
 
 534 
 
 15 
 
 220 
 
 14 
 
 905 
 
 13 
 
 591 
 
 12 
 
 277 
 
 11 
 
 964 
 
 10 
 
 650 
 
 9 
 
 337 
 
 8 
 
 023 
 
 7 
 
 710 
 
 6 
 
 397 
 
 5 
 
 084 
 
 4 
 
 772 
 
 3 
 
 459 
 
 2 
 
 146 
 
 1 
 
 
 834 
 
 
 
 ?• 1 M. 
 
 SINES AND TANOENTa. (27 Degrees.) 
 
 4.1 
 
 01 p. 657047 
 1 657295 
 657542 
 657790 
 f>^8037 
 658284 
 658531 
 658778 
 659025 
 659271 
 659517 
 
 9.659763 
 660009 
 6602.55 
 660501 
 660746 
 660991 
 661236 
 661481 
 661726 
 661970 
 
 .662214 
 662459 
 662703 
 662946 
 663190 
 663433 
 663677 
 663920 
 664163 
 664406 
 
 .664648 
 664891 
 665133 
 665375 
 ^>65617 
 oG.5859 
 666100 
 666342 
 666583 
 666824 
 
 9.667065 
 667305 
 667546 
 667786 
 668027 
 668267 
 6(38506 
 668746 
 668986 
 669225 
 
 9.66'9464 
 669703 
 669942 
 670181 
 670419 
 670658 
 670896 
 
 413 
 
 413 
 
 412 
 
 4)2 
 
 412 
 
 412 
 
 411 
 
 411 
 
 411 
 
 410 
 
 410 
 
 410 
 409 
 409 
 409 
 409 
 408 
 408 
 408 
 407 
 407 
 
 9.949881 
 U49816 
 949752 
 949688 
 949623 
 949558 
 949494 
 949429 
 949364 
 949300 
 949235 
 
 407 
 407 
 406 
 406 
 406 
 405 
 405 
 405 
 405 
 404 
 
 404 
 404 
 403 
 403 
 403 
 402 
 402 
 402 
 <102 
 401 
 
 398 
 398 
 398 
 397 
 397 
 397 
 897 
 
 671372.1 396 
 
 60 1 671609 396 
 
 401 
 401 
 401 
 400 
 400 
 400 
 399 
 399 
 399 
 399 
 
 y. 949 170 
 949105 
 949040 
 948975 
 948910 
 948845 
 948780 
 948715 
 948650 
 94 8584 
 
 9.948519 
 948454 
 948388 
 948323 
 948257 
 948192 
 948126 
 948060 
 947995 
 947929 
 
 9.947863 
 947797 
 947731 
 947665 
 947600 
 947533 
 947467 
 947401 
 947335 
 947269 
 
 107)9.707166 
 1071 707478 
 707790 
 708102 
 708414 
 708726 
 709037 
 709349 
 709660 
 709971 
 710282 
 
 107 
 108 
 108 
 108 
 108 
 108 
 108 
 108 
 108 
 
 108 
 108 
 108 
 108 
 108 
 108 
 109 
 109 
 109 
 109 
 
 109 
 109 
 109 
 109 
 109 
 109 
 109 
 109 
 110 
 110 
 
 9.710593 
 710904 
 711216 
 711.'^25 
 711836 
 712146 
 712456 
 712766 
 713076 
 713386 
 
 9 947203 
 947136 
 947070 
 947004 
 946937 
 946871 
 946804 
 946738 
 946671 
 946604 
 
 110 
 110 
 110 
 110 
 110 
 110 
 110 
 110 
 110 
 110 
 
 9.713696 
 714005 
 714314 
 714624 
 714933 
 715242 
 715551 
 715860 
 716168 
 716477 
 
 9.946538 
 946471 
 946404 
 946337 
 946270 
 946203 
 946136 
 S46069 
 946002 
 945935 
 
 110 
 
 111 
 
 111 
 
 HI 
 
 111 
 
 111 
 
 111 
 
 111 
 
 Ul 
 
 m 
 
 111 
 111 
 111 
 111 
 
 112 
 112 
 112 
 112 
 112 
 112 
 
 9.716785 
 717093 
 717401 
 717709 
 718017 
 718325 
 718633 
 718940 
 719248 
 719555 
 
 9.719862 
 72C169 
 720476 
 720783 
 721089 
 721396 
 721702 
 722009, 
 722315 
 722621 
 
 I Cosine 1 
 
 9.722927 
 723232 
 723538 
 723844 
 724149 
 724454 
 724759 
 725066 
 725369 
 725674 
 
 520 
 
 520 
 
 520 
 
 520 
 
 619 
 
 519 
 
 519 
 
 619 
 
 519 
 
 518 
 
 518 
 
 518 
 618 
 618 
 547 
 517 
 617 
 517 
 616 
 516 
 516 
 
 10.2U28;M|f3u 
 292522 69 
 292210 ftfl 
 291898 57 
 291586 66 
 291274 65 
 290963 54 
 290651 53 
 290340 52 
 290029 61 
 289718 .50 
 
 516 
 516 
 615 
 
 4:5 
 
 6lN 
 615 
 614 
 614 
 514 
 514 
 
 614 
 613 
 613 
 613 
 613 
 613 
 612 
 612 
 512 
 612 
 
 612 
 511 
 511 
 511 
 511 
 511 
 510 
 510 
 610 
 510 
 
 510 
 509 
 509 
 509 
 509 
 509 
 608 
 808 
 508 
 608 
 
 10.289407 
 289096 
 288785 
 288475 
 288164 
 287854 
 287544 
 287234 
 286924 
 286614 
 
 10.286.304 
 
 285995 
 285686 
 285376 
 285067 
 284758 
 284449 
 284140 
 283832 
 2S3523 
 
 10.28.3215 
 282907 
 282^599 
 282291 
 281983 
 281670 
 281367 
 281080 
 280752 
 280446 
 
 10.280138 
 279831 
 279524 
 279217 
 278911 
 278604 
 278298 
 277991 
 277685 
 277379 
 
 10.277073 
 276768 
 276462 
 276156 
 27.5851 
 276646 
 275241 
 274835 
 : 7463 11 
 2743261 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 
 38 
 
 37 
 
 36 
 
 35 
 
 34 
 
 33 
 
 32 
 
 31 
 
 30 
 
 29 
 28 
 27 
 26 
 »5 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 I 
 
 5 
 4 
 3 
 
 2 
 I 
 
 
 \ 
 
 62 Degrees. 
 
\r^ 
 
 s 
 
 46 
 
 (20 Degrees.; a TABLK of LOOAniTIIMTO 
 
 1 
 ■11 
 
 M. 
 
 1 Kino 
 
 1 '»■ 
 
 I UoHhU! 1 U. 
 
 1 Taiiu. 
 
 1 l>. 
 
 ("..taiii;. 1 1 
 
 
 
 9.671009 
 
 396 
 
 "97945935 
 
 112 
 
 9.725674 
 
 608 
 
 10.274323 
 
 I5(r 
 
 1 
 
 671847 
 
 395 
 
 945868 
 
 112 
 
 725979 
 
 508 
 
 274021 
 
 59 
 
 2 
 
 672084 
 
 395 
 
 945800 
 
 112 
 
 7262H4 
 
 507 
 
 273716 
 
 5« 
 
 n 
 
 672321 
 
 395 
 
 945733 
 
 112 
 
 726588 
 
 507 
 
 273412 
 
 57 
 
 4 
 
 672558 
 
 395 
 
 945666 
 
 112 
 
 726892 
 
 507 
 
 273108 
 
 56 
 
 5 
 
 672795 
 
 394 
 
 945598 
 
 112 
 
 727197 
 
 507 
 
 2?2803 
 
 55 
 
 f) 
 
 673032 
 
 394 
 
 945531 
 
 112 
 
 727501 
 
 507 
 
 272499 
 
 54 
 
 7 
 
 673268 
 
 304 
 
 945464 
 
 113 
 
 727805 
 
 506 
 
 272195 
 
 53 
 
 8 
 
 673505 
 
 394 
 
 945396 
 
 113 
 
 728109 
 
 506 
 
 271891 
 
 52 
 
 9 
 
 673741 
 
 393 
 
 945328 
 
 113 
 
 728412 
 
 506 
 
 2V1588 
 
 51 
 
 10 
 ifi 
 
 673977 
 
 393 
 
 945261 
 9.945193 
 
 113 
 113 
 
 728716 
 
 506 
 
 271284 
 
 50 
 49 
 
 9.674213 
 
 393 
 
 9.729020 
 
 506 
 
 10.270980 
 
 12 
 
 674448 
 
 392 
 
 945125 
 
 113 
 
 729323 
 
 505 
 
 270677 
 
 48 
 
 i;{ 
 
 674ti«'i 
 
 392 
 
 945058 
 
 113 
 
 729626 
 
 505 
 
 270374 
 
 47 
 
 14 
 
 674919 
 
 392 
 
 944990 
 
 113 
 
 729929 
 
 505 
 
 270071 
 
 46 
 
 15 
 
 675155 
 
 392 
 
 944922 
 
 113 
 
 730233 
 
 505 
 
 269767 
 
 45 
 
 If) 
 
 675390 
 
 391 
 
 944854 
 
 113 
 
 730.')35 
 
 505 
 
 269465 
 
 44 
 
 17 
 
 675624 
 
 391 
 
 944786 
 
 113 
 
 730838 
 
 504 
 
 269162 
 
 43 
 
 18 
 
 675859 
 
 391 
 
 944718 
 
 113 
 
 731141 
 
 504 
 
 268859 
 
 42 
 
 19 
 
 676094 
 
 391 
 
 944650 
 
 113 
 
 731444 
 
 504 
 
 268556 
 
 41 
 
 20 
 
 21 
 
 676328 
 
 390 
 
 944582 
 
 114 
 114 
 
 731746 
 
 504 
 
 268254 
 
 40 
 39 
 
 9.6765(52 
 
 390 
 
 9.944514 
 
 9.732048 
 
 504 
 
 10.267952 
 
 22 
 
 676796 
 
 390 
 
 944446 
 
 114 
 
 732351 
 
 503 
 
 267649 
 
 38 
 
 23 
 
 6T7030 
 
 390 
 
 944377 
 
 114 
 
 732653 
 
 503 
 
 267347 
 
 37 
 
 24 
 
 677264 
 
 389 
 
 944309 
 
 114 
 
 732955 
 
 503 
 
 267045 
 
 36 
 
 25 
 
 677498 
 
 389 
 
 944241 
 
 114 
 
 733257 
 
 503 
 
 266743 
 
 35 
 
 26 
 
 677731 
 
 389 
 
 944172 
 
 114 
 
 733558 
 
 503 
 
 266442 
 
 34 
 
 27 
 
 677964 
 
 388 
 
 944104 
 
 114 
 
 733860 
 
 502 
 
 266140 
 
 33 
 
 28 
 
 678197 
 
 388 
 
 944036 
 
 114 
 
 734162 
 
 502 
 
 265838 
 
 32 
 
 29 
 
 678430 
 
 388 
 
 9:3967 
 
 114 
 
 734463 
 
 502 
 
 265537 
 
 31 
 
 30 
 31 
 
 678683 
 
 388 
 
 943899 
 
 114 
 114 
 
 734764 
 
 502 
 
 265236 
 10.264934 
 
 30 
 
 29 
 
 9 678895 
 
 387 
 
 9.943830 
 
 9.735066 
 
 502 
 
 32 
 
 679128 
 
 387 
 
 943761 
 
 114 
 
 735367 
 
 502 
 
 264833 
 
 28 
 
 33 
 
 679360 
 
 387 
 
 943693 
 
 115 
 
 735668 
 
 501 
 
 264332 
 
 27 
 
 34 
 
 679592 
 
 387 
 
 943624 
 
 115 
 
 735969 
 
 501 
 
 264031 
 
 26 
 
 35 
 
 679824 
 
 386 
 
 943555 
 
 115 
 
 736269 
 
 501 
 
 263731 
 
 25 
 
 36 
 
 680056 
 
 386 
 
 943486 
 
 115 
 
 736570 
 
 501 
 
 263430 
 
 24 
 
 37 
 
 680288 
 
 386 
 
 943417 
 
 115 
 
 736871 
 
 501 
 
 263129 
 
 23 
 
 38 
 
 680519 
 
 385 
 
 943348 
 
 115 
 
 737171 
 
 500 
 
 262829 
 
 22 
 
 39 
 
 6S0750 
 
 385 
 
 943279 
 
 115 
 
 737471 
 
 500 
 
 262529 
 
 21 
 
 40 
 
 41 
 
 680982 
 
 385 
 
 943210 
 
 115 
 115 
 
 737771 
 
 500 
 
 262229 
 
 20 
 19 
 
 9.681213 
 
 385 
 
 9.943141 
 
 9.738071 
 
 500 
 
 10.261929 
 
 42 
 
 681443 
 
 384 
 
 943072 
 
 115 
 
 738371 
 
 500 
 
 261629 
 
 18 
 
 43 
 
 681674 
 
 384 
 
 943003 
 
 115 
 
 738671 
 
 499 
 
 261329 
 
 17 
 
 44 
 
 681905 
 
 384 
 
 942S34 
 
 115 
 
 738971 
 
 499 
 
 261029 
 
 16 
 
 4ft 
 
 682135 
 
 384 
 
 942864 
 
 115 
 
 739271 
 
 499 
 
 260729 
 
 15 
 
 46 
 
 682365 
 
 383 
 
 942795 
 
 116 
 
 739570 
 
 499 
 
 260430 
 
 14 
 
 47 
 
 682595 
 
 383 
 
 942726 
 
 116 
 
 739870 
 
 499 
 
 260130 
 
 13 
 
 48 
 
 682825 
 
 383 
 
 942656 
 
 116 
 
 740169 
 
 499 
 
 159831 
 
 12 
 
 49 
 
 683055 
 
 383 
 
 942587 
 
 116 
 
 740468 
 
 498 
 
 259532 
 
 11 
 
 50 
 51 
 
 683284 
 
 382 
 
 942517 
 
 116 
 116 
 
 740767 
 
 498 
 
 259233 
 
 10 
 9 
 
 9.683514 
 
 382 
 
 9.942448 
 
 9.741066 
 
 498 
 
 10.258934 
 
 02 
 
 683743 
 
 382 
 
 942378 
 
 116 
 
 741365 
 
 498 
 
 258635 
 
 8 
 
 53 
 
 683972 
 
 382 
 
 942308 
 
 116 
 
 741664 
 
 498 
 
 258336 
 
 7 
 
 54 
 
 684201 
 
 381 
 
 942239 
 
 116 
 
 741962 
 
 497 
 
 258038 
 
 6 
 
 55 
 
 684430 
 
 381 
 
 942169 
 
 116 
 
 742261 
 
 497 
 
 257739 
 
 5 
 
 56 
 
 684658 
 
 381 
 
 942099 
 
 116 
 
 742559 
 
 497 
 
 257441 
 
 4 
 
 57 
 
 684887 
 
 380 
 
 942029 
 
 116 
 
 742858 
 
 497 
 
 2.57142 
 
 3 
 
 58 
 
 685115 
 
 380 
 
 941959 
 
 116 
 
 743156 
 
 497 
 
 256844 
 
 2 
 
 09 
 
 GS5343 
 
 38U 
 
 941889 117 
 
 743454 
 
 49/ 
 496 
 
 256540 
 
 1 
 
 60 
 
 685571 
 
 380 
 
 .. 941819 117 
 
 743752 
 
 256248 
 
 <l 
 
 "T Cosine I 
 
 [0 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 
 122 
 
 23 
 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 43 
 
 44 
 45 
 46 
 47 
 48 
 49 
 .50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 I 
 
 Sine 
 
 Cotang. 
 
 Tang. 
 
 M. 
 
 81 Degrees. 
 
•If- 
 
 1 
 
 i3^ 
 
 -G^ 
 
 K)21 
 
 59 
 
 r/i« 
 
 68 
 
 J412 
 
 57 
 
 1108 
 
 56 
 
 !80:) 
 
 55 
 
 ,499 
 
 54 
 
 ,195 
 
 53 
 
 891 
 
 52 
 
 ms 
 
 51 
 
 284 
 
 50 
 
 980 
 
 49 
 
 677 
 
 48 
 
 ;j74 
 
 47 
 
 071 
 
 46 
 
 7G7 
 
 45 
 
 465 
 
 44 
 
 162 
 
 43 
 
 859 
 
 42 
 
 556 
 
 41 
 
 254 
 
 40 
 
 952 
 
 39 
 
 649 
 
 38 
 
 347 
 
 37 
 
 045 
 
 36 
 
 743 
 
 35 
 
 442 
 
 34 
 
 140 
 
 33 
 
 838 
 
 32 
 
 537 
 
 31 
 
 236 
 
 30 
 
 934 
 
 29 
 
 633 
 
 28 
 
 332 
 
 27 
 
 031 
 
 26 
 
 731 
 
 25 
 
 430 
 
 24 
 
 129 
 
 23 
 
 829 
 
 22 
 
 529 
 
 21 
 
 229 
 
 20 
 
 929 
 
 19 
 
 629 
 
 18 
 
 329 
 
 17 
 
 029 
 
 16 
 
 1729 
 
 15 
 
 1430 
 
 14 
 
 H30 
 
 13 
 
 1831 
 
 12 
 
 t532 
 
 11 
 
 )233 
 
 10 
 
 UJ34 
 
 9 
 
 ?635 
 
 8 
 
 <336 
 
 7 
 
 ^038 
 
 6 
 
 -739 
 
 5 
 
 ?'441 
 
 4 
 
 n42 
 
 3 
 
 )S44 
 
 2 
 
 ■» ^ a /> 
 
 1 
 
 30i!J 
 
 3248 
 
 
 
 g- 
 
 
 SINES AND TANOENTS. 
 
 (20 Degrees.) 
 
 47 
 
 .685571 
 685799 
 68602V 
 08C254 
 686482 
 686709 
 686936 
 687163 
 6S7389 
 687616 
 687843 
 
 . 688069 
 688295 
 68*<5«1 
 688747 
 688972 
 689198 
 689423 
 689648 
 689873 
 690098 
 
 .690323 
 690548 
 690772 
 690996 
 691220 
 691444 
 691668 
 691892 
 692115 
 692339 
 
 .692.562 
 692785 
 693008 
 693231 
 693453 
 693676 
 693898 
 694120 
 694342 
 694564 
 
 380 
 
 379 
 
 379 
 
 379 
 
 37« 
 
 378 
 
 378 
 
 378 
 
 378 
 
 377 
 
 _?77_ 
 
 3/7 
 377 
 376 
 376 
 376 
 376 
 375 
 375 
 375 
 _375 
 
 374 
 
 374 
 
 374 
 
 374 
 
 373 
 
 373 
 
 373 
 
 373 
 
 372 
 
 372 
 
 9.W18I9 
 ■Ml 74 9 
 941679 
 941609 
 941539 
 941409 
 941398 
 941328 
 9412.581 
 941187 
 941 U7 
 
 9.941046 
 940975 
 940905 
 940834 
 940763 
 9406931 
 940622 
 940.551 
 940480 
 940409 
 
 9 
 
 J. 694786 
 6950071 
 6952291 
 695450 
 695671 
 69.5892 
 696113 
 696334 
 6965.54 
 696775 
 
 .696995 
 697215 
 697435 
 6976.54 
 697874 
 69S094 
 698313 
 698532 
 6987.51 
 698970! 
 
 372 
 371 
 371 
 371 
 371 
 370 
 370 
 370 
 370 
 369 
 
 .940.338 
 940267 
 940196 
 940125 
 940054 
 939982 
 939911 
 939840 
 939768 
 939697 
 
 9.713752 
 744050 
 741348 
 744645 
 744943 
 745240 
 745538 
 745835 
 746132 
 746429 
 746726 
 
 9.747023 
 747319 
 747616- 
 747913 
 748209 
 748505 
 748801 
 749097 
 749393 
 749689 
 
 496 
 
 496 
 
 496 
 
 496 
 
 496 
 
 496 
 
 495 
 
 495 
 
 495 
 
 495 
 
 495 
 
 10.256248160 
 255950 59 , 
 25.5652 58 
 255:i55 57 
 
 255057 
 254760 
 2.54402 
 £.54165 
 25.3868 
 253.571 
 253274 
 
 56 
 65 
 
 Ui 
 .531 
 
 52 i 
 
 51 
 
 6«i 
 
 369 
 369 
 369 
 368 
 368 
 368 
 368 
 367 
 367 
 367 
 
 9.939625 
 939554 
 939482 
 939410 
 939339 
 939267 
 939185 
 939123 
 939052 
 938980 
 
 9.749985 
 750281 
 750576 
 750872 
 751167 
 751462 
 751757 
 752052 
 752347 
 752642 
 
 367 
 
 366 
 
 366 
 
 366 
 
 366 
 
 365 
 
 365 
 op- 
 
 365 
 364 
 
 9.938008 
 938836 
 9.38763 
 938691 
 938619 
 938547 
 938475 
 938402 
 9.38330 
 
 __938258 
 
 9.9.38185 
 9.38113 
 938040 
 937967 
 937895 
 937822 
 937749 
 ucs/fivOi 
 937604 
 9375311 
 
 9.752937 
 753231 
 753520 
 753820 
 7.54115 
 754409 
 754703 
 7.54997 
 7.55291 
 755585 
 
 9.7,55878 
 756172 
 766465 
 756759 
 757052 
 757345 
 757638 
 7579:^ 1 
 758224 
 758517 
 
 493 
 492 
 492 
 492 
 492 
 492 
 
 ■1 
 
 4l>. 
 
 490 
 
 490 
 
 490 
 
 490 
 
 490 
 
 490 
 
 489 
 
 10.2.50015 
 
 249719 
 
 249424 
 
 249128 
 
 218P33 
 
 248538 
 
 ^ .243 
 
 ^7948 
 
 "653 
 
 '58 
 
 39 
 
 38 
 
 37 
 
 36 
 
 36 
 
 34 
 
 33 
 
 32 
 
 31 
 
 30 
 
 •3 29 
 
 9.758810 
 759102 
 759395 
 759687 
 759979 
 760272 
 760564 
 760856 
 761148 
 761439 
 
 489 
 489 
 489 
 489 
 489 
 488 
 488 
 488 
 488 
 488 
 
 .1 
 1 
 
 
 2'l^ucJ5 
 24.5591 
 246297 
 245003 
 244709 
 244415 
 
 10 
 
 488 
 487 
 487 
 487 
 487 
 487 
 487 
 486 
 486 
 486 
 
 244122 
 243828 
 243535 
 243241 
 242948 
 242655 
 24236S 
 242069 
 241776 
 241483 
 
 10 
 
 .241190 
 240898 
 240605 
 240313 
 r'<r0021 
 2.J9728 
 239436 
 2.19144 
 238852 
 238561 
 
 28 
 
 27 
 
 26 
 
 26 
 
 24 
 
 23 
 
 22 
 
 21 
 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 8 
 7 
 6 
 5 
 4 
 
 2 
 I 
 
 
 60 Degrees 
 
i^^TI 
 
 ' « 
 
 %>i 
 
 48 
 
 (30 Degrees.) a table op logahithmic 
 
 M. I Hiim I I). 
 
 
 
 3 
 4 
 5 
 
 6 
 V 
 
 8 
 
 9 
 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 38 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 159 
 [60 
 
 (.'odillR 
 
 TaiiR. 
 
 f). 
 
 9.698970 
 099 1 89 
 699107 
 699626 
 699844 
 700062 
 700280 
 700498 
 700716 
 700933 
 701161 
 
 9.701368 
 701585 
 701802 
 702019 
 7022:16 
 7024.'i2 
 702669 
 702885 
 703101 
 
 _7033_17 
 
 9.703533 
 703749 
 TK)3y64 
 704 179 
 7C4395 
 704610 
 704825 
 705040 
 705254 
 
 _ 705469 
 
 9 705683 
 705898 
 706112 
 706326 
 706539 
 706753 
 706967 
 707180 
 707393 
 707606 
 
 9.707819 
 708032 
 708245 
 708458 
 708670 
 708882 
 709094 
 709306 
 709518 
 709730 
 
 9 7099-il 
 710153 
 710364 
 710575 
 710786 
 710997 
 711208 
 711419 
 
 *y I 1 con 
 
 s 1 i \T ,g J 
 
 711839 
 
 364 
 364 
 364 
 364 
 363 
 363 
 363 
 363 
 363 
 362 
 36S 
 
 363 
 362 
 36] 
 361 
 ,%1 
 361 
 360 
 360 
 360 
 360 
 
 359 
 359 
 359 
 359 
 359 
 358 
 358 
 858 
 358 
 357 
 
 357 
 357 
 357 
 356 
 356 
 356 
 356 
 355 
 355 
 355 
 
 355 
 354 
 354 
 354 
 354 
 353 
 353 
 353 
 353 
 353 
 
 352 
 
 352 
 352 
 351 
 351 
 351 
 351 
 
 350 
 
 9.937531 
 937458 
 937385 
 937312 
 937238 
 937135 
 937092 
 937019 
 936946 
 936872 
 936799 
 
 9,936725 
 936652 
 936578 
 936505 
 936431 
 936357 
 936284 
 936210 
 936136 
 
 __r "6062 
 
 9.93598b 
 9359 1'i 
 935840 
 935766 
 935692 
 935618 
 935543 
 935469 
 935395 
 93 5320 
 
 9.935246 
 935171 
 935097 
 935022 
 934 48 
 934873 
 934798 
 934723 
 9.'«4649 
 934574 
 
 9.934499 
 934424 
 934349 
 934274 
 934199 
 934123 
 934048 
 933973 
 933898 
 933822 
 
 9.933 '7 
 933/1 
 933596 
 933520 
 933445 
 933369 
 933293 
 933217 
 
 nnn ^ A t 
 
 933066 
 
 21 
 22 
 22 
 22 
 22 
 22 
 22 
 22 
 22 
 22 
 22 
 
 i,2 
 23 
 23 
 23 
 23 
 23 
 23 
 23 
 23 
 23 
 
 23 
 23 
 23 
 
 24 
 24 
 24 
 24 
 
 24 
 24 
 
 24 
 
 24 
 24 
 24 
 24 
 24 
 24 
 25 
 25 
 25 
 25 
 
 25 
 25 
 25 
 25 
 25 
 25 
 25 
 25 
 26 
 26 
 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 26 
 
 26 
 
 (-((laiit' 
 
 r 
 
 9.761439 
 
 486 
 
 761731 
 
 486 
 
 762023 
 
 480 
 
 762314 
 
 486 
 
 762606 
 
 485 
 
 762897 
 
 485 
 
 763188 
 
 485 
 
 763479 
 
 485 
 
 763770 
 
 485 
 
 764061 
 
 485 
 
 764352 
 
 484 
 
 9.764643 
 
 484 
 
 764933 
 
 484 
 
 765224 
 
 484 
 
 765514 
 
 484 
 
 76580r^ 
 
 484 
 
 766095 
 
 484 
 
 766335 
 
 483 
 
 766675 
 
 483 
 
 766965 
 
 483 
 
 767255 
 
 483 
 
 9.767545 
 
 483 
 
 767834 
 
 483 
 
 768124 
 
 482 
 
 763413 
 
 482 
 
 768703 
 
 482 
 
 768992 
 
 482 
 
 769281 
 
 482 
 
 769570 
 
 482 
 
 769860 
 
 481 
 
 770143 
 
 481 
 
 9.770437 
 
 481 
 
 770726 
 
 481 
 
 771015 
 
 481 
 
 771303 
 
 481 
 
 771592 
 
 481 
 
 771880 
 
 480 
 
 772168 
 
 480 
 
 772457 
 
 480 
 
 772745 
 
 480 
 
 773033 
 
 480 
 
 9.773321 
 
 480 
 
 773608 
 
 479 
 
 773896 
 
 479 
 
 774184 
 
 479 
 
 774471 
 
 479 
 
 774759 
 
 479 
 
 775046 
 
 479 
 
 775333 
 
 479 
 
 775621 
 
 478 
 
 775908 
 
 478 
 
 9.776V05 
 
 478 
 
 776482 
 
 478 
 
 776769 
 
 478 
 
 777055 
 
 478 
 
 777342 
 
 478 
 
 777628 
 
 477 
 
 777915 
 
 477 
 
 778201 
 
 477 
 
 1 1 cid 1 
 
 
 'I i 1 
 
 778774 
 
 477 
 
 10 
 
 238.561160 
 
 238269 59 
 
 237977 
 
 237686 
 
 237394 
 
 237103 
 
 236812 
 
 23652! 
 
 236230 
 
 235939 
 
 235648 
 
 10.235357 
 235067 
 234776 
 234486 
 234195 
 233905 
 233615 
 233325 
 233035 
 232745 
 
 10.232455 
 232166 
 231876 
 231587 
 231297 
 231008 
 230719 
 23043 J 
 230140 
 229852 
 
 10.229563 
 229274 
 228985 
 228697 
 228408 
 228120 
 227832 
 227543 
 227255 
 226967 
 
 10.226679 
 226392 
 226104 
 225816 
 225529 
 225241 
 224954 
 224667 
 224379 
 224092 
 
 10.223805 
 223518 
 223231 
 222945 
 222658 
 222372 
 222085 
 221799 
 
 221226 
 
 Cosine 
 
 j Sine I I Cotang. I 
 
 58 
 57 
 56 
 55 
 54 
 63 
 52 
 51 
 50 
 
 49 
 48 
 47 
 4b 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 38 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 i 
 
 
 I Thiin- I M. 
 
 uQ £)'^(eui 
 
 
 1 
 2 
 3 
 4 
 5 
 8 
 7 
 8 
 9 
 ]0 
 
 11 
 12 
 13 
 14 
 
 15 
 
 16 
 17 
 18 
 |l9 
 I 20 
 
 ^21 
 122 
 
 iV3 
 24 
 TiO 
 26 
 27 
 28 
 
 129 
 30 
 'i^ 
 32 
 
 33 
 34 
 35 
 36 
 37 
 38 
 139 
 40 
 
 41 
 
 9.' 
 
 42 
 
 
 43 
 
 
 44 
 
 
 45 
 
 7 
 
 40 
 
 7 
 
 47 
 
 7 
 
 48 
 
 7 
 
 49 
 
 7 
 
 50 
 
 7 
 
 152 
 '53 
 
 5.; 
 
 55 
 
 .'J6 
 
 57 
 
 58 
 
 59 I 
 
 601 
 
lit' 
 
 n 
 
 S5«nj60| 
 
 S2()9 
 
 59 
 
 7977 
 
 58 
 
 768fi 
 
 57 
 
 ■/•39-1 
 
 56 
 
 7103 
 
 55 
 
 1812 
 
 54 
 
 j52! 
 
 53 
 
 ?230 
 
 52 
 
 VJ39 
 
 51 
 
 J<i48 
 
 50 
 
 )357 
 
 49 
 
 5007 
 
 48 
 
 177G 
 
 47 
 
 H86 
 
 46 
 
 1195 
 
 45 
 
 3905 
 
 44 
 
 <615 
 
 43 
 
 )325 
 
 42 
 
 J035 
 
 41 
 
 J745 
 
 40 
 
 i455 
 
 39 
 
 2166 
 
 38 
 
 1876 
 
 37 
 
 1587 
 
 38 
 
 1297 
 
 35 
 
 [008 
 
 34 
 
 )719 
 
 33 
 
 )43J 
 
 32 
 
 )140 
 
 31 
 
 )852 
 
 30 
 
 )5f)3 
 
 29 
 
 )274 
 
 28 
 
 ^985 
 
 27 
 
 ^697 
 
 26 
 
 ^408 
 
 25 
 
 n20 
 
 24 
 
 r832 
 
 23 
 
 r543 
 
 22 
 
 r255 
 
 21 
 
 )967 
 
 20 
 
 5679 
 
 19 
 
 )392 
 
 18 
 
 )104 
 
 17 
 
 J81G 
 
 16 
 
 )529 
 
 15 
 
 >241 
 
 14 
 
 1954 
 
 13 
 
 1667 
 
 12 
 
 t379 
 
 11 
 
 1092 
 
 10 
 
 3805 
 
 9 
 
 3518 
 
 8 
 
 3231 
 
 7 
 
 2945 
 
 6 
 
 2658 
 
 6 
 
 2372 
 
 4 
 
 2085 
 
 3 
 
 1799 
 
 2 
 
 ibl)i 
 
 I 
 
 1226 
 
 
 
 M. 
 
 Hire 
 
 9 7^18391 
 7120501 
 71226C* 
 712469 
 712679] 
 712889 
 713090 
 71330] 
 713517 
 713726 
 __713935 
 
 9.714144| 
 7143521 
 714561 
 714769 
 714978 
 715186 
 715394 
 715602 
 715809 
 716017 
 
 ). 71 6224 
 716432 
 716639 
 716646 
 717053 
 717259 
 717466 
 717673 
 71 7879 
 718085 
 
 1^1—L. !i!i:i!i« I «>. I Tmll'. I 
 
 348 
 
 347 
 
 347 
 
 347 
 
 347 
 
 347 
 
 346 
 
 346 
 
 346 
 
 346 
 
 '9.9330661 126 
 93J!')90| 127 
 9329141 127 
 932838! 127 
 33i:7f)'> 127 
 93268.) 
 93*i609 
 932533 
 932457 
 932380 
 932304 
 
 ''.718291 
 7i0497 
 718703 
 718909 
 719114 
 719.320 
 719525 
 719730 
 719935 
 720140 
 
 345 
 345 
 345 
 345 
 345 
 344 
 344 
 344 
 344 
 343 
 
 9.9.32228 
 9,32151 
 y32075 
 931998 
 931921 
 931845 
 931768 
 931691 
 931614 
 931.537 
 
 9.J3146 
 931.383 
 931306 
 931229 
 9311.52 
 931075 
 93099S 
 930921 
 930843 
 930766 
 
 127 
 
 127 
 
 128 
 
 128 
 
 128 
 
 128 
 
 128 
 
 138 
 
 128 
 
 128 
 
 9.720345 
 720.549 
 720754 
 7; 9958 
 721162 
 721366 
 721570 
 721774 
 721978 
 72!3181 
 
 9.930688 
 930611 
 930533 
 930466 
 9.S0378 
 930300 
 930223 
 930145 
 930067 
 929989 
 
 x28 
 !28 
 128 
 129 
 129 
 129 
 129 
 129 
 129 
 129 
 
 .778774 
 779060 
 779346 
 779632 
 779910 
 7R020? 
 7804891 
 7N0775 
 781060' 
 7813461 
 __78163l| 
 
 9.781916 
 78',520l 
 782486 
 782771 
 783056 
 783341 
 783626 
 783910 
 784.95 
 784479 
 
 9.72238.'>l 
 
 722Ji88| 
 
 722791 
 
 722994 
 
 723197 
 
 723400 
 
 723603 
 
 723805 
 
 7240071 
 
 724210 1 
 
 Cosine I 
 
 9.929911 
 929833 
 929755 
 929677 
 929599 
 929521 
 929442 
 929364 
 929286 
 929207 
 
 9.929129 
 929050 
 928972 
 928893 
 928815 
 928736 
 928657 
 928578 
 
 t\i>OAf\n 
 
 928420 
 
 9.784764 
 7850481 
 785332 
 78.5016 
 785900 
 786184 
 786463 
 786752 
 7870361 
 78 73191 
 
 9.78760' 
 787886 
 788170 
 788453 
 788736 
 789019 
 789302 
 7895851 
 789868 
 
 _790151 
 
 1.790433 
 790716 
 790999 
 7912811 
 791563 
 791846 
 792128 
 792410 
 792692 
 792974 
 
 10. 221 22BnKr 
 220940| 59 
 8206.'i4 58 
 !i203f)8 57 
 82008r> 66 
 2197971 f,o 
 219511 - 
 219225 
 218940 
 2186,54 
 2]83^ 
 
 10.218084 
 217799 
 217514 
 217229 
 216944 
 216659 
 216374 
 210090 
 21. -1805 
 215.521 40 
 
 1.215236 
 214952 
 214668 
 214384 
 214100 
 21.3816 
 213.')32 
 213248 
 212'J64 
 212681 
 
 9.793256 
 793538| 
 793819 
 794101 
 794383' 
 794664! 
 794945I 
 795227] 
 795,008! 
 7957891 
 
 .212397 
 212114 
 211830 
 211,547 
 211264 
 210981 
 210698 
 210415 
 210132 
 209849 
 
 10.209567 
 209284 
 209001 
 208719 
 298437 
 208154 
 207872 ., 
 207590 12 
 207308 II 
 207026 1 10 
 
 10.206744 
 206462 
 206181 
 205899 
 205617 
 205336 
 205055 
 2O4773I 
 2044921 
 204311 
 
UJ^ 
 
 no 
 
 (32 I)c<;frces.) a tablk of LofiAHiTHMic 
 
 M. 
 
 Sii:e 
 
 I). 
 
 ('osiiiH 
 
 I I). I Tiing. [ P. 
 
 CoiniiR. 
 
 
 1 
 2 
 3 
 
 4 
 5 
 6 
 7 
 8 
 1) 
 10 
 
 11 
 12 
 1:3 
 14 
 15 
 16 
 17 
 \H 
 19 
 20 
 
 21 
 22 
 2:3 
 24 
 25 
 2fi 
 27 
 28 
 20 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 
 42 
 43 
 44 
 45 
 4f] 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 
 .724210 
 724412 
 724014 
 ""■24810 
 725017 
 725219 
 725420 
 725622 
 725823 
 726024 
 726225 
 
 ,726426 
 72»)626 
 726827 
 727027 
 
 727228 
 727428 
 727628 
 727828 
 728027 
 _728227 
 
 .728427 
 728626 
 7^28825 
 729024 
 729223 
 729422 
 72962 
 729820 
 730018 
 730216 
 
 .73041.5 
 730613 
 7308 1 1 
 731009 
 731206 
 731404 
 731602 
 731799 
 731996 
 732193 
 
 9.732390 
 732587 
 732784 
 732980 
 733177 
 733373 
 733569 
 733765 
 733961 
 7341.57 
 
 9.7.?4353 
 734549 
 734744 
 734939 
 735135 
 735330 
 73552 
 735719 
 735914 
 736109 
 
 :«37 
 337 
 336 
 336 
 336 
 336 
 335 
 335 
 335 
 335 
 
 334 
 334 
 334 
 334 
 334 
 333 
 333 
 833 
 333 
 333 
 
 332 
 332 
 332 
 332 
 331 
 331 
 331 
 331 
 330 
 330 
 
 330 
 330 
 330 
 329 
 329 
 329 
 329 
 329 
 328 
 328 
 
 328 
 328 
 328 
 327 
 327 
 327 
 327 
 327 
 326 
 326 
 
 9 . 928120 
 928342 
 928263 
 928183 
 928104 
 928025 
 927946 
 927867 
 927787 
 927708 
 92762t> 
 
 9.927549 
 
 927470 
 927390 
 927310 
 92723 1 
 92TI51 
 927071 
 926991 
 926911 
 92683 1 
 
 9.92'6751 
 926671 
 926591 
 926511 
 926431 
 926351 
 926270 
 926190 
 926110 
 926029 
 
 1321 
 132 
 132 
 132 
 132 
 132 
 132 
 132 
 132 
 132 
 132 
 
 132 
 133 
 133 
 133 
 133 
 133 
 133 
 133 
 133 
 1.33 
 
 326 
 326 
 325 
 325 
 325 
 325 
 
 r ■.. C 
 
 324 
 324 
 
 324 
 
 9.925949 
 925868 
 925788 
 925707 
 92.5626 
 925545 
 925465 
 925384 
 925303 
 92522 2 
 
 9. 925141 
 925060 
 924979 
 924897 
 924816 
 924735 
 924654 
 924572 
 924491 
 9244(t9 
 
 133 
 133 
 133 
 134 
 134 
 134 
 134 
 134 
 134 
 134 
 
 134 
 134 
 134 
 134 
 134 
 135 
 135 
 135 
 135 
 135 
 
 1.35 
 135 
 135 
 135 
 135 
 136 
 136 
 136 
 136 
 136 
 
 .795789 
 796070 
 796351 
 796632 
 796913 
 797194 
 797475 
 797755 
 798036 
 798316 
 798596 
 
 9.798877 
 799157 
 799437 
 799717 
 799997 
 800277 
 800557 
 800836 
 801116 
 801396 
 
 .801675 
 801955 
 802234 
 802513 
 802792 
 803072 
 803351 
 803630 
 803908 
 804187 
 
 468 
 468 
 468 
 468 
 468 
 468 
 468 
 468 
 4f\'T 
 467 
 j467 
 
 467" 
 
 467 
 
 467 
 
 467 
 
 460 
 
 466 
 
 466 
 
 466 
 
 466 
 
 466 
 
 9.804466 
 804745 
 80.5023 
 805302 
 805580 
 805859 
 806137 
 806415 
 8066J3 
 806971 
 
 9 
 
 9.924328 
 924246 
 924104 
 924083 
 924001 
 923919 
 
 92375.5 
 923673 
 923591 
 
 1.36 
 136 
 136 
 136 
 136 
 
 I3r. 
 
 I'M. 
 137 
 137 
 137 
 
 ,807249 
 807.527 
 807805 
 808083 
 808361 
 808638 
 808916 
 809193 
 809471 
 809748 
 
 9.810025 
 810302 
 810.580 
 810857 
 811134 
 811410 
 811687 
 81196. 
 812241 
 812517 
 
 466 
 466 
 465 
 465 
 465 
 465 
 465 
 465 
 465 
 465 
 
 464 
 464 
 464 
 464 
 464 
 464 
 464 
 463 
 463 
 463 
 
 463 
 463 
 463 
 463 
 463 
 402 
 462 
 462 
 462 
 462 
 
 462 
 462 
 462 
 462 
 461 
 461 
 461 
 461 
 461 
 461 
 
 10.204211 
 203930 
 203649 
 203368 
 203087 
 202806 
 202525 
 202245 
 201964 
 201684 
 
 201404 
 
 10.201123 
 200843 
 200563 
 200283 
 200003 
 195)723 
 199443 
 199164 
 198884 
 198604 
 
 10.198325 
 198045 
 197766 
 197487 
 197208 
 196928 
 196649 
 196370 
 196092 
 195813 
 
 10.195534 
 19.5255 
 194977 
 194698 
 194420 
 194141 
 193863 
 193.585 
 193307 
 193029 
 
 10.192751 
 192473 
 192195 
 191917 
 191639 
 191362 
 191084 
 190807 
 190529 
 190252 
 
 10.189975 
 189698 
 189420 
 189143 
 188866 
 188590 
 188313 
 ; 88036 
 187759 
 187483 
 
 60 
 59 
 58 
 57 
 56 
 55 
 54 
 .53 
 52 
 51 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 1 
 
 
 
 1 
 
 2 
 .3 
 4 
 fi 
 
 7 
 8 
 9 
 10 I 
 
 u 
 
 12 
 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 4f 
 42 
 43 
 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 nS 
 59 
 60 
 
 Cosine 
 
 Sine 
 
 t 
 
 Cotansf. 
 
 'J'ang. 
 
 M. 
 
 S7 Decrees. 
 
HiR. 1 
 
 
 1211 60 
 
 
 M)30 
 
 59 
 
 
 3649 
 
 58 
 
 
 13fiH 
 
 57 
 
 
 5087 
 
 56 
 
 
 i80«) 
 
 55 
 
 
 252.') 
 
 54 
 
 
 2245 
 
 53 
 
 
 PJfil 
 
 52 
 
 
 l()8'l 
 
 51 
 
 
 1404 
 
 50 
 
 
 1123 
 
 49 
 
 
 )843 
 
 48 
 
 
 )5f.3 
 
 47 
 
 
 ^283 
 
 46 
 
 
 1)003 
 
 45 
 
 
 .(723 
 
 44 
 
 
 9443 
 
 43 
 
 
 9104 
 
 42 
 
 
 8884 
 
 41 
 
 
 8604 
 
 40 
 
 
 8325 
 
 39 
 
 
 8045 
 
 38 
 
 
 7760 
 
 37 
 
 
 7487 
 
 36 
 
 
 7208 
 
 35 
 
 
 6928 
 
 34 
 
 
 6649 
 
 33 
 
 
 6370 
 
 32 
 
 
 6092 
 
 31 
 
 
 5813 
 
 30 
 
 
 5534 
 
 29 
 
 
 5255 
 
 28 
 
 
 4977 
 
 27 
 
 
 4698 
 
 28 
 
 
 4420 
 
 25 
 
 
 4141 
 
 24 
 
 
 3863 
 
 23 
 
 
 3585 
 
 22 
 
 
 13307 
 
 21 
 
 
 >3029 
 
 20 
 
 
 12751 
 
 19 
 
 
 12473 
 
 18 
 
 
 )2195 
 
 17 
 
 
 )1917 
 
 16 
 
 
 )1639 
 
 15 
 
 
 )1362 
 
 14 
 
 
 H084 
 
 13 
 
 )0807 
 
 12 
 
 )0529 
 
 11 
 
 )0252 
 
 10 
 
 
 •!9975 
 
 9 
 
 
 ^9698 
 
 8 
 
 
 39420 
 
 7 
 
 
 39143 
 
 6 
 
 
 38860 
 
 5 
 
 
 88590 
 
 4 
 
 
 88313 
 
 3 
 
 
 S803fc 
 
 ) 2 
 
 
 87755: 
 
 1 1 
 
 
 874 8r 
 
 1 
 
 
 ang. 1 M. 
 
 m 
 
 SIXrs AND TA.VOKNT8. (33 DegrPGS.) 
 
 fil 
 
 9.736109 
 736303 
 736498 
 736692 
 736886 
 737080 
 737274 
 737467 
 737661 
 737855 
 _72H0J8 
 
 '738241 
 738434 
 738627 
 738820 
 739013 
 739206 
 7393;J8 
 739590 
 739783 
 
 _739975 
 
 .740167 
 740359 
 740550 
 740742 
 740934 
 741125 
 741316 
 741508 
 741699 
 741889 
 
 9 
 
 . 742080 
 742271 
 742462 
 742652 
 742842 
 743033 
 743223 
 743413 
 743602 
 743792 
 
 9.743982 
 744171 
 7443G1 
 744550 
 744739 
 744928 
 745117 
 745306 
 745494 
 745683 
 
 9 
 
 .745871 
 746059 
 746248 
 746430 
 746624 
 746812 
 746999 
 747187 
 747374I 
 7475621 
 
 324 
 324 
 324 
 323 
 323 
 323 
 323 
 323 
 322 
 322 
 322 
 
 322 
 322 
 321 
 321 
 321 
 321 
 321 
 .320 
 320 
 320 
 
 320 
 320 
 319 
 319 
 319 
 319 
 319 
 318 
 318 
 318 
 
 318 
 318 
 317 
 317 
 317 
 317 
 317 
 316 
 316 
 316 
 
 316 
 316 
 31.5 
 315 
 315 
 315 
 315 
 314 
 314 
 314 
 
 .']14 
 314 
 313 
 313 
 313 
 313 
 313 
 312 
 313 
 312 
 
 y. 923591 
 923509 
 923427 
 923345 
 92.'}26;i 
 923181 
 923098 
 923016 
 922933 
 922851 
 
 _9227J58 
 
 9.922686 
 922603 
 922.'>20 
 922438 
 922355 
 922272 
 922189 
 922106 
 922023 
 921940 
 
 9.921857 
 921774 
 921691 
 921607 
 921.524 
 921441 
 921357 
 921274 
 921190 
 9 21107 
 
 9.921023 
 920939 
 920856 
 920772 
 920688 
 920604 
 920520 
 920436 
 920352 
 920268 
 
 9.920184 
 920099 
 920015 
 919931 
 919846 
 919762 
 919677 
 919.593 
 919.508 
 919424 
 
 9.9L9339 
 919254 
 919169 
 919085 
 919000 
 918915 
 918830 
 
 918745] 
 918659 
 918574 
 
 .812517 
 812794 
 y 13070 
 813347 
 813623 
 813899 
 814175 
 8144.52 
 814728 
 81. -3 004 
 _ 815279 
 
 9.81.5555 
 81.5831 
 8i6107 
 816.382 
 8166.58 
 816933 
 817209 
 817484 
 817759 
 8J8035 
 
 9.818310 
 818.585 
 818860 
 81913; 
 819410 
 819684 
 819959 
 820234 
 820.508 
 820783 
 
 9 
 
 821057 
 821332 
 821606 
 821880 
 8221.54 
 822429 
 82270 
 822977 
 823250 
 _823524 
 
 .823798 
 824072 
 824345 
 824619 
 824893 
 825166 
 825439 
 825713 
 825986 
 826259 
 
 lAO 
 
 9.826532 
 826805 
 827078 
 827351 
 827624 
 827897 
 828170 
 828442 
 828715 
 828987 
 
 10.187482 
 187206 
 186930 
 186653 
 186.377 
 186101 
 185825 
 18.5.548 
 185272 
 184996 
 184721 
 
 10 
 
 ,184445 
 184169 
 183893 
 183618 
 183342 
 183067 
 182791 
 182516 
 182241 
 181965 
 
 i0.18Ki90 
 181415 
 181140 
 180865 
 180590 
 180316 
 180041 
 179766 
 179492 
 179217 
 
 457 10 
 457 
 
 178943 
 178668 
 178394 
 178120 
 177846 
 177571 
 177297 
 177023 
 176750 
 176476 
 
 . 176202 
 175928 
 17.5655 
 17.5381 
 175107 
 174834 
 174.561 
 174287 
 174014 
 17.3741 
 
 .173468 
 173195 
 172922 
 172649 
 172376 
 172103 
 171330 
 1715.58 2 
 171285 1 
 1710131 
 
 60 
 
 59 
 
 58 
 
 57 
 
 56 
 
 55 
 
 64 
 
 53 
 
 52 
 
 51 
 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 
 18 
 
 17 
 
 16 
 
 15 » 
 
 14 
 
 13 
 
 12 
 
 11 
 
 iO 
 
 9 
 8 
 7 
 6 
 
 Til I 111. 
 
 M. 
 
 56 D'!gre«;s. 
 
52 
 
 (34 Degrees.) a 
 
 TABLE OP LOGARITHMIC 
 
 
 "mT 
 
 Sine 
 
 D. 
 
 1 Cosine | D. 
 
 1 Tang. 
 
 1 D 
 
 1 Cotaiig. 1 1 
 
 
 
 9.747562 
 
 312 
 
 9.918574 
 
 142 
 
 9.828987 
 
 454 
 
 10.171013 
 
 60 
 
 1 
 
 747749 
 
 312 
 
 918489 
 
 142 
 
 829260 
 
 454 
 
 170740 
 
 59 
 
 2 
 
 747936 
 
 312 
 
 918404 
 
 142 
 
 829532 
 
 454 
 
 170468 
 
 58 
 
 3 
 
 748123 
 
 311 
 
 918318 
 
 142 
 
 829805 
 
 454 
 
 170195 
 
 57 
 
 4 
 
 748310 
 
 311 
 
 9182.33 
 
 142 
 
 830077 
 
 464 
 
 169^^23 
 
 66 
 
 5 
 
 748497 
 
 311 
 
 918147 
 
 142 
 
 830349 
 
 453 
 
 169(351 
 
 56 
 
 6 
 
 748683 
 
 311 
 
 918062 
 
 142 
 
 830621 
 
 453 
 
 169379 
 
 54 
 
 7 
 
 748870 
 
 311 
 
 917976 
 
 143 
 
 830893 
 
 453 
 
 169107 
 
 53 
 
 8 
 
 749056 
 
 310 
 
 917891 
 
 143 
 
 831165 
 
 453 
 
 168835 
 
 52 
 
 9 
 
 749243 
 
 310 
 
 917805 
 
 143 
 
 831437 
 
 453 
 
 168563 
 
 51 
 
 10 
 11 
 
 749429 
 
 310 
 
 917719 
 
 143 
 143 
 
 831709 
 9.631981 
 
 453 
 
 453 
 
 168291 
 
 50 
 
 49 
 
 9.749615 
 
 310 
 
 9.917634 
 
 10.168019 
 
 12 
 
 749801 
 
 310 
 
 917548 
 
 143 
 
 832253 
 
 453 
 
 167747 
 
 48 
 
 13 
 
 749987 
 
 309 
 
 917462 
 
 143 
 
 832525 
 
 453 
 
 167475 
 
 47 
 
 14 
 
 750172 
 
 309 
 
 917376 
 
 143 
 
 832796 
 
 453 
 
 167204 
 
 46 
 
 15 
 
 750358 
 
 309 
 
 917290 
 
 143 
 
 833068 
 
 452 
 
 166932 
 
 45 
 
 16 
 
 750543 
 
 309 
 
 CI 7204 
 
 143 
 
 833339 
 
 452 
 
 16G661 
 
 44 
 
 17 
 
 750729 
 
 309 
 
 917118 
 
 144 
 
 833611 
 
 452 
 
 166389 
 
 43 
 
 18 
 
 750914 
 
 308 
 
 917032 
 
 144 
 
 833882 
 
 452 
 
 166118 
 
 42 
 
 19 
 
 751099 
 
 308 
 
 916946 
 
 144 
 
 834164 
 
 452 
 
 165846 
 
 ^.1 
 
 20 
 21 
 
 751284 
 
 308 
 308 ■ 
 
 916859 
 
 144 
 144 
 
 834425 
 
 462 
 
 165575 
 10.165304 
 
 40 
 39 
 
 9.751469 
 
 9.916773 
 
 9.834696 
 
 452 
 
 22 
 
 751654 
 
 308 
 
 916687 
 
 144 
 
 834967 
 
 452 
 
 165033 
 
 38 
 
 23 
 
 751839 
 
 308 
 
 916600 
 
 144 
 
 835238 
 
 452 
 
 164762 
 
 37 
 
 24 
 
 7^2023 
 
 307 
 
 916514 
 
 144 
 
 835509 
 
 452 
 
 164491 
 
 36 
 
 25 
 
 752208 
 
 307 
 
 916427 
 
 144 
 
 835780 
 
 451 
 
 164220 
 
 35 
 
 26 
 
 752392 
 
 307 
 
 916341 
 
 144 
 
 836051 
 
 451 
 
 163949 
 
 34 
 
 27 
 
 752576 
 
 307 
 
 916254 
 
 144 
 
 836322 
 
 451 
 
 163678 
 
 33 
 
 28 
 
 752760 
 
 307 
 
 916167 
 
 145 
 
 836593 
 
 451 
 
 163407 
 
 32 
 
 29 
 
 752944 
 
 306 
 
 916081 
 
 145 
 
 836864 
 
 451 
 
 163136 
 
 31 
 
 30 
 31 
 
 7.53128 
 9 753312 
 
 306 
 
 915994 
 
 145 
 
 145 
 
 837134 
 
 451 
 
 162866 
 
 30 
 
 29 
 
 306 
 
 9.915907 
 
 9.837405 
 
 451 
 
 10.162595 
 
 32 
 
 753495 
 
 306 
 
 915820 
 
 145 
 
 837675 
 
 451 
 
 162325 
 
 28 
 
 33 
 
 753679 
 
 306 
 
 915733 
 
 145 
 
 837946 
 
 451 
 
 162054 
 
 27 
 
 34 
 
 753862 
 
 305 
 
 915646 
 
 145 
 
 838216 
 
 451 
 
 161784 
 
 26 
 
 35 
 
 754046 
 
 305 
 
 915559 
 
 145 
 
 838487 
 
 450 
 
 161513 
 
 25 
 
 36 
 
 754229 
 
 305 
 
 915472 
 
 145 
 
 838757 
 
 450 
 
 161243 
 
 24 
 
 37 
 
 754412 
 
 305 
 
 915385 
 
 145 
 
 839027 
 
 450 
 
 160973 
 
 23 
 
 38 
 
 754595 
 
 305 
 
 9152P7 
 
 145 
 
 839297 
 
 450 
 
 160703 
 
 22 
 
 39 
 
 754778 
 
 304 
 
 915210 
 
 145 
 
 839568 
 
 450 
 
 160432 
 
 21 
 
 40 
 41 
 
 754960 
 
 304 
 
 915123 
 
 146 
 146 
 
 839838 
 9.840108 
 
 450 
 
 160162 
 
 20 
 19 
 
 9.755143 
 
 304 
 
 9.915035 
 
 450 
 
 10.159892 
 
 42 
 
 755326 
 
 304 
 
 914948 
 
 146 
 
 840378 
 
 450 
 
 159622 
 
 18 
 
 43 
 
 755508 
 
 304 
 
 914860 
 
 146 
 
 840647 
 
 450 
 
 159353 
 
 17 
 
 44 
 
 755690 
 
 304 
 
 914773 
 
 146 
 
 840917 
 
 449 
 
 159083 
 
 16 
 
 45 
 
 755872 
 
 303 
 
 914685 
 
 146 
 
 841187 
 
 449 
 
 158813 
 
 15 
 
 46 
 
 756054 
 
 303 
 
 914698 
 
 146 
 
 841467 
 
 449 
 
 158543 
 
 14 
 
 47 
 
 756236 
 
 303 
 
 914510 
 
 146 
 
 841728 
 
 449 
 
 158274 
 
 13 
 
 48 
 
 756418 
 
 303 
 
 914422 
 
 146 
 
 841996 
 
 449 
 
 158004 
 
 12 
 
 49 
 
 766600 
 
 303 
 
 914334 
 
 146 
 
 842266 
 
 449 
 
 157734 
 
 11 
 
 50 
 51 
 
 756782 
 
 302 
 
 914246 
 
 147 
 147 
 
 842535 
 
 449 
 
 157465 
 
 10 
 9 
 
 9.756963 
 
 302 
 
 9.914158 
 
 9.842805 
 
 449 
 
 10.1,57195 
 
 62 
 
 757144 
 
 302 
 
 914070 
 
 147 
 
 843074 
 
 440 
 
 156926 
 
 8 
 
 53 
 
 757326 
 
 302 
 
 913982 
 
 147 
 
 843343 
 
 449 
 
 156657 
 
 7 
 
 54 
 
 757507 
 
 302 
 
 913894 
 
 147 
 
 843612 
 
 449 
 
 156388 
 
 6 
 
 55 
 
 757688 
 
 301 
 
 913806 
 
 147 
 
 843882 
 
 448 
 
 1.56118 
 
 6 
 
 56 
 
 757869 
 
 301 
 
 913718 
 
 147 
 
 844151 
 
 448 
 
 15.5849 
 
 4 
 
 57 
 
 758050 
 
 301 
 
 913630 
 
 147 
 
 844420 
 
 448 
 
 155580 
 
 3 
 
 KO 
 
 •vcQoon 
 
 om 
 
 
 147 
 
 aAAdan 
 
 AAQ 
 
 '559,1 I 
 
 o 
 
 rf' 7 
 
 ? ?,-\.' vjrf 
 
 «-?VF 1 
 
 •w'-r-i'-f* ■•^^ 
 
 TT-J? 
 
 
 
 59 
 
 758411 
 
 301 
 
 913453 
 
 147 
 
 844958 
 
 448 
 
 155042 
 
 1 
 
 60 
 
 758591 
 
 301 
 
 913365 
 
 147 
 
 845227 
 
 448 
 
 154773 
 
 
 
 
 CoKirie 1 
 
 1 
 
 Sine 1 1 
 
 Coiang. 
 
 
 Tang. M j 
 
 11 
 
 12 
 
 13 
 
 14 
 
 15 
 
 16 1 
 
 17 
 
 18 
 
 19 
 
 20 
 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 
 32 
 
 33 
 
 34 
 
 35 
 
 36 
 
 37 
 
 38 
 
 39 
 
 40 
 
 41 
 
 142 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 
 57 
 
 58 
 59 
 60 
 
 55 Degrees. 
 
■Jllg. 
 
 1 
 
 013 
 
 60 
 
 )740 
 
 59 
 
 »468 
 
 58 
 
 (195 
 
 57 
 
 K>23 
 
 56 
 
 (iol 
 
 55 
 
 1379 
 
 54 
 
 1107 
 
 53 
 
 1835 
 
 52 
 
 663 
 
 51 
 
 1291 
 
 50 
 
 iOl9 
 
 49 
 
 '747 
 
 48 
 
 '475 
 
 47 
 
 '204 
 
 46 
 
 .932 
 
 45 
 
 .661 
 
 44 
 
 .389 
 
 43 
 
 (lis 
 
 42 
 
 .846 
 
 '^.1 
 
 .575 
 
 40 
 
 .304 
 
 39 
 
 .033 
 
 38 
 
 1762 
 
 37 
 
 t491 
 
 36 
 
 1220 
 
 35 
 
 1949 
 
 34 
 
 1678 
 
 33 
 
 1407 
 
 32 
 
 tl36 
 
 31 
 
 !866 
 
 30 
 
 ,595 
 
 29 
 
 !325 
 
 28 
 
 !054 
 
 27 
 
 784 
 
 26 
 
 513 
 
 25 
 
 243 
 
 24 
 
 »973 
 
 23 
 
 »703 
 
 22 
 
 »432 
 
 21 
 
 1162 
 
 20 
 
 1892 
 
 19 
 
 1622 
 
 18 
 
 1353 
 
 17 
 
 1083 
 
 16 
 
 !813 
 
 15 
 
 >543 
 
 14 
 
 !274 
 
 13 
 
 !004 
 
 12 
 
 '734 
 
 11 
 
 r465 
 
 10 
 
 '195 
 
 9 
 
 1926 
 
 8 
 
 .657 
 
 7 
 
 .388 
 
 6 
 
 ill8 
 
 6 
 
 .849 
 
 4 
 
 .580 
 
 3 
 
 .Ol 1 
 
 o 
 
 .042 
 
 1 
 
 t773 
 
 
 
 8- 
 
 M 
 
 SINES AND TANGEWT9. (35 Degrees.) 
 
 9.768591 
 758772 
 758962 
 759132 
 759312 
 759492 
 759672 
 759852 
 760031 
 760211 
 __760390 
 9.760569 
 760748 
 760927 
 761106 
 761286 
 761464 
 17 761642 
 i« 761821 
 761999 
 _ 762177 
 
 9.762356 
 762534 
 762712 
 •^62889 
 763067 
 763245 
 763422 
 763000 
 763777 
 763954 
 
 TaiiE. 
 
 .913365 
 913276 
 913187 
 913099 
 913010 
 912922 
 912833 
 912744 
 912655 
 912566 
 912477 
 
 D, 
 
 9.912388 
 912299 
 912210 
 912121 
 912031 
 911942 
 911853 
 911763 
 911674 
 911584 
 
 9.845227 
 845496 
 845764 
 846033 
 846302 
 846570 
 846839 
 847107 
 847376 
 847644 
 847913 
 
 Cotaiig. 
 
 9.764131 
 764308 
 764485 
 764662 
 764838 
 765015 
 76519J 
 765367 
 766644 
 785720 
 
 >. 766896" 
 766072 
 766247 
 766423 
 766698 
 766774 
 766949 
 767124 
 767300 
 767475 
 
 9.911496 
 911405 
 911316 
 911226 
 911136 
 911046 
 910956 
 910866 
 910776 
 91068 6 
 
 9.910596 
 910506 
 910415 
 910325 
 910235 
 910144 
 910054 
 909963 
 909873 
 909782 
 
 9.848181 
 848449 
 848717 
 848986 
 849264 
 849622 
 849790 
 860058 
 850325 
 860593 
 
 448 
 
 448 
 
 448 
 
 448 
 
 448 
 
 447 
 
 447 
 
 447 
 
 447 
 
 447 
 
 447 
 
 9.860861 
 861129 
 851396 
 851664 
 861931 
 852199 
 862466 
 852733 
 853001 
 853268 
 
 447 
 
 447 
 
 447 
 
 447 
 
 447 
 
 447 
 
 446 
 
 446 
 
 446 
 
 446 
 
 10. J 54773 
 154604 
 154236 
 163967 
 1636S8 
 153430 
 153161 
 162893 
 152624 
 152366 
 152087 
 
 1.767649 
 
 767824 
 767999, 
 768173 
 768348 
 
 7686971 
 
 768871 
 
 769045 
 
 9.909691 
 909601 
 909510 
 909419 
 909328 
 909237 
 9091^^6 
 909056 
 908964 
 908873 
 
 9.863635 
 863802 
 864069 
 854336 
 854603 
 854870 
 855137 
 865404 
 866671 
 855938 
 
 446 
 446 
 446 
 446 
 446 
 446 
 446 
 445 
 445 
 445 
 
 9.908781 
 908690 
 908699 
 908507 
 908416 
 908324 
 908233 
 908141 
 908049 
 907958 
 
 151 9.866204 
 8.56471 
 856737 
 857004 
 857270 
 857637 
 867803 
 
 1S2| 858069 
 
 152 858336 
 
 152| 86 8602 
 
 162 
 
 162 
 
 152 
 
 152 
 
 153 
 
 163 
 
 445 
 445 
 445 
 445 
 445 
 445 
 445 
 445 
 444 
 444 
 
 9.858868 
 
 8.59134 
 
 859400 
 
 859666 
 
 85993'^- 
 
 ---, 86019^ 
 
 163 86046 1 
 
 153| 860730 
 
 860995 
 
 861261 
 
 444 
 444 
 444 
 444 
 444 
 444 
 444 
 444 
 444 
 443 
 
 60 
 59 
 58 
 57 
 66 
 65 
 54 
 63 
 62 
 51 
 ^ 60 
 
 10.151819 49 
 151551 48 
 151283 47 
 151014 46 
 150746 
 150478 
 160210 
 149942 
 149675 
 149407 
 
 10.149139 
 
 148871 
 
 148604 
 
 148336 
 
 148069 
 
 147801 
 
 147534 
 
 147267 
 
 146999 
 146732 
 
 10.146465 
 146198 
 145931 
 145664 
 145397 
 146130 
 144863 
 144596 
 144329 
 144062 
 
 10 
 
 443 
 443 
 443 
 443 
 4/ia 
 
 443 
 44? 
 443 
 443 
 443 
 
 143796 
 
 143529 
 
 143263 
 
 142996 
 
 142730 
 
 142463 
 
 142197 
 
 141931 
 
 141664 
 
 141398 
 
 10.141132 
 140866 
 140600 
 140334 
 
 139802 
 139536 
 139270 
 139005 
 138739 
 
 1!» 
 
I 
 
 54 
 
 (3G Degrees.) a 
 
 TIBLE OF L06AU1T1IMIC 
 
 
 M.l 
 
 Sine 
 
 D. 
 
 fosine 1 D. | 
 
 'Pnnff. 1 
 
 D. 1 
 
 Ci'ianp. 1 1 
 
 
 
 9.769219 
 
 290 
 
 9.9079.581 153 
 
 9.861261 
 
 443 
 
 10.1.38739 
 
 60 
 
 1 
 
 769393 
 
 289 
 
 907866 153 
 
 861527 
 
 443 
 
 138473 
 
 59 
 
 2 
 
 ' 769566 
 
 S189 
 
 907774 
 
 153 
 
 861702 
 
 442 
 
 138208 
 
 58 
 
 3 
 
 769740 
 
 289 
 
 907682 
 
 153 
 
 862058 
 
 442 
 
 137942 
 
 J>7 
 
 4 
 
 769913 
 
 289 
 
 907590 
 
 153 
 
 862323 
 
 442 
 
 137677 
 
 56 
 
 5 
 
 770087 
 
 289 
 
 907498 
 
 153 
 
 862589 
 
 442 
 
 137411 
 
 55 
 
 6 
 
 770260 
 
 288 
 
 907406 
 
 153 
 
 862854 
 
 442 
 
 137146 
 
 54 
 
 7 
 
 770433 
 
 288 
 
 9073 M 
 
 154 
 
 863119 
 
 442 
 
 136881 
 
 53 
 
 R 
 
 770606 
 
 288 
 
 907222 
 
 154 
 
 863385 
 
 442 
 
 1,36615 
 
 52 
 
 9 
 
 770779 
 
 288 
 
 907129 
 
 154 
 
 863650 
 
 442 
 
 136.3.50 
 
 51 
 
 10 
 1 1 
 
 770952 
 
 288 
 
 288 
 
 907037 
 
 154 
 154 
 
 863915 
 
 442 
 
 136085 
 
 50 
 49 
 
 9.771125 
 
 9 906945 
 
 9.864180 
 
 442 
 
 10.135820 
 
 !2 
 
 771298 
 
 287 
 
 906852 
 
 154 
 
 864445 
 
 442 
 
 1355.55 
 
 48 
 
 13 
 
 771470 
 
 287 
 
 906760 
 
 154 
 
 864710 
 
 442 
 
 13.5290 
 
 4'/ 
 
 14 
 
 771643 
 
 287 
 
 906667 
 
 154 
 
 864975 
 
 441 
 
 13.5025 
 
 46 
 
 1ft 
 
 771815 
 
 287 
 
 906575 
 
 154 
 
 865240 
 
 441 
 
 134760 
 
 4.'d 
 
 16 
 
 771987 
 
 287 
 
 906482 
 
 154 
 
 865505 
 
 441 
 
 134495 
 
 44 
 
 17 
 
 77'>.159 
 
 287 
 
 906389 
 
 155 
 
 865770 
 
 441 
 
 134230 
 
 43 
 
 18 
 
 772331 
 
 286 
 
 906296 
 
 155 
 
 866035 
 
 441 
 
 133965 
 
 42 
 
 19 
 
 772503 
 
 286 
 
 906204 
 
 155 
 
 866300 
 
 441 
 
 133700 
 
 41 
 
 20 
 21 
 
 772675 
 
 286 
 
 906111 
 
 1.55 
 155 
 
 866564 
 9.866829 
 
 441 
 
 133436 
 
 40 
 39 
 
 9.772847 
 
 286 
 
 9.906018 
 
 441 
 
 10.133171 
 
 22 
 
 773018 
 
 286 
 
 905925 
 
 155 
 
 867094 
 
 441 
 
 132900 
 
 38 
 
 23 
 
 773190 
 
 286 
 
 90.5832 
 
 155 
 
 867358 
 
 441 
 
 132642 
 
 3V 
 
 24 
 
 773361 
 
 285 
 
 305739 
 
 155 
 
 867623 
 
 441 
 
 132377 
 
 3b 
 
 25 
 
 773533 
 
 285 
 
 905645 
 
 155 
 
 867887 
 
 441 
 
 132113 
 
 3b 
 
 26 
 
 773704 
 
 285 
 
 905552 
 
 1.55 
 
 868152 
 
 440 
 
 131848 
 
 34 
 
 27 
 
 773875 
 
 285 
 
 905459 
 
 1,55 
 
 868416 
 
 440 
 
 131584 
 
 33 
 
 2S 
 
 774046 
 
 285 
 
 905366 
 
 156 
 
 868680 
 
 440 
 
 131320 
 
 32 
 
 29 
 
 774217 
 
 285 
 
 905272 
 
 156 
 
 868945 
 
 440 
 
 131055 
 
 31 
 
 30 
 31 
 
 774388 
 
 284 
 
 905179 
 
 156 
 
 1.56 
 
 869209 
 
 440 
 
 130791 
 
 30 
 29 
 
 9.774558 
 
 284 
 
 9.905085 
 
 9.869473 
 
 440 
 
 10.130.527 
 
 32 
 
 774729 
 
 284 
 
 904992 
 
 1.56 
 
 869737 
 
 440 
 
 130263 
 
 28 
 
 33 
 
 774899 
 
 284 
 
 904898 
 
 156 
 
 870001 
 
 440 
 
 129999 
 
 2/ 
 
 34 
 
 775070 
 
 284 
 
 904804 
 
 1.56 
 
 870265 
 
 440 
 
 129735 
 
 2b 
 
 35 
 
 775240 
 
 284 
 
 904711 
 
 1.56 
 
 870529 
 
 440 
 
 129471 
 
 2b 
 
 36 
 
 775410 
 
 283 
 
 90*617 
 
 156 
 
 870793 
 
 440 
 
 129207 
 
 24 
 
 37 
 
 3S 
 
 775580 
 775750 
 
 283 
 283 
 
 904523 
 904429 
 
 1.56 
 157 
 
 871057 
 871321 
 
 440 
 440 
 
 128943 
 128679 
 
 23 
 
 22 
 
 39 
 
 775920 
 
 283 
 
 904335 
 
 157 
 
 C71.585 
 
 440 
 
 128415 
 
 21 
 
 40 
 41 
 
 776090 
 
 283 
 
 904241 
 
 157 
 1.57 
 
 871849 
 
 439 
 439 
 
 128151 
 
 20 
 19 
 
 9.776259 
 
 283 
 
 9.904147 
 
 9.872112 
 
 10.127888 
 
 42 
 
 776429 
 
 282 
 
 904053 
 
 1.57 
 
 872376 
 
 439 
 
 127624 
 
 18 
 
 43 
 
 776598 
 
 282 
 
 903959 
 
 1.57 
 
 872640 
 
 439 
 
 127360 
 
 17 
 
 44 
 
 776768 
 
 282 
 
 903864 
 
 1.57 
 
 872903 
 
 439 
 
 127097 
 
 lb 
 
 45 
 
 776937 
 
 282 
 
 903770 
 
 1.57 
 
 873167 
 
 439 
 
 126833 
 
 lb 
 
 46 
 
 777106 
 
 282 
 
 903676 
 
 1.57 
 
 873430 
 
 439 
 
 126570 
 
 14 
 
 47 
 
 777275 
 
 281 
 
 903581 
 
 1.57 
 
 873694 
 
 439 
 
 126306 
 
 13 
 
 48 
 
 777444 
 
 281 
 
 903487 
 
 1.57 
 
 873957 
 
 439 
 
 126043 
 
 12 
 
 49 
 
 777613 
 
 281 
 
 903392 
 
 158 
 
 87422C 
 
 439 
 
 12578C 
 
 11 
 
 50 
 51 
 
 777781 
 
 281 
 1 281 
 
 90329*= 
 
 1.58 
 1 158 
 
 874484 
 9.874747 
 
 439 
 
 125516 
 
 10 
 1 9 
 
 9.77795C 
 
 9.90320? 
 
 ' 439 
 
 10.1252.5S 
 
 52 
 
 778 11 f 
 
 » 281 
 
 903106 
 
 t 1.5f! 
 
 8750 K 
 
 t 439 
 
 12499( 
 
 ) 8 
 
 53 
 
 778281 
 
 r 280 
 
 9030 H 
 
 [ 15S 
 
 87527J 
 
 i 438 
 
 12472T 
 
 7 
 
 54 
 
 77845{ 
 
 ) 280 
 
 9029H 
 
 i 1.5S 
 
 ! 87553( 
 
 ) 438 
 
 12446' 
 
 1 6 
 
 55 
 
 77862'i 
 
 1 280 
 
 90282^ 
 
 1 1.5(- 
 
 ) 87580( 
 
 ) 438 
 
 12420( 
 
 ) h 
 
 i)(i 
 
 77879'. 
 
 i 280 
 
 902721 
 
 ) 1.5^ 
 
 
 I 438 
 
 12393' 
 
 1 4 
 
 57 
 
 778961 
 
 ) 280 
 
 90263-^ 
 
 1 1.55 
 
 I 87632( 
 
 5 438 
 
 12367^ 
 
 1 3 
 
 58 
 
 779 1 2J 
 
 i 280 
 
 902535 
 
 ) 15i 
 
 ) 87658! 
 
 ) 438 
 
 12341 
 
 1 2 
 
 5M 
 
 77929. 
 
 i 279 
 
 90244' 
 
 t 1.55 
 
 ) 87685 
 
 1 438 
 
 12314< 
 
 :> 1 
 
 60 
 
 77946. 
 
 5 279 
 
 90234! 
 
 ) 1.5( 
 
 ) 87711- 
 
 1 438 
 
 1 12288 
 
 b 
 
 
 1 Cosine 
 
 1 
 
 t Sine 1 
 
 1 Cotiini;. 
 
 1 
 
 j Tauf!. 1 M. 
 
 
 
 
 i 
 
 •Jl)e« 
 
 rc'CS. 
 
 
 
 
 
 .\I 
 
 J__ 
 
 
 
 
 9. 
 
 
 1 
 
 
 
 2 
 
 
 
 3 
 
 
 
 4 
 
 
 
 5 
 
 
 
 6 
 
 
 
 7 
 
 
 
 8 
 
 
 
 9 
 
 
 
 10 
 
 
 
 11 
 
 9. 
 
 
 12 
 
 
 
 13 
 
 
 
 14 
 
 
 
 15 
 
 
 
 16 
 
 
 
 17 
 
 
 
 18 
 
 
 
 19 
 
 
 
 20 
 
 
 
 21 
 
 9. 
 
 
 22 
 
 
 
 23 
 
 
 
 24 
 
 
 
 25 
 
 
 
 26 
 
 
 
 27 
 
 » 
 
 
 28 
 
 
 
 29 
 
 r 
 
 
 30 
 
 r 
 
 
 31 
 
 9.' 
 
 
 32 
 
 
 
 33 
 
 c 
 
 
 34 
 
 
 
 35 
 
 
 
 36 
 
 .• 
 
 ( 
 
 
 37 
 
 "i 
 
 
 38 
 
 7 
 
 
 39 
 
 7 
 
 
 40 
 
 7 
 
 
 4i 
 
 9.7 
 
 
 42; 
 
 7 
 
 
 43 
 
 7 
 
 
 44 
 
 7 
 
 
 45 
 
 7 
 
 
 46 
 
 7 
 
 47 
 
 7 
 
 48 
 
 7 
 
 49 
 
 7 
 
 
 50 
 
 7 
 
 
 51 
 
 9.7 
 
 
 52 
 
 7 
 
 
 53 
 
 7 
 
 
 54 
 
 7 
 
 
 55 
 
 7 
 
 
 'jfi 
 
 7 
 
 
 57 
 
 7 
 
 
 is 
 
 7 
 
 
 i9 
 
 7 
 
 ( 
 
 :;o 
 
 7! 
 
 
 1 
 
 (Jo. 
 
^ 
 
 3 
 
 39 60 1 
 
 73 
 
 59 
 
 08 
 
 58 
 
 42 
 
 57 
 
 .77 
 
 56 
 
 m 
 
 55 
 
 46 
 
 54 
 
 !81 
 
 53 
 
 515 
 
 52 
 
 150 
 
 51 
 
 )85 
 
 50 
 
 i-ZO 
 
 49 
 
 355 
 
 48 
 
 J90 
 
 47 
 
 )25 
 
 46 
 
 reo 
 
 45 
 
 195 
 
 44 
 
 J30 
 
 43 
 
 )65 
 
 42 
 
 700 
 
 41 
 
 im 
 
 40 
 
 171 
 
 39 
 
 300 
 
 38 
 
 B42 
 
 37 
 
 377 
 
 36 
 
 113 
 
 35 
 
 348 
 
 34 
 
 584 
 
 33 
 
 320 
 
 32 
 
 055 
 
 31 
 
 791 
 
 30 
 
 527 
 
 29 
 
 263 
 
 28 
 
 999 
 
 27 
 
 735 
 
 26 
 
 471 
 
 25 
 
 207 
 
 24 
 
 943 
 
 23 
 
 679 
 
 22 
 
 415 
 
 21 
 
 151 
 
 20 
 
 888 
 
 19 
 
 624 
 
 18 
 
 360 
 
 17 
 
 097 
 
 16 
 
 .833 
 
 15 
 
 >570 
 
 14 
 
 1306 
 
 13 
 
 5043 
 
 12 
 
 )780 
 
 11 
 
 J516 
 
 10 
 
 1253 
 
 9 
 
 199(1 
 
 8 
 
 1727 
 
 ' 7 
 
 146'] 
 
 [ 6 
 
 420C 
 
 ) 5 
 
 ^93' 
 
 r A 
 
 367^ 
 
 1 3 
 
 341 
 
 2 
 
 3141 
 
 ) 1 
 
 288( 
 
 i 
 
 11^. 1 M. 
 
 SINES AND TANGENTS. \^S7 Dcgraes.) 
 
 65 
 
 M. 
 
 
 
 1 
 
 2 
 3 
 
 4 
 5 
 6 
 7 
 
 8 
 
 9 
 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 2G 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 5S 
 59 
 60 
 
 Sine 
 
 9.779463 
 779631 
 779798 
 779966 
 780133 
 780300 
 780467 
 780634 
 780S01 
 780968 
 781134 
 
 .781301 
 781468 
 781634 
 781800 
 781966 
 782132 
 782298 
 782464 
 782630 
 
 _782796 
 
 .782961 
 783127 
 783292 
 783458 
 783623 
 783788 
 783953 
 784118 
 784282 
 784447 
 
 .784612 
 784776 
 784941 
 785105 
 785269 
 785433 
 785597 
 785761 
 785925 
 786089 
 
 . 786252 
 78G416 
 786579 
 786742 
 786906 
 787069 
 787232 
 787395 
 787557 
 7S7720 
 
 9.787883 
 788045 
 783208 
 78S370 
 788532 
 7.'^^694 
 788856 
 789018, 
 789180 
 7893421 
 
 T>. 
 
 Cosine 
 
 D. 
 
 'r-int;. 
 
 n. 
 
 279 
 279 
 279 
 279 
 279 
 278 
 278 
 27S 
 278 
 278 
 278 
 
 277 
 277 
 277 
 
 i;r7 
 
 277 
 277 
 276 
 276 
 276 
 276 
 
 27'4 
 276 
 275 
 275 
 275 
 275 
 275 
 275 
 274 
 274 
 
 274 
 274 
 274 
 274 
 273 
 273 
 273 
 273 
 273 
 273 
 
 272 
 272 
 273 
 272 
 272 
 272 
 271 
 271 
 271 
 _271_ 
 
 271 
 271 
 271 
 270 
 270 
 270 
 270 
 270 
 270 
 269 
 
 9.902349 
 902253 
 902158 
 902063 
 901967 
 901872 
 901776 
 901681 
 901585 
 901490 
 901394 
 
 Cotiiiin. 
 
 .901298 
 901202 
 901106 
 901010 
 900914 
 900818 
 900722 
 900fS26 
 900529 
 900433 
 
 .900337 
 900240 
 900144 
 900047 
 899951 
 899854 
 899757 
 899660 
 899564 
 899467 
 
 9.899370 
 899273 
 899176 
 899078 
 898981 
 898884 
 898787 
 898689 
 898592 
 898494 
 
 9.898397 
 898299 
 898202 
 898104 
 898006 
 897908 
 897810 
 897712 
 897614 
 897516 
 
 O.S97"418 
 897:i20 
 897222 
 897123 
 897025 
 896926 
 896828 
 896729 
 896631 
 896532 
 
 .877114 
 877377 
 877640 
 877903 
 878165 
 878428 
 878691 
 878953 
 879216 
 879478 
 879741 
 
 1.880003 
 880265 
 880528 
 880790 
 881052 
 881314 
 881576 
 881839 
 882101 
 882363 
 
 .882625 
 882887 
 883148 
 883410 
 883672 
 f 83934 
 ^'84196 
 8.H457 
 8S4719 
 88'i.<i80 
 
 438 
 438 
 438 
 438 
 438 
 438 
 438 
 437 
 437 
 437 
 437 
 
 10, 
 
 437 
 437 
 437 
 437 
 437 
 437 
 437 
 437 
 437 
 436 
 
 VZxHSO 
 122623 
 122360 
 122097 
 1218.35 
 121572 
 121309 
 121047 
 120784 
 120522 
 120259 
 
 1(53 
 
 .885242 
 885503 
 885765 
 886026 
 886288 
 886549 
 886810 
 887072 
 887333 
 887594 
 
 .887855 
 888116 
 888377 
 888639 
 888900 
 889160 
 889421 
 889682 
 889943 
 890204 
 
 436 
 436 
 436 
 436 
 436 
 436 
 436 
 436 
 436 
 436 
 
 436 
 436 
 436 
 436 
 435 
 435 
 435 
 435 
 435 
 
 10.119997 
 119735 
 119472 
 119210 
 118948 
 118686 
 118424 
 118161 
 117899 
 117637 
 
 10.117375 
 117113 
 116852 
 116590 
 116328 
 116066 
 11,5804 
 115543 
 11.5281 
 11.5020 
 
 10, 
 
 z 
 
 Sine 
 
 9.890465 
 890725 
 890986 
 891247 
 891507 
 8;) 1 768 
 892028 
 892289 
 892549 
 892SI0 
 
 Colati''. 
 
 435 
 435 
 435 
 435 
 435 
 435 
 435 
 435 
 435 
 434 
 
 114758 
 114497 
 114235 
 I i. 39 74 
 113712 
 113451 
 113190 
 112928 
 112667 
 112406 
 
 10. 
 
 434 
 434 
 434 
 434 
 434 
 4;>4 
 434 
 434 
 434 
 434 
 
 112145 
 111884 
 111623 
 111361 
 II 1100 
 110840 
 110579 
 110318 
 1 10057 
 109796 
 
 10.109535 
 109275 
 109014 
 108753 
 108493 
 108232 
 107972 
 107711 
 107151 
 107190 
 
 Toil''. 
 
 60 
 59 
 58 
 57 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 30 
 
 19 
 
 18 
 
 17 
 
 16 
 
 15 
 
 14 
 
 13 
 
 12 
 
 11 
 
 10 
 
 9 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 1 
 
 
 I 
 
 
 52 Degieus 
 
5« 
 
 (3fi Degrees.) a table or logarithmic 
 
 ^^B 
 
 M.l 
 
 Bine 1 
 
 0. 1 
 
 (.'osine 1 D. Tang. | 
 
 D. 
 
 Cotanp. 
 
 
 
 
 M 1 
 
 iB 
 
 
 
 9.789342 
 
 269 
 
 9.896532 
 
 164 
 
 9.892810 
 
 434 
 
 10. 1071901 
 
 80 
 
 1 
 
 ^^^■t 
 
 1 
 
 789504 
 
 269 
 
 896433 
 
 165 
 
 893070 
 
 434 
 
 106930 
 
 69 
 
 
 
 9 
 
 
 V, 
 
 789665 
 
 269 
 
 896335 
 
 165 
 
 893331 
 
 434 
 
 106669 
 
 68 
 
 
 
 1 
 
 I^K' 
 
 ^ 
 
 789827 
 
 269 
 
 896236 
 
 105 
 
 893591 
 
 434 
 
 106409 
 
 67 
 
 
 
 2 
 3 
 
 4 
 6 
 6 
 
 7 
 
 8 
 
 9 
 
 10 
 
 1 |«'i 
 
 4 
 
 789988 
 
 269 
 
 896137 
 
 165 
 
 893851 
 
 434 
 
 106149 
 
 56 
 
 
 
 
 5 
 
 790149 
 
 269 
 
 896038 
 
 165 
 
 894111 
 
 434 
 
 105889 
 
 55 
 
 
 
 
 6 
 
 790310 
 
 268 
 
 895939 
 
 165 
 
 894371 
 
 434 
 
 105629 
 
 54 
 
 
 
 
 7 
 
 790471 
 
 268 
 
 895840 
 
 165 
 
 894632 
 
 433 
 
 10.5368 
 
 53 
 
 
 
 
 8 
 
 790632 
 
 268 
 
 895741 
 
 165 
 
 894892 
 
 433 
 
 105108 
 
 62 
 
 
 
 ■^Hi 
 
 q 
 
 790793 
 
 268 
 
 895641 
 
 165 
 
 895152 
 
 433 
 
 104848 
 
 61 
 
 
 
 H 
 
 • 
 
 10 
 
 790954 
 
 268 
 
 895542 
 9.895443 
 
 165 
 166 
 
 895412 
 
 433 
 
 104588 
 
 50 
 
 49 
 48 
 
 
 
 ^B 
 
 IT 
 
 9.791115 
 
 268 
 
 9.895672 
 
 433 
 
 10 104328 
 
 11 9.) 
 
 12 ( 
 
 13 f 
 
 14 ^ 
 
 ^H 
 
 12 
 
 791275 
 
 267 
 
 895343 
 
 166 
 
 895932 
 
 433 
 
 104068 
 
 
 
 '■ 
 
 791436 
 
 267 
 
 895244 
 
 166 
 
 896192 
 
 433 
 
 103808 
 
 47 
 
 
 
 ^^H 
 
 14 
 
 791596 
 
 267 
 
 895145 
 
 166 
 
 896452 
 
 433 
 
 103.548 
 
 4b 
 
 
 
 ^H 
 
 15 
 
 791757 
 
 267 
 
 895045 
 
 166 
 
 896712 
 
 433 
 
 103288 
 
 4b 
 
 
 J 
 I 
 
 
 IB 
 
 791917 
 
 267 
 
 894945 
 
 166 
 
 896971 
 
 433 
 
 103029 
 
 44 
 
 
 lu c 
 
 16 6 
 
 17 g 
 
 18 8 
 
 
 17 
 
 792077 
 
 267 
 
 894846 
 
 166 
 
 897231 
 
 433 
 
 102769 
 
 43 
 
 
 
 18 
 
 792237 
 
 266 
 
 894746 
 
 166 
 
 897491 
 
 433 
 
 102509 
 
 42 
 
 
 
 19 
 
 792397 
 
 266 
 
 894646 
 
 166 
 
 897751 
 
 4.33 
 
 102249 
 
 41 
 
 
 
 20 
 
 ?,1 
 
 792557 
 
 266 
 
 894546 
 9.894446 
 
 166 
 167 
 
 898010 
 
 433 
 
 101990 
 10,101730 
 
 40 
 39 
 
 
 I 
 
 2 
 
 n 
 
 a 
 
 8 
 
 
 9.792716 
 
 266 
 
 9.898270 
 
 433 
 
 1 r\ t> 
 
 
 9,^ 
 
 792876 
 
 266 
 
 894346 
 
 167 
 
 898530 
 
 433 
 
 101470 
 
 38 
 
 
 'il J>.C5 
 
 22 8 
 
 23 8 
 
 
 ?,3 
 
 79Q035 
 
 266 
 
 894246 
 
 167 
 
 898789 
 
 433 
 
 101211 
 
 3/ 
 
 
 
 24 
 
 793195 
 
 265 
 
 894146 
 
 167 
 
 899049 
 
 432 
 
 100951 
 
 36 
 
 
 
 ?,5 
 
 793354 
 
 265 
 
 894046 
 
 167 
 
 899308 
 
 432 
 
 100692 
 
 36 
 
 
 O 
 
 c 1 <-i 
 
 
 86 
 
 793514 
 
 265 
 
 893946 
 
 167 
 
 899568 
 
 4a2 
 
 100432 
 
 34 
 
 
 26 8 
 
 27 8 
 
 28 8 
 on o 
 
 
 27 
 
 793673 
 
 265 
 
 893846 
 
 167 
 
 899827 
 
 432 
 
 100173 
 
 33 
 
 
 
 28 
 
 793832 
 
 265 
 
 893745 
 
 167 
 
 000086 
 
 432 
 
 099914 
 
 32 
 
 
 ifl^^i 
 
 29 
 
 793991 
 
 265 
 
 893645 
 
 167 
 
 900346 
 
 432 
 
 099654 
 
 31 
 
 
 
 30 
 81 
 
 794150 
 
 264 
 
 893544 
 
 167 
 168 
 
 900605 
 
 432 
 
 099395 
 
 30 
 29 
 
 
 3 
 3 
 
 3; 
 3; 
 
 3^ 
 3f 
 3( 
 3^ 
 3f 
 3£ 
 4C 
 
 41 
 42 
 43 
 44 
 4*1 
 
 D 8 
 
 jSH 
 
 9.794308 
 
 264 
 
 9.893444 
 
 9.900864 
 
 432 
 
 10.099136 
 
 1 9.8( 
 
 
 32 
 
 794467 
 
 264 
 
 893343 
 
 168 
 
 901124 
 
 432 
 
 098876 
 
 28 
 
 
 
 33 
 
 794626 
 
 264 
 
 893243 
 
 168 
 
 901383 
 
 432 
 
 098617 
 
 2/ 
 
 
 ^ ai 
 
 
 34 
 
 794784 
 
 264 
 
 893142 
 
 168 
 
 901642 
 
 432 
 
 098358 
 
 2b 
 
 
 
 
 3.'i 
 
 794942 
 
 264 
 
 893041 
 
 168 
 
 901901 
 
 432 
 
 098099 
 
 2o 
 
 
 1 o/ 
 
 
 36 
 
 795101 
 
 264 
 
 892940 
 
 168 
 
 902160 
 
 432 
 
 097840 
 
 24 
 
 
 
 
 37 
 
 795259 
 
 263 
 
 892839 
 
 168 
 
 902419 
 
 432 
 
 097581 
 
 23 
 
 
 1 or 
 
 
 38 
 
 795417 
 
 263 
 
 892739 
 
 168 
 
 902679 
 
 432 
 
 097.321 
 
 22 
 
 
 1 fit 
 
 
 39 
 
 79557C 
 
 263 
 
 892638 
 
 168 
 
 902938 
 
 432 
 
 097062 
 
 21 
 
 
 1 Of\ 
 
 
 40 
 
 41 
 
 795733 
 
 263 
 
 892536 
 
 168 
 169 
 
 903197 
 9.903455 
 
 431 
 431 
 
 096803 
 10.096545 
 
 20 
 19 
 
 
 ' oil 
 80 
 
 
 9.795891 
 
 263 
 
 9.892435 
 
 9.80 
 an 
 
 
 42 
 
 796049 
 
 263 
 
 892334 
 
 169 
 
 903714 
 
 431 
 
 096286 
 
 18 
 
 
 
 43 
 
 796206 
 
 263 
 
 892233 
 
 169 
 
 903973 
 
 431 
 
 096027 
 
 17 
 
 
 fi/t 
 
 
 44 
 
 790364 
 
 262 
 
 892132 
 
 169 
 
 904232 
 
 431 
 
 095768 
 
 16 
 
 
 fin 
 
 ^^Hl 
 
 45 
 
 796521 
 
 262 
 
 892030 
 
 169 
 
 904491 
 
 431 
 
 095509 
 
 16 
 
 
 fin 
 
 ^^Ht 
 
 ^^ 
 
 796679 
 
 262 
 
 891929 
 
 169 
 
 904750 
 
 431 
 
 095250 
 
 14 
 
 
 46 
 
 fin 
 
 ^^^^H i 
 
 47 
 
 796836 
 
 262 
 
 891827 
 
 169 
 
 905008 
 
 431 
 
 094992 
 
 13 
 
 
 47 
 
 fin 
 
 
 48 
 
 796993 
 
 262 
 
 891726 
 
 169 
 
 905267 
 
 431 
 
 094733 
 
 12 
 
 
 48 
 49 
 50 
 51 
 
 fin 
 
 \ i. 
 
 49 
 
 797150 
 
 261 
 
 891624 
 
 169 
 
 905526 
 
 431 
 
 094474 
 
 11 
 
 
 fin 
 
 ■ .1^ 
 
 50 
 51 
 
 797307 
 9.797464 
 
 261 
 
 891523 
 9.891421 
 
 170 
 170 
 
 905784 
 9.906043 
 
 431 
 
 094216 
 
 10 
 9 
 
 
 80 
 
 £ .^? 
 
 261 
 
 431 
 
 10.093957 
 
 9.80 
 fin 
 
 -, * 
 
 52 
 
 797621 
 
 261 
 
 891319 
 
 170 
 
 906302 
 
 431 
 
 09369S 
 
 8 
 
 
 52 
 
 
 53 
 
 797777 
 
 261 
 
 891217 
 
 170 
 
 906560 
 
 431 
 
 093440 
 
 V 
 
 
 53 
 
 80 
 An 
 
 aH 
 
 54 
 
 79793'!: 
 
 261 
 
 891115 
 
 170 
 
 906819 
 
 431 
 
 093181 
 
 6 
 
 
 54 
 
 JHj 
 
 55 
 
 798091 
 
 261 
 
 891013 
 
 170 
 
 907077 
 
 431 
 
 092923 
 
 5 
 
 
 55 
 
 80 
 60 
 80' 
 Hn' 
 
 SB 
 
 
 
 261 
 
 890911 
 
 170 
 
 90733P 
 
 431 
 
 092664 
 
 4 
 
 
 ;5fi 
 
 j^i 
 
 57 
 
 79840:i 
 
 260 
 
 890803 
 
 170 
 
 907594 
 
 431 
 
 092406 
 
 3 
 
 
 57 
 
 ^H ' 
 
 58 
 
 798560 
 
 260 
 
 89070? 
 
 170 
 
 907852 
 
 431 
 
 092148 
 
 2 
 
 
 58 
 
 ^H 
 
 59 
 
 798716 
 
 260 
 
 89060f 
 
 170 
 
 908111 
 
 430 
 
 091889 
 
 1 
 
 
 69 
 
 act' 
 
 |H 
 
 60 
 
 798872 
 
 260 
 
 89050:3 
 
 170 
 
 908369 
 
 430 
 
 091631 
 
 
 
 
 60 
 
 80^ 
 
 |l. 
 
 
 1 Cosine 
 
 1 
 
 1 Sine 1 1 Cotang. 
 
 1 
 
 j 'I'ang. M. 
 
 
 . 
 
 Cosi 
 
 51 Dcgrsea. 
 
58 
 57 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 
 74 
 
 11 
 
 16 
 
 10 
 
 57 
 
 9 
 
 9S 
 
 8 
 
 40 
 
 7 
 
 81 
 
 6 
 
 23 
 
 5 
 
 64 
 
 4. 
 
 t06 
 
 3 
 
 48 
 
 8 
 
 89 
 
 1 
 
 31 
 
 
 
 |M. 
 
 n 
 
 SINES AND TANGENTS. (39 Degrees,) 
 
 57 
 
 Sine. 
 
 
 
 1 
 
 2 
 3 
 4 
 6 
 6 
 7 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 9 
 
 .798872 
 
 7IJ9028 
 
 799184 
 
 799339 
 
 799495 
 
 799651 
 
 799806 
 
 799962 
 
 800117 
 
 8002721 
 
 800427 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 
 9.800582 
 800737 
 800892 
 801047 
 801201 
 801366 
 801511 
 801665 
 801819 
 801973 
 
 3.802128 
 802282 
 802436 
 802589 
 802743 
 802897 
 803050 
 803204 
 803357 
 803511 
 
 9.803664 
 803817 
 803970 
 804123 
 804276 
 804428 
 804581 
 804734 
 804886 
 80 5039 
 
 9.805191 
 805343 
 805495 
 805647 
 805799 
 805951 
 806103 
 806254 
 806406 
 806557 
 
 9.806709 
 806860 
 807011 
 807163 
 807314 
 607465 
 807615 
 807766 
 807917 
 808067 
 
 260 
 
 260 
 
 260 
 
 259 
 
 259 
 
 259 
 
 259 
 
 259 
 
 259 
 
 258 
 
 258 
 
 9.8905031 170 
 890400 171 
 
 258 
 258 
 258 
 258 
 258 
 257 
 257 
 257 
 257 
 267^ 
 
 267 
 266 
 256 
 256 
 256 
 256 
 256 
 266 
 256 
 255 
 
 690298 
 890195 
 890093 
 889990 
 889888 
 889785 
 889682 
 889579 
 889477 
 
 9.889374 
 889271 
 889168 
 889064 
 888961 
 888858 
 888755 
 888651 
 888648 
 888444 
 
 171 
 171 
 171 
 171 
 171 
 171 
 171 
 171 
 171 
 
 255 
 265 
 255 
 256 
 254 
 264 
 254 
 254 
 254 
 254 
 
 9.888341 
 888237 
 888134 
 888030 
 887926 
 887822 
 887718 
 887614 
 887510 
 887406 
 
 172 
 172 
 172 
 172 
 172 
 172 
 172 
 172 
 173 
 
 9.9083691 
 908628 
 908886 
 909144 
 909402 
 909660 
 909918 
 910177 
 910435 
 910693 
 910961 
 
 172 9.911209 
 
 9.887302 
 887198 
 887093 
 886989 
 886885 
 886780 
 886676 
 886571 
 886466 
 886362 
 
 173 
 173 
 173 
 173 
 173 
 173 
 173 
 173 
 174 
 
 911467 
 
 911724 
 
 911982 
 
 912240 
 
 912498 
 
 912766 
 
 913014 
 
 913271 
 
 913529 
 
 173 9.913787 
 
 254 
 253 
 253 
 253 
 253 
 253 
 253 
 253 
 262 
 25a 
 
 9.886257 
 886152 
 886047 
 886942 
 885837 
 885732 
 885627 
 885522 
 885416 
 885311 
 
 174 
 174 
 174 
 174 
 174 
 174 
 174 
 174 
 174 
 175 
 
 914044 
 914302 
 914560 
 914817 
 916076 
 91.5332 
 915590 
 915847 
 916104 
 
 Cosine 
 
 9.885205 
 885100 
 884994 
 884889 
 884783 
 
 884677 
 884572 
 884466 
 884360 
 
 884254 
 
 sine i 
 
 176 
 175 
 175 
 175 
 
 175 
 175 
 176 
 176 
 176 
 176 
 
 176 
 176 
 1761 
 176 
 
 17R 
 
 176 
 176 
 176 
 176 
 177 
 
 9.916362 
 916619 
 916877 
 917134 
 917.391 
 917648 
 917905 
 918163 
 918420 
 918677 
 
 9 
 
 ,918934 
 919191 
 919448 
 919706 
 919962 
 920219 
 920476 
 920733 
 920990 
 921247 
 
 1.921503 
 921760 
 922017 
 922274 
 922530 
 922787 
 923044 
 923300 
 923557 
 923813 
 
 Cotang. 
 
 430 
 430 
 430 
 430 
 430 
 430 
 430 
 430 
 430 
 430 
 430 
 
 10.01,16311 60, 
 0913721 59 
 
 091114 
 090856 
 090598 
 090340 
 090082 
 089823 
 089665 
 089307 
 089049 
 
 430 
 430 
 430 
 430 
 430 
 430 
 430 
 429 
 429 
 429 
 
 429 
 429 
 429 
 429 
 429 
 429 
 429 
 429 
 429 
 429 
 
 429 
 429 
 429 
 429 
 429 
 429 
 429 
 428 
 428 
 428 
 
 428 
 428 
 428 
 428 
 428 
 428 
 428 
 428 
 428 
 428 
 
 428 
 428 
 428 
 428 
 
 A no 
 
 428 
 428 
 428 
 427 
 427 
 
 10.088791 
 088533 
 088276 
 088018 
 087760 
 087502 
 087244 
 086986 
 086729 
 086471 
 
 10.086213 
 085956 
 085698 
 086440 
 085183 
 084925 
 084668 
 084410 
 084153 
 083896 
 
 10.083638 
 083381 
 083123 
 082866 
 082609 
 082352 
 082096 
 081837 
 081680 
 081.323 
 
 10.081066 
 080809 
 080552 
 080295 
 080038 
 079781 
 079524 
 079267 
 079010 
 078753 
 
 10.078497 
 078240 
 077983 
 077726 
 077470 
 077213 
 076956 
 076700 
 076443 
 
 076187 
 
 58 
 
 57 
 
 56 
 
 56 
 
 54 
 
 53 
 
 512 
 
 51 
 
 50 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 16 
 15 
 14 
 13 
 12 
 11 
 10 
 
 9 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 1 
 
 Tang. 
 
 IM. 
 
 59 D«gree«i 
 
68 
 
 (40 Degrees.') a table op logarithmic 
 
 M.| 
 
 B'.ne 
 
 I). 
 
 Costne 1 I) 1 
 
 Tung. 1 
 
 I>. 1 
 
 Coliintt. 1 j 
 
 
 
 9.808067 
 
 251 
 
 9.884254] 177| 
 
 9.923813 
 
 427 
 
 10.076187 
 
 ()0 
 
 1 
 
 808218 
 
 251 
 
 884148 
 
 177 
 
 924070 
 
 427 
 
 073930 
 
 39 
 
 3 
 
 808368 
 
 251 
 
 884042 
 
 177 
 
 924327 
 
 427 
 
 073673 
 
 38 
 
 3 
 
 808319 
 
 2.30 
 
 883936 
 
 177 
 
 924383 
 
 427 
 
 073417 
 
 37 
 
 4 
 
 808669 
 
 230 
 
 883829 
 
 177 
 
 924840 
 
 427 
 
 073160 
 
 36 
 
 5 
 
 808819 
 
 230 
 
 883723 
 
 177 
 
 92.'J096 
 
 427 
 
 074901 
 
 33 
 
 6 
 
 808969 
 
 250 
 
 883617 
 
 177 
 
 923352 
 
 427 
 
 074648 
 
 34 
 
 7 
 
 809119 
 
 250 
 
 883510 
 
 177 
 
 923609 
 
 4'57 
 
 074391 
 
 53 
 
 8 
 
 809269 
 
 230 
 
 883404 
 
 177 
 
 923865 
 
 427 
 
 074133 
 
 32 
 
 9 
 
 809419 
 
 249 
 
 883297 
 
 178 
 
 926122 
 
 427 
 
 073878 
 
 31 
 
 10 
 11 
 
 809569 
 
 249 
 
 883191 
 9.883084 
 
 178 
 178 
 
 926378 
 9.926634 
 
 427 
 
 073622 
 10.073366 
 
 30 
 
 'To 
 
 9.809718 
 
 249 
 
 427 
 
 12 
 
 809868 
 
 249 
 
 882977 
 
 178 
 
 926890 
 
 427 
 
 073110 
 
 48 
 
 13 
 
 810017 
 
 249 
 
 882871 
 
 178 
 
 927147 
 
 427 
 
 072833 
 
 47 
 
 14 
 
 810167 
 
 249 
 
 882764 
 
 178 
 
 927403 
 
 427 
 
 072397 
 
 46 
 
 15 
 
 810316 
 
 248 
 
 882657 
 
 178 
 
 927659 
 
 427 
 
 07234 1 
 
 43 
 
 16 
 
 810463 
 
 248 
 
 882330 
 
 178 
 
 927915 
 
 427 
 
 072083 
 
 44 
 
 17 
 
 810614 
 
 fJ48 
 
 882443 
 
 178 
 
 928171 
 
 427 
 
 071829 
 
 43 
 
 18 
 
 81076'j 
 
 248 
 
 882336 
 
 179 
 
 928427 
 
 427 
 
 071373 
 
 42 
 
 19 
 
 810912 
 
 248 
 
 882229 
 
 179 
 
 928683 
 
 427 
 
 071317 
 
 41 
 
 20 
 21 
 
 811061 
 
 248 
 
 882121 
 9.882014 
 
 179 
 179 
 
 928940 
 9.929196 
 
 427 
 
 071060 
 10.070801 
 
 40 
 39 
 
 9.811210 
 
 248 
 
 427 
 
 22 
 
 811338 
 
 247 
 
 881907 
 
 179 
 
 929432 
 
 427 
 
 070348 
 
 38 
 
 23 
 
 811507 
 
 247 
 
 881799 
 
 179 
 
 929708 
 
 427 
 
 070292 
 
 37 
 
 24 
 
 811633 
 
 247 
 
 881692 
 
 179 
 
 929964 
 
 426 
 
 070036 
 
 .36 
 
 25 
 
 811804 
 
 247 
 
 881384 
 
 179 
 
 930220 
 
 426 
 
 069780 
 
 33 
 
 26 
 
 811932 
 
 247 
 
 881477 
 
 179 
 
 930473 
 
 426 
 
 069323 
 
 34 
 
 27 
 
 812100 
 
 247 
 
 881369 
 
 179 
 
 930731 
 
 426 
 
 069269 
 
 33 
 
 28 
 
 812248 
 
 247 
 
 881261 
 
 180 
 
 930987 
 
 426 
 
 069013 
 
 32 
 
 29 
 
 812396 
 
 246 
 
 881153 
 
 180 
 
 931243 
 
 426 
 
 068V37 
 
 31 
 
 30 
 31 
 
 812544 
 
 246 
 
 881046 
 
 180 
 180 
 
 931499 
 9.931735 
 
 426 
 
 426 
 
 068301 
 10.068215 
 
 30 
 29 
 
 9.812692 
 
 246 
 
 9.880938 
 
 32 
 
 812840 
 
 240 
 
 880830 
 
 180 
 
 93'^,010 
 
 426 
 
 06/990 
 
 28 
 
 33 
 
 812988 
 
 246 
 
 8807'^r2 
 
 180 
 
 932266 
 
 426 
 
 067734 
 
 27 
 
 34 
 
 813135 
 
 246 
 
 880613 
 
 180 
 
 932522 
 
 428 
 
 067478 
 
 26 
 
 35 
 
 813283 
 
 246 
 
 880305 
 
 180 
 
 932778 
 
 426 
 
 067222 
 
 23 
 
 36 
 
 813430 
 
 245 
 
 880397 
 
 180 
 
 933033 
 
 426 
 
 066967 
 
 24 
 
 37 
 
 813578 
 
 245 
 
 880289 
 
 181 
 
 933289 
 
 420 
 
 066711 
 
 23 
 
 38 
 
 813725 
 
 245 
 
 880180 
 
 181 
 
 933545 
 
 426 
 
 066433 
 
 22 
 
 39 
 
 813872 
 
 245 
 
 880072 
 
 181 
 
 933800 
 
 426 
 
 066200 
 
 21 
 
 40 
 
 41 
 
 814019 
 9.814166 
 
 245 
 
 879963 
 9.879853 
 
 181 
 181 
 
 934056 
 9.9.M311 
 
 426 
 
 426 
 
 063944 
 
 20 
 19 
 
 1 245 
 
 10.0636H'J 
 
 42 
 
 814313 
 
 245 
 
 879746 
 
 181 
 
 934367 
 
 426 
 
 063433 
 
 18 
 
 43 
 
 814460 
 
 i 244 
 
 879637 
 
 181 
 
 934823 
 
 426 
 
 063177 
 
 17 
 
 44 
 
 814607 
 
 1 244 
 
 879329 
 
 181 
 
 93.3078 
 
 426 
 
 064922 
 
 16 
 
 45 
 
 814753 
 
 244 
 
 879420 
 
 181 
 
 933333 
 
 426 
 
 064667 
 
 15 
 
 46 
 
 814900 
 
 ' 244 
 
 879311 
 
 181 
 
 933389 
 
 426 
 
 064411 
 
 14 
 
 47 
 
 815046 
 
 : 244 
 
 879202 
 
 182 
 
 935844 
 
 426 
 
 004136 
 
 13 
 
 48 
 
 815193 
 
 ; 244 
 
 879093 
 
 182 
 
 936100 
 
 426 
 
 063900 
 
 12 
 
 49 
 
 815339 
 
 , 244 
 
 878984 
 
 182 
 
 936353 
 
 426 
 
 063643 
 
 11 
 
 30 
 51 
 
 81 5485 
 9.815631 
 
 243 
 
 878873 
 
 182 
 182 
 
 936610 
 9.936866 
 
 426 
 
 063390 
 10.0631.34 
 
 10 
 9 
 
 i 243 
 
 9.878766 
 
 423 
 
 52 
 
 813778 
 
 243 
 
 878656 
 
 ; 182 
 
 937121 
 
 425 
 
 062879 
 
 8 
 
 53 
 
 813924 
 
 243 
 
 878547 
 
 182 
 
 937376 
 
 425 
 
 062624 
 
 7 
 
 54 
 
 816069 
 
 243 
 
 878438 
 
 182 
 
 937632 
 
 425 
 
 06236H 
 
 (] 
 
 53 
 
 81621fi 
 
 243 
 
 878328 
 
 ; 182 
 
 937887 
 
 425 
 
 062113 
 
 5 
 
 50 
 
 HlGoOi 
 
 1 243 
 
 878219 
 
 ; 183 
 
 938142 
 
 423 
 
 061H5H 
 
 4 
 
 37 
 
 81630? 
 
 i 242 
 
 878109 
 
 : 183 
 
 938398 
 
 423 
 
 061602 
 
 3 
 
 58 
 
 816632 
 
 , 242 
 
 877999 183 
 
 938633 
 
 423 
 
 061347 
 
 2 
 
 59 
 
 81679S 
 
 1 242 
 
 877890: 183 
 
 93H908 
 
 42,5 
 
 06I0!»2 
 
 1 
 
 60 
 
 81694? 
 
 t! 242 
 
 877780 183 
 
 939163 
 
 1 425 
 
 0608:57 
 
 
 
 
 j Cohirie 
 
 I 
 
 1 Sine 1 
 
 1 Coiaiig. 
 
 1 
 
 1 Tani,'. 1 M. 
 
 49 Uegreva 
 
 M. 
 
 
 1 
 2 
 8 
 4 
 6 
 6 
 7 
 8 
 U 
 U) 
 
 II 
 12 
 13 
 14 
 15 
 16 
 17 
 !8 
 19 
 2() 
 
 21 
 
 22 
 23 
 24 
 2!) 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 33 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 
 f)\ 
 32 
 33 
 34 
 53 
 
 56 
 
 82 
 
 57 
 
 82 
 
 58 
 
 82 
 
 59 
 
 82 
 
 00 
 
 82 
 
1 1 
 
 i7 
 
 HO 
 
 <(l 
 
 f)5) 
 
 r.) 
 
 M 
 
 17 
 
 ru 
 
 )() 
 
 M 
 
 >.i 
 
 f):) 
 
 tH 
 
 M 
 
 H 
 
 M 
 
 Jf) 
 
 r)2 
 
 78 
 
 51 
 
 
 f)0 
 
 ')(') 
 
 '10 
 
 10 
 
 4H 
 
 ')H 
 
 47 
 
 )7 
 
 '!<) 
 
 11 
 
 'If) 
 
 htf) 
 
 41 
 
 !i«» 
 
 4:j 
 
 73 
 
 4 a 
 
 17 
 
 41 
 
 60 
 
 40 
 
 01 
 
 •A'J 
 
 AH 
 
 :w 
 
 !»-2 
 
 :r<' 
 
 
 'ir. 
 
 
 34 
 
 CO 
 
 33 
 
 i:{ 
 
 32 
 
 r)7 
 
 31 
 
 01 
 
 30 
 
 If) 
 
 20 
 
 00 
 
 28 
 
 ;m 
 
 27 
 
 78 
 
 20 
 
 TZ 
 
 25 
 
 (57 
 
 24 
 
 11 
 
 23 
 
 r)5 
 
 22 
 
 00 
 
 21 
 
 44 
 
 20 
 
 8'J 
 
 10 
 
 :j:) 
 
 18 
 
 77 
 
 17 
 
 aa 
 
 1(5 
 
 i\7 
 
 15 
 
 11 
 
 14 
 
 5(5 
 
 13 
 
 00 
 
 12 
 
 45 
 
 11 
 
 00 
 
 10 
 
 34 
 
 U 
 
 70 
 
 8 
 
 24 
 
 7 
 
 f)H 
 
 (5 
 
 13 
 
 5 
 
 5H 
 
 4 
 
 02 
 
 3 
 
 47 
 
 2 
 
 !»2 
 
 1 
 
 37 
 
 
 
 
 |MT 
 
 SlWrS AND TANOKNTf. ^41 DogrOCS.) 
 
 BO 
 
 HIlKt 
 
 0.81(5043 
 81708N 
 HI 7233 
 HI 7370 
 HI 7524 
 HI 7(5(58 
 817813 
 817058 
 818103 
 818247 
 
 ^818302 
 
 0.818530 
 818(581 
 818H25 
 HI 80(51) 
 H10II3 
 8 1 0257 
 8 1 0101 
 HI 054 5 
 810(580 
 HI 0832 
 
 „i__'L„J <'"Hiim i l». I TaiiH. ( p | 
 
 0.81007(5 
 820120 
 H202(53 
 820400 
 820550 
 820(503 
 H2083(5 
 820070 
 821122 
 _82I2(55 
 
 31 9.827407 
 8215.50 
 821(503 
 821835 
 821077 
 822120 
 8222(52 
 822404 
 822.54(5 
 822088 
 
 .822830' 
 822072 
 823114 
 8232.55 
 823307 
 823530 
 823(580 
 82.3821 
 8230(53 
 824104 
 
 0.8 24 24 .5 1 
 8243801 
 8245271 
 824(5(58 
 824808' 
 8240401 
 825000 
 8252301 
 82.5371 j 
 8255111 
 
 a4a 
 
 242 
 242 
 242 
 241 
 241 
 241 
 241 
 241 
 241 
 241 
 
 240 
 240 
 2-10 
 210 
 240 
 240 
 240 
 230 
 230 
 
 _ ?''^'^ 
 '2.30 
 230 
 230 
 230 
 238 
 238 
 238 
 238 
 238 
 
 __238 
 
 2.38^ 
 
 2.38 
 
 237 
 
 2.37 
 
 237 
 
 237 
 
 237 
 
 237 
 
 237 
 
 23(5 
 
 230 
 23(5 
 23(5 
 230 
 2.3(5 
 23r» 
 235 
 235 
 235 
 235 
 
 23.5' 
 235 
 235 
 234 
 
 0.87? 780 
 877(570 
 8775(50 
 H77450 
 8773'|(t 
 H7 7230 
 877120 
 877010 
 87(58!M> 
 87«78<) 
 87(5(578 
 
 0.87(55(58 
 87(5457 
 870347 
 87023(5 
 87(5125 
 87(50 M 
 875004 
 87570.3 
 875082 
 875571 
 
 0.87.5'150 
 87534 H 
 875237 
 875120 
 87.50 M 
 874003 
 87470! 
 H74080 
 874508 
 
 __874450 
 
 0.874344 
 874232 
 874121 
 874000 
 873800 
 873784 
 873(172 
 873500 
 87.3448 
 87.3335 
 
 183 
 
 183 
 
 183 
 
 183 
 
 183 
 
 IH'l 
 
 184 
 
 184 
 
 184 
 
 184 
 
 IS4 
 
 ]84 
 184 
 184 
 185 
 185 
 185 
 185 
 185 
 185 
 185 
 
 l85 
 185 
 185 
 180 
 180 
 180 
 180 
 180 
 180 
 180 
 
 18(5 
 187 
 187 
 187 
 187 
 187 
 187 
 187 
 187 
 187 
 
 'J 
 
 87.3223 
 
 187 
 
 873110 
 
 188 
 
 872008 
 
 188 
 
 872885 
 
 188 
 
 872772 
 
 188 
 
 872050 
 
 188 
 
 872547 
 
 188 
 
 872434 
 
 188 
 
 872321 
 
 188 
 
 872208 
 
 188 
 
 234 
 234 
 234 
 234 
 234 
 
 0.872005 
 87 1 08 1 
 87I8()H 
 871755 
 87!fM! 
 871528 
 871414 
 871.301 
 871187 
 871073 
 
 180 
 180 
 180 
 180 
 IHO 
 189 
 180 
 180 
 180 
 190 
 
 0.0301(53 
 030418 
 030(573 
 030028 
 040183 
 040438 
 040(504 
 W40040 
 04 1 201 
 0414.58 
 041714 
 
 0.041008 
 042223 
 042478 
 042733 
 042088 
 04324.3 
 043408 
 043752 
 044007 
 0442(52 
 
 li. 0145 1 7 
 044771 
 iM5020 
 045281 
 045535 
 04!, "0 
 04(5045 
 04(5200 
 040554 
 040808 
 
 ». 04 7003 
 047318 
 047572 
 047820 
 048081 
 04833(1 
 948500 
 048844 
 040090 
 040353 
 
 .04'0«07 
 0108(12 
 
 9.50 no 
 
 9.50370 
 950025 
 950870 
 9511.33 
 95 1 388 
 951042 
 _951890 
 
 9.0.52150 
 952405 
 952059 
 ii529l3J 
 953 If;?; 
 9,5342)1 
 953075! 
 9.530291 
 9.54183 
 9.544371 
 
 425 
 425 
 425 
 425 
 425 
 425 
 425 
 425 
 425 
 425 
 425 
 
 425 
 425 
 425 
 425 
 425 
 425 
 425 
 425 
 425 
 425 
 
 425 
 424 
 424 
 424 
 424 
 424 
 424 
 424 
 424 
 424 
 
 424 
 
 424 
 
 424 
 
 424 
 
 424 
 
 424 
 
 424 
 
 424 
 
 424 
 _424 
 
 424 
 424 
 424 
 424 
 424 
 424 
 424 
 424 
 424 
 424 
 
 424 
 424 
 424 
 424 
 423 
 423 
 423 
 423 
 423 
 423 
 
 • '(ll(IM((. 
 
 '0.000837 
 0(50582 
 000327 
 0(1007 
 0508 1 7 
 05il5(l2 
 050300 
 05905 1 
 05879(1 
 05H542 
 05828(1 
 
 10.0.'i8(»32 
 057777 
 057522 
 0572(1/ 
 «)570I2 
 05(5757 
 05(5502 
 050248 
 055993 
 055738 
 
 i 0.055483 
 055229 
 051074 
 051710 
 0.544(15 
 054210 
 053955 
 0.53701 
 05341(1 
 053 1 92 
 
 10.052937 
 052(582 
 052428 
 052174 
 051910 
 
 0510041 24 
 
 (10 
 
 59 
 
 58 
 
 57 
 
 50 
 
 55 
 
 54 
 
 53 
 
 52 
 
 51 
 
 50 
 
 40 
 
 48 
 
 47 
 
 40 
 
 45 
 
 44 
 
 43 
 
 42 
 
 41 
 
 40 
 
 39 
 
 .38 
 
 37 
 
 3(5 
 
 35 
 
 34 
 
 33 
 
 32 
 
 31 
 
 .30 
 
 29 
 28 
 27 
 20 
 25 
 
 051410 
 051150 
 0.5(»90 1 
 050047 
 
 T0.05?)i«9.3 
 05(»i.38 
 019884 
 049030 
 049375 
 049121 
 0488(57 
 048012 
 048358 
 
 _ 048104 
 
 l(). 04 7850 
 047595 
 047.341 
 047(;87 
 040833 
 040579 
 010325 
 04007) 
 0458 1 7 
 0455031 
 
 t'tiiiji. I 
 
 23 
 22 
 21 
 20 
 
 )9 
 
 )8 
 
 17 
 
 10 
 
 15 
 
 14 
 
 13 
 
 12 
 
 II 
 
 10 
 
 9 
 
 8 
 
 7 
 
 
 
 6 
 
 4 
 
 3 
 
 2 
 
 1 
 
 
 
 hi. 
 
 4« U<-greeN. 
 
eo 
 
 (42 Degrees.) a table of LOGARirHMio 
 
 
 M. 
 
 1 8iMe 
 
 I). 
 
 1 (,'o»in(i 1 I). 
 
 TniiL'. 
 
 1 D. 
 
 1 Colnnc. 1 1 
 
 
 
 9.825511 
 
 234 
 
 9.871073 
 
 190 
 
 9.9.54437 
 
 423 
 
 10.045563 
 
 60 
 
 1 
 
 825051 
 
 233 
 
 870960 
 
 190 
 
 9.54691 
 
 423 
 
 045309 
 
 59 
 
 2 
 
 82.5791 
 
 233 
 
 870846 
 
 190 
 
 9.54945 
 
 423 
 
 045055 
 
 58 
 
 3 
 
 82.5931 
 
 233 
 
 870732 
 
 J 90 
 
 955200 
 
 423 
 
 044800 
 
 57 
 
 4 
 
 826071 
 
 233 
 
 870618 
 
 190 
 
 95.54.54 
 
 423 
 
 044546 
 
 56 
 
 5 
 
 826211 
 
 233 
 
 870504 
 
 190 
 
 955707 
 
 423 
 
 044293 
 
 55 
 
 S 
 
 826351 
 
 233 
 
 870390 
 
 190 
 
 955961 
 
 423 
 
 044039 
 
 54 
 
 7 
 
 F26491 
 
 233 
 
 870276 
 
 190 
 
 9.56215 
 
 423 
 
 043785 
 
 53 
 
 8 
 
 826631 
 
 233 
 
 870161 
 
 190 
 
 956469 
 
 423 
 
 043.531 
 
 5?, 
 
 9 
 
 826770 
 
 232 
 
 870047 
 
 191 
 
 956723 
 
 423 
 
 043277 
 
 51 
 
 10 
 11 
 
 826910 
 
 232 
 
 869933 
 
 191 
 191 
 
 956977 
 
 423 
 
 043023 
 
 60 
 49 
 
 9.827049 
 
 232 
 
 9.809818 
 
 9.957231 
 
 423 
 
 10.042769 
 
 12 
 
 827189 
 
 232 
 
 869704 
 
 191 
 
 957485 
 
 423 
 
 042515 
 
 48 
 
 13 
 
 82732ft 
 
 23i 
 
 869.589 
 
 191 
 
 957739 
 
 423 
 
 042261 
 
 47 
 
 U 
 
 827467 
 
 232 
 
 869474 
 
 191 
 
 957993 
 
 423 
 
 042007 
 
 46 
 
 15 
 
 827606 
 
 232 
 
 869360 
 
 191 
 
 958246 
 
 423 
 
 0417.54 
 
 45 
 
 16 
 
 827745 
 
 232 
 
 869245 
 
 191 
 
 958.500 
 
 423 
 
 041.500 
 
 44 
 
 17 
 
 827884 
 
 231 
 
 8691.30 
 
 191 
 
 958754 
 
 423 
 
 041246 
 
 43 
 
 18 
 
 828023 
 
 231 
 
 869015 
 
 192 
 
 959008 
 
 423 
 
 040992 
 
 42 
 
 19 
 
 8'>8162 
 
 231 
 
 868900 
 
 192 
 
 959262 
 
 423 
 
 040738 
 
 41 
 
 20 
 21 
 
 828301 
 9.828439 
 
 231 
 
 868785 
 
 192 
 192 
 
 9.59516 
 
 423 
 
 040484 
 
 40 
 39 
 
 231 
 
 9.868670 
 
 9.9.59769 
 
 423 
 
 10.040231 
 
 22 
 
 928578 
 
 231 
 
 868555 
 
 192 
 
 960023 
 
 423 
 
 039977 
 
 38 
 
 23 
 
 828716 
 
 231 
 
 868440 
 
 192 
 
 960277 
 
 423 
 
 039723 
 
 37 
 
 24 
 
 8288.55 
 
 230 
 
 868324 
 
 192 
 
 960531 
 
 423 
 
 039469 
 
 36 
 
 2f) 
 
 828993 
 
 230 
 
 868209 
 
 192 
 
 960784 
 
 423 
 
 039216 
 
 35 
 
 26 
 
 829131 
 
 230 
 
 868093 
 
 192 
 
 961038 
 
 428 
 
 038962 
 
 34 
 
 27 
 
 829269 
 
 230 
 
 867978 
 
 193 
 
 961291 
 
 423 
 
 038709 
 
 33 
 
 28 
 
 829407 
 
 230 
 
 867862 
 
 193 
 
 961545 
 
 423 
 
 038455 
 
 32 
 
 29 
 
 829.545 
 
 230 
 
 867747 
 
 193 
 
 961799 
 
 423 
 
 038201 
 
 31 
 
 30 
 31 
 
 829683 
 
 230 
 
 867631 
 
 193 
 193 
 
 962052 
 
 423 
 
 037948 
 10.037694 
 
 30 
 29 
 
 9.829821 
 
 229 
 
 9.867515 
 
 9.962306 
 
 423 
 
 32 
 
 829959 
 
 229 
 
 867399 
 
 193 
 
 963560 
 
 423 
 
 037440 
 
 28 
 
 33 
 
 830097 
 
 229 
 
 867283 
 
 193 
 
 962813 
 
 423 
 
 0.37187 
 
 27 
 
 34 
 
 830234 
 
 229 
 
 867167 
 
 193 
 
 963067 
 
 423 
 
 036933 
 
 26 
 
 35 
 
 830372 
 
 229 
 
 867051 
 
 193 
 
 963320 
 
 423 
 
 036680 
 
 25 
 
 36 
 
 830.509 
 
 229 
 
 866935 
 
 194 
 
 963574 
 
 423 
 
 036426 
 
 24 
 
 37 
 
 830646 
 
 229 
 
 866819 
 
 194 
 
 963827 
 
 423 
 
 036173 
 
 23 
 
 38 
 
 830784 
 
 229 
 
 866703 
 
 194 
 
 964081 
 
 423 
 
 035919 
 
 22 
 
 39 
 
 830921 
 
 228 
 
 866586 
 
 194 
 
 9643.35 
 
 423 
 
 035665 
 
 21 
 
 40 
 
 41 
 
 831058 
 
 228 
 
 866470 
 
 194 
 194 
 
 964.588 
 
 422 
 
 035412 
 10.0351.58 
 
 20 
 19 
 
 9.831195 
 
 228 
 
 9.866353 
 
 9.964842 
 
 422 
 
 42 
 
 831332 
 
 228 
 
 866237 
 
 194 
 
 965095 
 
 422 
 
 0.34905 
 
 18 
 
 43 
 
 831469 
 
 228 
 
 866120 
 
 194 
 
 965349 
 
 422 
 
 034651 
 
 17 
 
 44 
 
 831606 
 
 228 
 
 866004 
 
 195 
 
 965602 
 
 422 
 
 U34398 
 
 16 
 
 45 
 
 831742 
 
 228 
 
 865887 
 
 195 
 
 965855 
 
 422 
 
 034145 
 
 15 
 
 46 
 
 831879 
 
 228 
 
 86o770 
 
 195 
 
 966109 
 
 422 
 
 0.33891 
 
 14 
 
 47 
 
 832015 
 
 227 
 
 865653 
 
 195 
 
 966362 
 
 422 
 
 033638 
 
 13 
 
 48 
 
 832152 
 
 227 
 
 865536 
 
 195 
 
 966616 
 
 422 
 
 033384 
 
 12 
 
 49 
 
 832288 
 
 227 
 
 865419 
 
 195 
 
 966869 
 
 422 
 
 033131 
 
 11 
 
 50 
 
 51 
 
 832425 
 
 227 
 
 865302 
 
 195 
 195 
 
 967123 
 
 422 
 
 032877 
 
 10 
 9 
 
 9.832561 
 
 227 
 
 9.865185 
 
 9.967376 
 
 422 
 
 JO. 032624 
 
 52 
 
 832697 
 
 227 
 
 86.5068 
 
 195 
 
 967629 
 
 422 
 
 032371 
 
 8 
 
 53 
 
 832833 
 
 227 
 
 864950 
 
 195 
 
 967883 
 
 422 
 
 032117 
 
 7 
 
 54 
 
 832969 
 
 226 
 
 864833 
 
 196 
 
 968136 
 
 422 
 
 031864 
 
 6 
 
 55 
 
 833105 
 
 226 
 
 ^64716 
 
 196 
 
 968.389 
 
 422 
 
 031611 
 
 5 
 
 
 833241 
 
 226 
 
 864598 
 
 196 
 
 968643 
 
 422 
 
 
 4 
 
 57 
 
 8.33377 
 
 226 
 
 864481' "6j 
 
 068896 
 
 422 
 
 031104 
 
 3 
 
 68 
 
 833512 
 
 226 
 
 86436; , 
 
 969149 
 
 422 
 
 030861 
 
 2 
 
 59 
 
 833648 
 
 226 
 
 864245 
 
 969403 
 
 422 
 
 030597 
 
 1 
 
 60 
 
 833783 
 
 226 
 
 864127' X 
 
 969656 
 
 422 
 
 030344 
 
 
 
 _J 
 
 Cosine 1 
 
 
 Sine 1 1 
 
 Cotang. 1 
 
 
 Taiig. 1 M. 1 
 
 M. 
 
 47 Dsgrees. 
 
 2 
 3 
 
 4 
 6 
 6 
 7 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 40 
 
 47 
 
 48 
 
 84 
 84 
 
 49 
 
 84 
 
 50 
 
 84 
 
 61 
 
 9.84 
 
 62 
 
 84 
 
 53 
 
 84 
 
 54 
 
 84 
 
 55 
 
 84 
 
 56 
 
 84 
 
 57 
 
 84 
 
 58 
 
 84 
 
 59 
 
 84 
 
 60 
 
 84 
 
 1 Cosi 
 
■ 1 1 
 
 'i63 
 
 60 
 
 109 
 
 59 
 
 055 
 
 68 
 
 '^00 
 
 57 
 
 51(5 
 
 56 
 
 J!)3 
 
 55 
 
 ):}9 
 
 54 
 
 785 
 
 53 
 
 331 
 
 52 
 
 277 
 
 51 
 
 )23 
 
 60 
 
 rog 
 
 49 
 
 515 
 
 48 
 
 261 
 
 47 
 
 J()7 
 
 46 
 
 ('54 
 
 45 
 
 JOO 
 
 44 
 
 M6 
 
 43 
 
 )93 
 
 42 
 
 r.is 
 
 41 
 
 184 
 
 40 
 
 J3l 
 
 39 
 
 )77 
 
 38 
 
 r23 
 
 37 
 
 K)9 
 
 36 
 
 >16 
 
 35 
 
 J62 
 
 34 
 
 mo 
 
 33 
 
 r55 
 
 32 
 
 401 
 
 31 
 
 M8 
 
 30 
 
 594 
 
 29 
 
 140 
 
 28 
 
 87 
 
 27 
 
 )33 
 
 26 
 
 580 
 
 25 
 
 126 
 
 24 
 
 73 
 
 23 
 
 )19 
 
 22 
 
 565 
 
 21 
 
 U2 
 
 20 
 
 58 
 
 19 
 
 )05 
 
 18 
 
 551 
 
 17 
 
 J98 
 
 16 
 
 45 
 
 15 
 
 <91 
 
 14 
 
 538 
 
 13 
 
 584 
 
 12 
 
 31 
 
 11 
 
 577 
 
 10 
 
 524 
 
 9 
 
 571 
 
 8 
 
 117 
 
 7 
 
 mi 
 
 6 
 
 511 
 
 5 
 
 «<-~ 
 
 
 j;ji 
 
 '1 
 
 04 
 
 3 
 
 551 
 
 2 
 
 597 
 
 1 
 
 544 
 
 
 
 1 
 
 M. 
 
 "NESANDTANOENTS. (43 DcjrreCS.) 
 
 61 
 
 
 
 1 
 
 2 
 3 
 
 4 
 6 
 6 
 7 
 8 
 9 
 10 
 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 9.833783 
 833919 
 834054 
 834189 
 834325 
 834460 
 834595 
 834730 
 834865 
 834999 
 835134 
 
 9.835269 
 835403 
 835538 
 835672 
 835807 
 83594 1 
 836075 
 836209 
 836343 
 836477 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 
 41 
 42 
 43 
 44 
 45 
 40 
 47 
 48 
 49 
 50 
 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 
 9.836611 
 836745 
 836878 
 837012 
 837146 
 837279 
 837412 
 837546 
 837679 
 837812 
 
 9.837945 
 838078 
 838211 
 838344 
 838477 
 838610 
 838742 
 838875 
 839007 
 839140 
 
 9.839272 
 839404 
 839536 
 839668 
 839800 
 839932 
 840064 
 840196 
 840328 
 840459 
 
 9.840591 
 840722 
 84085* 
 840985 
 841116 
 841247 
 841378 
 841509 
 841640 
 841771 
 
 226 
 225 
 226 
 225 
 225 
 225 
 225 
 225 
 225 
 224 
 224 
 
 224 
 224 
 224 
 224 
 224 
 224 
 223 
 223 
 223 
 223 
 
 9.864127 
 864010 
 863892 
 863774 
 863650 
 863538 
 863419 
 863301 
 863183 
 863064 
 862946 
 
 19619.969656 
 
 223 
 223 
 223 
 222 
 223 
 222 
 223 
 223 
 223 
 222 
 
 9.862827 
 862709 
 862590 
 862471 
 862353 
 862234 
 862115 
 861996 
 861877 
 861758 
 
 9.861638 
 861619 
 ^61400 
 861280 
 861161 
 861041 
 860922 
 860802 
 860682 
 860562 
 
 196 
 197 
 197 
 197 
 197 
 197 
 197 
 197 
 197 
 198 
 
 198 
 198 
 198 
 198 
 198 
 198 
 198 
 198 
 198 
 199 
 
 969909 
 970162 
 970416 
 970669 
 970922 
 971175 
 971429 
 971682 
 971935 
 972188 
 
 222 
 
 221 
 
 221 
 
 221 
 
 231 
 
 221 
 
 221 
 
 221 
 
 221 
 
 220 
 
 220 
 220 
 220 
 220 
 220 
 220 
 219 
 219 
 219 
 219 
 
 9.860442 
 860322 
 860202 
 860082 
 859962 
 859842 
 859721 
 859601 
 859480 
 859360 
 
 219 
 219 
 219 
 219 
 318 
 218 
 318 
 218 
 218 
 218 
 
 9.859239 
 859119 
 858998 
 858877 
 858756 
 858635 
 858514 
 858393 
 858272 
 858151 
 
 .858029 
 857908 
 857786 
 857665 
 857543 
 857422 
 857300 
 857178 
 857056 
 856934 
 
 199 
 199 
 199 
 199 
 199 
 199 
 199 
 199 
 200 
 200 
 
 200 
 
 200 
 
 200 
 
 200 
 
 200 
 
 200 
 
 201 
 
 201 
 
 201 
 
 201 
 
 201 
 201 
 201 
 201 
 202 
 202 
 202 
 202 
 202 
 202 
 
 9.972441 
 972694 
 972948 
 973201 
 973454 
 973707 
 973960 
 974213 
 974466 
 974719 
 
 9.974973 
 975226 
 975479 
 975732 
 975983 
 976238 
 976491 
 976744 
 976997 
 977250 
 
 9.977503 
 977756 
 978009 
 978262 
 978515 
 978768 
 979021 
 979274 
 979527 
 979780 
 
 202 
 202 
 202 
 203 
 203 
 203 
 
 203 
 203 
 203 
 203 
 
 9.980033 
 980286 
 980538 
 980791 
 981044 
 981297 
 981550 
 981803 
 982056 
 982309 
 
 9.982662 
 982814 
 983067 
 983320 
 983573 
 
 984079 
 984331 
 984584 
 984837 
 
 423 
 422 
 423 
 433 
 433 
 433 
 422 
 422 
 423 
 423 
 422 
 
 423 
 422 
 422 
 422 
 422 
 423 
 423 
 433 
 423 
 422 
 
 422 
 422 
 422 
 422 
 422 
 422 
 422 
 423 
 432 
 422 
 
 423 
 422 
 422 
 422 
 422 
 422 
 422 
 422 
 423 
 423 
 
 433 
 433 
 423 
 431 
 431 
 431 
 431 
 431 
 431 
 431 
 
 421 
 421 
 421 
 421 
 421 
 
 421 
 421 
 421 
 421 
 
 10.030344 
 U30091 
 029838 
 029584 
 03933 1 
 029078 
 02HH25 
 028571 
 028318 
 028065 
 027812 
 
 10.027559 
 027.306 
 027052 
 026799 
 026546 
 026293 
 026040 
 025787 
 025534 
 
 025281 
 
 10.025027 
 024774 
 024621 
 024268 
 024015 
 023762 
 023609 
 023256 
 023003 
 022750 
 
 10.022497 
 022244 
 021991 
 021738 
 021485 
 021232 
 020979 
 020726 
 020473 
 020220 
 
 10.019967 
 019714 
 019462 
 019209 
 018966 
 018703 
 018450 
 018197 
 017944 
 017691 
 
 10.017438 
 017186 
 016933 
 016680 
 016427 
 016174 
 015S21 
 016669 
 0164161 I 
 0161631 
 
 60 
 
 69 
 
 58 
 
 67 
 
 56 
 
 56 
 
 54 
 
 63 
 
 63 
 
 61 
 
 60 
 
 49 
 48 
 47 
 46 
 45 
 44 
 43 
 42 
 41 
 40 
 
 39 
 
 38 
 
 37 
 
 36 
 
 36 
 
 34 
 
 33 
 
 33 
 
 31 
 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 
 19 
 18 
 17 
 IG 
 15 
 14 
 13 
 12 
 11 
 10 
 
 46 Degrees. 
 
 i 
 
6S 
 
 hi, 
 
 i« Si. 
 
 (44 Degrees.) a table of LooARtTiirnc 
 
 M.| 
 
 Hiiifi 1 
 
 "• 1 
 
 Ccmine i>. j 
 
 T;mi?. i n. 1 
 
 ('(llMIIS 1 
 
 
 
 
 9.841771 
 
 218 
 
 9.8.56934 
 
 203 
 
 9.98 '.837 
 
 421 
 
 10.015163 
 
 6U 
 
 I 
 
 841902 
 
 218 
 
 856812 
 
 •..M)3 
 
 985090 
 
 421 
 
 014910 
 
 59 
 
 2 
 
 842033 
 
 218 
 
 850690 
 
 204 
 
 985343 
 
 421 
 
 0146.57 
 
 58 
 
 3 
 
 842163 
 
 217 
 
 856568 
 
 204 
 
 985696 
 
 421 
 
 014404 
 
 57 
 
 4 
 
 842294 
 
 217 
 
 856446 
 
 204 
 
 985848 
 
 421 
 
 0141.52 
 
 56 
 
 » 
 
 842424 
 
 217 
 
 856323 
 
 204 
 
 986101 
 
 421 
 
 013899 
 
 55 
 
 6 
 
 842555 
 
 217 
 
 8.56201 
 
 204 
 
 986354 
 
 421 
 
 013646 
 
 54 
 
 7 
 
 842685 
 
 217 
 
 856078 
 
 204 
 
 986607 
 
 421 
 
 013393 
 
 53 
 
 8 
 
 842S15 
 
 217 
 
 855956 
 
 204 
 
 986860 
 
 421 
 
 013140 
 
 52 
 
 9 
 
 842!)4<) 
 
 217 
 
 855H33 
 
 204 
 
 987112 
 
 421 
 
 012888 
 
 51 
 
 10 
 
 ll 
 
 843076 
 9.vS43206 
 
 217 
 216 
 
 855711 
 
 205 
 205 
 
 987305 
 
 421 
 
 012635 
 
 50 
 49 
 
 9.855.''j88 
 
 9.987618 
 
 421 
 
 10.012382 
 
 12 
 
 843336 
 
 216 
 
 85.5465 
 
 205 
 
 987871 
 
 421 
 
 012129 
 
 48 
 
 13 
 
 843466 
 
 216 
 
 855342 
 
 205 
 
 988123 
 
 421 
 
 011877 
 
 47 
 
 14 
 
 843595 
 
 216 
 
 855219 
 
 205 
 
 988376 
 
 421 
 
 011624 
 
 46 
 
 1ft 
 
 843725 
 
 216 
 
 855096 
 
 205 
 
 988629 
 
 421 
 
 011371 
 
 45 
 
 in 
 
 843855 
 
 216 
 
 854973; 205 1 
 
 988882 
 
 421 
 
 011118 
 
 44 
 
 17 
 
 843984 
 
 216 
 
 854850 
 
 205 
 
 989134 
 
 421 
 
 010866 
 
 43 
 
 18 
 
 844114 
 
 215 
 
 8.54727 
 
 206 
 
 989387 
 
 4.1 
 
 010613 
 
 42 
 
 19 
 
 844243 
 
 216 
 
 854603 
 
 206 
 
 989640 
 
 421 
 
 010360 
 
 41 
 
 20 
 21 
 
 844372 
 9.844502 
 
 215 
 
 854480 
 9.854356 
 
 206 
 206 
 
 989893 
 
 421 
 
 010107 
 
 40 
 39 
 
 215 
 
 9.990145 
 
 421 
 
 10.009855 
 
 22 
 
 844631 
 
 215 
 
 154233 
 
 206 
 
 990398 
 
 421 
 
 009602 
 
 38 
 
 23 
 
 S44760 
 
 215 
 
 854109 
 
 206 
 
 990651 
 
 421 
 
 009349 
 
 37 
 
 21 
 
 844889 
 
 215 
 
 8i;3980 
 
 206 
 
 990903 
 
 421 
 
 009097 
 
 36 
 
 2r) 
 
 845018 
 
 215 
 
 853862 
 
 206 
 
 991156 
 
 421 
 
 008844 
 
 35 
 
 26 
 
 845147 
 
 215 
 
 853738 
 
 206 
 
 991409 
 
 421 
 
 008591 
 
 34 
 
 27 
 
 845276 
 
 214 
 
 85.3614 
 
 207 
 
 991662 
 
 421 
 
 008338 
 
 33 
 
 28 
 
 845405 
 
 214 
 
 853490 
 
 207 
 
 991914 
 
 421 
 
 008086 
 
 32 
 
 20 
 
 845533 
 
 214 
 
 853366 
 
 207 
 
 992167 
 
 421 
 
 007833 
 
 31 
 
 30 
 31 
 
 845662 
 
 214 
 
 853242 
 
 207 
 207 
 
 992420 
 
 421 
 
 007580 
 
 30 
 29 
 
 9.845790 
 
 214 
 
 9.853118 
 
 9.992672 
 
 421 
 
 10 0G7328 
 
 32 
 
 845919 
 
 214 
 
 8.52994 
 
 207 
 
 992925 
 
 421 
 
 007075 
 
 28 
 
 33 
 
 846047 
 
 214 
 
 8.52869 
 
 207 
 
 993178 
 
 421 
 
 006822 
 
 27 
 
 34 
 
 846175 
 
 214 
 
 852745 
 
 207 
 
 993430 
 
 421 
 
 006570 
 
 26 
 
 35 
 
 8*6304 
 
 214 
 
 852620 
 
 207 
 
 993683 
 
 421 
 
 006317 
 
 25 
 
 3fi 
 
 846432 
 
 213 
 
 852496 
 
 208 
 
 993936 
 
 421 
 
 006064 
 
 24 
 
 37 
 
 846560 
 
 213 
 
 8.52371 
 
 208 
 
 994189 
 
 421 
 
 005811 
 
 23 
 
 38 
 
 846688 
 
 213 
 
 852247 
 
 208 
 
 994441 
 
 421 
 
 005559 
 
 22 
 
 39 
 
 84C316 
 
 213 
 
 852122 
 
 208 
 
 994694 
 
 421 
 
 005306 
 
 21 
 
 40 
 41 
 
 846944 
 
 213 
 
 851997 
 9.851872 
 
 208 
 208 
 
 9S»4947 
 
 421 
 
 005053 
 
 20 
 19 
 
 9.847071 
 
 213 
 
 9. 95199 
 
 421 
 
 10.004801 
 
 42 
 
 84T"09 
 
 1 213 
 
 6 ^747 
 
 208 
 
 995452 
 
 421 
 
 004548 
 
 18 
 
 43 
 
 8't,,: ' 
 
 ?13 
 
 851622 208 
 
 995705 
 
 421 
 
 004295 
 
 17 
 
 44 
 
 847iti'. 
 
 ■ 2.2 
 
 851' f»7 209 
 
 995957 
 
 421 
 
 004043 
 
 16 
 
 4f> 
 
 P,47;;82 
 
 1 2i2 
 
 -^513/2 
 
 209 
 
 996210 
 
 421 
 
 003790 
 
 15 
 
 4R 
 
 84770;* 
 
 212 
 
 851246 
 
 209 
 
 996463 
 
 421 
 
 003537 
 
 14 
 
 47 
 
 847836 
 
 212 
 
 851121 
 
 209 
 
 996715 
 
 421 
 
 003285 
 
 13 
 
 48 
 
 847964 
 
 212 
 
 8.50996 
 
 209 
 
 996968 
 
 421 
 
 003032 
 
 12 
 
 49 
 
 818091 
 
 212 
 
 850870 
 
 209 
 
 997221 
 
 n 
 
 002779 
 
 11 
 
 50 
 51 
 
 848218 
 
 212 
 
 212 
 
 850745 
 
 209 
 209 
 
 997473 
 
 1 
 421 
 
 002527 
 
 10 
 9 
 
 9.848345 
 
 9.850619 
 
 9.997726 
 
 10.002274 
 
 52 
 
 848472 
 
 211 
 
 850493 
 
 210 
 
 997979 
 
 421 
 
 002021 
 
 8 
 
 53 
 
 848599 
 
 211 
 
 650368 
 
 210 
 
 998231 
 
 421 
 
 00176S 
 
 7 
 
 54 
 
 848726 
 
 211 
 
 860242 
 
 210 
 
 998484 
 
 421 
 
 0015U 
 
 1 6 
 
 55 
 
 848852 
 
 211 
 
 8.50116 
 
 210 
 
 998737 
 
 421 
 
 00126S 
 
 1 5 
 
 56 
 
 84S„79 
 
 211 
 
 849990 
 
 210 
 
 99^:89 
 
 421 
 
 001011 
 
 4 
 
 57 
 
 849106 
 
 211 
 
 849864 
 
 2i0 
 
 999242 
 
 421 
 
 000758 
 
 i 3 
 
 58 
 
 849232 
 
 211 
 
 849738 
 
 210 
 
 999495 
 
 421 
 
 00050? 
 
 ) '^ 
 
 59 
 
 849359 
 
 211 
 
 849611 
 
 210 
 
 999748 
 
 421 
 
 0002.5C 
 
 ) 1 
 
 leo 
 
 849485 
 
 211 
 
 849485 
 
 210 
 
 10.000000 
 
 421 
 
 00000( 
 
 ) 
 
 Iz 
 
 Cosine 
 
 1 
 
 1 Sine 1 
 
 1 Cotaiig. 1 
 
 1 Tang. M. 
 
 
 
 
 4 
 
 i5 D^ 
 
 ;ree8. 
 
 
 
 
 
 "*" 
 
 
 > 
 
 M 
 
 8 
 
 
 
 00 
 
 1 
 
 00 
 
 2 
 
 00 
 
 3 00 
 
 f 
 
 00 
 
 6 
 
 7 
 
 S 
 
 9 
 
 10 
 
 11 
 
 12 
 
 13 
 
 14 
 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 
 24 , 
 
 I 
 
 29 
 30 
 
 38 
 39 
 40 
 
 46 
 47 
 48 
 49 
 50 
 51 
 
 54 
 55 
 56 
 57 
 
 58 I 
 
 59 
 
 M 
 
" 1 i 
 
 )ifi;j 
 
 «U 
 
 910 
 
 59 
 
 M7 
 
 58 
 
 1404 
 
 57 
 
 H5'2 
 
 56 
 
 J899 
 
 55 
 
 Jt)4fi 
 
 54 
 
 33!):) 
 
 53 
 
 }14() 
 
 52 
 
 WHH 
 
 51 
 
 HV.i^ 
 
 50 
 
 i-.iS'Z 
 
 49 
 
 il29 
 
 48 
 
 1877 
 
 47 
 
 1624 
 
 46 
 
 1371 
 
 45 
 
 1118 
 
 44 
 
 0866 
 
 43 
 
 0613 
 
 42 
 
 0300 
 
 41 
 
 0107 
 
 40 
 
 9855 
 
 39 
 
 9602 
 
 38 
 
 9349 
 
 37 
 
 9097 
 
 36 
 
 8844 
 
 35 
 
 8591 
 
 34 
 
 8338 
 
 33 
 
 8086 
 
 32 
 
 7833 
 
 31 
 
 7580 
 
 30 
 29 
 
 7328 
 
 7075 
 
 28 
 
 6822 
 
 27 
 
 6570 
 
 26 
 
 6^17 
 
 25 
 
 6064 
 
 24 
 
 15811 
 
 23 
 
 15559 
 
 22 
 
 )5306 
 
 21 
 
 )5053 
 
 20 
 19 
 
 )4801 
 
 )4548 
 
 18 
 
 )4295 
 
 17 
 
 )4043 
 
 16 
 
 )3790 
 
 15 
 
 )3537 
 
 14 
 
 )3285 
 
 13 
 
 J3032 
 
 12 
 
 )2779 
 
 11 
 
 32527 
 
 10 
 9 
 
 32274 
 
 32021 
 
 8 
 
 31769 
 
 r 
 
 315H] 
 
 6 
 
 01263 
 
 5 
 
 01011 
 
 4 
 
 00756 
 
 3 
 
 0050f 
 
 » 2 
 
 00255 
 
 \ 1 
 
 OOOOC 
 
 ) 
 
 ng. ■ ■ W 
 
 A TABLE OF JVATUUAL SIIVES. 
 
 M 
 
 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
 7 
 
 S 
 
 9 
 
 10 
 
 11 
 
 12 
 
 13 
 
 14 
 
 Dt•^r 
 
 "NatT j pT (;o- 
 
 00000 
 00029 
 
 ooor>8 
 
 00087 
 
 00116 
 
 00145 
 
 001751 
 
 0020 1 
 
 00233 
 
 0026-^ 
 
 0029 1 
 
 0032') 
 
 00349 
 
 00378 
 
 00407 
 
 _[5 00436 
 
 16 
 
 17 
 
 18 
 
 19 
 
 20 
 
 21 
 
 22 
 
 23 
 
 24 
 
 Unit. 
 00000 
 00000 
 00000 
 '00000 
 00000 
 00000 
 
 iooooo 
 
 I'OOOOO 
 
 Iooooo 
 
 00000 
 99999 
 99999 
 99999 
 99999 
 39999 
 
 1 Deg. 
 
 00465 
 00495 
 00524 
 00553 
 00582 
 006 1 1 
 00640 
 00669 
 00698 
 
 25 00727 
 
 26 00756 
 
 27 00785 
 
 28 00814 
 
 29 00844 
 00873 
 
 Nut. 
 Sine 
 
 0l7'15 
 
 01774 
 
 101803 
 
 ()1832 
 
 !01H62 
 
 01891 
 
 019201 
 
 1019491 
 
 101978 
 
 02007 
 
 02036 
 
 02065 
 
 02094 
 
 02123 
 
 02152 
 
 02181 
 
 N. (;o. 
 nine 
 
 99985 
 99984 
 99984 
 99983 
 99!)83 
 999'>t2 
 [99982 
 99981 
 99980 
 99980i 
 99979 
 99979 
 99978 
 99977 
 99977 
 999/6 
 
 ,> Dog. 
 
 30 
 
 31 
 32 
 33 
 34 
 
 00902 
 00931 
 00960 
 00989 
 35'0I018 
 36|01047 
 37 01076; 
 
 38 
 39 
 40 
 41 
 
 01105 
 01134 
 01164 
 01193 
 42101222 
 43' 01 251 
 
 44 01280 
 
 45 01309 
 46 
 47 
 48 
 49 
 50 
 51 
 
 53 
 54 
 
 55 
 56 
 57 
 
 58 
 59 
 
 01338 
 01367 
 01396 
 
 01425|99990 
 01454 99989 
 
 99996 
 99996 
 99995 
 99995 
 99995 
 99995 
 ,99994 
 99994 
 99994 
 99993 
 99993 
 99993 
 99992 
 99992 
 9999! 
 
 02211 
 
 02240 
 
 02269 
 
 0:.^298 
 
 02327 
 
 02356 
 
 02385 
 
 02414 
 
 02443 
 
 02472 
 
 02501 
 
 02530 
 
 02560 
 
 02589 
 
 02618 
 
 99991 
 99991 
 99990 
 
 01483 
 01513 
 01542 
 01571 
 01600 
 01629 
 01 658 
 
 99989 
 99989 
 99988 
 99988 
 99987 
 99987 
 99986 
 
 02647 
 
 02676 
 
 02705 
 
 02734 
 
 i»2763 
 
 02792 
 
 02821 
 
 02850 
 
 02879 
 
 <(2908 
 
 02938 
 
 02967 
 
 02996 
 
 03025 
 
 03'»54 
 
 99976 
 
 99975 
 
 99974| 
 
 999741 
 
 99973 
 
 99972 
 
 99972 
 
 99971 
 
 99970| 
 
 99969! 
 
 99969 
 
 99968| 
 
 99S67 
 
 999661 
 
 9 9966 , 
 
 99965 i 
 
 999641 
 
 99963! 
 
 99963 
 
 99962 
 
 9'J961 
 
 99960 
 
 99959 
 
 99959 
 
 99958 
 
 99957 
 
 99956 
 
 999551 
 
 999541 
 
 99953; 
 
 iVut. 
 Hiiio 
 
 o:ri90 
 
 035 1 9 
 
 03548 
 
 03577 
 
 03606 
 
 03635 
 
 (3664 
 
 03693 
 
 03723 
 
 0375t; 
 
 0378 1 
 
 03810 
 
 03839 
 
 03868 
 
 03897 
 
 03926 
 
 03955 
 03984 
 04013 
 04042 
 04071 
 04100 
 04129 
 04159 
 04188 
 04217 
 04246 
 04275 
 04304 
 04333 
 04362 
 
 9993U 
 
 99938 
 
 39937 
 
 99936 
 
 99935 
 
 99934 
 
 99933 
 
 99932 
 
 99931 
 
 99930 
 
 99929 
 
 39927 
 
 99926 
 
 99925 
 
 99924 
 
 99923 
 
 04391 
 
 04420 
 
 04449 
 
 04478 
 
 04507 
 
 04536 
 
 04565 
 
 04594 
 
 04623 
 
 04653 
 
 04682 
 
 [04711 
 
 04740 
 
 04769 
 
 04798 
 
 99922 
 9992 1 
 99919 
 99918 
 99917 
 99916 
 99915 
 99913 
 99912 
 99911 
 99910 
 99909 
 99907 
 99906 
 99905 
 
 3jl)uir. 
 
 "Sat. iNrTJo^ 
 J^ine I Hiiie 
 
 05234 
 
 052(53 
 
 0.5292 
 
 05321 
 
 05350 
 
 05379 
 
 05408 
 
 05437 
 
 k)546r 
 
 0549 
 
 05524 
 
 05553 
 
 05582 
 
 05611 
 
 05640 
 
 05669 
 
 05698 
 05727 
 05756 
 05785 
 05814 
 05844 
 05873 
 05902 
 05931 
 05960 
 05989 
 06018 
 06047 
 06076 
 06105 
 
 99863 
 
 9986 1 
 
 99860 
 
 9985S) 
 
 99857] 
 
 99855 
 
 99854! 
 
 9985v;' 
 
 99851 
 
 99849 
 
 99847 
 
 99846 
 
 99844 
 
 99842 
 
 99341 
 
 99839 
 
 4 Ueir. 
 
 01687' 99986 
 01716 99985 
 
 89 Deff. 
 
 03083 
 
 03112 
 
 03141 
 
 03170 
 
 03199 
 
 03228 
 
 03257 
 
 03286 
 
 03316 
 
 03345 
 
 03374 
 
 03403 
 
 03432 
 
 03461 
 
 99952 
 
 99952; 
 
 99951;! 
 
 99950 i 
 
 99949 i 
 
 99948! 
 
 99947 
 
 99946, 
 
 99945 
 
 9 9 004 
 
 99902 
 
 99901 
 
 99900 
 
 99898 
 
 99897 
 
 99896 
 
 99894 
 
 99893 
 
 99892 
 
 99890 
 
 99889 
 
 99888 
 
 99886 
 
 99885 
 
 04827 
 04856 
 04885 
 04914 
 04943 
 04972 
 05001 
 05030 
 
 99883 
 99882 
 99881 
 99879 
 99878 
 99876 
 99875 
 99873 
 
 06134 
 
 06163 
 
 06192 
 
 06221 
 
 06250 
 
 06279 
 
 06308 
 
 06337 
 
 06366 
 
 06395 
 
 0(5424 
 
 06453 
 
 06482 
 
 06511 
 
 06540 
 
 99SiS 
 
 9!i-.."; 
 
 99 
 
 99833 
 
 99831 
 
 99829 
 
 99827 
 
 99826 
 
 99824 
 
 99822 
 
 9982J 
 
 99819 
 
 99817 
 
 99815 
 
 99813! 
 
 Or.OPiQ Q0fl70 
 
 N. Co- 
 Sine 
 
 99944;;05088'99870 
 05117 99869 
 
 99943 
 99942 
 99941 
 99940 
 
 Nat. 
 Sine 
 
 88 Deg. 
 
 05146 
 05175 
 05205 
 
 N. Ci)- 
 Sine 
 
 99867 
 99866 
 99864 
 
 Nat. 
 Sine 
 
 87 Deff. 
 
 06569 
 06598 
 06627 
 06656 
 06685 
 06714 
 06743 
 06773 
 
 99812 
 99810 
 99808 
 99806 
 99804 
 99803 
 99801 
 99799 
 99797 
 99795 
 99793 
 99792 
 99790 
 99788 
 99786 
 
 99784 
 99782 
 99780 
 99778 
 99776 
 99774 
 99772 
 199770 
 
 Nat. 
 Hine 
 
 06976 
 
 07005 
 
 07034 
 
 07063 
 
 07092 
 
 107121 
 
 07150 
 
 07179 
 
 07208 
 
 07237 
 
 072(.'' 
 
 0729.j| 
 
 073i54 
 
 07353 
 
 0/382 
 
 (37411 
 
 07440 
 07469 
 1)7498 
 07527 
 07556 
 07585 
 07614 
 07643 
 07672 
 07701 
 07730 
 07759 
 07788 
 07817 
 07846 
 
 99756 
 3754 
 99752 
 !"»750 
 99748 
 99746 
 99744 
 99742 
 99740 
 99738 
 99736 
 99734 
 99731 
 99729 
 99727 
 99725 
 
 M 
 
 60 
 
 59 
 
 58 
 
 57 
 
 56 
 
 55 
 
 54 
 
 53 
 
 52 
 
 51 
 
 50 
 
 49 
 
 48 
 
 47 
 
 46 
 
 45 
 
 06803 193788 
 0683' '99766 
 06860 
 06889 
 06918 
 
 07875 
 07904 
 07933 
 07962 
 07991 
 08020 
 08049 
 08078 
 08107 
 08136 
 08165 
 08194 
 08223 
 08252 
 08281 
 
 99723 
 99721 
 99719 
 99716 
 99714 
 99712 
 99710 
 99708 
 99705 
 99703 
 99701 
 99699 
 99690 
 99694 
 99_692 
 
 99689 
 99687 
 99685 
 99683 
 99680 
 99678 
 99676 
 99673 
 99671 
 99668 
 99666 
 99664 
 99661 
 99659 
 99657 
 
 06947 99758 
 
 N. Co- 
 Sine 
 
 99764 
 99762 
 99760 
 
 Nat. 
 Sine 
 
 86 Peg. 85 Deg, 
 
 08310 
 08339 
 08368 
 08397 
 08426 
 08455 
 08484 
 08513 
 
 A Q »^ Ac\ 
 
 08571 
 08600 
 08629 
 08658 
 08687 
 
 \. Co- 
 Sine 
 
 99654 
 99652 
 99649 
 99647 
 [99644 
 99642 
 99639 
 99637 
 
 99632 
 99630 
 99627 
 99625 
 996?2 
 
 Nat. 
 Sine 
 
 44 
 43 
 42 
 41 
 40 
 39 
 38 
 37 
 36 
 35 
 34 
 3? 
 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 19 
 18 
 17 
 16 
 
 1^ 
 14 
 1?. 
 12 
 11 
 10 
 
 9 
 
 8 
 
 7 
 
 G 
 
 5 
 
 4 
 
 3 
 
 2 
 _l 
 
 'n 
 
 i 
 
64 
 
 A TABLE or NATtTRAX SINES. 
 
 - 
 
 o Deg. 
 
 ! 6 L>eg. 
 
 7 Dog. 
 
 i « l^eg. 1 
 
 9 D 
 
 t'g. 
 
 M 
 
 60 
 
 >I 
 
 N. S. 
 08716 
 
 N. CS. 
 
 A.S. 
 10453 
 
 N. CS. 
 
 iN. S. 
 
 N. CS. 
 99255 
 
 j N.S. 
 13917 
 
 1 
 
 N.CS.' 
 99027 
 
 N.S. 
 15643 
 
 N. CS. 
 
 
 
 99619 
 
 99452 
 
 12187 
 
 98769 
 
 1 
 
 08745 
 
 99617 
 
 10482 
 
 99449 
 
 12216 
 
 9925:. 
 
 13946 
 
 99023! 
 
 15672 
 
 98764 
 
 59 
 
 'Z 
 
 08774 
 
 99614 
 
 10511 
 
 99446 
 
 12245 
 
 99248 
 
 113975 
 
 990191 
 
 15701 
 
 98760 
 
 58 
 
 8 
 
 08803 
 
 99612 
 
 10540 
 
 99443 
 
 12274 
 
 99244 
 
 114004 
 
 990151 
 
 15730 
 
 98755 
 
 57 
 
 4 
 
 08831 
 
 99609 
 
 10569 
 
 99440 
 
 12302 
 
 99240 
 
 ,14033 
 
 9901 Ij 
 
 15758 
 
 98751 
 
 56 
 
 b 
 
 08860 
 
 99607 
 
 10597 
 
 99437 
 
 12331 
 
 99237 
 
 114061 
 
 99006! 
 
 15787 
 
 98746 
 
 55 
 
 b 
 
 08889 
 
 99604 
 
 10626 
 
 99434 
 
 12360 
 
 99233 
 
 il4090 
 
 990021 
 
 15816 
 
 98741 
 
 54 
 
 V 
 
 08918 
 
 99602 
 
 10655 
 
 99431 
 
 12389 
 
 99230 
 
 J14119 
 
 98998 
 
 15845 
 
 98737 
 
 53 
 
 8 
 
 08947 
 
 99599 
 
 10684 
 
 99428 
 
 12418 
 
 99226 
 
 114148 
 
 98994 
 
 15873 
 
 98732 
 
 52 
 
 y 
 
 08976 
 
 99596 
 
 10713 
 
 99424 
 
 12447 
 
 99222 
 
 114177 
 
 98990 
 
 15902 
 
 98728 
 
 51 
 
 10 
 
 09005 
 
 99594 
 
 10742 
 
 99421 
 
 12476 
 
 99219 
 
 14205 
 
 98986i 
 
 15931 
 
 98723 
 
 50 
 
 ii 
 
 09034 
 
 99591 
 
 10771 
 
 99418 
 
 12504 
 
 99215 
 
 14234 
 
 98982 j 
 
 15959 
 
 98718 
 
 49 
 
 12 
 
 09063 
 
 99588 
 
 10800 
 
 99415 
 
 12533 
 
 99211 
 
 14263 
 
 989781 
 
 15988 
 
 98714 
 
 48 
 
 la 
 
 09092 
 
 99586 
 
 10829 
 
 99412 
 
 12562 
 
 99208 
 
 14292 
 
 989731 
 
 16017 
 
 98709 
 
 47 
 
 14 
 
 09121 
 
 99583 
 
 10858 
 
 99409 
 
 12591 
 
 99204 
 
 114320 
 
 98969J 
 
 16046 
 
 98704 
 
 46 
 
 lb 
 16 
 
 0Q150 
 
 99580 
 99578 
 
 10887 
 10916 
 
 99406 
 
 126:20 
 12649 
 
 99200 
 99197 
 
 14349 
 14378 
 
 98965 
 98961 
 
 10074 
 
 98700 
 98695 
 
 45 
 44 
 
 09179 
 
 99402 
 
 16103 
 
 IV 
 
 09208 
 
 99575 
 
 109*5 
 
 99399 
 
 12678 
 
 99193 
 
 114407 
 
 98957 
 
 16132 
 
 98690 
 
 43 
 
 18 
 
 09237 
 
 99572 
 
 10973 
 
 99396 
 
 12706 
 
 99189 
 
 14436 
 
 98953 
 
 16160 
 
 98686 
 
 42 
 
 19 
 
 09266 
 
 99570 
 
 11002 
 
 99393 
 
 12735 
 
 99186 
 
 14464 
 
 98948 
 
 16189 
 
 98681 
 
 41 
 
 2U 
 
 09295 
 
 99567 
 
 11031 
 
 99390 
 
 12764 
 
 99182 
 
 14493 
 
 98944 
 
 16218 
 
 98676 
 
 40 
 
 5il 
 
 09324 
 
 99564 
 
 11060 
 
 99386 
 
 12793 
 
 99178 
 
 14522 
 
 98940 
 
 16246 
 
 98671 
 
 39 
 
 "Z'Z 
 
 09353 
 
 99562 
 
 : 11089 
 
 99383 
 
 12822 
 
 99175 
 
 14551 
 
 98936 
 
 16275 
 
 98667 
 
 38 
 
 23 
 
 09382 
 
 99559 
 
 11118 
 
 99380 
 
 12851 
 
 99171 
 
 14580 
 
 98931 
 
 16304 
 
 98662 
 
 37 
 
 24 
 
 09411 
 
 99556 
 
 11147 
 
 99377 
 
 12880 
 
 99167 
 
 14608 
 
 98927 
 
 16333 
 
 98657 
 
 36 
 
 2b 
 
 09440 
 
 99553 
 
 11176 
 
 99374 
 
 12908 
 
 99163 
 
 14637 
 
 98923 
 
 16361 
 
 98652 
 
 35 
 
 26 
 
 09469 
 
 99551 
 
 11205 
 
 99370 
 
 12937 
 
 99160 
 
 14666 
 
 98919' 
 
 16390 
 
 98G48 
 
 o4 
 
 2V 
 
 09498 
 
 99548 
 
 11234 
 
 99367 
 
 12966 
 
 99156 
 
 14695 
 
 98914: 
 
 16419 
 
 98643 
 
 33 
 
 28 
 
 09527 
 
 99545 
 
 U263 
 
 99364 
 
 12995 
 
 99152 
 
 14723 
 
 98910 
 
 16447 
 
 98638 
 
 32 
 
 2'J 
 
 09656 
 
 99542' 
 
 j 1129 1 
 
 99360 
 
 13024 
 
 99148 
 
 14752 
 
 98906 
 
 16476 
 
 98633 
 
 31 
 
 31 
 
 09535 
 09614 
 
 99540 
 
 '11320 
 11349 
 
 9935? 
 99354 
 
 13053 
 13081 
 
 99144 
 
 14781 
 
 98902, 
 98897 
 
 16505 
 16533 
 
 98629 
 
 30 
 
 29 
 
 99537 
 
 99141 
 
 14810 
 
 98624 
 
 32 
 
 09642 
 
 99534 
 
 ! 11378 99351 
 
 13110 
 
 99137 
 
 114838 
 
 98893 
 
 16562 
 
 98619 
 
 28 
 
 33 
 
 09671 
 
 99531 
 
 11407 
 
 99347 
 
 13139 
 
 99133 
 
 il4867 
 
 98889 
 
 16591 
 
 98614 
 
 27 
 
 34 
 
 09700 
 
 99528 
 
 11436 
 
 99344 
 
 13168 
 
 99129 
 
 14896 
 
 98884 
 
 16620 
 
 98609 
 
 26 
 
 3b 
 
 09729 
 
 99526 
 
 11465 
 
 99341 
 
 13197 
 
 99125 
 
 i 14925 
 
 98880 
 
 16648 
 
 98604 
 
 25 
 
 36 
 
 09758 
 
 99523 
 
 11494 
 
 99337 
 
 13226 
 
 99122 
 
 i 14954 
 
 98876 
 
 16677 
 
 98600 
 
 24 
 
 3V 
 
 09787 
 
 99520 
 
 11523 
 
 99334 
 
 13254 
 
 99118 
 
 114982 
 
 98871 
 
 16706 
 
 98595 
 
 23 
 
 38 
 
 09816 
 
 99517 
 
 11552 
 
 99331 
 
 13283 
 
 99114 
 
 15011 
 
 98867 
 
 16734 
 
 98590 
 
 22 
 
 39 
 
 09845 99514 
 
 11580 
 
 99327 
 
 13312 
 
 99110 
 
 15040 
 
 98863 
 
 16763 
 
 98585 
 
 21 
 
 40 
 
 09874 
 
 99511 
 
 11609 
 
 99324 
 
 13341 
 
 99106 
 
 15069 
 
 98858 
 
 16792 
 
 98580 
 
 20 
 
 41 
 
 09903 
 
 99508 
 
 ] 1638 
 
 99320 
 
 13370 
 
 99102 
 
 15097 
 
 98854 
 
 16820 
 
 P«575 
 
 19 
 
 42 
 
 09932 
 
 99506 
 
 11667 
 
 99317 
 
 13399 
 
 •9098 
 
 i 15126 
 
 98849 
 
 16849 
 
 98570 
 
 18 
 
 43 
 
 09961 
 
 99503 
 
 11896 
 
 99314 
 
 13427 
 
 99094 
 
 ; 151 55 
 
 98845 
 
 16878 
 
 98565 
 
 17 
 
 44 
 
 09990 
 
 99500 
 
 11725 
 
 99310 
 
 i 3450 
 
 99091 
 
 15184 
 
 98841 
 
 16906 
 
 98561 
 
 16 
 
 45 
 46 
 
 10019 
 
 99497 
 99494 
 
 11754 
 11783 
 
 99307 
 
 13485 
 13511 
 
 99087 
 
 15212 
 
 98836 
 98832 
 
 16935 
 16964 
 
 98556 
 
 15 
 14 
 
 10048 
 
 99303 
 
 99083 
 
 15211 
 
 98551 
 
 47 
 
 10077 
 
 99491 
 
 11812 
 
 99300 
 
 13543 
 
 99079 
 
 ,15270 
 
 98827 
 
 16992 
 
 98546 
 
 13 
 
 48 
 
 10106 
 
 99488 
 
 11840 
 
 99t:'37 
 
 13572 
 
 99075 
 
 115292 
 
 98823 
 
 17021 
 
 98541 
 
 12 
 
 49 
 
 10135 
 
 99485 
 
 11869 
 
 99293 
 
 13600 
 
 99071 
 
 15327 
 
 98818 
 
 17050 
 
 98536 
 
 11 
 
 50 
 
 10164 
 
 99482 
 
 11898 
 
 99290 
 
 13629 
 
 99007 
 
 15356 
 
 98814 
 
 17078 
 
 98531 
 
 10 
 
 51 
 
 10192 
 
 99479 
 
 11927 
 
 99286 
 
 13658 
 
 99063 
 
 ; 15385 
 
 98809 
 
 17107 
 
 98526 
 
 9 
 
 52 
 
 10221 
 
 99476 
 
 11956 
 
 99283 
 
 113687 
 
 99059 
 
 115414 
 
 98805 
 
 17136 
 
 98521 
 
 8 
 
 53 
 
 10250 
 
 99473 
 
 11985 
 
 99279 
 
 ^13716 
 
 99055 
 
 115442 
 
 98800 
 
 17164 
 
 98516 
 
 7 
 
 54 
 
 10279 
 
 99470 
 
 12014 
 
 99276 
 
 113744 
 
 99051 
 
 15471 
 
 98796 
 
 17193 
 
 98511 
 
 6 
 
 55 
 
 10308 
 
 99467 
 
 12043 
 
 99278 
 
 113773 
 
 99047 
 
 45500 
 
 98791 
 
 1722298506 
 
 5 
 
 56 
 
 10337 
 
 99464 
 
 12071 
 
 99269:^13802 
 
 99043 
 
 15529 
 
 98787 
 
 17250 
 
 ! 98501 
 
 4 
 
 57 
 
 10366 
 
 99461 
 
 12100 
 
 99205 j 13831 
 
 99039 
 
 15557 
 
 98782 
 
 17279 
 
 198496 
 
 3 
 
 58 
 
 10395 
 
 99458 
 
 12129 
 
 99262 13S60 
 
 99035 
 
 115586 
 
 98778 
 
 17308 
 
 198491 
 
 2 
 
 59 
 M 
 
 10424 
 
 99455 
 
 12 ■58 
 
 N. CS. 
 
 99258 13889 
 
 99031 
 
 N.S. 
 
 15615 
 
 N. CS. 
 
 98773 
 
 N.S. 
 
 17336 
 
 98486 
 
 1 
 M 
 
 N. CS. N. S. 
 
 N.S. 
 
 1 N.CS. 
 
 N. CS. 
 
 N.a 
 
 H4 Desr. 
 
 U-i Dog. 
 
 1 Ut 1 
 
 Jeg. 
 
 81 Deg. 
 
 80 Ueg. 
 
 41 
 
 185 
 
 42 
 
 185 
 
 43 
 
 185 
 
 44 
 
 186 
 
 45 
 
 186. 
 
 46 
 
 1'86( 
 
 47 
 
 187 
 
 48 
 
 187; 
 
 49 
 
 187( 
 
 50 
 
 1871 
 
 51 
 
 1885 
 
 62 
 
 188f 
 
 53 
 
 188^ 
 
 54 
 
 1891 
 
 55 
 
 189r 
 
 56 
 
 189f 
 
 0/ 
 
 iSHi 
 
 58 
 
 190S 
 
 59 
 
 1905 
 
 M 
 
 N.Ci 
 
 
 79 
 
, 
 
 
 cs. 
 
 M 
 
 769 
 
 60 
 
 764 
 
 59 
 
 760 
 
 58 
 
 755 
 
 57 
 
 751 
 
 56 
 
 746 
 
 55 
 
 741 
 
 54 
 
 737 
 
 53 
 
 732 
 
 52 
 
 728 
 
 51 
 
 723 
 
 50 
 
 718 
 
 49 
 
 714 
 
 48 
 
 709 
 
 47 
 
 704 
 
 46 
 
 700 
 
 45 
 
 695 
 
 44 
 
 690 
 
 43 
 
 686 
 
 42 
 
 681 
 
 41 
 
 676 
 
 40 
 
 671 
 
 39 
 
 667 
 
 38 
 
 662 
 
 37 
 
 657 
 
 36 
 
 652 
 
 35 
 
 G48 
 
 34 
 
 643 
 
 33 
 
 638 
 
 32 
 
 633 
 
 31 
 
 629 
 
 30 
 
 624 
 
 29 
 
 619 
 
 28 
 
 614 
 
 27 
 
 609 
 
 26 
 
 604 
 
 25 
 
 600 
 
 24 
 
 !595 
 
 23 
 
 !590 
 
 22 
 
 !585 
 
 21 
 
 1580 
 
 20 
 
 i575 
 
 19 
 
 !570 
 
 18 
 
 !56o 
 
 17 
 
 !561 
 
 16 
 
 i556 
 
 15 
 
 S551 
 
 14 
 
 i546 
 
 13 
 
 !541 
 
 12 
 
 !536 
 
 11 
 
 5531 
 
 10 
 
 *526 
 
 9 
 
 i521 
 
 8 
 
 J516 
 
 7 
 
 ^511 
 
 6 
 
 ^506 
 
 5 
 
 ^501 
 
 4 
 
 ^496 
 
 3 
 
 ^491 
 
 2 
 
 =1486 
 
 1 
 
 ^. a 
 
 M 
 
 S- 
 
 
 A TABLE OP NATUHAL SINKS. 
 
 65 
 
 U 
 
 
 
 1 
 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 
 10 
 11 
 12 
 13 
 14 
 15 
 
 16 
 
 17 
 
 18 
 
 19 
 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 10 Ueg. 
 
 N. 8. 
 
 17365 
 
 17393 
 
 17422 
 
 17451 
 
 17479 
 
 17508 
 
 1 75371 
 
 17565 
 
 17594 
 
 17623 
 
 17651 
 
 17680 
 
 17708 
 
 17737 
 
 17766 
 
 17794 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 
 46 
 47 
 48 
 49 
 50 
 51 
 62 
 53 
 54 
 55 
 56 
 
 Hi 
 
 58 
 69 
 M 
 
 17823 
 
 17852 
 
 17880 
 
 17909 
 
 17937 
 
 17966 
 
 17995 
 
 18023 
 
 18052 
 
 18081 
 
 18109 
 
 18138 
 
 18166 
 
 18195 
 
 18224 
 
 N.CS. 
 
 98481 
 
 98476 
 
 98471 
 
 98466 
 
 98461 
 
 98455 
 
 98450 
 
 98445 
 
 98440 
 
 98435 
 
 98430 
 
 98425 
 
 98420 
 
 98414 
 
 98409 
 
 98404 
 
 11 
 
 N.8. 
 
 De^. 
 
 18252 
 
 18281 
 
 18309 
 
 18338 
 
 18367 
 
 18395 
 
 18424 
 
 18452 
 
 18481 
 
 18509 
 
 18538 
 
 18567 
 
 18595 
 
 18624 
 
 18652 
 
 98399 
 
 983S4 
 
 98389 
 
 98383 
 
 98378 
 
 98373 
 
 98368 
 
 98362 
 
 98357 
 
 98352 
 
 98347 
 
 98341 
 
 983361 
 
 98331 
 
 98325 
 
 19081 
 
 19109 
 
 19138 
 
 19167 
 
 19195 
 
 19224 
 
 19252 
 
 19281 
 
 19309 
 
 1^338 
 
 19366 
 
 19395 
 
 19423 
 
 19452 
 
 19481 
 
 19509 
 
 1'8681 
 18710 
 18738 
 18767 
 18795 
 18824 
 18852 
 18881 
 18910 
 18938 
 18967 
 
 19024 
 19052 
 
 98320 
 
 98315 
 
 98310 
 
 98304 
 
 98299 
 
 98294 
 
 98288 
 
 98283 
 
 98277 
 
 98272 
 
 98267 
 
 98261 
 
 98256 
 
 98250 
 
 98245 
 
 N.CS. 
 
 98240 
 98234 
 98229 
 98223 
 98218 
 98212 
 98207 
 98201 
 98196 
 98190 
 98185 
 98179 
 98174 
 98168 
 
 N. 8. 
 
 19538 
 19566 
 119595 
 119623 
 19652 
 19680 
 19709 
 19737 
 19766 
 19794 
 19823 
 19851 
 19880 
 19908 
 19937 
 
 19965 
 
 19994 
 
 20022 
 
 20051 
 
 20079 
 
 20108 
 
 20136 
 
 20165 
 
 20193 
 
 20222 
 
 20250 
 
 20279 
 
 20307 
 
 20336 
 
 20364 
 
 N.CS. 
 
 98163 
 
 98157 
 
 98152 
 
 98146 
 
 98140 
 
 98135 
 
 98129 
 
 98124 
 
 98118 
 
 98112 
 
 98107 
 
 98101 
 
 9S096 
 
 98090 
 
 98084 
 
 98079 
 
 12 \)eg. 
 
 N.S. N.CS. 
 
 98073 
 
 98067 
 
 98061 
 
 98056 
 
 98050 
 
 98044 
 
 98039 
 
 98033 
 
 38027 
 
 98021 
 
 98016 
 
 98010 
 
 98004 
 
 97998 
 
 97992 
 
 20791 
 
 20820 
 
 20848 
 
 20877 
 
 20905 
 
 20933 
 
 ^20962 
 
 20990 
 
 21019 
 
 21047 
 
 21076 
 
 21104 
 
 21132 
 
 21161 
 
 21189 
 
 21218 
 
 97987 
 97981 
 9797[ 
 
 97969 
 97963 
 97958 
 97952 
 97946 
 97940 
 97934 
 97928 
 97922 
 97916 
 97910 
 97905 
 
 20393 
 20421 
 20450 
 20478 
 20507 
 20535 
 20563 
 20592 
 20620 
 20649 
 20677 
 20706 
 20734 
 
 21246 
 21275 
 21303 
 21331 
 21360 
 21388 
 21417 
 21445 
 21474 
 21502 
 21530 
 21559 
 21587 
 21616 
 21644 
 
 97815 
 
 97809 
 
 97803 
 
 97797 
 
 97791 
 
 97784 
 
 97778 
 
 97772 
 
 97766 
 
 97760J 
 
 97754 
 
 97748 
 
 97742 
 
 97735 
 
 97729 
 
 97723 
 
 97899 
 97893 
 97887 
 97881 
 97875 
 97869 
 97863 
 97857 
 97851 
 97845 
 97839 
 97833 
 97827 
 
 21672 
 
 21701 
 
 21729 
 
 21758 
 
 21786 
 
 21814 
 
 21843 
 
 21871 
 
 21899 
 
 21928 
 
 21956 
 
 21985 
 
 22013 
 
 22041 
 
 22070 
 
 97717 
 97711 
 97705 
 97698 
 97692 
 97686 
 97680 
 97673 
 97667 
 97661 
 97655 
 97648 
 97642 
 97636 
 97630 
 
 N.CS. 
 
 13 P eg 
 
 N.S. 
 
 22495 
 
 22523 
 
 22552 
 
 22580 
 
 |22608 
 
 '22637 
 
 22665 
 
 22693 
 
 22722 
 
 22760 
 
 22778 
 
 22807 
 
 22835 
 
 22863 
 
 22892 
 
 22920 
 
 22098 
 22126 
 22155 
 22183 
 22212 
 22240 
 22268 
 22297 
 ,22325 
 J22353 
 22382 
 
 97623 
 
 97617 
 
 97611 
 
 97604 
 
 97598 
 
 97592 
 
 97585 
 
 97579 
 
 97573 
 
 97566 
 
 97560 
 
 97553 
 
 97547 
 
 97541 
 
 97534 
 
 22948 
 22977 
 23005 
 23033 
 23062 
 23090 
 23118 
 23146 
 23175 
 23203 
 23231 
 23260 
 23288 
 23316 
 , 23345 
 
 123373 
 23401 
 
 97437 
 
 97430 
 
 97424 
 
 97417 
 
 97411 
 
 97404 
 
 97398 
 
 97391 
 
 97384 
 
 97378 
 
 97371 
 
 97365 
 
 97358 
 
 97351 
 
 97345 
 
 97338 
 
 97331 
 
 97325 
 
 97318 
 
 97311 
 
 97304 
 
 97298 
 
 97291 
 
 97284 
 
 97278 
 
 97271 
 
 97264 
 
 97257 
 
 97251 
 
 97244 
 
 97237 
 
 U Dbg. 
 
 N.S. 
 
 24192 
 
 24220 
 
 24249 
 
 24277 
 
 24305 
 
 24333 
 
 24362 
 
 24390 
 
 24418 
 
 24446 
 
 24474 
 
 24503 
 
 24531 
 
 24559 
 
 24587 
 
 24615 
 
 97230 
 
 97223 
 
 23429197217 
 
 2076397821 
 
 N.CS. N.S". 
 
 22438 
 22467 
 
 N. CS. 
 
 97528 
 97521 
 97515 
 97508 
 97502 
 97496 
 97489 
 97483 
 97476 
 97470 
 97463 
 
 22410 97457 
 
 97450 
 97444 
 
 N.S. 
 
 79 Peg. 78 Peg. [| 77 Peg. || 76 Peg. {"irP^. 
 
 23458 
 23486 
 23514 
 23542 
 123571 
 23599 
 23627 
 23656 
 23684 
 23712 
 23740 
 23769 
 
 23797 97T27 
 23825 97120 
 23853 97113 
 23882 97106 
 23910 97100 
 
 97210 
 97203 
 97196 
 97189 
 97182 
 97176 
 97169 
 97162 
 97155 
 97148 
 97141 
 97134 
 
 24644 
 24672 
 24700 
 24728 
 24756 
 24784 
 24813 
 24841 
 24869 
 24897 
 24925 
 24953 
 24982 
 25010 
 25038 
 
 N. CS . 
 
 97030 
 97023 
 97015 
 97008 
 97001 
 96994 
 96987 
 96980 
 90973 
 96966 
 96959 
 96952 
 96945 
 96937 
 96930 
 96923 
 
 AI 
 
 60 
 
 59 
 
 58 
 
 57 
 
 56 
 
 55 
 
 54 
 
 53 
 
 52 
 
 51 
 
 50 
 
 49 
 
 48 
 
 47 
 
 46 
 
 45 
 
 23938 
 23966 
 23995 
 24023 
 24051 
 24079 
 
 24136 
 24164 
 
 97093 
 97086 
 97079 
 97072 
 97065 
 97n.'iS 
 
 25066 
 25094 
 25122 
 25151 
 25179 
 25207 
 25235 
 25263 
 25291 
 25320 
 25348 
 25376 
 25404 
 25432 
 25460 
 
 96916 
 96909 
 96902 
 96894 
 96887 
 96880 
 96873 
 96866 
 96858 
 96851 
 96844 
 96837 
 96829 
 96822 
 96815 
 
 96807 
 96800 
 96793 
 96786 
 96778 
 96771 
 96764 
 96756 
 96749 
 96742 
 96734 
 ^6727 
 96719 
 96712 
 96705 
 
 24108 97051 
 97044 
 97037 
 
 25488 
 25516 
 25546 
 25573 
 25601 
 25629 
 25657 
 25685 
 25713 
 25741 
 257fia 
 25798 
 25826 
 25854 
 
 N.CS. N.S. I N.CS. N.S 
 
 96697 
 96690 
 96682 
 96675 
 96667 
 360 
 o53 
 96645 
 96638 
 96630 
 96623 
 96615 
 96608 
 96600 
 
 44 
 
 43 
 
 42 
 
 41 
 
 40 
 
 39 
 
 38 
 
 37 
 
 36 
 
 35 
 
 34 
 
 33 
 
 32 
 
 31 
 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 19 
 18 
 17 
 16 
 15 
 
 14 
 13 
 12 
 11 
 10 
 
 9 
 
 8 
 
 7 
 
 6 
 
 6 
 
 4 
 
 3 
 
 2 
 J. 
 M 
 
 ! 
 
 ( 
 
66 
 
 A TABLE OF NATURAL SINES. 
 
 
 15 De^. 
 
 M 
 
 
 1 
 2 
 3 
 
 4 
 5 
 6 
 
 7' 
 
 9' 
 10 
 11 
 12 
 13 
 14 
 15 
 
 K) 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 N.8. 
 
 ■)882 
 259 10 
 25938 
 259r)G 
 25994 
 20022 
 2(5050 
 2(5079 
 2(5107 
 20135 
 20163 
 26191 
 26219 
 26247 
 26275 
 26303 
 
 26331 
 
 26359 
 
 26387 
 
 26415 
 
 26443 
 
 26471 
 
 26500 
 
 26528 
 
 26556 
 
 26584 
 
 26612 
 
 26640 
 
 26668 
 
 26696 
 
 26724 
 
 16 Ueg. 
 
 31 
 32 
 33 
 
 N. CS. 
 
 96593 
 
 96585 
 
 96578 
 
 96;" 70 
 
 96.. .2 
 
 96555 
 
 965471 
 
 96540 I 
 
 96532'; 
 
 96524 
 
 96517 
 
 9(5509 
 
 96502 
 
 96494 
 
 96486 
 
 96479 
 
 96471 
 96463 
 96456 
 96448 
 96440 
 96433 
 96425 
 9(5417 
 96410 
 96402 
 16394 
 96386 
 96379 
 96371 
 96363 
 
 27564 
 27592 
 27620 
 27(548 
 27676 
 7704 
 27731 
 ;J7759 
 
 znsi 
 
 27815 
 27843 
 27871 
 27899 
 27927 
 27955 
 27983 
 
 N. 8. N. CS . 
 96126 
 96118 
 96110 
 96102 
 96094 
 96086 
 9(5078 
 96070! 
 96062 
 96054 
 96046 
 96037 
 96029 
 96021 
 96013 
 96005 
 
 17 L>eg. 
 
 N.S. IN.C'S. 
 
 28011 
 
 28039 
 
 28067 
 
 28095 
 
 28123 
 
 28150 
 
 28178 
 
 28206 
 
 28234 
 
 28262 
 
 28290 
 
 28318 
 
 28346 
 
 28374 
 
 128402 
 
 26752 
 26780 
 ,26808 
 34126836 
 35126864 
 
 36 26892 
 
 37 269;>0 
 
 38 26948 
 26976 
 27004 
 27032 
 27060 
 2708M 
 271 i( 
 
 39 
 40 
 41 
 42 
 43 
 44 
 
 95997 
 95989 
 95981 
 95972 
 95964 
 95956 
 95948 
 95940 
 9593 1 
 95923 
 95915 
 95907 
 95898 
 95890 
 95882 
 
 45127144 
 
 96355 
 
 96347 
 
 96340 
 
 96332 
 
 96324 
 
 96316 
 
 96308 
 
 96301 
 
 96293 
 
 96285 
 
 96277 
 
 96269 
 
 96261 
 
 9(5253 
 
 96246 
 
 29237 
 
 29265 
 
 29293 
 
 2932 1 
 
 29348 
 
 2937(5 
 
 29404 
 
 29432 
 
 29460 
 
 29487 
 
 29515 
 
 29543 
 
 29571 
 
 29599 
 
 29626 
 
 29654 
 
 29682 
 29710 
 29737 
 29765 
 29793 
 29821 
 29849 
 29876 
 29904 
 29932 
 29960 
 29987 
 30015 
 30043 
 
 95630 
 95622 
 95613 
 95605 
 95596 
 95588 
 95579 
 95571 
 95562 
 95554 
 95545 
 95536 
 95528 
 95519 
 95511 
 95502 
 
 _m Peg. 
 
 NTJT^N. C8. 
 
 309(V2 
 30929 
 30957 
 30985 
 31012 
 31040 
 31068 
 31095 
 3 1 1 2:» 
 31151 
 31178 
 31206 
 31233 
 31261 
 31289 
 31316 
 
 2H429 
 
 28457 
 
 28485 
 
 28513 
 
 28541 
 
 28569 
 
 28597 
 
 28625 
 
 28652 
 
 28680 
 
 28708 
 
 28736 
 
 28764 
 
 28792 
 
 28820 
 
 46 1 27 172 
 47127200 
 48127228 
 49 1 -^7256 
 50127284 
 51127312 
 52;27340 
 53 127368 
 54:27396 
 55127424 
 56 27452 
 57j274S0 
 58127508 
 59 27536 
 
 96238 
 96230 
 96222 
 96214 
 96206 
 96198 
 96190 
 96182 
 96174 
 96166 
 96158 
 96150 
 96142 
 96134 
 
 M N.CS 
 
 95874 
 
 95865 
 
 95857 
 
 95849 
 
 95841 
 
 95832 
 
 95824 
 
 95816 
 
 95807 
 
 95799 
 
 95791 
 
 95782 
 
 95774 
 
 95766 
 
 95757 
 
 30071 
 
 95493 
 95485 
 95476 
 95467 
 95459 
 95450 
 95441 
 95433 
 95424 
 95415 
 95407 
 95398 
 95389 
 95380 
 95372 
 
 95106 
 95097 
 95088 
 95079 
 95070 
 95061 
 95052 
 95043 
 95033 
 95024 
 95015 
 9500(5 
 949i)7 
 94988 
 94979 
 94970 
 
 30098 
 
 30126 
 
 30154 
 
 30182 
 
 30209 
 
 30237 
 
 30265 
 
 30292 
 
 30320 
 
 30348 
 
 3037(5 
 
 30403 
 
 30431 
 
 30459 
 
 30486 
 
 28847 
 2^875 
 28903 
 28931 
 28959 
 28987 
 29015 
 29042 
 29070 
 9098 
 29126 
 29154 
 29182 
 29209 
 
 N. 8. 
 
 74 Dejr. 
 
 95363 
 
 i)5354 
 
 1)5345 
 
 95337 
 
 9532S 
 
 95319 
 
 95310 
 
 95301 
 
 95293 
 
 952H4 
 
 95275 
 
 95266 
 
 95257 
 
 95248 
 
 95240 
 
 31344 
 
 31372 
 
 31399 
 
 31427 
 
 31454 
 
 31482 
 
 31510 
 
 31537 
 
 31565 
 
 31593 
 
 31620 
 
 31(548 
 
 31675 
 
 31703 
 
 31730 
 
 9496 1 
 
 94952 
 
 94943 
 
 94933 
 
 94924 
 
 94915 
 
 9490(5 
 
 94897 
 
 94888 
 
 94878 
 
 9486i) 
 
 94860 
 
 194851 
 
 94842 
 
 94832 
 
 19 Peg. 
 
 N. 8. "IsTCiB 
 
 94552 
 94542 
 91533 
 94523 
 94514 
 94504 
 94495 
 94485 
 94476 
 94466 
 94457 
 <)4447 
 94438 
 94428 
 94418 
 94409 
 
 60 
 59 
 58 
 57 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 49 
 48 
 47 
 46 
 45 
 
 95749 
 95740 
 95732 
 95724 
 95715 
 95707 
 95698 
 95690 
 95681 
 95673 
 95664 
 
 95647 
 95639 
 nTcsT N_8^ 
 73 PefT. 
 
 31758 
 
 31786 
 
 51813 
 
 31841 
 
 31868 
 
 31896 
 
 31923 
 
 31951 
 
 31979 
 
 3200(i 
 
 32034 
 
 32061 
 
 32089 
 
 32110 
 
 32144 
 
 ;52997 
 
 33024 
 
 3305 1 
 
 33079 
 
 33106 
 
 33134 
 
 33161 
 
 33189 
 
 33216 
 
 33244 
 
 3327 1 
 
 33298 
 
 3332(5 
 
 33353 
 
 3338 1 
 
 30514 
 30542 
 30570 
 30597 
 30625 
 30653 
 30680 
 30708 
 30736 
 30763 
 30791 
 
 50819 
 30846 
 
 30874 
 
 95231 
 
 95222 
 
 95213 
 
 95204 
 
 95195 
 
 i)5186 
 
 95177 
 
 95168 
 
 95159 
 
 95150 
 
 95142 
 
 95133 
 
 95124 
 
 i95115 
 
 94823 
 94814 
 94805 
 94795 
 94786 
 94777 
 94768 
 94758 
 94749 
 94740 
 94730 
 94721 
 94712 
 94702 
 94(593 
 
 94399 
 
 94390 
 
 94380 
 
 94370 
 
 94361 
 
 94351 
 
 94342 
 
 94332 
 
 94322 
 
 94313 
 
 94303 
 
 9429;5 
 
 94284 
 
 94274 
 
 94264 
 
 3340S 
 
 3343(5 
 
 334(53 
 
 33490 
 
 33518 
 
 33545 
 
 33573 
 
 33(500 
 
 33627 
 
 33655 
 
 33682 
 
 ;53710 
 
 33737 
 
 33764 
 
 33792 
 
 32171 
 
 32199 
 
 32227 
 
 32254 
 
 32282 
 
 32309 
 
 32337 
 
 32364 
 
 32392 
 
 32419 
 
 32447 
 
 32474 
 
 32502 
 
 32529 
 
 N.CS. I N.8. 
 72 Peg. 
 
 94684 
 
 94674 
 
 94665 
 
 i)465(5 
 
 91646 
 
 94637 
 
 94627 
 
 94618 
 
 94609 
 
 94599 
 
 94590 
 
 945«0 
 
 ,94571 
 
 94561 
 
 94254 
 94245 
 94235 
 94225 
 94215 
 94206 
 i)4196 
 941 ^'6 
 94176 
 94167 
 94157 
 94147 
 94137 
 94127 
 )4118 
 
 14 
 
 43 
 
 42 
 
 41 
 
 40 
 
 39 
 
 38 
 
 37 
 
 3<i 
 
 &» 
 
 34 
 
 33 
 
 32 
 
 31 
 
 30| 
 
 29 
 
 ;8 
 
 27 
 
 26 
 
 25 
 
 24 
 
 23 
 
 22 
 
 21 
 
 20 
 
 19 
 
 18 
 
 17 
 
 16 
 
 15 
 
 N.CH. I N.S . 
 71 Peg. 
 
 94108 
 94098 
 94088 
 94078 
 94068 
 94058 
 94049 
 94039 
 94029 
 i 940 19 
 ,94009 
 93999 
 1 93989 
 ,93979 
 
 ,53819 
 ;5384(5 
 33874 
 33901 
 33929 
 3395(5 
 33983 
 540 1 1 
 ;54()38 
 34065 
 34093 
 34 ! 20 
 .34147 
 
 3417.'= 
 
 N. C8. I N. 8^ 
 70 Peg. 
 
 14 
 
 13 
 
 12 
 
 11 
 
 10 
 
 9 
 
 8 
 
 7 
 
 6 
 
 5 
 
 4 
 
 3 
 
 2 
 
 _l 
 
 JVl 
 
 
 1 
 2 
 3 
 4 
 r> 
 
O'lO^H 
 
 9 
 
 94049 
 
 8 
 
 94039 
 
 7 
 
 94029 
 
 « 
 
 94019 
 
 5 
 
 94009 
 
 4 
 
 93999 
 
 'A 
 
 93989 
 
 'i 
 
 93979 
 
 I 
 
 N.S. 
 
 AI 
 
 )epr. 
 
 
 A TAHLE OF NATURAL SINES. 
 
 JVl 
 
 
 1 
 
 2 
 3 
 4 
 f) 
 
 <; 
 
 7 
 H 
 9 
 
 10 
 
 11 
 
 12 
 
 13 
 
 14 
 
 ll> 
 l(i 
 17 
 
 18 
 19 
 
 r>7 
 
 iJ02 y39("iy 
 
 _N 
 34 
 
 34229i93!)r)9 
 34 2r) 7 93949 
 34284 93939,1 3r)9 18 
 31311 !>;i()i;<jl;}rj94r) 
 34339^93919 3r)973 
 343(;<i 93909 3()()0() 
 
 i N._H. 
 
 3r)837 
 3.')N(i4 
 3r>891 
 
 31393 
 
 34421 
 34448 
 
 l^38H9 
 93879 
 
 34 '17.01 93809 
 34.')03 938r)!> 
 31 r)30 93849 
 34 r)r)7 93839 
 34r>84|93829 
 34012 93819 
 
 22 
 24 
 
 20 
 27 
 28 
 29 
 30 
 
 31 
 32 
 33 
 34 
 3.'> 
 30 
 
 34039 
 34000 
 3'i094 
 34721 
 20134748 
 21 3477.0 
 34833 
 .34830 
 34857 
 34884 
 34912 
 34939 
 J4900 
 34993 
 35021 
 
 3004 8 i 
 
 93H()9 
 
 93799 
 
 93789 
 
 93779 
 
 !i3709 
 
 9.3759 
 
 93748 
 
 93738 
 
 93728 
 
 93718 
 
 93708 
 
 93098 
 
 93088 
 
 93077 
 
 03(i07 
 
 93(J57 
 
 I 30027 
 3i;0.04 
 30081 
 30108 
 30135 
 30102 
 30190 
 30217 
 ^30244 
 
 30271 
 
 30298 
 
 .30325 
 
 3(i352 
 
 .30379 
 
 :3(i400 
 
 ,30434 
 
 ;3040l 
 
 30488 
 
 30515 
 
 3(i542 
 
 30509 
 
 30590 
 
 3fi()23 
 
 30050 
 
 :KWi77 
 
 39 35200 
 
 40 35293 
 
 41 35320 
 4213.5347 
 43 '3.5375 
 4413.5402 
 
 N. VH. 
 
 93'35N 
 93348 
 93337 
 93327 
 13310 
 93300 
 !».3295 
 93285 
 93274 
 93204 
 93253 
 93243 
 93232 
 93222 
 »32ll 
 93201 
 
 !i3l90 
 93180 
 93109 
 
 J3159 
 93148 
 93137 
 J3127 
 93110 
 93100 
 93095 
 930H4 
 93074 
 9300.3 
 93052 
 93042 
 
 9303 1 
 93020 
 93010 
 92999 
 
 J2988 
 92978 
 92907 
 92950 
 
 J.5075 9.30471 30704 
 }5102|93037i 30731 
 35130193020; 307.58 
 35157;930ini3078.'y 
 35183.93000! 30812 
 37 35211|93590|30839 
 38 i 35239 93.585,30807 
 93575 30894 
 93505130921 
 9.3.555| 30948 
 93514:30.975 
 93534' 37002 92902 
 93524 37029 92892 
 I 45|;i5429i935^[_4;,3705<; !i^H81 
 
 40i35450l935():j''37O83 <)2870 
 
 47 35484i93'193 37110 
 
 48 3551 119.3483' 37137 
 49{3.5538 93472*37104 
 .50 35505 93402 37191 
 51i35592 9.3452 37218 
 52j35019i93441!:37245 
 .53j35047 93431, 37272 
 .54135074; 93420 37299 
 55135701 9341 0i!37320 
 50 1 35728 ' 93400 37353 
 57! 35755 ' 93389 ! 373.MO 
 58,35782'9.3379 
 59 1. 3 58K) 193308 
 
 Miiv.cH. iior 
 
 !1294.0 
 1)2935 
 :i2924 
 92913 
 
 12859 
 92849 
 92838 
 92827 
 928 1 
 112805 
 !i2794i 
 92784 i 
 92773; 
 92702 
 
 j^r.ii 
 
 N. H. 
 
 37401 
 37488 
 375 1 5 
 37512 
 37509 
 37595 
 37022 
 3701!) 
 3707( 
 37703 
 37730 
 37757 
 37784 
 17811 
 17838 
 .37805 
 
 37892 
 37919 
 37940 
 .37973 
 37999 
 
 mvM 
 
 38053 
 38080 
 38107 
 38134 
 3810! 
 3818H 
 18215 
 
 23 Dtjr. 
 
 3824 I 
 
 38208 
 
 :J8295 
 138322 
 1.38349 
 38370 
 38403 
 38430 
 38450 
 
 18483 
 38510 
 38.537 
 38504 
 138591 
 380 1 7 
 38044 
 38071 
 
 38098 
 38725 
 38752 
 38778 
 
 38805 
 
 N.Cis. 
 
 92718 
 
 92707 
 
 92097 
 
 !)20N0 
 
 92<)75 
 
 920041 
 
 920531 
 
 !)2042 
 
 92031 
 
 92020 
 
 92009 
 
 925!)H 
 
 92.5N7 
 
 92570 
 
 925()5 
 
 92554 
 
 92.543 
 
 92532 
 
 9252 1 
 
 925 1 
 
 92499 
 
 92488 
 
 92477 
 
 92400 
 
 924.55 
 
 92444 
 
 92432 
 
 92421 
 
 92410 
 
 I N.H. 
 
 '39073 
 
 1^39100 
 
 139127 
 
 39153 
 
 '39180 
 
 39207 
 
 .39234 
 
 39200 
 
 J39287 
 
 39314 
 
 39341 
 
 39307 
 
 39394 
 
 39421 
 
 39418 
 
 39474 
 
 19.501 
 
 39528 
 
 39555 
 
 3958 1 
 
 39008 
 
 N.rrt.' 
 
 92(')50 
 92039 
 92028 
 
 'M Dog. 
 
 N.N. 
 
 40074 
 10700 
 40727 
 
 91833 
 
 ill 822 
 
 39035 91810 
 
 1)2399 
 
 !)2388 
 
 92377 
 
 92300 
 
 92.355 
 
 92343 
 
 92332 
 
 92321 
 
 92310 
 
 92299 
 
 922H7 
 
 92270 
 
 .3900 1 
 39088 
 .39715 
 3974 1 
 39708 
 39795 
 39822 
 39848 
 
 92OI0ti40753 
 40780 
 4080(1 
 40833 
 40800 
 108N0 
 40913 
 40939 
 4090<i 
 40992 
 41019 
 41045 
 4^072 
 41098 
 41125 
 41151 
 4 11 78 
 4 1 204 
 41231 
 
 91994 
 
 91982 
 
 91971 
 
 9 I 959 
 
 91948 
 
 !)I930 
 
 !) I !)25 
 
 91914 
 
 9 1 902 
 
 1)1891 
 
 91879 
 
 91808 
 91850 
 91845 
 
 N.CH. 
 9135.5 
 
 M 
 
 00 
 59 
 
 58 
 57 
 
 :1 
 
 91799 
 91787 
 91775 
 91704 
 9 1 752 
 !) 1 74 I 
 9 1 729 
 91718 
 
 39875191700 
 
 39902 91094 
 39-.;28j9l083 
 199559 107 1 
 
 91000 
 91048 
 91030 
 
 '39982 
 '40008 
 '40035 
 
 :40002J9I025 
 :40088!91013 
 |40 115 91001 
 40141 91.590 
 92205 '40108 91578 
 92254i40195'91500 
 92243,40221 19 1 5-05 
 
 922.3 1 
 92220 
 
 92209 
 92 1 98 
 
 37407"!iii740 
 92729 
 
 09 l3 
 
 etr. 
 
 40248,91.543 
 ! 40275 ^91531 
 40301 19 1519 
 ,:40328;91508 
 92180 40355191490 
 92175 40381 J9 1484 
 92104140408,91472 
 38832 92152140434 91401 
 388.59 92141 40401191449 
 38880 92130'40488'91437 
 38912 92119,10514 
 38939 92 1 07 1 4054 1 
 38900 920901,40507 
 3H993 92085 : 40594 
 39020 92073:40021 
 39^40 192002, 40047 
 
 4 1 257 
 4 1 284 
 41310 
 41337 
 41303 
 41390 
 41410 
 141443 
 4M09 
 
 14T490 
 
 4 1 522 
 
 41.549 
 
 •11575 
 
 4 1 002 
 
 41028 
 
 410.55 
 
 41081 
 
 4 1 707 
 
 41734 
 
 913 13 
 91331 
 91319 
 9 1 307 
 91295155 
 )I2H;»|.54 
 9 1 272 
 91200 
 91248 
 91230 
 9 1 224 
 91212 
 9 1 200 
 9 1 1 88 
 91170 
 
 91104 
 
 9 1 1 52 
 
 91140 
 
 91128 
 
 9 1 1 Hi 
 
 91104 
 
 91092 
 
 91080 
 
 91008 
 
 91050 
 
 91044 
 
 111032 
 
 9 1 020 
 
 91008 
 
 90990 
 
 90984 
 90972 
 909f;0 
 90948 
 909.30 
 90924 
 90911 
 90899 
 90887 
 90875 
 
 N.t'H.'ljV^K 
 07 JJop. 
 
 N. f:H. 
 
 91425 
 91414 
 91402 
 
 91390 
 
 9 1 378 
 iiUiOO 
 
 N.H. 
 
 4 1700,' 90803 
 4I787|90851 
 '41813|90839 
 4l840j9O820 
 4\Hm 908 1 4 
 
 41892 90802 
 |419l9l90790 
 419451907781 
 4 1972 1 90700 
 41998 90753 
 42024 90741 
 42051 1 90729 
 
 42 1 04 190704 
 4213090092 
 421.50! 90080 
 42 183 '90008 
 42209190055 
 42235 '90643 
 N.f:8. ! nVh. 
 
 05 Dejf. 
 
 .53 
 
 52 
 51 
 50 
 49 
 48 
 47 
 40 
 45 
 
 44 
 
 43 
 
 42 
 
 41 
 
 40 
 
 39 
 
 38 
 
 37 
 
 30 
 
 35 
 
 34 
 
 33 
 
 32 
 
 31 
 
 110 
 
 29 
 
 28 
 
 27 
 
 20 
 
 25 
 
 24 
 
 23 
 
 22 
 
 21 
 
 20 
 
 19 
 
 18 
 
 17 
 
 10 
 
 K5 
 
 14 
 13 
 12 
 U 
 10 
 
 9 
 
 8 
 
 7 
 
 
 
 5 
 
 4 
 
 3 
 
 2 
 
 1 
 M 
 
 J 
 
-yir 
 
 68 
 
 A TABLE OP NATURAL SINES. 
 
 \m 
 
 M 
 
 1) 
 
 1 
 
 2 
 
 3 
 
 4 
 
 h 
 
 6 
 
 7 
 
 8 
 
 9 
 
 10 
 
 11 
 
 12 
 
 13 
 
 14 
 
 15 
 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 
 %b De^r. 
 
 4226*^ 
 42288 
 42315 
 42341 
 423(57 
 423'J4 
 42420 
 42446 
 42473 
 42499 
 42525 
 42552 
 42578 
 42604 
 42631 
 42657 
 
 'N. ca. 
 
 90631 
 90618 
 90606 
 90594 
 90582 
 90569 
 90557 
 90545 
 90532 
 90520 
 90507 
 90495 
 90483 
 90470 
 90458 
 90446 
 
 42683 
 42709 
 42736 
 42762 
 42788 
 42815 
 42841 
 4286? 
 42894 
 42920 
 42946 
 42972 
 42999 
 43025 
 43051 
 
 31 
 
 32 
 
 33 
 
 34 
 
 35 
 
 36 
 
 37 
 
 38 
 
 39 
 
 40 
 
 41 
 
 42 
 
 43 
 
 90433 
 90421 
 90408 
 90396 
 90383 
 90371 
 90358 
 90346 
 90334 
 90321 
 90309 
 90296 
 90284 
 90271 
 90259 
 
 t^ Deg. 
 
 N.H. 
 
 N. CS. 
 
 43837 
 43863 
 43889 
 43916 
 43942 
 43968 
 43994 
 44020 
 44046 
 44072 
 44098 
 44124 
 44151 
 44177 
 44203 
 44229 
 
 44255 
 
 44281 
 
 44307 
 
 4433;) 
 
 44359 
 
 44385 
 
 44411 
 
 44437 
 
 44464 
 
 44490 
 
 44516 
 
 44542 
 
 44568 
 
 44594 
 
 44620 
 
 89879 
 89867 
 89854 
 89841 
 89828 
 89816 
 89803 
 89790 
 89777 
 89764 
 89752 
 89739 
 89726 
 89713 
 89700 
 89687 
 
 43077 
 43104 
 43130 
 43156 
 43182 
 43209 
 43235 
 43261 
 43287 
 43313 
 43340 
 43366 
 ,43392 
 
 44 43418 
 
 45 43445 
 
 46 
 47 
 48 
 49 
 50 
 51 
 
 -11 Dt-y. 
 
 89674 
 89662 
 89649 
 89636 
 89623 
 89610 
 89597 
 89584 
 89571 
 89558 
 89545 
 89532 
 89519 
 89506 
 89493 
 
 >J^8^ N.(J8. 
 
 4M99 
 45425 
 45451 
 45477 
 45503 
 45529 
 45554 
 45580 
 45606 
 45632 
 45658 
 45684 
 45710 
 45736 
 45762 
 45787 
 
 43471 
 43497 
 43523 
 43549 
 43575 
 43602 
 43628 
 
 53J43654 
 64143680 
 55143706 
 56143733 
 67 43759 
 43785 
 43811 
 
 58 
 59 
 
 M 
 
 90246 
 
 90233 
 
 90221 
 
 90208 
 
 90196 
 
 90183 
 
 90171 
 
 90158 
 
 90146 
 
 90133 
 
 90120 
 
 90108 
 
 90095 
 
 90082 
 
 90070 
 
 90057 
 90045 
 90032 
 90019 
 90007 
 89994 
 89981 
 89968 
 89956 
 89943 
 89930 
 89918 
 89905 
 89892 
 
 N. C8. N. 8, 
 
 64 Deg. 
 
 44646 
 44672 
 44698 
 44724 
 44750 
 44776 
 44802 
 44828 
 44854 
 44880 
 44906 
 44932 
 44958 
 44984 
 45010 
 
 45813 
 
 45839 
 
 i5865 
 
 45891 
 
 45917 
 
 45942 
 
 45968 
 
 45994 
 
 46020 
 
 46046] 
 
 460721 
 
 46097 
 
 46123 
 
 46149 
 
 46175 
 
 89480 
 
 89467 
 
 89454 
 
 99441 
 
 89428 
 
 89415 
 
 89402 
 
 89389 
 
 89376 
 
 89363 
 
 893ii0 
 
 89337 
 
 89324 
 
 89311 
 
 89298 
 
 89101 
 89087 
 89074 
 8906 1 
 89048 
 89035 
 8902 1 
 89008 
 88995 
 88981 
 88968 
 88955 
 88942 
 88928 
 88915 
 88902 
 
 88888 
 88875 
 88862 
 88848 
 88835 
 88822 
 88808 
 88795 
 88782 
 188768 
 88755 
 88741 
 88728 
 88715 
 88701 
 
 46947 
 46973 
 46999 
 47024 
 47050 
 47076 
 47101 
 47127 
 47153 
 47178 
 47204 
 47229 
 47255 
 47281 
 47306 
 47332 
 
 45036 
 45062 
 45088 
 45114 
 45140 
 45166 
 45192 
 45218 
 45243 
 45269 
 45295 
 45321 
 45347 
 
 45373 
 
 N. CS. N. S, 
 
 46201 
 
 46226 
 
 46252 
 
 46278 
 
 46304 
 
 46330 
 
 46355 
 
 46381 
 
 46407 
 
 46433 
 
 46458 
 
 46484 
 
 46510 
 
 46536 
 
 46561 
 
 89285 
 
 89272 
 
 89259 
 
 89245 
 
 89232 
 
 89219 
 
 892061 
 
 891931 
 
 89180 
 
 89167 
 
 89153 
 
 89140 
 
 89127 
 
 89114 
 
 46587 
 
 46613 
 
 46639 
 
 46664 
 
 46690 
 
 46716 
 
 46742 
 
 46767 
 
 46793 
 
 46819 
 
 46844 
 
 46870 
 
 46896 
 
 46921 
 
 N. C8. 
 
 88688 
 88674 
 88661 
 88647 
 88634 
 88620 
 88607 
 88593 
 88580 
 88566 
 88553 
 88539 
 88526 
 88512 
 88499 
 
 88485 
 
 88295 
 88281 
 88267 
 88254 
 88240 
 88226' 
 88213 
 88199 
 88185 
 88172 
 88158 
 88144 
 88130 
 88117 
 88103 
 88089 
 
 ±'^ Ueg. 
 
 N. 8. IN.CS. 
 
 47358 
 47383 
 47409 
 47434 
 47460 
 47486 
 47511 
 47537 
 47562 
 47588 
 47614 
 47639 
 41665 
 47690 
 47716 
 
 88075 
 88062 
 88048 
 88034 
 88020 
 88006 
 87993 
 87979 
 87965 
 87951 
 87937 
 87923 
 87909 
 87896 
 87882 
 
 48481 
 48506 
 48532 
 
 48557 
 48583 
 48608 
 48634 
 48659 
 48684 
 48710 
 48735 
 48761 
 48786 
 48811 
 48837 
 48862 
 
 47741 
 47767 
 47793 
 
 47818 
 47844 
 47869 
 47895 
 47920 
 47946 
 47971 
 47997 
 48022 
 48048 
 48073 
 48099 
 
 63 Deg. 
 
 88472 
 88458 
 88445 
 88431 
 88417 
 88404 
 88390 
 88377 
 88363 
 88349 
 88336 
 88322 
 88308 
 N. 8. 
 
 87868 
 87854 
 87840 
 87826 
 87812 
 87798 
 87784 
 87770 
 87756 
 87743 
 87729 
 87715 
 87701 
 87687 
 87673 
 
 M 
 
 87462 00 
 
 8 7448; 59 
 
 87434158 
 
 87420'57 
 
 87406 56 
 
 87391 
 
 87377 
 
 87363 
 
 87349 
 
 87335 
 
 87321 
 
 87306 
 
 87292 
 
 87278 
 
 87264 
 
 87250 
 
 55 
 54 
 53 
 53 
 51 
 50 
 49 
 48 
 47 
 46 
 45 
 
 48888 
 48913 
 48938 
 48964 
 48989 
 49014 
 49040 
 49065 
 49090 
 49116 
 49141 
 49166 
 49192 
 49217 
 49242 
 
 87235 
 
 87221 
 
 87207 
 
 87193 
 
 87178 
 
 87164 
 
 87150 
 
 87136 
 
 87121 
 
 87107 
 
 87093 
 
 87079 
 
 87064 
 
 87050 
 
 87036 
 
 44 
 
 43 
 
 42 
 
 41 
 
 40 
 
 39 
 
 38 
 
 37 
 
 36 
 
 35 i 
 
 34 
 
 33 
 
 32 
 
 31 
 
 30 
 
 49268 
 49293 
 49318 
 19344 
 49369 
 49394 
 49419 
 49445 
 49470 
 49495 
 49521 
 49546 
 49571 
 49596 
 49622 
 
 48124 
 
 48150 
 
 48175 
 
 48201 
 
 48226 
 
 48252 
 
 48277 
 
 148303' 
 
 48328 
 
 48354 
 
 48379 
 
 148405 
 
 48430 
 
 4845 6 
 
 N. csT 
 
 87659 
 87645 
 87631 
 87617 
 87603 
 87589 
 87575 
 87561 
 87546 
 87532 
 87518 
 87504 
 87490 
 87476 
 N.S. 
 
 62 Deg. 1) 61 Deg 
 
 87021 
 
 87007 
 
 86993 
 
 86978 
 
 86964 
 
 86949 
 
 86935 
 
 86921 
 
 86906 
 
 86892 
 
 86878 
 
 86863 
 
 86849 
 
 86834 
 
 86820 
 
 29 
 
 28 
 
 27 
 
 26 
 
 25 
 
 24 
 
 23 
 
 22 
 
 21 
 
 20 
 
 19 
 
 18 
 
 17 
 
 16 
 
 15 
 
 49647 
 49672 
 49697 
 49723 
 49748 
 49773 
 49798 
 49824 
 49849 
 49874 
 49899 
 49924 
 49950 
 49975 
 
 86805 
 86791 
 86777 
 86762 
 86748 
 86733 
 86719 
 86704 
 86690 
 86675 
 '86661 
 86646 
 86632 
 86617 
 
 N.CS. 
 
 N.S. 
 
 14 
 
 13 
 
 12 
 
 11 
 
 10 
 
 9 
 
 8 
 
 7 
 
 6 
 
 6 
 
 4 
 
 3 
 
 2 
 
 _1 
 
 M 
 
 60 Deg. 
 
 48 
 
 512 
 
 49 
 
 512 
 
 50 
 
 512 
 
 51 
 
 512 
 
 52 
 
 513 
 
 63 
 
 513 
 
 54 
 
 513 
 
 55 
 
 613 
 
 66 
 
 514 
 
 57 
 
 614 
 
 58 
 
 514 
 
 69 
 
 614 
 
 M 
 
 N.C 
 
 
 5t 
 
A TABLE OP NATURAL SINES. 
 
 fi9 
 
 21 
 
 
 1 
 
 2 
 3 
 
 4 
 5 
 6 
 
 7 
 
 30 Deg. 
 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 
 16 
 
 17 
 
 18 
 
 19 
 
 20 
 
 21 
 
 22 
 
 23 
 
 24 
 
 25 
 
 26 
 
 27 
 
 28 
 
 29 
 
 30 
 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 
 46 
 I 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 66 
 57 
 58 
 59 
 
 N. S, I N. C8. 
 
 8^603 
 
 86588 
 
 86573 
 
 86559 
 
 86544 
 
 86530 
 
 86515 
 
 86501 
 
 86486 
 
 86471 
 
 86457 
 
 86442 
 
 86427 
 
 86413 
 
 86398 
 
 86384 
 
 50000 
 50025 
 50050 
 50076 
 50J01 
 50126 
 50151 
 50176 
 8 50201 
 
 50227 
 50252 
 50277 
 50302 
 50327 
 50352 
 50377 
 
 50403 
 
 50428 
 50'153 
 50478 
 50503 
 50528 
 50553 
 
 50578 
 50603 
 50628 
 50654 
 50679 
 50704 
 50729 
 50754 
 
 86369 
 
 86354 
 
 86340 
 
 86325 
 
 86310 
 
 86295 
 
 86281 
 
 86266 
 
 86251 
 
 86237 
 
 86222 
 
 86207 
 
 86192 
 
 86178 
 
 86163 
 
 51504 
 
 51529 
 
 51554 
 
 51579 
 
 51604 
 
 51628 
 
 51653 
 
 5 J 678 
 
 51703 
 
 51728 
 
 51753 
 
 51778 
 
 51803 
 
 ,51828 
 
 51852 
 
 151877 
 
 31 Peg. 
 N. 8. [ n.cb; 
 
 85717 
 
 85702 
 
 85687 
 
 85672 
 
 85657 
 
 85642 
 
 85627 
 
 85612 
 
 85597 
 
 85582 
 
 85567 
 
 85551 
 
 85536 
 
 85521 
 
 85506 
 
 85491 
 
 50779 
 50804 
 50829 
 50854 
 50879 
 50904 
 50929 
 50954 
 50979 
 51004 
 51029 
 51054 
 51079 
 51104 
 51129 
 
 51154 
 51179 
 51204 
 51229 
 51254 
 51279 
 51301 
 51329 
 51354 
 51379 
 51404 
 51429 
 51454 
 51479 
 
 86148 
 86133 
 86119 
 86104 
 86089 
 86074 
 86059 
 86045 
 86030 
 86015 
 86000 
 85985 
 85970 
 85956 
 85941 
 
 51902 
 
 51927 
 
 '51952 
 
 51977 
 
 52002 
 
 52020 
 
 52051 
 
 52076 
 
 52101 
 
 52126 
 
 52151 
 
 52175 
 
 52200 
 
 52225 
 
 52250 
 
 85926 
 85911 
 85896 
 85881 
 85866 
 85851 
 85836 
 85821 
 85806 
 85792 
 85777 
 85762 
 85747 
 85732 
 
 52275 
 152299 
 52324 
 52349 
 52374 
 52399 
 52423 
 52448 
 52473 
 52498 
 52522 
 52547 
 52572 
 52597 
 52621 
 
 85476 
 85461 
 85446 
 85431 
 85416 
 85401 
 85385 
 85370 
 85355 
 85340 
 85325 
 85310 
 85294 
 85279 
 85264 
 
 85249 
 
 85234 
 
 85218 
 
 85203 
 
 85188 
 
 85173 
 
 85157 
 
 85142 
 
 85127 
 
 85112 
 
 85096 
 
 85081 
 
 85066 
 
 85051 
 
 85035 
 
 52992 
 
 53017 
 
 53041 
 
 53066 
 
 53091 
 
 53115 
 
 53140 
 
 53164 
 
 53189 
 
 53214 
 
 53238 
 
 53263 
 
 53288 
 
 53312 
 
 53337 
 
 53361 
 
 53386 
 53411 
 53435 
 53460 
 
 84805 
 
 84789 
 
 84774 
 
 84759 
 
 84743 
 
 847281 
 
 84712 
 
 84697 
 
 84681 
 
 84666 
 
 84650 
 
 84635 
 
 84619 
 
 84604 
 
 84588 
 
 84573 
 
 84557 
 84542 
 84526 
 84511 
 
 53484184495 
 5350984480 
 53534 84464 
 
 54464 
 
 ,54488 
 
 (54513 
 
 154537 
 
 54561 
 
 54586 
 
 54610 
 
 54635 
 
 154059 
 
 54683 
 
 54708 
 
 54732 
 
 54756 
 
 54781 
 
 54805 
 
 54829 
 
 83867 
 
 83851 
 
 83835 
 
 83819; 
 
 S3804 
 
 83788; 
 
 83772' 
 
 837561 
 
 83740,1 
 
 83724 
 
 83708 
 
 83692 
 
 83676 
 
 83660 
 
 83645 
 
 83629 
 
 "sTn 
 
 eg. 
 
 53558 
 53583 
 53607 
 53632 
 53656 
 53681 
 53705 
 53730 
 
 N. CS. I N. 8. 
 59 Deg. 
 
 52646 
 52671 
 52696 
 52720 
 52745 
 52770 
 52794 
 52819 
 52844 
 52869 
 52893 
 529 IS 
 52943 
 52967 
 
 N. CS. 
 
 85020 
 85005 
 84982 
 84974 
 84959 
 84943 
 84928 
 84913 
 84897 
 84882 
 84866 
 84851 
 84836 
 84820 
 N.S.'I 
 
 53754 
 53779 
 53804 
 53828 
 53853 
 53877 
 53902 
 53926 
 53951 
 53976 
 54000 
 54024 
 54049 
 54073 
 54097 
 
 84448 
 84433 
 84417 
 84402 
 84386 
 84370 
 84355 
 84339 
 
 84324 
 
 84308 
 
 84292 
 
 84277 
 
 84261 
 
 84245 
 
 84230 
 
 84214 
 
 84198 
 
 84182 
 
 84167 
 
 84151 
 
 84135 
 
 84120 
 
 84104 
 
 54854 
 54878 
 54902 
 54927 
 54951 
 4975 
 j4999 
 55024 
 55048 
 55072 
 55097 
 55121 
 55145 
 55169 
 55194 
 
 54122 
 
 54140 
 
 54171 
 
 54195 
 
 54220 
 
 54244 
 
 54269 
 
 54293 
 
 54317 
 
 54342 
 
 54366 
 
 54391 
 
 54415 
 
 54440 
 
 58 Peg. 
 
 84088 
 84072 
 84057 
 84041 
 84025 
 84009 
 83994 
 83978 
 83962 
 83946 
 83930 
 83915 
 183899 
 
 83883 
 
 N. <J8. I N.8 . 
 57 Peff. 
 
 55218 
 55242 
 55266 
 55291 
 55315 
 55339 
 55363 
 65388 
 55412 
 55436 
 55460 
 56484 
 55509 
 55533 
 55557 
 
 83613 
 
 83597 
 
 83581 
 
 83665 
 
 83649 
 
 83533 
 
 83517 
 
 83501 
 
 83485 
 
 83469 
 
 83453 
 
 83437 
 
 83421 
 
 83405 
 
 83389 
 
 N.8. 
 
 55919 
 
 55943 
 
 55968 
 
 55992 
 
 56016 
 
 56040 
 
 66064 
 
 56088 
 
 50112 
 
 56136 
 
 56160 
 
 66184 
 
 56208 
 
 56232 
 
 56256 
 
 56280 
 
 55581 
 55606 
 55630 
 55664 
 55678 
 55702 
 j'55726 
 56760 
 55775 
 55799 
 55823 
 
 55847 
 55871 
 55895 
 
 N.CS. 
 
 83373 
 83356 
 83340 
 83324 
 83308 
 83292 
 83276 
 83260 
 83244 
 83228 
 83212 
 83195 
 83179 
 83163 
 83147 
 
 56305 
 56329 
 56353 
 56377 
 |5640l 
 56425 
 56449 
 56473 
 66497 
 56521 
 56545 
 56669 
 56593 
 56617 
 56641 
 
 N.CS. 
 
 82904 
 
 82887 
 
 82871 
 
 82856 
 
 82839 
 
 82822 
 
 82806 
 
 82790 
 
 82773 
 
 82757 
 
 82741 
 
 82724 
 
 82708 
 
 82692 
 
 82676 
 
 82659 
 
 82643 
 82626 
 82610 
 82593 
 82577 
 82561 
 82544 
 82528 
 82511 
 82495 
 82478 
 82462 
 82446 
 82429 
 82413 
 
 83131 
 83115 
 83098 
 83082 
 83066 
 83050 
 83034 
 83017 
 83001 
 82985 
 
 82953 
 82936 
 82920 
 
 N.8. 
 
 Peg. I 56 Peg. 
 
 56665 
 56689 
 56713 
 56736 
 56760 
 56784 
 56808 
 56832 
 66856 
 56880 
 56904 
 56928 
 56952 
 56976 
 57000 
 
 57024 
 57047 
 57071 
 57095 
 57119 
 57143 
 57167 
 57191 
 57215 
 57238 
 
 57286 
 57310, 
 57334 
 
 182396 
 
 i82380 
 
 82363 
 
 82347 
 
 82330 
 
 82314 
 
 82297 
 
 82281 
 
 82264 
 
 82248 
 
 82231 
 
 82214 
 
 82198 
 
 82181 
 
 82165 
 
 S2148 
 82132 
 82115 
 82098 
 82082 
 82065 
 82048 
 82032 
 J82015 
 81999 
 
 I o 1 r\ .^ »-* 
 
 181965 
 81949 
 81932 
 
 N.C8. 1 X. 8 . 
 
 55 Peg." 
 
 60 
 
 59 
 
 58 
 
 57 
 
 56 
 
 55 
 
 54 
 
 53 
 
 52 
 
 51 
 
 60 
 
 49 
 
 48 
 
 47 
 
 46 
 
 45 
 
 44 
 
 43 
 
 42 
 
 41 
 
 40 
 
 39 
 
 38 
 
 37 
 
 36 
 
 35 
 
 34 
 
 33 
 
 32 
 
 31 
 
 30 
 
 29 
 28 
 27 
 26 
 26 
 24 
 23 
 22 
 21 
 20 
 19 
 18 
 17 
 16 
 15 
 
 14 
 13 
 12 
 II 
 10 
 
 9 
 
 8 
 
 7 
 
 6 
 
 3 
 
 2 
 
 J 
 
 M 
 
70 
 
 A TABLE OP NATURAL SINES. 
 
 M 
 
 
 1 
 2 
 
 4 
 5 
 6 
 7 
 
 9 
 10 
 
 n 
 
 12 
 13 
 14 
 
 35 Deg. 
 
 N. a, I N. c;h. 
 
 57381 
 57405 
 57429 
 57453 
 57477 
 5750 1 
 57524 
 57548 
 57572 
 57590 
 57619 
 57643 
 57667 
 57691 
 
 15 57715 
 
 16 
 
 17 
 
 18 
 
 19 
 
 20 
 
 21 
 
 22 
 
 23 
 
 24 
 
 25 
 
 26 
 
 27 
 
 28 
 
 29 
 
 30 
 
 31 
 32 
 33 
 
 57738 
 57762 
 57786 
 57810 
 57833 
 57857 
 57881 
 57904 
 57928 
 57952 
 57976 
 57999 
 58023 
 58047 
 58070 
 
 58094 
 58118 
 58141 
 
 81915 
 81899 
 81882 
 81865 
 81848 
 81832 
 81815 
 81798 
 81782 
 81765 
 81748 
 81731 
 81714 
 81698 
 81681 
 81661 
 
 81647 
 81631 
 81614 
 81597 
 81580 
 81563 
 Si 546 
 81530 
 81513 
 81496 
 81479 
 81462 
 81445 
 81428 
 81412 
 
 34158165 
 
 35 
 36 
 37 
 
 38 
 39 
 40 
 41 
 
 58189 
 58212 
 58236 
 58260 
 58283 
 58307 
 58330 
 12158354 
 43J58378 
 
 44 58401 
 
 45 58425 
 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 
 58449 
 58472 
 58496 
 58519 
 58543 
 58567 
 58590 
 58614 
 58637 
 58661 
 58684 
 58708 
 58731 
 58755 
 
 81395 
 81378 
 81361 
 81344 
 81327 
 81310 
 81293 
 81276 
 81259 
 81242 
 81225 
 81208 
 81191 
 81174 
 81157 
 
 81140 
 81123 
 81106 
 81089 
 81072 
 81055 
 81038 
 81021 
 81004 
 80987 
 8O970 
 80953 
 80936 
 80919 
 
 36 Dofj. 
 
 5S779 
 58802 
 58826 
 58849 
 58873 
 58H96 
 58920 
 58943 
 58967 
 58990 
 59014 
 59037 
 59061 
 59084 
 59108 
 59131 
 
 59154 
 59178 
 59201 
 59225 
 59248 
 59272 
 59295 
 59318 
 59342 
 59365 
 59389 
 59412 
 59436 
 59459 
 59482 
 
 59506 
 59529 
 59552 
 59576 
 59599 
 59622 
 59646 
 59669 
 59693 
 59710 
 59739 
 59763 
 59786 
 59809 
 59832 
 
 80902 
 80885 
 80867 
 80350 
 80833 
 80816 
 M0799 
 80782 
 80765 
 80748 
 80730 
 80713 
 80696 
 80679 
 80662 
 80644 
 
 80627 
 80610 
 80593 
 80576 
 80558 
 80541 
 80524 
 80507 
 80489 
 80472 
 80455 
 80438 
 80420 
 80403 
 80386 
 
 80368 
 80351 
 8U334 
 80316 
 80299 
 80282 
 80264 
 80247 
 80230 
 80212 
 80195 
 80178 
 80160 
 80143 
 80125 
 
 M N. eg. N. S_. 
 54 Deg. 
 
 59856 
 59879 
 59902 
 59926 
 59949 
 59972 
 59995 
 60019 
 60042 
 60065 
 60089 
 60112 
 60135 
 60158 
 
 37 Ot'g^ 
 
 NTsr"NVm_ 
 
 79864 
 79846 
 79829 
 70811 
 79793 
 79776 
 79758 
 79741 
 79723 
 79706 
 79688 
 79671 
 79653 
 79635 
 79618 
 79600 
 
 60182 
 60205 
 60228 
 60251 
 60274 
 60298 
 60321 
 60344 
 (U)367 
 60390 
 60414 
 60437 
 60460 
 60483 
 60506 
 60529 
 
 60553 
 60576 
 60599 
 60622 
 60645 
 60668 
 6069 J 
 60714 
 60738 
 60761 
 60784 
 60807 
 60830 
 60853 
 60876 
 
 60899 
 60922 
 60945 
 60968 
 60991 
 61015 
 61038 
 61001 
 61084 
 61107 
 61130 
 61153 
 61176 
 61199 
 61222 
 
 79583 
 79565 
 79547 
 79530 
 79512 
 79494 
 79477 
 79459 
 79441 
 79424 
 79406 
 79388 
 79371 
 79353 
 79335 
 
 79318 
 79300 
 79382 
 79264 
 79247 
 79229 
 79211 
 79193 
 79176 
 79158 
 79140 
 79122 
 79105 
 79087 
 79069 
 
 80108 
 80091 
 80073 
 80056 
 80038 
 80021 
 80003 
 79986 
 79968 
 79951 
 79934 
 79916 
 79899 
 79881 
 
 N. C8. N. S 
 53 Deg. 
 
 61245 
 61268 
 61291 
 61314 
 61337 
 61360 
 61383 
 61406 
 61429 
 61451 
 61474 
 161497 
 61520 
 61543 
 
 61566 
 61589 
 61612 
 61635 
 61658 
 61681 
 61704 
 61726 
 61749 
 61772 
 61795 
 61818 
 61«U 
 61 64 
 61887 
 61909 
 
 3U Dtig. 
 
 N. fl. N. Crt. 
 
 61932 
 61955 
 61978 
 62001 
 62024 
 62046 
 62069 
 62092 
 62115 
 62138 
 62160 
 62183 
 62206 
 62229 
 62251 
 
 62274 
 62297 
 62320 
 62342 
 62365 
 62388 
 62411 
 62433 
 62456 
 62479 
 62502 
 62524 
 62547 
 62570 
 62592 
 
 78801 
 78783 
 78765 
 78747 
 78729 
 78711 
 78694 
 78676 
 78658 
 78640 
 78622 
 78604 
 78586 
 78568 
 78550 
 78532 
 
 78514 
 78496 
 78478 
 78460 
 78442 
 78424 
 78405 
 78387 
 78369 
 78351 
 78333 
 78315 
 78297 
 78279 
 78261 
 
 39 Deg. 
 
 79051 
 79033 
 79015 
 
 78098 
 78980 
 78962 
 78944 
 78926 
 78908 
 78891 
 78S73 
 788o5 
 178837 
 78819 
 
 78243 
 78225 
 78206 
 78188 
 78170 
 78152 
 78134 
 78116 
 78098 
 78079 
 78061 
 78043 
 78025 
 78007 
 77988 
 
 N.S. 
 
 62932 
 62955 
 62977 
 63000 
 63022 
 63045 
 63068 
 630;.0 
 63113 
 63135 
 63158 
 63180 
 63203 
 63225 
 63248 
 03;Tn 
 
 63293 
 63316 
 63338 
 63361 
 63383 
 63406 
 63428 
 63451 
 03473 
 63490 
 63518 
 63540 
 63563 
 63585 
 63608 
 
 N.CS. 
 
 77715 
 77696 
 77678 
 77660 
 77641 
 77623 
 77605 
 77586 
 77568 
 77550 
 77531 
 77513 
 77494 
 77476 
 77458 
 77439 
 
 77421 
 77402 
 77384 
 77366 
 77347 
 77329 
 77310 
 77292 
 77273 
 77255 
 77236 
 77218 
 77199 
 77181 
 77162 
 
 62615 
 
 62638 
 
 62660 
 
 62683 
 
 62706 
 
 62728 
 
 627511 
 
 62774' 
 
 62796 
 
 62819 
 
 62842 
 
 62804 
 
 62887 
 
 62909 
 
 63630 
 63653 
 63675 
 63698 
 637^0 
 63742 
 63765 
 63787 
 63810 
 63832 
 63854 
 63877 
 63899 
 63922 
 63944 
 
 N.CS.I N.S 
 62 Deg. 
 
 77970 
 77952 
 77934 
 77916 
 
 77897 
 177879 
 77861 
 177843 
 77824 
 77806 
 77788 
 777uU 
 77751 
 77733 
 
 77144 
 77125 
 77107 
 77088 
 77070 
 77051 
 77033 
 77014 
 76996 
 76977 
 76959 
 76940 
 76921 
 76903 
 76884 
 
 M 
 60 
 59 
 58 
 57 
 56 
 55 
 54 
 53 
 52 
 51 
 50 
 49 
 48 
 47 
 46 
 45 
 
 44 
 43 
 42 
 41 
 40 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 19 
 18 
 17 
 16 
 15 
 
 N.CS.I N.S. 
 
 r 51 bog. 
 
 63966 
 
 63989 
 
 64011 
 
 64033 
 
 04056 
 
 64078 
 
 64100] 
 
 641231 
 
 64145 
 
 64167 
 
 64190 
 
 04212 
 
 64234 
 
 64256 
 
 76866 
 76847 
 76828 
 76810 
 76791 
 76772 
 76754 
 76735 
 76717 
 76698 
 76679 
 
 176642 
 176623 
 
 N.CS .I N.B. 
 50 Deg. 
 
 14 
 
 13 
 
 12 
 
 11 
 
 10 
 
 9 
 
 8 
 
 7 
 
 6 
 
 5 
 
 4 
 
 o 
 
 2 
 
 _l 
 
 M 
 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 
 46 
 47 
 
 48 6J 
 49|6i 
 50 1 6; 
 
 51 6; 
 
 52 6.' 
 
 53 6^ 
 64 6£ 
 
 60 
 M 
 
60 
 59 
 58 
 57 
 56 
 55 
 51 
 5:) 
 52 
 51 
 50 
 49 
 48 
 47 
 46 
 45 
 
 44 
 43 
 42 
 41 
 40 
 39 
 38 
 37 
 36 
 35 
 34 
 33 
 32 
 31 
 30 
 
 29 
 28 
 27 
 26 
 25 
 24 
 23 
 22 
 21 
 20 
 19 
 18 
 17 
 16 
 15 
 
 14 
 13 
 12 
 11 
 10 
 9 
 8 
 7 
 6 
 5 
 4 
 3 
 2 
 _l 
 M 
 
 I 
 
 41 
 
 N. s: 
 
 65606 
 n6628 
 65650 
 
 75471 66913 74311 1 fi8^ 
 ??h^^««935 74295 |:6822l 
 
 75433 
 
 ,MJ5672 75414 
 
 fi5694 75395 
 65716 7537^ 
 
 llo-n:?! 753371 
 
 ■ 75318 
 
 752991 
 
 73135 
 73116 
 73096 
 73076 
 
 1^^,^5^74276 68242 
 66978 7-J 256 68264 rM)7n 
 fi6999 74237 68285 7'1nJ? 
 
 67043 74198 68327 7S0R 
 
 67064 74178 68349 Sir 
 
 67086 74159 68370 S?fi 
 
 67107 74139 6839? S?7 
 
 671^0 74120 68412 72S 
 
 74100 68433 72917 
 
 740S0 68455 72897 
 
 ^ 1,... .^-, 740G1 68476 TQavv 
 
 75203 67215,74041 68497 7^1? 
 
 75W 67237 74O226I5I8 S 
 
 75280 67129 
 75261 67151 
 75341 67172 
 75222 67194 
 
 31 
 
 32 
 
 33 
 
 34 
 
 35 
 
 36 
 
 37 
 
 38 
 
 39 
 
 40 
 
 41 
 
 42 
 
 43 
 
 44 
 
 45 
 
 cmnn i..^?" V'''87 73885 68666 72697 
 
 69466 
 
 69487 
 
 69508 
 
 69529 
 
 '695491 
 
 ,'69570 
 
 '69591 
 
 169612 
 
 69633 
 
 69654 
 
 69675 
 
 69696 
 
 69717 
 
 69737 
 
 69758 
 
 69779 
 
 73865 
 73846 
 73826 
 73806 
 
 64967 
 
 649891 
 
 650111 
 
 65O33I 
 
 65055 
 
 65077 
 
 65099 
 
 65122 
 
 65144 
 
 65166 
 
 65188 
 
 65210 
 
 65232 
 
 65254 
 
 65276 
 
 46 651 J8 
 
 47 65320 
 
 76022 
 76003 
 j 75984 
 75965 
 75946 
 75927 
 75908 
 75889 
 75870 
 75851 
 75832 
 758131 
 75794 
 
 74915 
 74896 
 
 74876 
 . 74857 
 6632774838 
 66349 74818 
 
 75770 
 75756 
 
 48 
 49 
 50 
 51 
 52 
 53 
 64 
 
 65342 
 65364 
 65386 
 65408 
 65430! 
 65452 
 654741 
 654961 
 
 655 I 8| 75547 
 
 56 
 •5^165562 
 
 75738 
 75719 
 75699 
 75680 
 75661 
 75642 
 75623 
 75604 
 75585 
 75566 
 
 66371 
 
 |66393 
 
 |66414 
 
 ,66436 
 
 66458 
 
 66480 
 
 66501 
 
 IC6523 
 
 66545 
 
 166566 
 
 J66588 
 
 166610 
 
 66632 
 
 66653 
 
 66675 
 
 66697 
 
 ,66718 
 
 166740 
 
 166762 
 
 74799 
 
 ,6868872677 
 6870972657 
 6873072637 
 6875172617 
 '6877272597 
 
 67516 73767 68793 72577 
 67538 73747l!68814 72557 
 
 67559 73728 
 
 67580 73708 
 6760273688 
 '67623 73669 
 67645 ' 
 
 67666 
 
 74780 67688 
 
 74760 
 
 74741 
 
 74722 
 
 74703 
 
 74683 
 
 74664 
 
 74644 
 
 74625 
 
 74606 
 
 74586 
 74567 
 74548 
 74528 
 74509 
 74489 
 74470 
 74451 
 
 67709 
 67730 
 
 6883572537 
 
 68857725T7 
 6887872497 
 6889972477 
 68920 72457 
 
 69800 
 
 69821 
 
 69842 
 
 69862 
 
 69883 
 
 69904 
 
 69925 
 
 69946 
 
 69966 
 
 169987 
 
 70008 
 
 70029 
 
 70049 
 
 70070 I 
 
 70091 
 
 71610 
 71690 
 71669 
 71549 
 71529 
 71508 ; 
 71488 L. 
 71468 37 i 
 7144736 
 
 
 70112 
 70132 
 70153 
 
 71427 
 71407 
 171386 
 71366 
 71345 
 71325 
 
 71305 29 
 
 71284 
 
 71264 
 
 73610 
 73590 
 73570 
 
 67752|Y3551 
 6777373531 
 67795 73511 
 
 65540 
 
 75509 
 
 65584175490 
 65606 75471 
 
 n-csT! n. s. 
 
 ,'66783 74431 
 66805 74412 
 
 [66827 
 [66848 
 '66870 
 66891 
 66913 
 N.CS 
 
 _49Deg. ii~48"D;^ 
 
 74392 
 74373 
 74353 
 74334 
 74314 
 N.8. 
 
 67816 
 67837 
 67859 
 67880 
 
 67901 
 ,67923 
 67944 
 67965 
 67987 
 68008 
 68029 
 68051 
 68072 
 68093 
 681 15 
 68136 
 68157 
 68179 
 
 73491 
 73472 
 73452 
 73432 
 
 73412 
 
 73393 
 
 73373 
 
 73353 
 
 73333 
 
 73314 
 
 73294 
 
 73274 
 
 73254 
 
 73234 
 
 73215 
 
 73195 
 73175 
 
 73155 
 
 68200:73135 
 
 68962 72417 
 72397 
 72377 
 72357 
 72337 
 72317 
 72297 
 
 68983 
 69004 
 63025 
 69046 
 69067 
 69088 
 
 69109 72277 
 69130172257 
 69151 172236 
 
 |69172 722T6 
 6919372196 
 6921472176 
 
 69235 
 69256 
 69277 
 69298 
 69319 
 69340 
 
 72156 
 72136 
 72116 
 72095 
 72075 
 72055 
 
 N.CS.I nX 
 47 Peg. 
 
 69361 72035 
 
 69382172015 
 
 69403 
 
 69424 
 
 69445 
 
 69466 
 
 N.CS. 
 
 71995 
 71974 
 71954 
 71934 
 
 N.S. 
 
 '7017471243 
 7019571223 
 70215 71203 
 70236 71182 
 70257 71162 
 ,70277 71141 
 70298 71121 
 ,70319 71100 
 ,70339 71080 
 70360 71059 
 70381 71039 .„ 
 70401 71019 15 
 70422 70998 14 
 70443 70978 13 
 70463170957 12 
 70484170937 11 
 70505170916 10 
 70525 1 70896 9 
 7054670875 8 
 70567, '70855 7 
 70587170834 6 
 (70608 1 708 13 fi 
 /-0rj28|70793 4 
 70649 70772 3 
 7067070762 2 
 70690170731 1 
 7071170711 
 
 46 Peg. 
 
 N.C8.I N .S M 
 45 IJog,~'