IMAGE EVALUATION 
 TEST TARGET (MT-3) 
 
 A 
 
 
 
 Wm 
 
 i< 
 
 '(/. 
 
 % 
 
 
 1.0 
 
 I.I 
 
 •a i^ 1 2.2 
 
 Ik 
 
 112.0 
 
 1.8 
 
 
 1.25 
 
 1.4 
 
 1.6 
 
 
 ^ 6" - 
 
 
 ► 
 
 Photographic 
 
 Sciences 
 Corporation 
 
 23 WEST MAIN STREET 
 
 WEBSTER, N.Y. 14580 
 
 '716) 872-4503 
 
•^ ^? 
 
 '^i.v^ 
 
 Q, 
 
 C/j 
 
 X 
 
 c;hivi/icmh 
 
 Microfiche 
 Series. 
 
 CIHM/ICMH 
 Collection de 
 microfiches. 
 
 Canadian institute for Historical Microreproductions / Institut Canadian de microreproductions historiques 
 
Technical and Bibliographic Notes/Notes techniques et bibliographiqued 
 
 The Institute has attempted to obtain the best 
 original copy available for filming. Features of this 
 copy which may be bibliographically unique, 
 which may alter any of the images in the 
 reproduction, or which may significantly change 
 the usual method of filming, are checked below. 
 
 D 
 
 D 
 
 □ 
 
 n 
 
 n 
 
 n 
 
 Coloured covers/ 
 Couverture da cou'aur 
 
 I I Covers damaged/ 
 
 Couverture endommagie 
 
 Covers restored and/or laminated/ 
 Couverture restaurie et/ou pelliculde 
 
 I I Cover title missing/ 
 
 La titre de couverture manque 
 
 □ Coloured maps/ 
 Cartes giographiques en couleur 
 
 Coloured ink (i.a. othar than blue or black)/ 
 Encre de couleur (i.e autre que blaue ou noire) 
 
 □ Coloured plates and/or illustrations/ 
 PI) 
 
 Planches et/ou illustrations en couleur 
 
 Bound with othar material/ 
 Relii avec d'autres documents 
 
 Tight binding may cause shadows or distortion 
 along interior margin/ 
 
 La re liure serree peut causer de I'ombre ou de la 
 distorsion le long de la marge intdrieure 
 
 Blank leaves added during restoration may 
 appear within the text. Whenever possible, these 
 have been omitted from filming/ 
 II se peut que certaines pages blanches ajouties 
 Jors dune restauration apparaissem dans le texte, 
 mais, lorsque cela dtait possible, ces pages n'ont 
 pas iti filmdes. 
 
 Additional comments:/ 
 Commentc^res suppl^mentairss: 
 
 L'Institut a microfilm^ le meilleur exemplaire 
 qu'il lui a eti possible de se procurer. Les details 
 dd cet exemplaire qui sont peut-dtre uniques du 
 point de vue bibliographique. qui peuvent modifier 
 une image reproduite, ou qui peuvent exiger une 
 modification dans la methods normale de filmage 
 sont indiquAs ci-dessous. 
 
 □ Coloured pages/ 
 Pages de couleur 
 
 □ Pages damaged/ 
 Pages endommagies 
 
 Thai 
 to th 
 
 n 
 
 v/ 
 
 Pages restored and/or laminated/ 
 Pages restauriies et/ou pelliculies 
 
 Pages discoloured, stained or foxed/ 
 Pages decolorees, tachetdes ou piquoes 
 
 Thai 
 possi 
 of th 
 filmii 
 
 Origi 
 begii 
 the li 
 slon, 
 othei 
 first 
 sion, 
 or ItJi 
 
 I I Pages detached/ 
 
 Pages d^tachees 
 
 Showthrough/ 
 Transparence 
 
 Quality of prir 
 
 Quality inigale de I'impression 
 
 Includes supplementary materii 
 Comprend du materiel suppiementaire 
 
 Only edition available/ 
 Seule Edition disponible 
 
 rri Showthrough/ 
 
 [~n Quality of print varies/ 
 
 r~l Includes supplementary material/ 
 
 pn Only edition available/ 
 
 Thai 
 shall 
 TINL 
 whic 
 
 Map! 
 diffe 
 entir 
 begii 
 right 
 requ 
 matt' 
 
 □ Pages wholly or partially obscured by errata 
 slips, tissues, etc., have been refilmed to 
 ensure the best possible image/ 
 Les pages totalement ou partiellement 
 obscurcies par un feuillet d'errata, une pelure, 
 etc., ont it6 film^es A nouveau de facon a 
 obtenir la meilleure image possible. 
 
 This item is filmed at the reduction ratio checked below/ 
 
 Ce document est filmd au taux de reduction indiqui ci-dessous. 
 
 10X 
 
 
 
 14X 
 
 
 
 18X 
 
 
 22X 
 
 
 
 26X 
 
 
 
 30X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 12X 
 
 16X 
 
 20X 
 
 24X 
 
 28X 
 
 32X 
 
:aJls 
 du 
 
 >difier 
 une 
 nage 
 
 rata 
 ) 
 
 elure, 
 a 
 
 _J 
 
 32X 
 
 The copy filmed here has been reproduced thanks 
 to the generosity of: 
 
 National Library of Canada 
 
 The images appearing here are the best quality 
 possible considering the condition and legibility 
 of the original copy and in keeping with the 
 filming contract specifications. 
 
 Original copies in printed paper covers are filmed 
 beginning with the front cover and ending on 
 the last page with a printed or illustrated impres- 
 sion, or the back cover when appropriate. All 
 other original copies are filmed beginning on the 
 first page with a printed or illustrated impres- 
 sion, and ending on the last page with a printed 
 or illustrated impression. 
 
 The last recorded frame on each microfiche 
 shall contain the symbol — ► (meaning "CON- 
 TINUED"), or the symbol V (meamng "END"}, 
 whichever applies. 
 
 Maps, plaiies, charts, etc, may be filmed at 
 different reduction ratios. Those too large to be 
 entirely included in one exposure are filmed 
 beginning in the upper left hand corner, left to 
 right and top to bottom, as many frames as 
 required. The following diagrams illustrate the 
 method: 
 
 1 
 
 2 
 
 3 
 
 En 
 
 L'exemptaire filmi fut reproduit grfice d la 
 ginirositd de: 
 
 Bibliothdque nationale du Canada 
 
 Las images suivantes ont 6t6 reproduEtes avec le 
 plus grand soin, compte tenu de la condition et 
 de la nettetd de Texemplaire filmi, et en 
 conformity avec les conditions du contrat de 
 filmage. 
 
 Les exemplaires originaux dont la couverture en 
 papier est imprimde sont filmis en commengant 
 par le premier plat et en terminant soit par la 
 dernidre page qui comporte une empreinte 
 d'impression ou d'illustration, soit par le second 
 plat, selon le cas. Tous les autres exemplaires 
 originaux sont fllmds en commenpant par la 
 premidre page qui comporte une empreinte 
 d'impression ou d'illustration et en terminant par 
 la dernidre page qui comporte une telle 
 empreinte. 
 
 Un des symboles suivants apparaitra sur la 
 dernidre image de chaque microfiche, selon le 
 cas: le symbole -^ signifie "A SUIVRE", le 
 symbole y signifie "FIN' . 
 
 Les cartes, planches, tablaaux, etc., peuvent dtre 
 film6s d des taux de reduction diffirents, 
 Lorsque le document est trop grand pour dtre 
 reproduit en un seul clichd, 11 est filmd d partir 
 de Tangle sup6rieur gauche, de gauche d droite, 
 et de haut en bas, en prenant le nombre 
 d'images n6cessaire. Les diagrammes suivants 
 illustrent la m6thode. 
 
 1 
 
 2 
 
 3 
 
 4 
 
 5 
 
 6 
 
ALGEBRAICAL EXERCISES 
 
 — AN'l) — 
 
 EXAMINATION PAPERS 
 
 FOR PUBLIC SCHOOL LEAVING AND PRIMARY 
 
 EXAMINA TIONS 
 
 HY 
 
 C. A. BARNES, M.A. 
 
 Inspector of Schools, Lanihtov. 
 
 TORONTO : 
 THE COPP, CLARK COMPANY, LIMITED. 
 

 KiiUjred accortiiiig lo Act of the Purliaiiieiit of 
 iJarittda, in the year one thousand eight hundred and ninety-seven, by 
 TiiK C\)i'i', Clauk Oomi'any, Limitkd, Toronto, Ontario, in the Office of the 
 Minister of A^^riculture. 
 
PREFACE. 
 
 This book of Exercises \v. Algebia h.is l)uen prepared to supply 
 a want felt by many teachers who are teaching elementary Algebra, 
 and for private students. The ordinary text has not a suflicient 
 number of Exan:ples to enable students to become thoroughly 
 familiar with the Principles of Elementary Algel)ra, and expert in 
 the best methods of solution. The aim of this book is to supply 
 that deficiency, and the Hhih giviju in the Answers on the methods 
 of sohition, it is believed, will prove helpful to many private 
 students, and enable them to lay a good foundation for more 
 advanced work. 
 
 The book is particularly intended foi' students wh.. are |)reparing 
 for either P. S. Leaving or Primary Kxaminationa. 
 
 THE A I THOU. 
 
 
 f I 
 
EXERCISES IN ALGEBRA. 
 
 r* 
 
 EXERCISE I. 
 ADDITION. 
 
 1. 7a + 5/) + 3c ; 9a + (ih + oc ; 14a - 7h - Hr ; 3/) - Or ; 4a + 56 . 
 
 2. 8<(x-7hy + '3i/; ax' + 2hij-7if; 9ax + 4/-2; 3/>v-2w' + 7; 
 4aa!;-i/ + 6(ta!'. 
 
 3. ia-lb + lc; ]a-l/)-|c; ||a + ]6 + Jo ; 6-a + c. 
 
 4. 5a - 26 + 3o - 4d ; 36 - 4c + 5d - 2a ; oc - 6rf + 3a - 46 ; 7d - 4a 
 + 56 - 4c. 
 
 5. p + <y-r;-(f/ + /--.s); r+p-,s',-(p-s-r-(i). 
 
 6. 2a^ - 3j-!/ + 4mn ; ^nm + '3xz + 7xy ; Smn - br^ + 2ap - 4ap - 
 4xy - 12 mn. ' 
 
 7. 4a -106 + 13c -2^/; a + 66 - 14c + 5(/ ; 3a - 176 + Oc + 14cZ ; a + 
 146-c-17(/. 
 
 8. 4((,' + 6') + 37(a6 + ar) + 7(a^ + 6'') + 9((r6 + «,■) + d(nhc + a%-'c^) - 
 
 9. Sx + y+z;-7x-4y + Uz; 4z-x-,j; llx + y-z. 
 
 EXERCISE II. 
 SUBTRACTION. 
 1 . From 17a - 13ic + 27 take 15a - llx + 9. 
 
 2. From 4a"'' - 7xy - 7i/» + hz" + 13m - 11, 
 take 3aH7a-y-9y3+ ;;2 + 12m-lL 
 
 3. From 
 take 
 
 ^a-7c^^xf-7^U-h\ 
 
 12a + 7c-9a;y2 + GVa-62. 
 4. From;)H 3*/2+ll/-=' + 15/>^/-7y- 1, 
 20r/ + llrH17i>'i-7i/-lCK). 
 
 take 
 
EXERCISES IN ALOKBRA, 
 
 5. What, fixproRsion must, betaken horn 2o'^ - ]^an> + Cmh^-2h'' 
 to leave a"* - l7aVj - 'Adh'^ { 
 
 6. From fa^'- Jxt/ - •},)/, 
 take p-'^+' w'lf-'yi/. 
 
 7. From the sum of I4u + [)b Vh and 6a + 5/> - Ur take their 
 difference. 
 
 8. Subtract 3x^ + i.t'^y ~ 7. a/ + 20,/ from 4.r' -2jr:'y-{-4.nf+l4,/. 
 
 9. From |"'-ga+f, 
 
 take i - 3't- J. 
 
 10. Subtract the sum of ^^a-i^c and ic + J/>- «« from the sum of 
 tc-aand ^26-^c. 
 
 EXERCISE III. 
 ADDITION AND SUBTRACTION. 
 
 1^ ^:K'^*^'\iH~^+x' 2« + 2/> - 3c ;- 3a + 4/> + 14r together and take 
 14a + 56 - 15o from the num. 
 
 2. Add 12-^^4-.^^ 3.T-14-13x^ 15 + lLV^ + 7x - .r^' and fnmi 
 their sum take 11 - llx - 3x\ 
 
 ± ^^A^'W'^o}^^^^' 16-?/ + 18rxi;r; 15J/-6.,. 20f5^and 
 4^-14*/ + 9x-20 together and take 5x- ll./-5.~ + 2,^^^,- 15 from 
 the sum. 
 
 4. What quantity added to d^ - b^ will give j-''+ if^ / 
 
 5. If X = 2a + Sb', y=2a--2b', z = h- 4a, show that 3x + 81/ + 4z = 
 14a — 36. • 
 
 6. Add2a'^-62 + |; 3a^ + b'--; 6 '^ - a^+g together and from 
 the sum subtract 4a'- + b- - c'\ 
 
 7 \W-\- ^- ^!l f "' *"' "' ''■' 
 
 '• ^^^ 4'*'3"2' 2"'"4~'>' 2"^4~^ and from the sum take 
 b' c^ 
 
 2+4* 
 
 8. Frcmi 
 
 a^ + /, 
 
 take 
 
 a' - b'' 
 
 % Add 13a+15/>-c; 2a-146 + .; | - 10a + | and from the 
 
 a b c 
 sum subtract o - .-j +n • 
 ^ J o 
 
 10. Add a{a + b-c); b(b + c - a) ; c{a + c~ 6). 
 
MULTIPLICATION. 
 
 EXERCISE IV. 
 
 Iloiiuivu bnickwts and collect like terms. 
 
 1. a-h-e- (a + 3/< - c) + 2rr - (/» - 2r + a - h - ,•). 
 
 2. 2(t - a; + c - (3a - j:) - {^x ~ 5a) + 3 - 2x - (a - .r) + Wx - 2. 
 
 3. a--{ 2/>-(3c + 2/^-(f) |-. 
 
 4. 2a -6-^ _(c_rf)-(_2a + /> + f0 }•. 
 
 5. '^a-{a-h-c)-2->, a + r-2{h~c) ).. 
 
 6. 3a-[rt + 6--{ a + h + c-{a + }>-irc + d) \-]. 
 
 7. -{ a-(6-c) I- - '\ h-(c-a) \- - J ,'-(a-h) y-(„^h + r). 
 
 8. 2a - [3h - -^ - 2o - (2a - 2e^>) ]■]. 
 
 9. Up- ^ :iq + (2r-^r7];)-Hq \- -[4r+-^ 3.s-(2/> + 7 ;-]. 
 JO. 4[a + 3 -( h - c - 4(d -e +/))•]- [3a + 4(3/> - 3c - I2d + 12t' 
 
 12/")]. 
 
 EXERCISE V. 
 MULTIPLICATION. 
 
 A. 
 
 1. Multiply x'^ - 2xy + >/ + .'• - y by x - ij. 
 
 x'^ + y'^ + z'^ + xi/- x:: + i/;; by .*• - >j + ;;. 
 1 + 2a; + 3x2 + i\x^ by 1 - 2x. 
 IGu^* - ^x\j + 4xh/ - 2x,/ + >/ by 2x + ,j. 
 a^ - 2ab + h"^ + cM)y a' + 2ah + ¥ - r«. 
 
 1+ ic 4- .'-'^ + .v^ + .'■'* + X-' + .1'" l)y 1 - ;>;. 
 
 .*•» - 3xhi + 3aa- - a'' by ..•" + 3.v2a + 3xd' + "-. 
 
 .!•'"+</" by .r"' + j/". 
 
 a3-a2ft + <r//-'-/rM)y a+/>. 
 
 B. 
 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 
 8. 
 9. 
 10. 
 
 II 
 
 II 
 
 II 
 II 
 
 1. Multiply (f< + c)- + 2(a + <0 {h-\-d) + {h + <l)- by a + }> + i- + d. 
 
 2. M («*-2a^ + 4 l)y a* + 2u'''-4. 
 
 3. „ 9/^ + 4(/^ + ,r-2t/2 -3.0 (ixi/ by 3.^ + 2;/ + ;. 
 
 4. M !-«/-;+ if- - ijz + z'^ by 1 -f ;/ + 2. 
 
KXKItCIHKH IN ALOEUKA. 
 
 5. Multiply <<.r-f aV-f-aV hy 1-nx. 
 
 0. II a* + 2aV>' + h* hy o* - 2(tV>^ + h\ 
 
 7. .( tc» + 1/» + s'^ - 2(/-; hy x^ - y' - ;:» + 2yz. 
 
 8. M «"+a;" + a;< + j''Hl l)y u-'-l. 
 ^' " fi + nix - nx' hy <i - ynx + nx''. 
 
 10. Find tlio iM.ntinued i)r()ducfc of x + Z - j;-" • x^a."* . -r«a. '^* 
 
 c. 
 
 1. Mult iply ,r« - .,.*(/* + i/« |,y ,,.< 4- ,,4_ 
 
 3. Multiply yV (,,4-/,^,,. + ,,/, ],y .r^ + („+h)x + „h •md cx-itninn 
 
 What tho product hccon.e.s if in ,t either a or 6 is suhst^lLl C . 
 
 ^^iv+ii'-uur::^-;;'''''';^ '"^"' -••^'pi-tion ti. product of 
 
 5 Multii.ly x + a~h hy x-a + h and show that tho product is 
 zero if the ddlbrence between a and b is e.iual to ;.. ^ 
 
 6. Find the product of (,*• - n) (x - b) (x - c). 
 
 (x + iHlTkT-2)' '' ^"'^"'' «^^-"«i«ient ,>f x in the product of 
 
 ^.^9. Multiply (..-3) C.,--5) (,.-7) using the principles of number 
 
 dn!:?'fl^"^'''i^ (■'■ + '') (.'•+/0 (r + r) x + <}) and deduce from the pro 
 cbict^the coethcient of . n, the product of (. + 2) (. + (5) (I^IO) 
 
 EXERCISE VI. 
 
 DIVISION. 
 A. 
 
 1. Divide 2{)f(3_i5,t2.^2r)a by 5a. 
 
 2. .. ^i*-2tiU' + x*hya' + 2ax + x\ 
 
 3- •• ^-' -•'■* + .'-''-.'- + 2.r-l},yu.'H^;-l. 
 
 4. II y'^ + a.'' + bx + ah by ;*• + a. 
 
 5. I. ./•■■' - {it + 2)j;' + {%(. + b)x - 2/> by .1- - 2. 
 
 6. .. i<''~y'-e' + 2bchya-b + c. 
 
 
DIVISION. 5 
 
 7. Divide *24.i» - mxij + 2 1 ,f },y ',\,r - 7y, 
 
 8. .. j'*+i(».i"''+;{rM"'+r»().i'-f24i)y x+4. 
 
 9. t - x* + '.h'hf^ + 2 If* I )y ,,••' + 2>/». 
 10. 1 1 j'^ + ;Ja.i;a -f. 3(,Vj. + a" + ^M)y a; + rt + 6. 
 
 B. 
 
 1. Divide (a + />)''-f 3(rt + hy + 2r' hy a + /> + c. 
 
 2. Slunv tlmh /. + :{.,.'-,.a_^2_2 j.^ aivisihlo hy r + 1 niul .; - 1 
 and writo down tliu (luotieiit. ' ' 
 
 3. Write <lovvn the (|U()tient of ,. •'' + H/za - 27vT + 18.,.»/,^ hy .,• + 2v - 
 3^ Hndto«t the result hy putting .. = 5 ; «/=-4; . = 3in divis<.r, 
 dividend and (juotient. ' 
 
 4. Divide (« + />)'^ -(,, + /,) (,; + ri)-(J(c + (/)-^ hy a + 6 + 2(o + </). 
 
 5. Divide tlie product of d' + ax^-x'' and aH^'^ hy a^ + aV + x*. 
 0. Divide J? + (a + /> + r)./^ + {ah + ac + hi')x + ahr hy ..- + a. 
 
 7. Tf the dividend he ^n'h' + 2{[^u' ~ 2}A)- ahVod'-llh') and the 
 • luotient 2a{u + h) + {n^ - h% what in the divisor ) ' 
 
 8. By what must a' + n'^ + l he multiplied to make it aHa^H-l ? 
 
 0. 'I]he i)roduct of two algehraical exprt'ssionH in ^•fi + .'\+ iV- 
 tK»!/« + //- and one of them is ,,;'^ + .,,.j/+j/^ ; ^hat is the otlier ) 
 
 10 What value of a will make Qx*-2x' + 2ax^ + 2x + a exactly 
 divisible hy x^ - j- + 1 ? •'^ 
 
 C. 
 
 1. Find the value of a and /> so that y^ + ;V,/ + 4»/Mnay exactly 
 divide ..•H7r^^»/ + <M■^-/•^ + 5.1 V + r^.•■-y + /;..■,/■Hl2/A ^ 
 
 of m?^^ •^•' + 15-^ + »'i is exactly divisihle hy a; + 7, what is the value 
 
 themis2.o + 5(/ + 3;:; hnd the other. 
 
 r •'i' ^l"!^''?^/f "•';+^' 'V + '-' + l '"1^^ .*^*-x' + l together, and 
 divide ./;'« + . ';H 1 hy the product. 
 
 5. Divide the difference hetween (2(t + 3/>)'^ and C:la + 2hY by 
 o(a + 6). /J 
 
 6 Three factors of ^c* - 4/>x' + 0/> V - 4/rV + //' when multiplied 
 together give {x - hf as product, Hnd the fourth factor. 
 
 7. Divide the product of (a + /._r); (a-/> + r); (h + c-,i) hy a^ 
 
EXKRCISES IX ALGKBRA. 
 
 8. Divide tl*e product of 6x' - I7ax + \2a' and ix - 5- by 3.r - 4a. 
 0. Divide 49.r2 - 16-2 + 21xy + 12yz by 7x + 3y - 4z. 
 
 10. By wh.'i.; expression must a'~hr be niultip/lied that the 
 1 )roduct may be a» + a^b + a \- - abc - hV - he' ? 
 
 EXERCISE VII. 
 MISCELLANEOUS EXERCISE. 
 
 1. The product of two expressions is a* + 8((3 + *24r»H32a+ 16 
 and one of them is a^ + ^a. f 4 ; wliafc is the other I 
 
 2. Multiply (,,' - t,Y ,-ii by {,' + iif + .nj. 
 
 3. The sum of two expressions is x - ^^ - f^ and one is h'x + x) -i- '"' 
 what IS the other? " 5. ^/;i ;j 
 
 4. Find the continued i)roduct of x-'.]; x-1; x+i- x + 3 
 
 ]• ^i f"id^ tlie/livisor by ^vhich 'Mr - 23x' + 12x^ + H must },e 
 divided so that the quotient will be 3x' + (ix + l, and the remainder 
 
 ^x -f- I , 
 
 6. Divide :| -4<(* by l + a. 
 
 7. What expression must be added to 
 
 -Tj - '. - 2 to make x'^ -2x-^l 
 
 M4-^V/^^' W much d..es a(m + n)-h(m-j>)-r{,.-n) exceed ni(a~ 
 
 9. What value of ,i will make the ju-oduct of 'A -Ha and 3a + 4- 
 equal to the product of (5a 4- 11 and 'A -4a I 
 
 10. Divide /.','. +.!'l bv 1-+^ 
 
 11 Show that the i)roduct ..f Hx' + 2ax-:ia' and 10./^+ lO(« + 5a' 
 may be written (3 ,- + a)' - {x + 2ay. 
 
 1 '2. Di vi.le -:* + 1 + F4 l)y ,:^ - 1 + ;.. 
 
 •,nrV!li:M'^^i ^" ^''^^'':'i^i""^<^ i'^'"<lu^'t „f y, ., + 1, ,, + 2 and x + \ 
 •md divide the result by ,.-' + [I, -\.\. ' 
 
 14. Fiml /• and ,s i„ terms .,f ,/, A. ,,^ ,y. s.. that ,■' + p,^ + ,.,'>■ + 
 rx + . may be divided by .-' -f ax + l, yvuLL x may be 
 
 15. Divide x^~J, by .»•-.'. 
 
 l«i. From ,.■(.,-/, ,j.h..r) take „>-/,;.•,(/, f.,),^a.u! .livide the 
 uittercncu by ..• -j- i/. 
 
 17. Find the product of {a + h) (a' + ab + b') (a-b, {a-'-ab + b'). 
 
•2; 
 
 hounkh's method of division. 7 
 
 18. Determine .( and l> fliat iji the product of .>'M-.'- + l and ,'•''4- 
 ri.r' 4- /).,■ -f r- the coefticieiits of .»•■» aiid .»"'' may vanish. 
 
 10. Multiply - + ^r + - by i - 1 + 1. 
 ^•'a he •'a h c 
 
 20. Find the value of a and h so tliat j-'^-(i.i- + l2 will divide j^~ 
 h.r'^ + 2,i; + 24 witliout a remainder. 
 
 21. Divide ..-^ - (a + ^- );r -I- 1 by x - a 
 
 22. What value of m will make r..**-2.r'' + 2w.>;» + 2:v + »/, exactly 
 divisible by .»•'-'-.> +1 ? 
 
 23. What value must a, h, r, each have tliat ,»■" + </,>■- + /*./• 4-c may 
 have X — 1, :r — 2, x 3, all as factors '{ 
 
 24. Tf n- = ;( + l, prove that x* + ((x^ + (i'\>-'^ + (i^x + <(* is exactly 
 (iivisible by x'^ + uax + a'-. 
 
 25. Find the expression which divided l)y (r + '2<i+4 will give 
 (i^ - 8 tor ([uotient. 
 
 2(). By what expression nuist .*■-!- 3 l)e multiplied to give .«:' + 2l87 ? 
 
 27. Find the value of <i which will -make x* - x^ - x'^ - «x divisible 
 without a remainder by x'^ + x. 
 
 28. Find the remainder when o,*'^ -8.*'^ + 8.'' + 7 is divided bv 
 
 ;-).,• - :{. ^ 
 
 29. If 4.i'^ + 3.'''- 18.'' + 27 nniltiplied by another expression is 
 equal to 4.''^ + il.''* + 81, find the other expression. 
 
 30. Tf a = 4, b=^-o, by what must ax^ + hx + 1 be multiplied to give 
 
 8.i-» + (5;< + 2)./- + (4/> ~ 3)x + 3 as product i 
 
 EXERCISE VIII. 
 HORNER'S METHOD OF DIVISION. 
 
 2. 5.-'^ ■ 4,."'' + :]x' + 22.»' + oo ~ X-' - 3x + 5. 
 
 ;;. ,,.5 _ ;-,,,.3 ^ - ,.-2 ^ ,; ,, ^ I ^ ,,.. ^ o ,, _^ ^_ 
 
 4. Cm--./- ll.r- + l(J,r-'-f.i'3 + 8./--ll). +204-2.r'' + ..'-' - 3,,' + 4. 
 
 5. C)x^ + bx* - 17.r' - Gj;2 + 10.«' - 2 -h 3.f'^ - 2./,'=' - 4.^: + 2. 
 0. .f^ - .'••»/ + ,/■•'*/' - .,'■-' )/3 + xi/ - //'> 4- .''^ - */l 
 
 7. O./-^ + 7x* + 7x'' + o..'2 + 2x + 1 4- 3.." + 2.r- + X + 1. 
 
 8. .!•« - 2x^ - 5x* + 20.r^ - 25.r2 + 14.r - 3 4- ,.■' + 2..' - 3. 
 
 9. x« - 29u;H55,.;* - 232.»=' + 351u- - 2004-..- + 8. 
 10. 21.*;5 _ 2x* - 70.i;'^ - 23.r'^' + 33x- + 27 4- 7.'-'= 4- 4.^; - 9. 
 
o 
 
 EXERCISES IV ALGEBRA. 
 
 n. 
 
 1. Find the rernuinder when .•^-3.^+2.-7 is divided by .-2 
 7.-3^' ^" '""""^^•' ^'"'^ ^-i^i»g the following : 5.*-6.^-; 
 
 4. Find the value of 5.^ - 4..* + 3a-^ - 4..-^ + ^ + 4 when x= -4 
 ^ ^ 5^ FnuUhe value of .e - 102.H 1()0..H 102.3 _ 99,. _ 20^ 
 
 6. Find the value of 7..^- llc«H.._50.when .-^^^ 
 ^^7^ Find the value of x^- 98.* _ 98.3 _ 100.. + 98. +100 when 
 ^^^8^ Find the remainder when 8.,.3 + i2,._4.-o is divided by 
 
 9. Find the value of 5.^-4^4 ,03 ^,.2 , . , . , 
 ^ ^-^ -t- -sx - 4. + ./• 4- 4 when . = 3. 
 
 10. Fmdtheremainderwhen.5_6^4, 5 3_4_.2 4. o ^. ,. ., , 
 by X + 5, ^-^ -rojL ^x + d. - 2 ls divided 
 
 11. Find the value of a-J" - ^ .-T a. o -t n , i> i 
 
 vaiut. 01 X ,ix +a; -5. + (> when x=l. 
 
 ,.l^- F"^^^ the remainder when (((4-1,4- A {,.h^i , v , . 
 divided by ,i + h. ^ +(> + t) {ab + he + ca) - ahc is 
 
 EXBRCISB IX. 
 INVOLUTION. 
 
 Write down the square of the following : 
 
 1. (a + h);(2a + 3h); (| +|) ; (^ + 3^^, 
 
 2. (m' + b); (15. + 14,/); (l^ + ^i') . (x y\ 
 
 X (« - /,) ; (rt _ 2?,) . (2x - Gy) ; (?? - ^J!) 
 
 -" ' \ay 2x1' 
 
 ■;' ^y •^•^' U 4/' I 4 r)- 
 
 5. (a + ft + o); (2. 4.3,/ + 4.), (l + x + x^). 
 
 6. (4a + 56 + 6c);(U|+|);(l + ^, + |,.). 
 
 7. (u + 6-c); (a-6 + c-); (a-b-c). 
 
 8. (-^-^iZ + l); (.r»-5. + 7); (.^-a.-6). 
 ^- (|"+^ + |); (3x^-1 -3) ; /-"*-?!i) 
 
 10. ^a. + ^ + c-); (£ + ^ .£\ 
 
M ISCELLANEOUS EXKRf'ISE. 
 
 d 
 
 EXERCISE X. 
 Write down the culjes of 
 1. x + y; x-y; x+u + z; x + y-z. 
 
 ?ft ' m ' n in 
 
 3. a-h + c; a-b-c; l + x+x\ 
 
 4. Simplify {a + Sbf + 2{a + 3b) (a - b) + {a- hf 
 
 5. Simplify ((t + 6 + cf + {b + cY - 2{b + c) (a + 6 + c). 
 
 6. Show that {mx + ?i|/)^ + (na; - 17(1/)"^ = (m^ + vt,'') {x^ + jy'^). 
 
 7. n .1 {ax + byf-ir{cx-\-dyy + {a\i-bxf-^(cy-dxy^(a'^-[- 
 &2 + c2 + (i2)(x2 + i/'). 
 
 8. Simplify {a + ^)2 - (6 + 0)=^ + {c + (i)^ - (d + a)\ 
 
 9. „ (l_a-7 + (l + a2)3. 
 
 10. ., (3x-4i/ + 5,:;)=*-(5.^-4(/)3-3(3x-4|/ + 5;;y^ (5,':;-4i/) + 
 3(5r;-4*/)M3x-4|/+5,^). 
 
 EXERCISE XI. 
 MISCELLxVNEOUS EXERCISE. 
 
 1. Prove that (2a - &)H (26 - c)^ + (2c - a^ + 2(2a - ?>) (2fc-c) + 
 2(2« - b) (2c - a) + 2(26 - c) (2c - a) - (ct + 6 + cf = 0. 
 
 2. What will a^ + b^ + c^- 3abc become ifa + 6 + c=0? 
 
 3. If x+ -^^, prove a;^+ -5=p^-3p. 
 
 4. Complete the square in the following: x^ + y^ + z^ + 2xy-{- 
 + etc. 
 
 5. Simplify (1 - x'^f + (1 + x^f. 
 
 6. Simplify (a -i-b-cf + 3{a + b- cfc + c" + 3(a + 6 - c)c^ 
 
 7. If x = 2y + 3z, show that ^;3- 81/" -27;^^ -18x1/25. 
 
 ^ 8. Simplify (2a - 36)H (46 - Sa)^ + (3a - 6)3 - 3(2a - 36) (46 -5a) 
 (3a — 6). 
 
 9. Simplify (1 + x + x'f -{l--x + x"")^ - 6x(H- xH x*). 
 
 10. Find the value of x^ - / ■\-z^ + 3x j/V when x^ - f + ^'^ = 0. 
 
 11. Simplify (a - 6 - c)3 + (6 + cf + 3 (a - 6 - c)'^(6 + c) + 3(a - 6 - c) 
 {b + cf.. 
 
 12. Simplify (x'^ + xy + y'f + {x' - xy + iff + G(x'^ + y^) (x* + x Y + (/*). 
 
10 
 
 EXKKCISES IX ALGEBRA. 
 
 FACTORTXG. 
 
 EXERCISE XII. 
 
 Factor 
 
 1 . <u: + hx + cdx ; ax + ai/ + (r:+ px +py+ pz. 
 
 2. ax^ - (I ,f - hx' + hif ; l-u-h + ah. 
 
 3. 9,rV + 33a^/>^-12//; d+^O (1 -x'O + ^i -i>a.'-' -,/.-+ p. 
 
 4. 15a?>V + I2a%c' - 2\ac^ ; 2rt V + 1 - 2a^ - x\ 
 
 5. -iox + ay + Ahx + Inj; {u + l) {a-l)^-ab + l-l,--„. 
 
 6. 2nf+2hx + 2ax + 2hf', ^.:H 3;/ -3x' -.*•</. 
 
 9. '<- 6 + c-a/>-/*<^ + />'-'; a« + «'''-'( - 1. 
 10. ,ul + c?/; + tr - a>' + /^f- 'f + iif- i'd - hii. 
 
 ■ a^x. 
 
 EXERCISE XIII. 
 COMPLETE 8QUARES. 
 
 Factor 
 
 1. a^ + Hab + UW; a' + Uab + 4%\ 
 
 2. a^ 36(6 + 324; x'-10ax + 2ba\ 
 
 3. x'lf - hjxy + ('4 ; 'ibx^ - 20bxii + 2ohyi 
 
 4. m*i! * + 2mW + 1 ; HJx^ + 16.e'^ + 4. 
 o. ii' - 18a + 81 ; 1 - 8x + IGx''. 
 
 0. ix* + 2xhi + 4r>f ; c^'" - 20'" + 1. 
 
 7. xhi* - 12x//^ + 30 ; (a + by + 2{a + b)(c + d) + (,• + dV. 
 
 8. ,/;•-■ + ,/ + z' + 2X11 + 2xz + 2 -/;: ; H]x' + 72x'if + 8iy'. 
 
 9. *)„■' + 4//^ + l(i. •-• - IQbc + 2iar - 12ab. 
 10. 9x'^ + 4//2 + ■■^ _ 4;/^ - (Ic + 12xy. 
 
 B. 
 
 1. I.'-* + liii/z' - ix'ijz ; «■- + b' + (•-' - 2ab + 2ac - 2bc. 
 
 on "■ f '.' ~ ^'^I "*" ^^' ' "^^^ + ^'^ ~ "^' + 2 (a - /.) (/; - (.) + 2 ((, - b) (c -a) + 
 li{b - (•) (c - «). ^ ' 
 
 
difkki<i:m(;k «>f .squakeS. 
 
 11 
 
 9 25 "^10 '^~b" 
 
 **• "'■ +'25 + Hi +^~ + '•'''' + 
 
 
 5. 4//^ + 9r^ - 41 > - (io + 12/>c + ] . 
 
 i» .» v" z^ %n 
 
 2X2 
 
 7. (p + ,^ + ,.)2_2.s.(p + ,^ + ^) + .,2. 
 
 8. 2= - 2 + ^ ■ ; (2.*- - :^;/)^ + (2x + H./)^ - 2(4r^ - V). 
 
 9. 4a*-12(r'' + 2r)a'^-24a + l(). 
 
 K ). a' + />" + (•* + 2a^/>-' - 2tt'''o''^ - lU'cK 
 
 C. 
 
 1. 4(a + 6)'^ + 12(a + />)(o + (0 + »(c+<i)2. 
 
 2. 4a- + />2 4.<y2_4,,/,_^4,t,._2?><;. 
 
 Ji. 2r)(te2"'-448a;'"+'* + 196a;^". 
 
 4. If ,<;'^ + 1/2 = ~2 and .-• // + /;; + ijz = 0, show that (x + y + zf =- 22^. 
 
 r». Write down the scjuare of «■' - ia^ _ g^^ ^ i 
 
 G. Arrange the six factors of (6rt2 + a-2) (3a2-7a-(5) (2a2-7a 
 + 3) in the form of three .s(juares. 
 
 7. Find the two e(iual factors of «l + 9 - 4a; + M' + 3a _ «« 
 
 8. Show that 2(rc - ./) ({/-,:) + 2(|/ - ,~) (;; - cc) + 2(:; - .*:) (,<; - y) is the 
 Sinn of tliree S(£uares. 
 
 9. Find two equal factors of {x^ -- j-aj)'- -2{/^ - x,\j) {;tij - ]p-)-\- 
 
 10. Find two equal factors ,,f 'I: +'!!+ e! _ 2- - 2^ + 2-. 
 
 EXERCISE XIV. 
 DIFFERFNCE OF SQUARES. 
 
 A. 
 
 1. 4x2 _ 9,y2 . 144^2 _ 289,/2 . 16^* _ |_ 
 
 2. (2a-?>)2-o2; (4rc+,/)2-~2; -;, +2n)2-^l 
 
 8. 1992 - 1 ; x> - (1/ - ;~)2 ; (<t - 2?>)2 -(/>-■ i^'f. 
 
 4. (a:2 + 1/2 ^ .2)2 _ 4a.2.2 . ^2 _ 2a;, + 12 _ x-2 - 2X1/ - •/. 
 
12 
 
 EXRKfMSKS IN ALfiKBRA. 
 
 5. 4{H,I + bi'f - {a' - />■•' - r- + dj ; 4(f-//' - {<r + U' - r")\ 
 
 7. (.' ■' + i/ + rS" - xy - ur; - yzf - (xy + yz + xz)\ 
 
 8. 15.r-()0//^; 243x*-48/; l-4r('^//'« 
 
 1». ((f-2/>)2-(2a-3/> + 4c)% aH2a» + a2-/>* + 2fe'-?>'. 
 1 0. (x' + ,/ + ~2 - 2x-|/ + 2xz - 2;/;^) - (y + zf. 
 
 B. 
 
 1. Write down tlic quotient of 
 
 (4x - 3y - 2zf - (3x -2y + 'dzf by x-y- bz. 
 
 2. Write down the value of {x^ + y'^ + --") (a;^ + y^ - ~2). 
 
 3. Factor a* -^¥ - c* - ti* + 2a -7/'' - 2e'd'^. 
 
 4. Sliowthat(5.r-3i/-4)2-(3.x + 7|/ + 4)-is exactly divisible by 
 2x 4- 1/. 
 
 5. From a'-?)''^ = ((( + 6) {a-h), find the difference of the squares 
 of 118] and 121|. ^ 
 
 6. Prove 1, - 4 + ,l- U (^ -!- +M(1 -1 - 1). 
 
 a- ab ' b- c- \a b ^c /\a b c / 
 
 7. Sliow that i+<ll:^l>'^^(^+b+<^)(^+b-c)^ 
 
 'lab '2ab 
 
 8. If a+1> + c + d = 2s, show that 4 (ab + cdY -(cr + h'^-c'^-ifiY 
 = m{s-a){s-b){s-c){,-d). 
 
 9. Show that (a- + Ir + -iahy-{,r + h-'y = 8uh{a + by. 
 
 10. Show tliat (.<■ + j/)2 - - ■-' + ( ,/ + zy - a-2 + (~ + .,•)•-' - y^ = (x + y + zf. 
 
 EXERCISE XV. 
 EXTENDED APPLICATION OF (x±yy AND x" - y\ 
 
 A. 
 
 1. Factor .i-' + 4//* ; x^- 15x- + 9 ; x* + x- + 1. 
 
 2. 25l)u* + Idt;- + 1 ; x' + ox- + 49 ; a^ b' - lla^t'^. 
 
 3. 4a*-37(r7*^ + 9&*; 9,c* + o.i-y + ;/* ; -t"* + ;/^ - 18x y. 
 
 4. mH>i*-18m-/<2; a-» + .i-» + l; c* + c''a' + a*. 
 b. (( * + (U/>* ; ()25«^ -f- 25(1'^ + 1 : (r^ - 19«2?,« + 9H 
 6. 9<i< - 4( ( -7>-' + ^:; ; 4x^ - i'^J + 9. 
 
'y. 
 
 i ])y 
 
 ares 
 
 Trinomials. 
 
 lfia;2 . 256 
 
 7. .-+i';f^ + ^;x^ + 25.^ + 025. 
 
 8. 16ff.*-17a26H6<; x*™ + e^" ; a;*-7x'+l. 
 
 9. 16m*-28m'/i2 + 9u*. 
 
 10. (a; + i/)*-7«%x + |/)H2*; (a + 6)4-3cV + 6)2+c*. 
 
 B. 
 
 1. 9a* + 3a2&H46*; »:* + 7j'' + 16 ; 16a-* + 36xy + 81]/*. 
 
 ^' 9 
 
 
 a* a262 64 
 266' "^ 144 '•' 81' 
 
 3. tt* + 6* + c* - 2a"6'^ - 26^02 - 2c'a\ 
 
 4. x* + 4(.v + 2)*; (a + 6)*+(a-6)* + (a2-67. 
 
 1_ 9 3,1 
 
 ' X* 
 
 5- A+i 
 
 a-x- 
 
 a;V^J/** 
 
 6. 4(a + fe)* + 9(a - 6)* - 21 (rt^ _ ^2)2^ 
 
 7. 16a* + 4(6 - c)* - ^(,\h - c)\ 
 
 8. {x' + ,f - a;i/)* - 7(a;H 1/)-' + (x + y)*. 
 
 9. {a + h)* + 4(a - hy ; 4x'' - 13xV + 97/. 
 
 ft 16 . 1 . 4 
 
 10. 2+-^ 
 
 ■«»4 ' a*'^ b*"^ a'-'b-^' 
 
 13 
 
 -(/2)2 
 
 EXERCISE XVI. 
 
 TRINOMIALS. 
 A. 
 
 1. x2 + 8a; + 12; x' + ^x + ^O; a3H47x- + 370. 
 
 2. .r2 + 89x+1960; a;2-27x + 182; x-^ - 19a; - 150. 
 
 3. u;2 + 16x--80; a;^ - 88x + 1612 ; i.;^ - 37aj - 120. 
 
 4. 15.t^^fl7x + 4; 6u.-2-5xi/-6j/2; 16c2-16ac-21a». 
 
 ^ .,.2_9* 1 . -" 21a; 
 «^' •<- on ~ ■'^ J 
 
 X^ 
 
 -1; a:'^-^+;4. 
 
 35x , „ 
 
 20 -.' •- 10 - ' - 18 ' 18 
 
 G. a-'' + 33x + 252; ce^ - 02.*- - 693 ; ^-^ -37^-528. 
 
 7. 21u;^-55xj/ + 14,/- .'* - -|; , , „ ,^ 
 
 8. 6(2.*; + '^ijf + 5(6x2 + 5x-]/ - 6 ./-') - 6(3x- - 2i/)l 
 
 9. 4(x + 2)*-37x%r + 2y'' + 9x*. 
 10. (a-6)''''»-44(a-6)"»4-363. 
 
14 
 
 KXKHCrSKS I\ AUiKHRA. 
 
 B. 
 
 1 . 72 J -' - 145,1- -f 72 ; Hx'-- .'Wr + :ir>. 
 
 2. 24./^ 29.t|/-4|/^; ](>./'- 17.' -f.'l 
 a. Lm'^ + 1 14..' + m ; 12j-^ + 19.I- - 21. 
 
 4. Cnr - (»/; - 15//- ; 32z^ - 24ac - 20.1-2. 
 
 5. AV6/' - (Smxy - 29\hf • 204./^ - :^29a-|/ - 2(M)i/2. 
 (). 45ic^ + fil4x- - 2249J) ; 80^- + 859.i- + 5247. 
 
 7. 78.«-' - 4231:f + 48015 ; 5<)..'^ + 1:>,7..- - 27H85. 
 
 8. 42r'^ - 135;r - 1 1877 ; OHr^ + 580.r - 9019. 
 
 9. :i4y^- 200b -30745. 
 10. 28(f'^- 411a -8.3467. 
 
 1. 
 2. 
 3. 
 4. 
 
 5. 
 
 r- 
 
 8. 
 10. 
 
 1. 
 2. 
 3. 
 4. 
 5. 
 
 EXERCISE XVII. 
 
 POLYNOMIALS. 
 
 A. 
 
 20.i-'^ + 2a;i/-G»/2-8.i; + 4(/. 
 0f«''-7a/>-2062-6a + 156. 
 7j'-42i/-2..=* + 9.i;!/+18i/^. 
 3a,-''' + 19.,'(/ + 20i/'^ + 2.,- + 1 Oj/. 
 u-'^ - xif - f)//'^ - 4x~ + 12iy;;. 
 18a;'^ - 24^-1/ + 8?/'^ + %z - 6yz. 
 6y' - ih/ - 2i)z' + 22;/;; + 7xz - bxy. 
 65a^ + (W' - 12(;'^ + 34/>c - 8a<- - 71a&. 
 da' - 23(»/> + 10(«- - 25/>c + 21/>'- - 4c-. 
 'it)i'^ + 2nin - 11^ - or^ - &nr - 2mr. 
 
 B. 
 
 7j-'^ - xy - Qy^ - 6.x- - 20i/ - 16. 
 
 20/^ - Wxy - 5(/- - 68a; - 42j/ - 88, 
 
 20y2 - 20*/'^ + ^xy + 28..- + 35 J/. 
 
 .i-2-.n/-12,/''-5.r-15j/. 
 
 6..'^ + Gj/'^ - Uixy - 82''' - 2yz + Sxz. 
 
APPLICATION OP^ ir'^±yK 15 
 
 «). 4f<'^ - 15/>2 - 4a/> - 21c"^ - 306c - Sac. 
 
 7. 15^''^-18a:-28]/H42i/-23a;]/. 
 
 8. iV-^ -l<>a/; + 126- -2« + ()/;. 
 
 9. 18.i'^-42xj/ + 20|/2 + 9x-15i/. 
 10. 20^2 -24x + 12i/''-l 81/ + 31x1/. 
 
 0. 
 
 1. 4u^-5a/)-2162 + 4rt-12/). 
 
 2. (i..'2 - 7a- 1/ + 2x;: - 20|r + Mir. - 48,r. 
 
 3. 2x^ + 5xy + 2i/ + Uxz + i7yr. + 2UK 
 
 4. 24x- + 37.r!/ + 12x-5i/''^ + 2a(/. 
 
 5. Sx^- xy + 4:XZ-^\/-3yz + z^. 
 
 6. 2x'^ + 5mx + Sm"^ + 2sx + 5nt,s - I2s\ 
 
 7. Show that 7^-3)1 is a factor of 28m^ + 21jpm-75m» - 9/>n 
 + 27 /«-'•* and write down the other factor. 
 
 8. If x+p and x + g are factors of x^ + (/) + m),«; + m/> and x' + 
 (q + m)x + (pn respeetiv^y, show that both are factors of x^ + {p + 
 q + m)x'^ + (pq +jyni + qm)x + pqm,. 
 
 9. Show that one of the factors of Gx^ - 7xi/ + 14x - 20j/''^ - 35 1/ ia 
 also a factor of Sx'-^ - IQxy - 10y'\ 
 
 10. Show that the factors of 16x''^ - 46xi/+ 15i/ + 76x2 - 54t/2 + 482- 
 niay be written as the difference of two squares. 
 
 EXERCISE XVIII. 
 APPLICATION OP x'±j-^ 
 
 1. a^ + h^; {a+xf + y^; (m + nf + (p + qf. 
 
 2. {m^-vm + n^y^ + (m^ + mn+n^f; a^ + h^. 
 
 3. ai2 + /,>2; a^^ + b'''; Sa^ + 27bK 
 
 4. xi« + i/"; 125.«2i + 512;/2^; a''~(h + cf. 
 
 5. Sx'' - 64i/' ; a^^ - IF ; x=* - 3ax''' + 3a2x - d^ + h\ 
 
 6. Show without uuiltij)lying out that (x''* + .«•[/+ t/^yt -(;)'- xi/ + 
 i/^y is divisible by x and y. 
 
 7. Show that the sum of the cul)es of 2x''^ - 5x - 9 and x- + Gx - 5 
 is divisible by either 3x + 7 or x - 2. 
 
^^* EXEUCISES IN ALOEBUA. 
 
 8. Wriho the quotient of :*;^ + 3j''a + .Im^ + «•'« + />'' l)y x + a + b. 
 (^^A^''""^ *'""*"' («^' + '^'/ + '-)•' + ('••^•■-^ + «<':)•'' is divisible by (a+c) 
 
 10 Show that 2(6 + rO is a factor of (a + h + ,- + df ~ U -h + c- d)^ 
 Hud that (2xH5^ - 9)'' - (x-HOx - 7)' is divisible by (.« - ^2)(x + 1). ' 
 
 EXERCISE XIX. 
 GENERAL EXERCISES IN FACTORING. 
 
 A. 
 
 1. n(x + yy~bc(x + y); 15p'^ + (i7p-24. 
 
 2. (a + b-cy-(a-b + cfi (('' - b'' - c"" - 2n ~ 2b - 2c - 2bc. 
 
 3. 2x^ + llxy + 12f + 7jcr. + 13yz + 3z''; x'' + 3x'yT -4,/\ 
 
 4. (b - cyx" + 2{ab - ac)x + a^i - ah ; 2(a + bf + r)(a + />) + 2. 
 
 5. a;4 + xhj - xf -y"', a'- h^ - 3«2 + y^ _ i. 
 
 6. (ac + bdf + (ad-bcf; (x'' + oxf + 10(x^ + 5x) + 24. 
 
 7. aJ» + x*y + xY + xhf + xy* + ,/« ; a;H cc^ + a: - 1. 
 
 8. a=^-2a2 + 2a-l; cc^ + 4a;2 + 5a; + 2 ; m;^ + 5a;-^ + y^; + 3. 
 
 10. a;=^ + 2a;2 - 5x- - C ; a;» - a;^ - 22a; + 40 ; x-" - 2a;2 - 5.^ + 6. 
 
 B. 
 
 1. 2x^ + lla;2 + 17a; + 6 ; Sx' + lla;^ + 12a; + 4. 
 
 2. 3a;3+5a;2+7a; + 5; 2a;3 + 7a;2 + 2a; - 3. 
 
 3. 4x' + 8a;2 - a; - 2 ; 9a;3 - 45a;2 - 4a; + 20. 
 
 4. 6a;3 - lla;2 _ 313, ^ 3Q . ^s ^ g^o^ _^ ^gai^ + g/A 
 
 5. Prove that (6 - c)a^ + {c - a)b^ + {a - by is exactly divisible by 
 a + 6 + c. •' 
 
 6. Express a;* - ^ja;" + ga;^ - xHpx - (^ in the form of three factors. 
 
 7. Factor a{b + bc-c) -f- ?>(c + ca - a) + c{a + ab - 6). 
 
 8. Express (x + l) (.,- + 2) (u- + 5) (^ + 10) - 3(Sx - 136 in two linear 
 and one <[iiadratic factor. 
 
 9. Resolve into three factors x* - 11^- + 10. 
 lO. Resolve into three factors x^ - 2x^ -x+2. 
 
 if 
 
H. C. V, 
 
 17 
 
 
 1 
 
 2. 
 
 
 II 
 
 3. 
 
 
 II 
 
 4. 
 
 
 II 
 
 5. 
 
 
 II 
 
 6. 
 
 
 II 
 
 7. 
 
 
 It 
 
 8. 
 
 
 It 
 
 9. 
 
 
 It 
 
 10. 
 
 
 It 
 
 EXERCISE XX. 
 
 H. C. F. 
 A. 
 
 1. Find H. C. F. of (Ka - x) ; 4(<t2 - x') ; (a + hf and a"" - b^. 
 
 a.2 _ (a _. if,).;. _ ,(h and x^-(a + h)x + ah. 
 a;2 _ vsx + 14 and x" - Wx + 28. 
 x^ - 15j- + 30 and x^-Qx- 3(>. 
 a;4 + a;'^-fianda;^-3.r2 + 2. 
 ar* - 2j? + 3a; - 6 and x* -'j?- x^ - 2x. 
 6^2 + I7.r + 12 and lOx^ + 3.,; - 18. 
 24X'' - 22x'' + 5 and 48^;'' + 10x« - 15. 
 6a3 - Ga^ + 2a - 2 and 12a'' - 15a + 3. 
 
 3«4 + 8r(:' + 4a^ ; 3a'' + Ha^ + eas ; 3a^ - IBa^ - 
 12a^ 
 
 B. 
 
 FindH.C.F. of 
 
 1. a;2 + «-30; a;'^ + lla; + 30 ; x2-x-42. 
 
 2. 21x^ + 8x1/ - 4j/2 ; 21.<y^ - 20.r*/ + 4;/^ ; ^^x' - 28u;|/4 4iA 
 
 3. ar* + xV - Sx-)/^ + j/* ; x" + 'ixhj + xi/- - f. 
 
 4. x" - 2^2 - 15x + 3G ; 3x-2 - 4x - 15. 
 
 5. 3x5 _ 3.^4 _ 53x3 _ 43j;2 + 34^ + 30 and ^.v} + 3x* - 53x3 ^ 43^2 + 34^ 
 -30. 
 
 6. x3 + 3x^1/ + 3xj/^ + 1/* ; x' + x% 4- xf + j/3 ; x' + xhj - x,f - vl 
 
 7. Find H. C. F. of x^-Gx + O and x3 + 4x'^-9 and also what 
 value of X will make both (juantities vanish. 
 
 8. What value other than zero must ])e given a so that a?-x-as 
 and x'^ + x - a may have a counnon factor ] 
 
 9. Find H. C. F. of 2x^ + x^ - x - 2 and t' -v?- 2x2 ^ 2x and show 
 that its s(iuaro is a factor of the latter expression. 
 
 10. Show that (x-2)2 is a common factor of x' - Ox'^ + 13x'' 12x4 
 + 4x"' and x"' - 5x« + 8x-' - 4x^, and tind H. C. F. 
 2 
 
18 
 
 KXEIU ISKH IX ALOKURA. 
 
 EXERCISE XXI. 
 
 L. 0. M. 
 
 Find L. C. M. <>f 
 
 1. «j;^ 2run(l lU-y - 3x-^. 
 
 2. Sx^ + lU + tiMidx^ + dx + H. 
 •A. .'• + 2; /^-l; x' + x-2. 
 
 4 . ,'^ + ("ij; + 4 ; x'^ + 2j- - 8 ; x^ + 7^+12. 
 
 5. a» -1; f»'''-<); «» + 2^-15. 
 
 ♦>. x-'-^V2x' + 47x + {\{); ay^ + V.ix' + nih: + HO. 
 
 7. J-"* - ijx' + llx - « Hiid u."' - yx^ + 2«u; - 24. 
 
 H. rr' - 1 ; ,t* - 1 ; ,f» - 1. 
 
 IK (x + ;/) ' ; {x - yy ; x' - ,f nud ,/r' + ,/. 
 
 10. x' + iix - 27 ; j;»+ 17.« + 72 ; x' -M; x'- 1 1.,- + 24. 
 
 EXERCISE XXII. 
 GENP]KAL EXERCISE— H. C. F. AND L. C. M. 
 
 1. Find l)y factoring tlio H. C. F. and L. C. M. of (c' - 'A<i'^ + a + 1 
 and (i^ - Ha + 2. 
 
 2. Of .r=' - x^ -4x-4 and x^ + (i^^ + H^; + «>. 
 
 .3. Detorniino the algebraic oxprossion which involves the lowest 
 possible dimensions of ./• tliat can be exactly divided by u-* + 5./' + fi 
 and .i,-2 4- 7.,. + 8. 
 
 4, l( X- :i measures x'^ - 7x-4-rt, find a. 
 
 5. If a -I- 4 measures a^ _ j; _ ^^^ gjj j ^^ 
 
 <). Find the vahies of a and /> in order that a: -3 may be a com- 
 mon factor of x^ - 7x + it, and x^ + x- - h. 
 
 7. What value of a will make x- - 7 a measure of .'•'-' - ax + 2\ ? 
 
 8. Tf 4,i:' + l>x - 20 is i nndtiple of 2.'' + .5, find h. 
 
 9. X- + 3 is a measure '<f " - Gx-^ + Ux - r, find r. 
 
 10. If X- + 9 is a meas- it ' x'' - tr, find n. 
 
 11. TheH. 0. F. of two expressions is ./ and the L. C. M. abx, 
 find the product of the two expressions. 
 
H. C. F. AND L. ('. M. 
 
 19 
 
 M 
 
 hi 
 
 12. \{ x-\-4 and .r + 7 (iro >)()Mi mofiHuros (if r' + ll.i-f »h, fiinl m. 
 
 13. Tho II. C. F. (livi.liMl into L. 0. M. given 2<if> fur (|H(»ti«iit. 
 Tf II. r. F. is '2./', llnd two sets of exproHHions that will .sutisfy tho 
 cuudition.s. 
 
 14. Tf j+4 iind .' -f .'i inuHHUio x' + <f/'' + *2<»' +*i4, tiiul a, and iiIho 
 what othor cxprosHiuii will 1h) a iiieaHuro of tho given ono. 
 
 15. Sliow that if a (juantity divido A and li exactly it will divide 
 pA±<iH. 
 
 10. If j:^+nu + H is a nieaHiiro of x» -f /JJ^* + '/*• + '", prove tluit 
 n>i -u^ — rm. 
 
 17. Show that, we ean ol)tain L. C. M. of two algebraical expres- 
 0118 A and /> by dividing their product by the H. C. F. 
 
 18. Tho H. C. F. of two expressions is .'+3 and the L. C M. 
 
 ■ji^ + Jj^^ + l2x'^-9x-''^, ono exi)re8sion is a"' + 4.t;'^ - i), find the <.ther. 
 
 10. If a number bo a measure of two others, ])rove that it will 
 also bo a measure of the ditlerence of any multiples of these 
 numbers. 
 
 20. If x'-/>x + 7 is divisible by ./• - /• and r - .s, show that ;> = r -f a 
 and 7 — rs. 
 
 21. Find L. C. M. of /'-ox- 14; ./'-4x--21; and ,r'-t^f- 
 26x'-21, and for what value of .'■ will all three expressions vanish. 
 
 22. Find H . C. F. of x-'' - x^ - 2.<' + 2 and .>-* - '^x^' + 2x' -\-x-i. What 
 value of X will make both exjiressiona vanish i 
 
 Sions 
 
 JSt 
 
 n- 
 
 X, 
 
20 
 
 EXERCISES IN ALOKBRA. 
 
 FRACTIONH 
 
 EXERCISE XXIII. 
 
 1. 
 
 2. 
 3. 
 4. 
 
 5. 
 
 6. 
 
 Sinii)lify tlie following 
 n--nb 3 
 
 6 
 
 u"b - ahc+b^c - ab- ' (x - 2) (x - 3) (x - 1) (x - 2) (x - 3)* 
 
 x"-(a + b)x+ab 
 
 a--9h- a- + nh-\<lb" 
 
 x"-\-{c-a)x-ac ' a" - 'lab - lab- ' U'-bab 
 
 a"Jrb^ +c^-Mbc ^ x--ax x--V'ix-\-ax-\-2a 
 
 a-+b'' + c" -hc-ca -ab ' x'--A x--a' 
 
 (?/ + ^-^C)2^-_(?-fXj;;^2,V)-. b fb _2/.2_ .v\\ 
 
 (x+y+zy-i-ix+y-bzy- ' c\c bA '^j' 
 
 (3.r-2?y)g-(2a- + 2.'/)- _ x-+x-(i x-+4x 
 '2x-si/ ' x- + ix-S^ "a;--9 * 
 
 a* -«■■' -(T + 1 
 
 a^-'Aa-b+Sab--2h^ 
 
 8. 
 
 9. 
 
 10. 
 
 a< -2«-' -a--2a+l ' ^ ' a<+a-t"+6* 
 1 . 6.V 1 
 
 X + Sn ;).•--*)(/- 3I/-X* 
 
 n-3 «-3 l + 3a 
 
 rt-2 «-l rt--3(( + 2* 
 
 1 1 1 
 
 X- - ix-rS X- - 3x+2 x" - 5.T+6 " 
 
 2J-+10 :\x + l _ i).c-rl3 247 - 8a; 
 8 +""7" 4 + 14 " 
 
 EXERCISE XXIV. 
 
 Simplify 
 
 3x+: 
 
 fi 
 
 ;?.r - 2 
 
 ,, <»••-.(•■••, (r ^j- a-x \ 
 
 "' ax \((--.r- a'-irax + x-/' 
 
 , 12.r-4 -r-l _^14-0j-i ';>J-- 
 
 "^' 1 - 8J-+ Itii^ ' 10.r--l * 
 
^1 
 
 FRACTIONS. 
 
 21 
 
 4. 
 5. 
 
 6. 
 7. 
 8. 
 9. 
 10. 
 
 a;2 - 7xii+12y^ _^ x'-hxy+Ai/^ 
 lc'^+5xy+6u- ' x^+xy-2y- 
 
 2a 
 
 x-a 
 
 (x - 2aj" x^ - 6ax+6a'^ ~ x-'3a' 
 
 a;^- 6a; 4-8 a;''-5a;+6 ^ (x - 2)- 
 x^'-ix+-i ^ x'^--2x-8 ■ 'a;'-! * 
 
 2 
 
 
 H-a;+a;2^1-a;+a;=' l+x'+x*' 
 
 a-b 
 
 X 
 
 a'' + 6'' a-'-b" a"-b' 
 
 - X-r 
 
 /_2£_ , J/_ J^" \ . / 1 ■ ^\ 
 
 \x+y x-y X'-y") ' \x+y'^ X'-y'^)' 
 
 EXERCISE XXV. 
 
 Simplify 
 
 1 
 
 2. 
 
 3. 
 
 4. 
 5. 
 6. 
 
 7. 
 8. 
 
 9. 
 10. 
 
 a b c ' ab be ac ' 
 
 _a x_ , 3jM-2j/ _ 3a; - 2y 
 
 a-x a+x ' 3a; -2(/ 3a;+2i/' 
 
 a;"+a-+l a;''=-a;+l ' a+a;'^a-x a--x'* 
 1 . 1 . 2/j 
 
 a+t^a-^^a^'-^^* 
 
 ~z. — r 
 
 b .'d-b 
 IT "^ a'-b- '•' a^ "^ a+6* 
 
 1 1 
 
 + , 
 
 {a-b){a-cyib-a) (b-cy(c-a) (c-b)' 
 
 (x-a)(x-S) x+4 
 (x+4)= x-a 
 
 2X--8X+6 3x=-27x+60 . x=-10.r+21 
 
 3x^-15x+12 2X--10X 
 
 111 
 
 X 
 
 x^-7x 
 
 1 + 1 - a - - 
 
 'a n a 
 
 6a" - a?» - Vlb-'^ _^ Vla"^ - 16ab - 'Ab- 
 6a^T23a"fti + 20<;^ " Ga - + lab - 2i)b '' ' 
 
oo 
 
 EXERCISES IN ALGEBRA. 
 
 EXERCISE XXVI. 
 
 \l+x' 
 
 l-xj • 
 
 \l-x 
 
 a ^ h 
 
 2rf+3 
 3«+4 " 
 
 4rt+5 
 5«+« 
 
 X X' 
 
 a I 
 
 a +2 
 2rt + 3 ' 
 
 3«+4* 
 4rt + 5 
 
 a c 
 
 h 7i 
 — V — • 
 
 / -•'• . 
 
 k •"- 
 
 4rt* 2rt- fl. 
 
 a+a; a-x' 
 
 S. 
 
 <>. 
 
 10. 
 
 ,+, 
 
 (a-b){a-c) ' (h-c) {b-a) (c-a) (c-b)' 
 
 (^'+S)(^;)• 
 
 i: 
 
 a+b , a-l> 
 
 <>^a + <»/ ■ Ifl-^ a+bf' 
 
 X 
 
 x-a 
 
 ? <.r+(T j--a\ . , x+a x-o •, 
 a ~ \x-a~ x+a ( ' \x-a x+nf' 
 
 x+y 
 
 {jc ~ If ^ -r .'/ '.'/ " ■> }/ ~ ■^ 
 
 x*+n"x"+a* 
 
 x + a 
 
 x--a'^ x-+ax+a^ 
 
 x+a 
 
 -y 
 
 x" -ax+a^ 
 x-a 
 
 j..-!_„i x'-nx+a^ 
 
 _ X ' 
 
 x^+a-'' x-a 
 
 % 
 
 ^''+ax+a^' 
 
Ij 
 
 E(^l ATIONS. 
 
 2;i 
 
 EQUATIONS 
 
 
 EXERCISE XXVII. 
 
 A. 
 
 Solve the following etiuations : 
 1. o.r - (3x- 7) = S5-2x. 
 '1. 9,,-3(5x-(J)= -72. 
 :} . ( 2.,' - 7) (x + 5) - 2x{x - 8) - X + 2G5. 
 4 . 5('( -H .'•) - Tu' = 3((< + ().'•). 
 r>. 8(.'- i)4-17(.''- 3) = l(U'-32. 
 (1 . 2./' + 34 - 'M)x + 95 = 3./; - 119. 
 7 . i>x - 1 7 + 3x - 5 = <»./; ~ 7 H.y _f- 1 iC. 
 
 ^ 7x+5 f);C-l ^j^9 '2a-- 3 _ J Q 
 
 iu. 
 
 4x+l r).i--3 7a--4 (i.r-5 
 
 1. 
 
 li 
 
 .".or - 1 7j- - 2 66 - 5a; 
 
 13 • 
 
 B. 
 
 10 10 
 
 2. 4(x-3)-7(.'' 4)-<;-^. 
 
 3 . J (Ou; - 10) - i^o ( 1 2.t; - 13) - 4./; + • ('Zx - 7). 
 
 -^^ a--I -""Aa•+•J/+•^'•'■ 
 5 . (X- 3) - 3(..- - 5) + 5(r - 7 ) = 0. 
 . (.<• - 5) {X - 3) - (.f - 5) - (,f + 7) (x - 2) - 0. 
 
 r. a-+l 
 
24 
 
 EXERCISKS IN ALGEIiRA. 
 
 H. 
 
 ■r 1 8 !).r \1 Ox t 1 29 -Hat 
 8 10 10 ~ 20 • 
 
 
 -^ 4a: -17 ll-(!6ar ,.(54 + a;) 
 10. — -- ,,y =0 .^-. 
 
 a;-5 
 -3-. 
 
 C. 
 
 1. 
 2. 
 3. 
 4. 
 
 6a;+13 
 15 
 
 3a:+5 
 5x - 25 
 
 5 ■ 
 
 (i-r+l 
 
 15 ' ' 
 
 2a-- 
 "7a;- 
 
 4 
 -16 
 
 2a; -1 
 5 
 
 3.rfl _ 
 
 9.r+8 
 
 a--fl 
 
 4 
 
 12 
 
 a;+8' 
 
 9a; +20 
 3(3" 
 
 _4x- 
 
 ~5x- 
 
 -12 
 
 -4 
 
 ^ 4- 
 
 5. 
 
 6. 
 7. 
 8. 
 9. 
 10. 
 
 l()x-l-17 _ 12.T-f 2 _ 6a; -4 
 18 TSx -• 1(3 "" 9 " 
 
 9a-+5 , 8a--7 
 14 "^ Gx-f-2 
 
 3(5xfl5 
 
 6x-f-7 
 15~ 
 
 2x+3 
 
 x+l 
 
 2x-2 
 
 7x-()' 
 
 56 
 
 2a; -K 
 
 ~5 • 
 
 _4 - -i 
 
 4x+5 3x+3 
 '4x+i'^ 3X+1' 
 
 7.rj-^ _ 7x - 26 
 x-1 ~ x-3 ' 
 
 x-l_7x-21 
 
 X - 2 '" 7x - 20' 
 
 lOi 
 1.1 
 
 
 1 4x4-17 3.1- -10 _^ 
 
 ^- 'x+3"'^ x-4 -'• 
 
 „ 6x+8 _2x-f38_.| 
 
 "^^ 2.rrl Xil2~-^- 
 
 3. 
 4. 
 
 x-4 _i«-i'_J^-i _--^ 
 a^ -^5 X - C) ~ X -^ 8 a- - 9" 
 
 x-1 x-2_x-4_x-^ 
 x-2~x-3~x^5 x-8' 
 
 K 3x-l , 2x1 r , 96 
 
 s- x-.r+-x+4-=^+x^^- 
 
 D. 
 
EQUATIONS. 
 
 25 
 
 IS 
 
 i 
 
 ,, fix -3 x-l 1 f. 
 
 " • ., u - .-1=0. 
 
 3a; - 8 a; - 4 
 Q a;-1 a;-3_o 
 
 9. 
 
 4a; -3 _ 4a;-7 
 SaT-^l ~~ 2a; - 5 ■ 
 
 10 a^+lO , ^^ a;+ll , a;+2 
 
 E. 
 
 1. 
 
 o 
 
 3x'f4..- +3 _ 2^2 + 8x+3 
 3a;+4 ~" 2i+8 * 
 
 3+a; . '-5_i I ^''zl 
 
 l+a;'^a;+7~ "^7+8a;+a;'-* 
 
 a , h d ^ X ^ I 1 
 
 X c c ' a -6 a+b 
 
 ah be ca 
 
 ?*a; aa; ' 
 
 __2aa!_ 
 
 a-b~ a+b~a^-b^' 
 
 3 . ((( + J') (?> + X-) = (c + u;) ( J + x). 
 4. 
 
 5. 
 
 6. 
 7. 
 8. 
 9. 
 10. 
 
 a b _rt+ft a- - b- 
 X a X u'+ab' 
 
 (m+n) (n -x) 
 
 m-n 
 
 + aj = 0. 
 
 20x+lla bx+1()a _4a; 61 
 
 2ua 
 
 a;4-w 
 
 a;-7n 
 
 m< 
 
 t'^+mx+m'^ x--mx+W- a<. '+7»^a;='+)rt*)* 
 
 F. 
 
 '-f'+^i-'+'-i-'=10- 
 
 o 
 
 3x--4-^^ 9-(2a; + 7) + 3x'}.=13. 
 
 « _ 5^ _ ^0 -X ^-z _ 12 - a; _ ^ 
 a 5 6 " 4 3 
 
 (2x' - 3)''' - {4x' - 28x' + 49) - r>x + 15. 
 
2f5 
 
 KXKUCISKS IX AI.OKHHA. 
 
 3^* 
 
 18j: -.S 
 
 (;. ](.'•- 1)+ "^.-•'.-i(2.'-+7) + •'■■** 
 
 7. 7.S;i - .')(!>./• + 'A) 4- 1 L>.. + 42 - 48./' = ( ). 
 
 o * - 7 ,'te - 5 , , „ 
 
 10 t" 4.r+44 _ _ 3 
 
 xhlO ^-4-22x4-120 ~ a- +T2'' 
 
 EXERCISE XXVIII. 
 PROBLEMS. 
 
 •uuAvh.rns'i,;'Tl' ^""f ^f^^^^'^!, ^o In^ersoll at 8 nnles per hour, 
 .uul lutuins by Ihaniesford, 5 miles fartlier, at 9 mili-s i,er \umr i, 
 lo nnnutes nn.re. How far from Loudon to lugersclll / 
 
 2. A liorse .-ukI buggy cost !|!280, au.l 5 tiuies tl.e price of tb.. 
 ho,^^wa. e<,ual to 9 tiuies the price of the buggy. l^^ld'h^'Hc: 
 
 .siiai e, ana L 4 times Ji s share. 
 
 4 A passenger leaves M<mtreal for T.,r<.ulo. a distance of 'XVS 
 ndes at the saiue time a.s one leaves Toronto for Moutival The 
 tram from Moutival runs 42 unles per lu.ur, and tee from 
 loronto 32 nnles per hour. How loug l,efore they n.eet 'l 
 
 ; 5. A received a legacy of 84000. and 1? .^.'JC.OO ; after each hid 
 
 ... vii:\^'''^*Ii'' ^ ^''T '''^. l^'"" '■'' '^ '"^ ^^''^^ •■^'"^ contains Or.OO 
 M . >ds. less tluui another field which is the same length, but 40 
 yds. w uler. Find the size ..f Hrst field. 
 
 then has only tw.ce as much. How nmcl, had eacli at first .^ 
 
 8. T l»<.>.ght 23 cows, sou.e at .^.'38 each aiul the rest at $50 
 eaclK ^ Ihe whole amount p>a,d was .Sl»70. How many of each dtd 
 
 . 9. A mercliants selling price is 20 / advance on cost l)ut he 
 uien ?t'i..iu. I'lnd the cost price. 
 
 I 
 
 i 
 
KQUATIONS. 
 
 27 
 
 dill 
 
 
 10. A man gives to a beggar 81.00 less than | of his money, and 
 then there remains $1.00 less than | of it. How much did he 
 give the beggar ? 
 
 11. A 
 
 niu 
 
 when his income is §176.00. 
 
 -1. A speculator owns $!5000 stpck, some at 3%, 4 times as 
 ch at 3V/, and the rest at 4%. Find the amount of each kind. 
 
 12. A man bought 80 yds. cloth, some at 50c. and some at 75c. i)er 
 yd. He tinds by selling all at 75c. per yd. he would gain $2.50 
 more than by adding 12k". per yd. to the price of each. How 
 much did he buy at 50c. ? " 
 
 13. A father gave his boy a certain sum of money every Monday. 
 During the week he spent h of all he had at the beginning, and at the 
 end of the 3rd week he had $1.40. What was his weekly allowance ? 
 
 ^ 14. My income, i960, is derived from money invested, some at 
 3% and some at 9%, but if the rates were interchanged my income 
 would be doubled. How much is invested at 3% ? 
 
 15. Two men begin business with equal capital. The first year 
 •me gains $250 and the other's capital is reduced J, and the first 
 had then twice as much as the second. How nmch had each at first? 
 
 1<'>. A man sold to A J, of his cattle, J to B, I to C, and the rest, 
 27, to D. How many had he at first ? 
 
 17. Divide 90 into 4 parts so tliat if the first be increased by 2, 
 the second diminished by 2, the tliird multiplied by 2, and the 
 fourth divided by 2, they shall be all ei^ual. 
 
 18. A farmer sold a number of bags of wheat for $72, and a 
 second lot of 5 bags less at the same rate for $03. Find, the 
 number of bags in each load. 
 
 19. Divide $7400 among A, B, C so that A shall have $120 more 
 than B, and C $106 less than A. 
 
 20. There is a number of two digits whose sum is 14, the unit's 
 digit is the greater and ^\ of the number is half as much again as 
 the unit's digit. \Vh;it is the number ? 
 
 21. A merchant increases his capital every year by ^ of itself, 
 but spends $10(J0 for expenses. At the end of the 3rd year, after 
 deducting $1000 for expenses, his capital is doubled. What was it 
 at first ^ 
 
 22. Divide 192 into two parts so that the larger divided by 7 
 may be 4 less than the smaller multij)lied by 3. 
 
 OQ 
 
 23. A man divides a sum of money among A, B, C, giving 
 $120 less than ^ of it, B $40 less than |, and C $32 more thai 
 part. What did each get '? 
 
 A 
 
 »an I 
 
28 
 
 KXERCISKS IN AI.OEUKA. 
 
 24. A man receives $6000<). He invests i>;irt in a liouse, ^ of the 
 remainder at 4%, and the rest at 5%. His income is $V.)m. Find 
 the cost of the liouse { 
 
 25. A house and garden cost |3400, and 5 times the i)rice of the 
 house e(iuals 12 times the price of the garden. Find the price of 
 each. 
 
 26. A farmer has horses worth $62.50 each, sheep worth $11.25. 
 The total number of animals is 35, and the value $957.60. Find 
 the number of horses? 
 
 27. A person mixes tea at 60c. per lb. with some at $1.00 per lb. 
 He wishes to sell the mixture at 73k. per lb. and gain 10 < on 
 every lb. sold. H(nv many lbs. of the inferior must he mix with 
 each lb. of the superior 1 
 
 28. Divide 150 into two parts so that one jtart divided by 23 and 
 the other by 27 will give 6 when added together. 
 
 29. The stones which pave a square court w<»uld cover a plot 6 
 yds. longer and widtli 4 yds. shorter than the side of the square. 
 Find the area of the square. 
 
 30. A after spending $50 less than J of his income found that he 
 had $225 more than ^ of it left. Find liis income. 
 
 31. The left hand digit of a nimiber consisting of two digits ex- 
 ceeds the right hand one by 4, and when the number is divided by 
 the sum of the digits the quotient is 7. Find the number. 
 
 32. The length of a floor exceeds its breadth l)y 6 feet, but when 
 each is increased 1 foot the area of the floor is increased by 31 sq. 
 ft. Find the original dimensions, 
 
 33. Divide 40 into two parts so that 3 times one part and 5 times 
 the other shall be 168. 
 
 34. The sum of $380 was raised by A, B and C together. B 
 gave $50 more than A, and C as much as A and B. What did each 
 give ? 
 
 35. The price of a work of several volumes is $13.60, but if each 
 volume cost 26c. more than it does the price would be $16.20. 
 How many volumes are there 1 
 
 36. The sum of $2500 was divided among 4 societies so that the 
 first and second together got $1400; the lirst and third $1300; 
 the first and fourth $1100, Find the share of each. 
 
 37. A general, after battle, found only ^ of his army and 3000 
 more fit for duty, ^ and 600 more wounded and the rest, ^ of the 
 whole, slain or prisoners. Find the nuixiber in his army. 
 
 i 
 
EQUATIONS. 
 
 29 
 
 EXERCISE XXIX. 
 
 on 
 
 1. 3x-7!/= 7 
 11 ^+5!/ = 87. 
 
 2. J- +11 = 10 
 x-y= 4. 
 
 .'{. x+ J/ -10 
 
 ArfJ!/ 
 
 3;/: 
 
 4. 4j-- j/= 7 
 3a.' + 41/ = 20. 
 
 5. 3.t.-ll]/= 4 
 5^ -12)/ =13. 
 
 <;. ^+ 1=41. 
 
 4o 
 1/ - oo^' ■■ 
 
 0. 
 
 13. ?±^' = a 
 
 a--!/ 
 
 14. x + ]i = 'm 
 ax +IJ— H. 
 
 15. - + - = «. 
 
 71 . ttl 
 
 10 
 
 17. 
 
 - + 
 
 X+ )I = C 
 
 ax 
 
 hy = 0. 
 
 + 
 
 — 5 
 
 9 + ^ = i 
 
 K a- 
 
 by 
 
 leii 
 
 les 
 
 B 
 
 1 
 
 4-?^=ll 
 
 ^ 4- ?' = 7 
 8. 8x-7;/=12 
 
 J- - 2.1/ , 'Ix - y 
 
 + 
 
 + - =31 
 -"^=31. 
 
 10. ^ +-F = 8 
 ? - ^ = 0. 
 
 = 1. 
 
 11. 
 
 + ^=18 
 _ ?i - '>i 
 
 12. ^+-^-^6 
 
 a;-?/ 
 
 4 '• 
 
 18. 7.r-ll!/-3 = 
 5i/- 6x-f7 = 0. 
 
 19. 
 
 x+xj- : 
 a; - 1/ + ; 
 
 
 
 5,. + y + ;; = 20. 
 
 20. a;+ I/+ 12 = 
 
 x + 2(/ + 3," = l 
 x' + 3j/ + 4:<; = 2. 
 
 21. a' + 6(/ + 5s = 
 2,,- 9// + 3^ = 
 
 x + 3j/+ 2 = 3. 
 
 22. x- + 2i/ + 32 = 14 
 
 2x- + 3»/ + 
 
 11 
 
 3x+f/ + 2s=ll. 
 
 23. 7x- + 8:; = 53 
 92-5^ = 21 
 12.c-5i/ = ll. 
 
30 
 
 KXKKCISI S IV Al.cfKBUA. 
 
 24. 
 
 M-<> 
 
 
 i^H 
 
 
 X - i/ + ;=4. 
 
 25. 
 
 \^r-^ 
 
 
 »-^>^ 
 
 
 ^^-• 
 
 26. 
 
 X y Z 
 
 
 I -I + U4 
 
 X U 2 
 
 
 •^+l + i--20 
 X ^ y ' z 
 
 27. 
 
 .r + j/==3 
 
 
 J/+ ■: -h 
 
 
 :+/)-= 7 
 
 
 a + /' --= 5. 
 
 28. 
 
 .'■+»/ + ;; -29.25 
 
 
 .f+|/ ,:-^ 18.25 
 
 
 j; -i/ + 2--l.'i.75. 
 
 2t>. 
 
 '? + - + - -9. 
 
 J- y z 
 
 
 
 
 '1' - '-i!- : ^4 
 
 ..m 
 
 ^- + .'/ + -• -- 0. 
 
 
 x + y-'Z^b. 
 
 
 X - If - z = c.. 
 
 EXERCISE XXX. 
 
 1. A man bought two pieces of cloth for ^^oO.OO, one piece at 
 $1.00 and tlie other at $il.80 per yd.; lie sold them at an advance of 
 40c. per yd. and gained $12.00. Find the lengtli of each piece. 
 
 2. Twenty-eight tons of coal are t(j be carried in carts and 
 wagons. It is found it will retjuire 15 carts and 12 wag(>us, or 24 
 carts and 8 wagons. How much can each cart and each wagon 
 carry ? 
 
 3. A certain number of two digits is equal to five times the sum 
 of the digits, and if 9 be added to the number the digits are 
 reversed. Find the nund^er. . 
 
 4. A person buys 8 lbs. tea and 3 lbs. sugar for $5.28, and 5 lbs. 
 tea and 4 lbs. sugar for $.'1(54. Find price of each per lb. 
 
 5. A farmer sold to one man 30 bus. wheat and 40 bus. barley 
 for $54.00, and to another 50 bus, wheat and 30 bus. l)arley for 
 $()8.00. Find price of each i)er bushel. 
 
 G. An account of $105 was paid in $5 l)ills iuul silver dollars ; 
 and 4 times the number of ])ills exceeded twice the number of 
 silver dolhirs by 14. How many were there of each { 
 
 7. Two men, A and B, received $23.40 f<»r work done. A 
 worked 15 days and B 14 days. A received for 4 days $2.20 more 
 than B did for 3 days. Find the daily wages of each. 
 
 j 
 
 
EQUATIONS. 
 
 31 
 
 ] 
 
 8. A farmer sells to A 9 horses and 7 cows for 81200 and to B, 
 at same price, 6 horses, 7 cowh fur the siime amount. Find the 
 price of each. 
 
 9. Find two numbers so that ^ the first and i^ the second shall 
 be 9, and ^ the first and j^ the second shall be 6. 
 
 10. Two purses contain togetiier 8.'iO(), and if ^MO are taken from 
 one and i)ut into the other there will be the same in each. How 
 many dollars in each purse ? 
 
 11. Find three nuuilKTs such that the sum of Ist and 2nd =7, 
 1st and :h-d =8, 2nd and 3rd =9. 
 
 12. There are three numbers such that the 1st and ^ the second 
 ^14, the second with j( of the third =18, and the third with ^ the 
 first =20. Find the numbers. 
 
 13. A and B work together for 50 days at $1.20 each per (ky. 
 A spent 12c. per day less than B, and at end of the time had safed 
 twice as much as B, and the expense of two days over. What did 
 each spend per day ( 
 
 14. Find two numbers such that the sum of 7 times the greater 
 and 6 times the less may be 332 and 51 times their ditt'erence 408. 
 
 15. If John gives Tcmi $10.00, Tom will have three times as 
 much as John. If Tom gives .John Jj^lO.OO, John will have twice as 
 much as Tom. What lias each ? 
 
 16. The sum of two numbers divided by 2 gives 24 for quotient, 
 and the difference divided by 2 gives 17. What are the numbers ? 
 
 17. The cost of 7 lbs. tea and 5 lbs. coffee is S7.04, and 4 lbs. tea 
 and 9 lbs. coti'ee $0.48. What is the cost of 1 lb. of each / 
 
 18. A farmer bought 100 acres of land for $4220, part at $37 and 
 part at $45 per acre. How many acres had he of each kind '( 
 
 19. The smu of two digits com]»osing a number is 0, and if the 
 number is divided by the sum of tlie digits the (piotient is 4. What 
 is the number (■ 
 
 20. A certain fraction })ecomes 2 when 7 is added to the numera- 
 tor, and 1 when 1 is subtracted fiom the denominator. What is 
 the fi'action / 
 
 21. A grocer bought tea at $2.(K) ]>er lb. and coffee at 60c. for 
 $125. He .sold the tea at .Sl.<»() and coffee at 90c. j.er lb., and 
 gained $1,'0. How many lbs. of eacli did he buy '. 
 
 22. What fraction Is that to the numerator of which if 7 be added 
 its value is |, but if 7 be taken from the denominator its value is | < 
 
32 
 
 KXKHCISKM IN AI.iiKHIlA. 
 
 2.'{ Thrco times the KWitef of two nunibuiH excoedH twico th« 
 lusH i)y 115, and tvvici) tlio Kic'iUir tdgothor witli M fcimoH tho Iuhh ih 
 250. Find tlio lunnlitTs. 
 
 24. If B fjfivoH A .1*50 thoy will luivo i!(|iml suinH, hut if A ^ives B 
 $(44 B's nionuy will l»o iMpial to t.vici) A'.s niont^. How nmch Iiiih 
 oacli I 
 
 25. If X givos Ti .^5 hv will luivo SJifC. Iuhs tlmn B, l»nt if B givoH A 
 85, tluMi ;{ tinu's A"m nionoy will ho !S<20 nioru tlmn 4 tiuius lis. 
 How nuuli liUB ouch i 
 
 20. A fraction hecnnioH tuiual to h v/\wn 'A w adtled to tho numora- 
 tor, and 'j when ;{ in added to tho donoininator. Dotermino tho 
 fraction. 
 
 27. A fraction becomes e«|ual to I when tho denominator is in- 
 creased by 4, and ecjual to 'i'{ when tho numerator is decreased by 
 15. What is tho fraction '( 
 
 28. Finu two fractions whoso numerators are 'J and 5 respectively, 
 anil whoso sum is U ; and if the denominators are hiterchanged the 
 sum will be 2. 
 
 29. The sum of tho two digits of a number is 8, and if 36 be 
 added to tho number the digits will bi- reversed. What is the 
 number ? 
 
 30. Tf a certain numboi l)o divided by the sum oi its two digits, 
 the ([uotiont is (> and remainder 3 ; if the digits bo reversed and the 
 resulting number divided by the sum of the digits, tho (quotient will 
 be 4 with a remainder of 9. What is the niunber 'i 
 
 31. The first digit t)f a number when doubled is .3 more than the 
 second, and the number itself is i> less than 5 times the sum of the 
 
 irits. What is the number » 
 
 32. A boatman rows 30 miles and back in 12 hours. He finds he 
 can row 5 miles with the stream in tho same time as he can row 3 
 against it. Find the time going up and down respectively. 
 
 33. A man has filOOOO invested, part at 5% and the rest at 4%. 
 The income from tho former is $50 more than from tho latter. How 
 nuich has he in each hivostment ? 
 
 34. A ninnber consisting of two digits is e(iual to 7 times its 
 unit's figure, and if tho digits be reversed its value is increased by 
 18. What is the number i 
 
 35. A man travelled 240 milos in 4 days, diminishing his rate each 
 day by llu; same distuiice ; duniig the lir.sL iw.. days he travelled 13{> 
 miles. Ht)W far ditl he go each day / 
 
IC<^IIATH»N.S, 
 
 33 
 
 .%. A and B uiigiiKod in tmdo, A with $1100 .md Tl !?I'J0O. A 
 loHt half as much a^aiii as H, and B had then loft half as much 
 again us A. How much did each lose { 
 
 '^7. Divido HO and *M) into two such parts so that tho sum of ono 
 from each pair may l)o 100 and ditlert'nco .'JO. 
 
 38. A farmer iiought HhL'o{) at $4 each and found ho was $H short 
 of money to pay f<»r them, hut had he only given l^.'J each he would 
 have had $4 <tver. Ilow many sheep were tiierc, and how much 
 money had he i 
 
 39. Find three lunnbers sudi that tlio Ist with h tho other two 
 = 34, the 2nd with i tiie other two ===34, and tho 3rd with | tho 
 other two ^^ 34. 
 
 40. A man has two kinds of coin ; 12 of tho first and 8 of the 
 second are worth ■£2,'',,, and 5 of the first and 10 of the second are 
 worth £1§. Find the value of each kind of coin. 
 
 41. There are three munhers whoso sum is lU. Tho third is I 
 less than three times the first, and tlie second eipial to the dilleronco 
 between tho Ist and 3rd. Find the nund)i'rs. 
 
 42. Tlie sum of PM\0 is lent to A and B so that 4 times A's 
 interest at 5/„ and 7 times B's interest at 4% is $!240. Find what 
 each had. 
 
 43. Tho sum of the heights of two towers is 5 times their differ- 
 ence, and half tlio height of the higher one is 4 feet less than 1: the 
 height of the h)vver one. Find tho heiglit of eacli. 
 
 44. Sold fi lbs. tea and ."") lbs. coflee for $4.88, and 10 lbs. tea and 
 12 lbs. coffee for $U.(>0. Find price of tea and coffee per lb. 
 
■m^' 
 
 34 
 
 EXERCISES IN ALGEBRA. 
 
 MISCELLANEOUS EXERCISES. 
 
 A. 
 
 1 . Divide as^ + 24x + 65 by x- + 4a- + 5. 
 
 2. What is the value of aH 6' + fS - 3a6o if a = -16 = 3 and c = 
 
 3. Multiply x2-4 by uj2_4^. ^nd divide the product by .vH 2a;. 
 
 4. From a;HllaJ take Ga;2 + t> and divide the remainder by x - 2. 
 
 «n ^i "^^^A^i^® product of 3x-2!/ and 2j/-5a: to the quotient of 
 28x!/3 + lObxhj by 7xi/. 
 
 C. Subtract the square of a-\-h from the square of a-h. 
 
 7. Divide the sum of {x + y) (x+z) and (x-y) (z-x) by 2 + iy. 
 
 8. Factor a^ - 2a + a6- 26. 
 
 9. Write down the product of x^ - 9 and xH 17. 
 
 10. Find the product of m^-vm + n'^ and m + n. 
 
 11. What number is that from the double of which if 17 be sub- 
 tracted the remainder is 69 ? 
 
 12. Simplify 2.^2 + 4ifi/- 37/2- (x-- 2 (//. 
 
 13. Factor (a^ + ah + 62)- - {a ' - ly^y. 
 
 14. Factor 3x2 + 2x]/ ; 15a'6 - 106H 156c. 
 
 15. Find H. C.F. of x^^ - 1/" and x^ - /. 
 
 16. Find tlie co-efficient of x in (x - 5) (x - 6) {x + 7). 
 
 17. Multiply a + 6 - ^ by a. - 6 - -. 
 
 18. Factor 4a*6c - 3a62c H- 2a6c* making one factor a monominal. 
 
 19. Jamts has 2^ times as many dollars as .Tohn, and tlie differ- 
 ence between their sums is ,|40 ; how many dollars has eacli ? 
 
 20. Write down the cube of m - n. 
 
 i 
 
 ! 
 
 21. Find the value of |5L x i?^ x '"" 
 
 lex" 
 
 ~x*' 
 
 
 22. Factor 8x2-f-7x- 46. 
 
 23. Divide the difference of the squares of 3x2-4.i-|-o and 3x^ 
 + 4x - 5 by the sum of the quantities. 
 
 24. Solve *±* - 9 = ^^ - i^. 
 
c = 
 
 I 
 
 X. 
 
 2. 
 of 
 
 ub- 
 
 Fer- 
 
 3x2 
 
 MISCELLANEOUS EXERCISES. 
 
 35 
 
 2b. F-Actor X +5xy + 4y^ + 5x + 5y. 
 
 ^^ J6. Find the value of (77x + 19;/)3 + (23x + 81y)» when :r = 73 and 
 
 27. Multiply 6a - 86 by 6a - 76 and divide the product by 3a - 46 
 
 28. Factor 28^2 - 109.T + 88. 
 
 29. Solve -'^ 
 
 - 5 + 
 
 .5 
 
 = .x + 3. 
 
 30 Divide 100 into two parts so that if one i.art be divided bv 6 
 and the other part by 4 the sum of the quotients will be 20 
 
 31. If x ■= 4a + 6, 1/ = 5a - 36 and z = 26, find the value of 2.c + 4y + 5::. 
 
 32. Write down the co-efRcient of x' in (x' + 3x - 5) (.^'-^ - 5.». _ i). 
 
 Sr^+4d' ''^^' ^^'^' ''"^ ^"'^ '^"^' ^"'^ ^^'^ ""^^"^ «f a2 + 26^ + 
 
 34. Factor aV- ay. 
 
 35. Multiply ^!±^^ bv -^-^i::^ 
 
 36. Divide x^ - bx^ -x + U by x^ - 3x - 7. 
 
 37. If fn,m 3 times a certain number we subtract 8, half the 
 is re'num bei ? "^"'^ '" ''" """^'"" '^"^'^ ^^i'-"i«l-d by 2 ; wl.;^ 
 
 38. Find the sum of -;r-4- and ^ 
 
 x^+x-+x+l 
 
 a--' 
 
 -a-'-'+.T-r 
 
 39. Simplify r.+^^'f'+Sab^+b:' a-^-2ah+b^- 
 
 40. Divide x* + 10x^ + 35x:' + 50x + 24 by (,i- + l) (,,. + 4). 
 
 41. Divide ^!£±£^t^^ bv -^ 
 
 42. Divide a;* + x^ - 19x - 4x^ - 15 by x' - 2x - 3. 
 
 43. Simplify _62lzli±hl2_ , •i7ff^+i8ff-24 25^.= - 25^ +6 
 
 12«^--25a + 12 ^12a=;+ 7a-12 "^20rt^-'23^f,- 
 
 hatt"^'!?o'''fr*'S^ '^^''"i^^ ^^'V" ^''''' ^"" ' '^f your n.oney 1 w,ll 
 have ^1/0 then J„hn said t.. dames if yen will mve me k of vour 
 money I will have $170. What did each" have ? ' ' 
 
 45. Put (a:'''-5.^ + 4) (x' + ox + i) into 4 linear factors. 
 
 46. Simplify 35!±lar?^f3y^ 
 
 47. Write down the product of (x + iii- z) {x' + if + r' . .,. j/ . ^.~ . y.) 
 
 48. Find two equal factors of ix' - I2xit + 9*/^ + i^z - 6tr. + z\ 
 
36 
 
 EXEHCISES IS AUJKIJKA. 
 
 4J>. Find the value of — r when (t=^}f and 6 = i. 
 
 a- (/ - " 
 
 50. Simplify ^^^.H--^?:^,. 
 
 51. Find the value of a^ - P + c^ + oabc when a— '03, b='l and 
 c=-07. 
 
 CO o. 1 17-3aj 29- 11a; , 28a;+14 
 
 52. Solve x-="ir— +-"2r • 
 
 53. Multiply a^ + a'^ + a + lhy cv' - a* + a-l. 
 
 54. Solve 6(-« - 1) + 8(x + 2) = 27(i*; - 3). 
 
 55. a'^6 + 4 is a factor of (1*1"^ + a% - 12, find the other. 
 
 50. Tf a = 1, /> = 2, c = - 3, find value of (t^ + 8/>'' + o'' - Cmbc. 
 
 57. Simplify 42 {' ^ 
 
 fix-Sy 3x-4v\ p.,. /3a; -21/ 2a;-3//\ 
 
 58. Solve 
 
 7.r+l 17 -2a; f)a-+l 
 
 20 
 
 12 
 
 IC 
 
 59. The product of two factors is (9j +5j/)2-(5:«' + 9i/)^ and one 
 
 factor is a; - ;/. Find the other. 
 
 a;*-f2a;'-+0 
 GO. Reduce to its lowest terms v ,~rri7r;:~"T^ ..• 
 
 X* -4a;'' + 10a;--12a'+9 
 
 61. If x + d will divide x^ + l('>jc- + ax + IS without a remainder, 
 find a. 
 
 G2. Factor 24ic''' - 70.«;i/ - 75|/'^. 
 
 03. Find the sum of the sciuares of ■»(,,'• + (///; qx — viy; imj + qx 
 and qy- ))u\ and exjjress the result in factors. 
 
 04. What number must be added to a'^ + 9.:t: + 4 in order that it 
 may be divisible by x + Gl 
 
 65. Solve ?_2^-i^-^^^0. 
 
 2 3 4 
 
 ,>n c- ^•e 2ita;+3rt" ^ax-' - Sa-x- a^-x- 
 ^ •' 4a;--3aa; a-x--a* 2a'-+3aa; 
 
 07. M ultiply (('• + a"' - a - 1 by 1 - a + (r -a^ + a*. 
 
 08. Solve -^^~--^^"-'' = 3.«;-20. 
 
 09. Solve , , - ., ,- =2. 
 
 •j.x-1 3j- 1 1 
 
 70. Find tlie L. C. M. nf /^ - 9..- + 20 and .r^ + Oir-dS. 
 
 71. Divide .SaOO ])etweon A and V* so that for every dollar A 
 gfts li shall get. !:52.oO. 
 
 72. Factor 2,.'-' -2l,.M-55. 
 
 
MISCELLAXKOUS EXERCISES. 
 
 37 
 
 73. Solve '^-l + '-J' 2-^-^-2 -^+2 
 
 7^4 12 ^ 28 • 
 
 
 74. Factor 21:1 - 2vm - k^ - I' + m' + n\ 
 
 
 75. Factor a{a -h) + vi(a - h) + l{a - h). 
 
 
 B. 
 
 1. Find co-efficient of ,.• in the product of (,i; + 8) (.«:-|-3) (./• + 2). 
 
 2. Simplify ^;^+ '-^ . 
 
 3. Find pi'oduct of (.>■ + </)(.*; + ?>) (.«-f). 
 
 4. From result in number three write the product of (.*;-|-8) 
 (a- + 9) (j;-7). 
 
 5. Divide a^o + a' + l bya^ + ^ + l and multiply the (.uotient bv 
 (5. Simplify ^I^y-^ll^'-^l, 
 
 * 4 5 6 
 
 7. Solve f +11 = «^±i" + 6^-16 +i 
 
 2 ' 2 4 ^ 8 ^12" 
 
 8. A farmer sold 2 calves and 3 sheep for |50 ; and .'{ calves 
 and 1 sheej) fen- S4(). Find cost of each. 
 
 9. Multiply ^'*--^':>-^ by ^■'^ . 
 
 10. What value of x will make ,r'^ + 9 equal to 58 ? 
 
 11. Subtract {b - n) (c - d) from (a - h) (c - d) and find value of 
 result when (( = 2h and d = 2('. 
 
 12. Solve {x 4- 5)''^ - (4 - x^ = 21,i-. 
 
 13. Simplify -I +,'• ---^.. 
 
 '■ •' 1+,'/ 1 -.1/ i-y 
 
 14. What number is it whose half, third and fourth parts taken 
 together are e(pial to 78 ? 
 
 15. Find value of x* - x^ - 4:X^ - Hx - 5 when x = 3. 
 
 16. What does x* - 4rt.r'' + ivf'x'^ - in^c + <(* ecpial when .*• =^a'i 
 
 17. Simplify {<i + h + 3c)' + (/' + 3c) ' - 2{b + 3c) {(( + h + 3c). 
 
 18. Multiply <(■ -b-\-c by a (piantity which will give (("'-(/<- <)^ as 
 product. 
 
 19. From the (piotient »>f (x'' - if')~{x - i/) take the quotient of 
 
38 
 
 EXERCISES IN ALGEBRA. 
 
 20. A person has two kinds of wine, one at 40c. per qt. and the 
 other at 24c. per qt. How much of each must he take to form a 
 gallon worth |l.l2? 
 
 21. Find the value of .r^ + f/^ + 'J - lUiiz when .<• = 4a + 5, y = 4a - 5, 
 z=-8a. 
 
 22.8i,nplify(l+l)(^)(-). 
 
 23. Find H. C. F. ( >f x^ + 4x^ + 4./' + .'J and x^ + IW + 4x + 12. 
 
 24. What value of .*• will make (< -f 3) (.<H-4) <,'reater than (.*- + 7) 
 (x - 6) by 102 'i 
 
 25. If x=:2, v = 3, andc = 5, Hud tlie value <.f " ' ' + ^ -"- + ^"^ " ''^^- 
 
 26. Write down the cube of (4i/ - [iz). 
 
 27. Sunplify x , - -r - ., . 
 
 28. Tf nr - be = ,r, b"^ - ac = (/, r' - a/> = i, prove that ax + by-\-cz = 
 {x + y + z) (a + b + c). 
 
 on c<- IT 7a;-10 3x-7 27a;-30 
 
 29. 8nnplify ^ — - 
 
 30 
 
 30. Solve I +1-1^1 
 
 X 'dx 3x 3 
 
 31. Simjdify (2r»,^^)-(7^T7^3 + („rrT^ 
 
 Xw - 2) 
 
 32. Reduce to lowe.st terms 
 
 j-''-3x- + 7.r-21 
 
 2.T< + 19a;'' + 35 ' 
 
 33. Factor m^ - n^ - p'^ 4-7^ + 2 (m q + p}i). 
 
 34. Divide ;rH 4 + 2 by .*•+-• 
 
 X- -^ X 
 
 35. Factor (.r + yf + (x f //) {<t +b) + ,ib. 
 
 36. If a + 1 and a + 2?> are factors of V>a~b + 'A<r + 12ab'^+l2ab + 
 3a + 126'' + 6/>, find the other factor. 
 
 37. Divide x« - 20«».*'=' + 343a« by y^ + ax + 7a- and then divide the 
 quotient by x'^ + 'iax + 7<i'^. 
 
 38. If .*'2 + 47.<-m is divisible by .) -1-17, find ni. 
 
 39. Find the value of a; that will make x^-{-3ax'^-\- 4nh- - 9n* equal 
 to the cube of x + a. 
 
 40. Take r--A~.. fi-""» 1— V-.- 
 
 41 Reduce to its lowest terms 
 
 ^^TT 4^HT xQa; a -^ 46X+T26 ■ 
 
 /( - 1 
 
 n-\ 
 
 42. Divide 1 + '-^ by 1 - '^^ 
 
 n + l 
 
 n + 1' 
 
MISCKLF.ANKOUS EXKKC.'ISES. 
 
 39 
 
 43, Which of the factors x2-2x + 3 or 2j;' + a;-4 is likely to be- 
 long to 2.*-* - 3x^ - 2x' + lOo: - 8, and why ? Find the other factor. 
 
 44. Divide -^-^-^lill* by *-+^-'-^« 
 
 ' j;=+7a;+12 
 
 x^+7x + 12' 
 
 45. When .K- 5 and y = 3, show that {2,r + yf - {2:>' - y)^ is eciual 
 to 8x'(/, 
 
 46. Prove that (a ~ 2)' - 2(a - 2y + 3(a - 2) - 4 = a» - Sa^ + 23a - 26. 
 
 47. Find value of (,<: - //)■' + (.r - 9j/) (.*• - y) when x = 5 = ';/+ 1. 
 
 48. Multiply 1 + a6 + a^b' + a%3 by 1 - ah + a*h* - a%\ 
 
 49. Divide :,'* + xh/ + y' hy x' + ry + y% and hence find factors of 
 
 50. There is a number of two digits of which the unit digit is 
 three times the other, and if 54 be added to the number the digits 
 are reversed. Find it. 
 
 51. Multiply i-^, ^ and 1 + ^^ together. 
 
 52. a* + a^iy' + b'is divisible by a' + ab + ¥ without a remainder. 
 Apply this to divide x^ + lO.i* + 25(5 by x* + 4x2 ^ |(; 
 
 53. Write down the co-efficient of x"^ in (x^ - 4ic + 9) {x^ + 3x - 5). 
 
 54. Divide "p^^^^ by ''^^ 
 
 a- -ac+ad-cd 
 55. Simplify „^^^ X 
 
 a + d' 
 
 4a2a;2+2aa;''' 
 
 2ax-x^ x^-ax+a" ' ia^-x- 
 
 56. Find value of r— - +, — when x = ^. 
 
 l+x 1-x - 
 
 57. Divide a^-4ab + 4¥ by 
 
 a--2ab 
 1i+2l} 
 
 58. W>ite down the cube of r +- • 
 
 a 
 
 59. Find product of ^^-^/and-'4- + ^ + -?^. 
 
 •^ a b a^ ah ' ftz 
 
 60. Simplify --— L_., + ^^^^-L--. 
 
 61. Find L. CM. of a^-l; a'^ + 2a-3; a'-7aH6a. 
 
 62. Simplify ( ^^-+J-)-f_ 
 ' •' ^a + & a-b' a 
 
 i- li- 
 
 ar - cp 
 
 63. Find value of (f,c + 6i/ when;^— ^^^ — ;- and u j- . 
 
 aq-bp ^ aq ~ bp 
 
 64. Reduce to lowest terms 
 
 (4 + 12X+ 9a;« 
 2 + 13!c+15a;2' 
 
 65. SimpUfy(^4^,-';;e|:)(j,. + ^.) 
 
40 
 
 EXEUCISKS IN ALGEBRA. 
 
 <i7. 
 
 
 ()«. 
 
 
 ()!). 
 
 
 70. 
 
 
 71. 
 
 
 72. 
 
 
 7.'}. 
 
 
 74. 
 
 
 7r,. 
 
 
 ( i( ;. Fuc-t. )r .. ■■' - 8//' + ;? + <M'//^. 
 
 i^a^ + 27h^-r^ + lSabc. 
 Hn^-27h^-c'-\Habc. 
 :'•■' + 8|/H <).!•// -1. 
 ;,.3 _ 8yS _ *;,,.,^ _ I 
 
 X* + 8,i:3 - 1 0,r2 - 104.'' f 105. 
 X* - 14,r3 + 7U- - 154,f + 1 20. 
 
 .,.4 4. 4^.3 _ 49_,.2 _ IJ.^;,,. 4. j^^Q 
 
 7(). Prove the following identity by fficttjrinc- • (9,r^-4(/'^) ('81a;* + 
 16|/^ + 3Gx-^/yO = (27.>"'' + 8//^') (27.*-' - S,/). ' ^ 
 
 77. Divide <(^ + b* + 2aW - c* - (Z* - 2c-Vf-^ ] >y ,,-' + //^ + ,.2 + ^^2. 
 
 78. Show that (((2 _ bcf-h (62 - ac)3 + (<- - ohf - 3(a' - be) (6- - ac) 
 (c^ - ah) is an exact square. 
 
 79. Factor a;"* + lO:.-^ + 17^:^ - 40x- - 33. 
 
 80. Show without simplifying that x + 1 is a factor of mn(/^ + l) 
 
 + {h' + nr) (..■* + ,«■)- (n' + 2wn) (x^ + x^). 
 
 81. Simplify (<* + h) (a + 2h) (a - 2h) (a - h). 
 
 82. Simplify—!^, x'-^^^^. 
 
 n 1)1 
 
 83. Factor 4a^ - 12a^c + 13a 2.^2 _ ^-^^^^z ^ ^i 
 
 84. Solve -+-=-5- + __. + i. 
 
 85. Factor x^ + Ghim + 5?n2 _ 12^,1;^ _ 97^2^ 
 8(;. Multiply itj-i-l' + i ])y ;,.-i + £' + i. 
 
 87. Factor ((6 + 26/ + (2a + 6)3. 
 
 88. Show that U-W+^±^-J^+^\ 
 
 89. Find an expression that will exactly divide ./•' + 2aa''^ + o2 ,. 
 + 2rt3 and «=* - 2ax^ + a'x - 2a\ 
 
 90. Tf 4.,"' + 28.>'3i/ + R;ry + 42r/ + 9/ is a perfect s.juare, find R. 
 
 ^ 
 
 i 
 
 a 
 
 bi 
 

 
 MISCELLANKOUS KXEHGISES. 
 
 41 
 
 
 
 EXERCISE I. 
 
 
 
 1. Solve 
 
 f +!+?=- + «. 
 
 
 
 2. n 
 
 1 + i _ i_5 . 
 
 
 
 3. ., 
 
 zx+i r. 
 
 2X-1 "" 4 ' 
 
 
 
 4. „ 
 
 128 216 
 Sx-4 5.r - 6 
 
 
 5. Find the value of (2r+|/) (x + |/) + (2!/4-.;) (i/ + ~) + (2:; + x) 
 
 «^: ^i^^l' ^^ Horner's method of division, the quotient of 2W 
 - 2j:* - 70x3 _ 23^v! ^ 33 ,. _^ 27 divided by 7x' + 4u- - 9. 
 
 7. Show how to find the product of (tn - ti+j) - r/) (?/i, -n~p + q) 
 without multiplying out, and write it down. 
 
 8. Multiply a2 + ah + h'' ; a^-ab + 6'' ; and (t^ - a''¥ + b\ 
 
 9. Factor a' - ah - 66^ . a' + b'- 23a'b' and 15 /^ + Sxj/ - ICnf. 
 10. Show without multiplying out that 7^ - 1 is divisible by 6. 
 
 1. Simplify 
 
 EXERCISE II. 
 
 S(x^+x-2) 3(a;2-a;-2) Sx 
 
 X--X-2 a;2+x-2 x"-i 
 2 Factor 1 - a^ - b'^ + c^ + 2ah + 2c. 
 
 3. Divide j^ + }/ +z^- 3xyz hy x + y+z. 
 
 4. Show tliat {a - bf + 3ab(a -b)^ (a + bf - 3ab(a + b)- 2b^ if 
 a = 3, 6 = 2. 
 
 5. Simplify <4:i^M+^^^l2^(^+2/_)'. 
 
 6. Express (a'-' - //') (c^ - cZ^) as the diflFerence of two sc^uares. 
 
 7. Factor 6x'' - bry - Gy"^; x^- + y^' and 2a' + 5a + lab + i\b' + 8/> + 2. 
 
 8. Simplify " -J -^«+^^ --"-««_. 
 
 9. Simplify ^!^.\^ • 
 
 10. Express rt.2((^-/)) + /)2(a-c)+fXfe- a) as the product of three 
 binomial factors. 
 
42 
 
 KXEKCISKS IN ALOKliRA. 
 
 EXERCISE III. 
 
 1 . Solve 3^ - 4 ^ 9 - (2^ + 7) r + 3r - 18. 
 
 2. Solve -8^+4-^rT^-l- 
 
 'A. Divide $2280 among A, B, (', giving A g more than B, and B 
 !$24() less than C. 
 
 4. Divide the ])roduct of {.^'^ ~ -I'y + >/) hzuI («'!'^ + jj/ + i/) by the 
 (juotient of x^ - 1/ by x - y. 
 
 5. FindH.C.F. of H.c^ + . rhj + ih; f' + :m, / &nd i^.t'^ -2'Axhj + o2xy' 
 -If. 
 
 6. Add 1 to the continued product of x, x' + l, cc + 2and x' + 3 
 and divide tlie result by .>:;'■' + 3,r + 1. 
 
 7. Factor 4..C* + A^i^y' + 4?/* ; //'' + c' - a' - 26c, and 2a2 + Sax - 2x-^. 
 
 8. Solve ^*^^^+-^ + 5 = x. 
 
 15 6 
 
 rt c< 1 3j;-13 4a:+6 . x-l 
 
 9. Solve — g— ^— = I - -^(^ • 
 
 10. Show by Hoi-ner's method <>f division that when x^ + 1 is 
 divided by x^-\-x-\-\ the reniainder is x + 1. 
 
 EXERCISE IV. 
 
 1. Simplify 3(x + :;) -(«(/- c)- 2-^ x- (2;/ + 2)-(i/-3;) }>. 
 
 2. Find by factoring the L.C.M. of x2 + 5x + 6 ; x''' + 2x-3 ; and 
 
 x* + x3-2x2. 
 
 3. Distinguish between an identity and an equation. What 
 value of C makes (x - 2f - (x - 1) (x - 3)- an identity ? Will any 
 value which does not involve x make it an ecjuation I 
 
 4. Show that the difference of the squares of any two consecu- 
 tive numbers is equal to the sum of the numbers 
 
 5. Multiply ^' + 1 + ^ by x-l+\- 
 
 7. Write down quotient of (a-^ + ab + b^ + (a^ -ab + b'^f by a» + &=». 
 
 8 CI 1 2j; r\ ox -lb 
 . Solve 9-2 =-yg • 
 
 9- Solve ^-:-H-l=0- 
 
 10. Divide (i + v/ - 3(a: + yfz +3{x + yy -z' hy x + y-ss. 
 
 s 
 
 I 
 
MISCKIJ.ANKOUS KXKIU'ISKS, 
 
 l.J 
 
 
 EXERCISE V. 
 
 1. Show thiit (m.r.+ nij + i>:f + {f,.,' ini + m-f is divisible bv 
 (m + />)(..; + , :). ^ 
 
 ,.J^- ^*'""' {"' - f')-*-- {h - c)>j take (a + b)x + {h + c)ii and divide the 
 dineroiice l)y .* ' + |/. 
 
 .'3. What is meant by a co-efficient? Find without multiplying 
 out, the co-etiicient of :*■ in the expansion of {x + 4) (r-f-5) {x + V)). " 
 
 4. Find the co-efticient of x when x^ + 4x' - 110.»; - 03 is divided 
 by 05-9. 
 
 5. Multiply a2 + //' -c2 + 2«Z> by cHaH?)''' + 2rt6. 
 
 6. Divide x^ + 3ax^ + 3a'x + a^ + b^ l)y x + a + h. 
 
 7. If « = 1, 6=: 2, (• = .'], fZ = 4, find the value of 
 
 a+h 4h-c c+d _ Id -ja+h ) 
 a-f)'^ b+c "*" c-d c+^r^~'' 
 
 8. Find by factoring the L.C.M. of x'^ + x-2', x^-4x + 3 and 
 x"^ - X - (J. 
 
 0. Sill, plify (x + y + ::)■' + (x + y - zf + (^ - J/ + ::)' + {~x + y + zf. 
 10. S(»lve.«-^-ji-| = ^;^-^' + ^^ 
 
 EXERCISE VI. 
 
 1. What is the value of (i when x* + ax'^ -('tx'^ + 3x~2la vanishes 
 if u; = 4? 
 
 2. The product of two algebraical expressions is x''-64x and 
 
 one is .<;- - 4, lind the otlier. ^r \ \ 
 
 3. Factor iri^-Jii^s + Sx'* -,'•=' -8. 
 
 4. Factor SOx^ + 27.' ' - 20,.' - 15. 
 
 5. Write down the cube of x + 8y. 
 
 . _ 1 . _ 1 . _ 1 
 
 6. Solve ^_i "___ '^ , 1 ^=0 
 
 <! <f b 
 
 
 •v©©-' 
 
 gWO^ 
 
 7. Simplify 'LL^(.^ + //-.^) + 'i;::(/.^ + .^-a^) + ';;;)lH^-/.^). 
 
 8. A train can-ies fu'st-class passengers at 4c., second at 3c., and 
 third at 2c. a mile. There are 12 times as many third-class as 
 second-class ; five times as many second as first. The whole fare 
 was $11 . 12 per mile. How many are first-class ? 
 
 9. Show that (n + b- cV^ -(<i-h + c^ = 4<t(b - c). 
 
 10. Prove by division that , = a' + 1 +-.^ ' 
 
 a — 
 a 
 
 r<.i 
 
II 
 
 KXKItCISKS IN ALCKFUIA. 
 
 EXERCISE VII. 
 
 1. Find value of^'J^;^ ''^'^■'^ ^^J"'" '' ^' 'J-^ ;: = 6. 
 
 2. Einj>l<)y factors to tiiul tho result of dividiiij^ <»' + //'c'^-a'-'c' 
 - <rh' \)y <u' + 0'^ - he ~ nh. 
 
 .*{. VVrito down tlio (luotiont of (4.i' + .'///- 2-.)' - (3x - 2(/4-.'i':)2 
 divided \\y x + iiij- 5;;. 
 
 4 Sinndifv ^^""*'^^'+^""''^"^-^^"+''^^"-^)K 
 A -^ ((■'+a-h+ah-+ly'> 
 
 5. Tf (.'•- S)''' -(,.;- 7) (.'•-3) = r«, tind tlie value of a in its 
 simplest form. 
 
 6. Find tho value of (^ -^) (^„ + E)^(±' + >£') K- Ii\ when 
 X — 4, y — <>. 
 
 7. Prove that x'^ - 3ic - (/ ; and .i'^-4a-r» are both divisible by 
 tile same <iuantity if a = 10, and Hnd it. 
 
 8. S<.lve -^_^_+.--^_^ =3. 
 
 9. The sum of two numbers is 35, the dilierence exceeds \ of 
 the smalh-r by 2, find the nund)ers. 
 
 10. Solve 7(.'' - 2) - o(2x - 9) = \{,v + 13). 
 
 EXERCISE VIII. 
 
 1 . Solve {2x - '6y - {2.V - 7y - 5(.f + 3). 
 
 2. Factor ifz - yz'^ + z\r - zjr ; x' - (a + -)x + 1 and ■/' - 3,t;(a + h) 
 -^{a + hy. ' 
 
 3. Find the value of (1/ - zf + (^ - xf + (a; - xj)' when .,•:==- 1, y = 0, 
 
 4. Find by factorhig the L.C.M. of 5a;^- 15.»-flO, (u''^-6x-]2 
 
 and Vlx'' - 12. 
 
 5. Reduce to lowest terms 
 
 x*-\-i z^- 19x- - Wx+VM) 
 3.4 _ 26a;- +144 
 
 2a 
 
 x~a 2 
 
 I y (a; -2a)- «--5aa;+6a- ' x-3a 
 7 Simplifv ^'^+^)('^+^<^) a<a;+a)(2a:+a) ^ 
 
 6a 
 
 8. Deterrrune a and b such that in the product of x^ + x + l :\d 
 x^ + ax'^ + bx + c the co-efhcients of cc* and x^ may vanish. 
 
 9. Show that (Sic- 3 (/- 4)2 -(3x4-71/ + 4)^8 exactly divisible by 
 2x + y. 
 
 10. Express ^-^(l-l\.->i^ill\ as the difference of two 
 squares. a ^ y y ^ Ji 
 
MISCELLANEOUS KXKHCI8ES. 
 
 46 
 
 EXHJRCISE IX. 
 
 1 
 
 X 
 
 J. Dividt) .»•*- \. by ,, 
 
 2. Find the imxluct ..f yt ^h) (a^i-ah + h^) (a - />) («« - ah + !,•'). 
 .*{. WlK.vv that (x - ,,f + (,, - -.)3 + (., _3.)3 = ;j(_,. _ ,^) ^,^ _ .,) ^., _ ^.^ 
 
 4. Solve lli' + ^' = 2. 
 
 5. Divide (.,■■' - (/,';)••' + 8//';;3 i,y .,,1! ^ ^^.._ 
 
 «. At yvlmt times between 4 and 6 o'clock are the hands of a 
 watch at right angles to each other '{ 
 
 7. Show that liia - h) (a - c) + 2{b -c){c- a) = 3((f - hf. 
 
 8. S( )1 ve a{x - a) + h{x - h) + 2ab = 0. 
 
 {>. Use Horner's method to tind the quotient of r'H.'-«-2 
 divided by ,*'^ + .»•'-' +1, ^ -r * 
 
 10. Find the continued product of x-\-a, x4\ x-\-v, and from 
 tlie result write down the product of a - m ; a - n ; a -p. 
 
 EXERCISE X. 
 
 1. What must be added to {n+h + ry that the sum may be 
 [^ti — f> — cy ( *' 
 
 2. What (quantity must be multiplied by x + l to give x^ + 3x'' + 
 
 fix -f- 1 E 
 
 3. What must be multiplied by, i:- - to give x^-\-(x ~ 1)" ^ 
 
 4 The price of barley per bushel is 15 cents less than wheat, 
 't J'-S^ r'r. 'i 50 bushels barley exceeds that of 30 bushels wheat 
 Dy ^o.50. mnd price ot each per bushel. 
 
 5 Examine whether x^-dx + H is a factor of :»;» - 9,/^ + 20 r - 24 
 and hnd the other factor. 
 
 6. Show that a' + cc'b' - aU' - b' has a' -has a. fact<.r, and Hnd tlu' 
 other. 
 
 7. Solve 1+ ?>=^+d 
 
 8. Solve - +'r + - =1 
 
 9. Divide m'' - (^ u + ,-jm + l by m-n. 
 
 10. Solve ^^-''^''±^^^^'K 
 20 21a; - 2 5 
 
46 
 
 KXKa<MSKS IN AI,(il{|tUA. 
 
 EXERCISE XI. 
 
 1. Divido tho product of <r-\-ax + .>'' ;uid a» + a;' by a* + aV + x*. 
 
 2. Show that (l+.'+^;^+....x«-')(l-.'' + .'C»-x»+....a:"-0 " 
 o.iuiil to l+x' + x*+ ';'"-'. 
 
 ',\. Find what vuluo of x will nmko 5(.i;-3)-4(j +1) t'<iual to 76. 
 
 4. Find by factoring tho (luotiout of a» + a% + ii^c - abc - b'c - hc:^ 
 by (i^ - '"'. 
 
 5. What must bo tho vahio of ac, y, z tlmt u^ + a'x + ay + z may 
 havo a - 1, <t - 2, a - 3 as factors '^ 
 
 <). Divido ,^ + {m + n + p)x' + {>nn + inp + ni>)x + mni) by :«+p. 
 
 7. Find without actual niiiltii)licatiou tho [)roduct of -g- - -cy 
 
 •*■.'/ 
 1 
 
 + 9byf + 3. 
 
 »* - 6a; 4-8 g'-Sg+fi ^(a;-2)a 
 
 8. Simplify ^^rrj^:;^ ^ x''~u-s~ x'^ - 1 
 
 rt7> + rt 
 
 9. When x = :,^y and ^ = ^1;^^ roduco ^;;j;; to its sin.plost 
 form in terms t)f a and b. 
 
 10. Prove *'-^ = (x + 2|/y^-3!/(.«-i/). 
 
 EXERCISE XII. 
 
 1. By what binomial must x»-3u;-2 be multiplied that it may 
 be a perfect square i 
 
 2. Show that X* + 1/ + (x + y)* = 2(x^ + xy + iff. 
 
 „ ^, .1- i.1 .«'+''* "^^ (a+b+c){a+b-c) 
 
 3. Show that 1 + —gal, — "^ 2a6 
 
 4. A cistern is J full of water, but 220 gallons are run off, and 
 it is then ^ full. How many gallons will it hold ? 
 
 5 Find the value in its simplest form of 
 
 W'^ 3a- 32a;-/ ^a-'x-' ' a-'x"-! 
 
 6. Find H.C.F. of (Sx^ - lOx^ - 16x - 3 and 2x^ - llx'^ + llx + C. 
 
 7. Factor i(;'H4x' + 4- 'aH4a«/-i/-. 
 
 8. If y= -2, tind tho value of y in the equation 7x-f 18|/-=4. 
 
 9. If I of my money is ecjual to ^^ of it and $47, what is the 
 sum ? 
 
 10. Factor x' + Gu;^ + 27.c'^ + l^%c + 729. 
 
M ISCELh A N ICOUS K\ K KCISKS. 
 
 47 
 
 ?t 
 
 BXBROISB XIH. 
 
 1. Factor l(ur« - 24.i-' - Hb:^ + V2x + 4. 
 
 2. If (,, /, ,' l>i> throo o.msocutivo nmiihors, r boiiig M,o groatost, 
 Bh«>vv tliHt the (liHort^ncu botweoii tho H(iuare8 of a and h is li leas 
 than c. 
 
 3. S,.lvu '^^ =-^+J-«. 
 
 8j+1 a;+7 
 
 4. Factor JU-' - 14x-^ - 2ix. 
 
 5. Tlio exi.roHs train fr,„n Sarnia to Lf.ndon travels 'A2 miles per 
 hour aiu runchos London in 2 lio.irs lo.s.s time than the mixed train 
 at 10 uules per liour. Find the distance. 
 
 C. Multiply x>> + jc^+x* + xHl by x'^-l. 
 
 7. Express in 4 factors, 3(6.fH5x')'^-10(Gx» + 5ic)-8. 
 
 8. Divide (a' -hcf + 27 b^c^ by a' + 2bc. 
 
 V. ittauce ^4_9a.;,+os)^,_39^^ig to Its lowest terms. 
 
 10. Simplify ?-<flld^+«(«='r''_^>J. 
 
 b'ib+ax) 
 
 ly 
 
 id 
 
 the 
 
 EXERCISE XIV. • 
 l^iH ^i'f. ",f'^' ""^ ^«-^' + i7.;^-128a;^-14^ + 9and24xH22a;»- 
 3a/- 2^'"'^ ^'^ f'lctoring L.C.M. of 9a^-3^x\ 'ia'-^ax+x\ 2a^+ 
 
 3. A herd of cattle cost $720, but two were stolen and the 
 average cost per head was then $4 more than at first. Find the 
 number. 
 
 4. Divide ce» - (a + h - c)x' + (ah -be- ca)x + abc hy x + c. 
 
 5. Factor x^ - y^ - .r(:r'^ - y^) + y(x - y). 
 x"-2-^ x^-4z~21 . 2a; -10 
 
 G. Simplify ^:-;;;x^ 
 
 ^ •' a;--49 x" 
 
 +SX+15 • x+7 
 
 a-?2/>-3o) ^^ ^''*'*'^""^' *^*^ quotient of a3-(26-3r)' divided by 
 8. Simplify -2^^^^±^^ j^nd test result by putting a;= 1. 
 !). Di V ide 1 + c"* + y' - 3y;: by 1 + ;/ + z. 
 10. Solve •6^--75-l-8x + l-2 = l-5x-y-5. 
 
48 
 
 EXERCISES IN ALGEBRA. 
 
 EXERCISE XV. 
 
 1 _i 
 
 1. Find by factoring the value of-** — 5. 
 
 2. Factor (x""-^ a -iy-a\rr. 
 
 3. Factor 2(a=' + a'b + air) - (a« - ¥). 
 
 4. Show that {j' + yy + {ii + -.y + {z + xf + 2{x+y) (x + z) + 2(x+y) 
 
 (y + z) + 2( !/ + z) (x + z) = 4(x + ■;/ + z^. 
 
 (r:+z - 2m)' - (z+m - lyY 
 
 5. Simplify 
 
 (>;i +y+z)' - (m-YV - 52)- 
 
 ti. Show that / ., ,?tx /t.— TTx is always a proi)er fraction. 
 (a-+b') {c- + d-) '' ^ 1 
 
 7. Divide f - 2f + 1 by i/ - 21/ + 1. 
 
 8. Factor x^ + x{m + n +^) + p(wi + ^0- 
 
 9. Find three numbers whose sum is 51, and of which the 
 greatest exceeds the least by 0, and the third is one-lialf of the 
 other two. 
 
 10. Show that 6 + rf is a factor of (a + 6 + c + dY - (a - b + c - (Vf. 
 
 ! 
 
 EXERCISE XVI. 
 
 1. Show that x{y+zy^ + y(x+zy^ + z{x + yy^ — 'kxyz — {y + z) (z + x) 
 (x + y). 
 
 o a 1 ^2,1 29 
 
 2. Solve ~ + ^- = ^- 
 
 3. A man bought tea at 78c. per lb, and ^ as many again lbs. of 
 coffee at 30c. ; he soil tea at 96c. and coffee at 27c., and gained 
 $12.60. How many lbs. of each did he buy ? 
 
 4. Shuwthat(a + i)^-(^ + ;)^=(a6-l)(^-5). 
 
 i). Snnphfy --'„,_;= 
 
 «). If a + b + c = show that o' + /;^ + c^ = 3a/jc. 
 
 7. Factor x^ - -»-''' - '/ + 1 ; rt^(^> - '0 + b\e -a) + c^a - b). 
 
 u o 1 4,7 37 
 
 8. Solve -,H — 77, ~-~rrr 7 :\' 
 
 9. Reduce to its lowe.st terms 
 
 a- \ a+b" +b+c" +c+'iab+'iac+2bc 
 
 a" -h" ~ c^ - 26c. 
 
 -__._.» 
 
 10 Simplify J«±''Hli«^) _ ^'Xi-m^Xi «-) . 
 
MISCKLLANEOUS EXEHCISES. 
 
 49 
 
 EXERCISE XVII. 
 
 1. Solve ^s?+i=-4i^+4:t^. 
 
 o 15 o 45 
 
 2. If a^ + })' = 1 = c^ + d'^ show that (ac - hcCf + {ad + hcf = 1. 
 
 •■'■ Simplify „-4^+,^^^+..^^- 
 
 4. Divide {x^ - 2yzf - 27i/z^ by x" - 5yz. 
 
 5. Find the value of <t and b when x'^ - ax + 12 will divide x^ - 
 6.«^ + 75^:-108 without a remainder. 
 
 6. Simplify {x + 1) {x + 2) {x + 3) -(.«;- 1) (.« - 2) (x - 3). 
 
 7. Show that 2(a2 + 62 + c' - ah ~ ac - be) = (b - cf + (r - af + (a 
 
 -by. 
 
 8. Find two consecutive numbers such that the half and fifth 
 part of the less may be equal to the third and fourth parts of the 
 greater. 
 
 9. Show that (b - c)3 + ((• - af + (a - bf - 3(6 -c)(c- a) {a -b) = 0. 
 10. Show that a^ + b'^ + (f - 3abc ~ a(a'^ - be) - b{b^ - ca) - c(c^ - ab) 
 
 EXERCISE XVIII. 
 
 1. If x=b + c-2a, y = c + a-2b, z = a + b-2c prove x^ + y'^+z'^+ 
 
 2xy + 2xz + 2yz = 0. 
 
 2 0- ,.- b"-c- , o"-a~ , a"-b^ 
 . Simplify -j-i \ r • 
 
 ^ ^ b-\-c c+a ' a+b 
 
 3. 
 4. 
 
 2a; 
 
 ix^ 
 
 8x' 
 
 l~x \-\-x 1+a;^ \-\-x* l+a;» 
 x-'ia x+a ^-+Sa- 
 
 x+a x-'a x--a- 
 
 5. Prove that (x + )/) {x - //) + (i/ + ,:) (i, _ ^) + (~ + x) (z-x)= 0. 
 
 6. Prove that (f (/> - c) + b{c - n) + c(a - b) =- 0. 
 
 7. Show that (a + by + ^c{a + by + ScXa + b) + c^^(h + cf + ?u((h + 
 cf + 3a\b + c) + iv: ^ 
 
 8. Simplify {a + b + cf - (n + bf ~(b + cf - (c + af + a'^ + b'+v''. 
 
 9. Divide 17<)0 yds. into two ])arts such that half of one part 
 with 2(R) yards may bo double the other part. 
 
 10. If p=^a-[-b-\-c, q = ab + ac + bc, r = abc, prove pq - r^{b + c) 
 {c + a) (a + b). 
 
50 
 
 EXERCISES IN ALGEBRA. 
 
 EXERCISE XIX. 
 
 1. Simplify (3.« - 2)^ + (3^ - 2) {\ix - 4) + (Sx - 2) {^x - 5). 
 
 2. If x^ - yz = a, tf -xz = h, z^ -xy=^c, show tliut .o' + y^ + z^ - ?>xyz 
 = ax + by + cz. 
 
 3. Required the number whose ^, I, \ parts together are as 
 much greater than 223 as ^-, ,|, {- of it"are less than the same. 
 
 4. Add together the squares of ax + hy and ay - hx and subtract 
 the sum from the product of (a^ +(/''') and i}j^-\-x^). 
 
 K TP i. 64a'' 21b-' 
 
 5. Factor ^,^ -- ^^ . 
 
 6. Simplify ^ (7x^ + 4a; - 3) (7x'^ - 4x - 3) ^ 4- -! (7x - 3) (7x + 3) }- . 
 
 7. Solve 
 
 CC-l . X- 
 
 x-3 
 
 34 
 
 51 
 
 102 
 
 = 0. 
 
 8. Solve X — '- 
 
 9, Show that (a^ - be) + (b'^ - m) + (c'^ - «6) is not changed if a, b, 
 c is eacli increased or diminished by the same quantity. 
 
 10. Divide 32xH243 by 2x + 3 by factoring. 
 
 EXERCISE XX. 
 
 1. How many lbs. tea at 3Gc. and 60c. must be mixed to make 
 200 lbs. worth $80.40 ? 
 
 2. Write down the product of (l4:.« - 17) (14.t; + 17). 
 
 3. If (x + 1)2 = X, find value of llx^^ + 8x' + 8x - 2. 
 
 4. Factor 36x^ - 97xhf + SGi/. 
 
 5. The perimeter of a square field is 588 yds. and of another 
 672 yds. Find the [)erimeter of another ecpial in area to both. 
 
 6. What nmst be added to 6x-^-x^ + x^-x + l to make it an even 
 multiple oi x'^-x + l and .« - 1 ? 
 
 7. What value of a will make 3x'^-7x^ + 2ax'-llx + a exactly 
 divisible by x^ - :»; + 1 ? 
 
 8. Find the value of — -*- when a; = l. 
 
 9. Factor Oa^ - >jnb + 2ac - 2(>/>- + CAbc - 48el 
 10. If <t^ + ((6 + 529 is a perfect scjuare, find 6. 
 
MISCELLANEOUS EXEUCISE8. 
 
 51 
 
 EXERCISE XXI. 
 
 1. If a, />, c, d, e, represent the first 5 numbers and a' = 0, find 
 the numerical value of x"((i + h + c + d + e) -aHb~c)-b'Hc-d)- c'^ 
 {d-e)-d\i'.-x). 
 
 2. lix-\-y=^a, y + -==h, z + x = c,a'^ + ¥+c'^ = 0,Hh(m t\vdtxy + xz + 
 yz = ^(ah + ac + be). 
 
 3. Find H.C.F. of a^ + 6a* + lla'^ + 5a'' -'3a -2 and a^ + 3<i^- 
 6a^-5a'-3a-2, 
 
 4. If a; -2)/ is one factor of .)i:P-2xhj-'ixy^+Si/, find the others. 
 
 5. If Ax* + 12xhj + ax^tf + Qx\f + y* is the square of 2x^ + 3xy + ktf, 
 find a and k. 
 
 ft. What three linear expressions divided into a;^-7ic + 10 will 
 each give a remainder of 4 ? 
 
 7. If a + ,- = 1 and c + - = 1, show that &+- = !. 
 
 a, ' c 
 
 8. If x=19, find value of ^2±^ + ^^->^-^V^. 
 
 9. Find the equal factors of 9x* - 6x^ + 43x^ - Ux + 49. 
 
 10. Show that the sum of every fraction and its reciprocal is 
 equal to or greater than two, and that ^H f-jH l-r+->t>. 
 
 EXERCISE XXII. 
 
 1. Is (a' + c'^) (b'^ + d'^) greater or less than {ah + cdy when ad — be? 
 
 2. If m = 2x^- 16ic + 14, ?t=a;^-5x — 14, factor the sum of m + n. 
 
 3. Show that {Qx"^ + 4xy + y'^y - {3x^ + 4:xy + y'^)'^ is equal to 4a;'* 
 {2x + ijy. 
 
 4. Divide(^! + ":-2)'l,y 'i-^. 
 
 5. Find the value of x tliat will make a'^ + 6 A + 8x'c'^ + 10c* equal 
 to the cube of a; + 2c. 
 
 6. Factor mx^ - 129a; - 9797 ; 27a;'^ + 192a; - 4067. 
 
 7. Find the remainder when r)a'^ - 8x'^ + 8a; + 7 iw divided by 
 5a- - 3. 
 
52 
 
 EXERCISES IN ALr.EHRA. 
 
 8. Show that the difference between -^ +— — 4.-^?^ an*l 
 , , r , s- . ^, , m-q^ m-r^ m-s '*"^ 
 
 ^ jn-8 ^^ same whatever m may be. 
 
 m-q m-r in -8 
 
 ?k ^' ^' ^ '^^^ ^^*^ *^*^ '^ society. B gives twice as much as A 
 and {$20 more, C as much as A and B togetlier. What did each 
 give ? 
 
 10. Tf «-4, b-5, by what must ax^+bx + 1 be multiplied to trive 
 
 EXERCISE XXIII. 
 
 1. Tf (ly + hx = a, by - ax = h, tlien x'^ + j/' == 1. 
 
 2. Find the val ue of a^ - b^ - (a - by when a + 26 = 13 ; 2a + b= 32. 
 
 .3. Solve -*--- .% . = -2a_ 
 x-a 7(x-a) x+7a 
 
 4. Solve ^^y-='^. 
 
 d(c+dx) d c+dx 
 
 5. A tradesman after spending $100 a year, increases the re- 
 manider of his property by J of itself, and at the end of 3 years liis 
 original capital is doubled. What had he at first ? 
 
 6. Show that x^+xf + z'-xy-xz-ijziB not changed by addint^ 
 the same quantity to x, y, z. ° 
 
 7. Factor x^ + Sx"^ - 79ic + 70. 
 
 8. Of the fractions 1^^ and |!^^, which is greater, wlien a is 
 greater than x. ^ 
 
 <>. If .,; + ^, + . _ 0, prove that x(x' - yz) + y(y^ - ,r~) + z(z' - xy) = 0. 
 10. If x' + «2 = 2(xy + yz + nz- y^ - z"^), prove x=^y = z = u. 
 
 EXERCISE XXIV. 
 
 1. In the expression :);3--2a-.2 + 3,c- 4, substitute a -2 for x and 
 arrange in descending powers of a. 
 
 -.«/) 
 
 2. If X - i/ - 1, tlien (x^ - y^f = x^ - / + ,:y. 
 
 3. Prove that 2(x^ + y^ + z^- 'Axyz) ~ x + y + z^ {y - zf + {z - xf + (a: 
 
 4. If X - y = 2((, show tliat x"^ - imx + 9a- ■=((/- af. 
 
MISCELLANEOUS EXERCISES. 
 
 53 
 
 5. A person leaves A for B at 3J miles per hr. ; 40 minnfes later 
 another leaves B for A at 4| miles per hr. , he goes h mile more 
 than half way when he meets the first traveller. How far from 
 AtoB? 
 
 1 _ J_ 2 - - 
 
 6. Simplify :7-7^ X = 
 
 x-'+l 
 
 :.--'- ' 1+'-.. 
 
 X X- 
 
 7. Prove that jx'^i="£' 
 
 8. Show without division that x-a is a factor of x^ — (a-m) 
 r'^ + (f-am)x-af. 
 
 9. li X- a and x-h are each factors of a;'* + x + 1, then a"' + 6'' = 2. 
 10. If <t + /> + c=0, show that a^-b^=hc-<<c. 
 
 EXERCISE XXV. 
 
 1. If x + n and x + h are each factors of .r'^ + my^ + h then 
 
 m 
 
 a + h 
 
 2. Find the value of x which will make x^ - 2x + 3 a f actor of 
 x''-x2 + 5x-21. 
 
 3. Simplify (f - ^^ - l + l - ^)Ho-h){}>-c)(c-a). 
 
 , „ . 2x-7a , x-Sa x-7a 2x-9a 
 
 4. Solve -- -r- + ---^:. = ; - v, _ + • 
 
 x-'ia x-^a x-Sa x-5a 
 
 o. Find the value of a for which the following fraction admits 
 , ,. x'^-ax^ + lQx-a-i 
 
 ,.f reduction: ^i (a+f^+as'^^a -'7 ' 
 
 l + ^+l 
 
 6. Simplify ^-^ ^ • 
 
 X" " 3 
 
 7. Find by factoring what algebraical expressicm multi]ilied l)y 
 itself gives 25x* - 2()x^ - i')x' + 4.i- + 1. 
 
 „ c , 4;r-ll 2a;-7 ,11 r,x-U 3a--ll 
 
 8. Solve ~^- 6~+96^ 18 ~"""9 
 
 9. Prove algebraically that the sum of the squares of any four 
 consecutive odd (or even) integers diminished by 20 is a square 
 integer. 
 
 10. Show that x' + i divided by {x. + lf gives remainder 7(.''4-l). 
 
54 
 
 EXEKCISKS IN ALGEBRA. 
 
 EXERCISE XXVI. 
 
 . } ' -^V,"^ ^^^^ ^'^^"^ "^ -^ ^^^^^ w^ 11 "lake x^ + 3a:>'^ + 4a'x - {ia^ eii ual 
 to {X + ay. ^ 
 
 2. If two numbers differ by d, show that the difference of their 
 squares is d tniies their sum. 
 
 o jfb''+c^-a'^ An-b+c)(a+b-c) 
 
 2bc 
 
 •^ fo^i'\i ^^^^^^"^ (-^-y) (^ + y)-{x + yy whan Sx + 2y = 45 and 
 oy + zx — 15. 
 
 • ?■ ?9^® L.C.M. of two quantities is a* - 5a^h' + 4h* and the H C F 
 IS a' - h\ one quantity is a' - 2a'b - ah' + 2b\ lind the other. 
 
 6. The H.C.F. is m-7, the L.C.M. m^-10m' + llm + 70, one 
 expression is m' - 5m - 14, find the other. 
 
 7. Factor x^ + 25^ + 289. 
 
 8. li x'^-3x + 2 = 0, show that x* - lO.-j^ + 35x^ _ 50^ + 24 = 0. 
 
 lby2-(i + i+J;. 
 10 Show that (x'+6xy+4:y')'+(x' + 2xy+4y'f is divisible by 
 
 EXERCISE XXVII. 
 
 1. Show that x* + y* + z* - 2xY - 2xh'' - 2yh'' is divisible by each 
 of the four expressions x±y±z. 
 
 9. Divide ^' + ?^li + £zi 
 
 2. Simplify 
 
 5Ga;''-28a:"-42a;+14 
 42x2 -28a; -14. 
 
 3. Show that the value of the difference between (x + -)' and 
 (.'•--) is independent of x. 
 
 4. Show that any four consecutive odd (or even) numbers plus 
 16 may each be i)ut in the form of two equal factors. 
 
 5. From a + b-c take hi -hb- f c. 
 
 6. Show that ^ = x when x is any number. 
 
 7. Find the value of ^^'{ when a = 3, b--=2. 
 
 I 
 
MiSOKLLANEOUa EXERCISES. 
 
 55 
 
 8. Find co-tillicioiit of x' in yX^x-Vx^'-^-y?, etc.)''*. 
 
 9. Of two sciu.'ire fields one exceeds the other by 100 acres and 
 its side is 400 yds. kniger. Find the length of the side of the 
 smaller Held. 
 
 10. Solve a{x - a) + ?>(x- - 6) + c{x - c) = lah + 2ac + 26c. 
 
 EXERCISE XXVIII. 
 
 1. Find the value ul c if x^ + 2x^ -10x^ + 3cx + 2c is exactly 
 divisible by x^ - ox + S. 
 
 2. From 16 (^'^ + '^^) take 32 {'^-J^-'-^). 
 
 3. Factor a;'-(f -^) 
 
 x 
 
 4. Find the co-efficient of x* in the product of 
 
 -, , a; , x^ , x^ , X* 1 -, , X , x- , x" , x* 
 1 + 2 +4- +8- +r6^'y 1 + 2 +4- +8- + Fg ' 
 
 5. Write down the cube of l + x + x\ 
 
 X x^ 
 
 6. Write down the square of 1 + - + t- • 
 
 7. The depth of a cistern at one end is twice that at the other ; 
 water to the depth of 18 inches is frozen and the water below at 
 deep end is three times that at the other. What was the original 
 depth at the deeper end ? 
 
 8. Multiply l + ^a+^6 by l-|a+^6. 
 
 9. Prove ^^^ - %;}'^-''^' + ^'' " "^;t f " '^'^ = ^^^' ' ^^^V + ^^f- 
 10. Simplify a + h- (2a - 36) - (5a + 76) - (26 - 13a). 
 
 EXERCISE XXIX. 
 
 1. Solve 
 
 x-a , x-b , x-c 
 
 he 
 
 ac 
 
 ab 
 
 2 2 2 
 - + - 4- - 
 a^ b^ c 
 
 2. Snnphfy-^^, +^^3^. 
 
 3. What is the diflerence between 3a + m and 7am when a = 5 
 and m = ^1 
 
 , „. ,.„ a;<'+^ .i''+= x-^'+o 
 
 4. Smiplify „ X — ^^r- x 
 
 ^.2C 
 
 >,26 
 
 ,.2a 
 
 X*" X' 
 
 .5, Multiply 1 - Ax + ix^ by 1 + .^x - ^x^. 
 
 6. Tf $1000 be put out, part at 4% and part at 5%, and if the 
 yearly income is $73, how much is out at 4% ? 
 
rui 
 
 r)( 
 
 KXEKCISKS IN ALGEnRA. 
 
 7. N\ rifu (litwii tilt! culm (if '; 
 
 / /( 
 
 H. Show timt tli(! product of jiiiy f<iur oonsecutivo numbers in- 
 ereasod \>y I is ;i porfuct. s(pijire. 
 
 y. IVovo tliut ((mH- /'// + '•,:)-' -(/»,!• + (•(/ + '<•:)'■' i.s divisible by (u + h) 
 X + (h -f- '•).'/ + ('■ + ")'•» 'i"'^ '"-l^*' '>y "(•'^ " '-) + ''( J/ - •*-') + '-'{^ - y)- 
 
 10. Simplify '.+ '+JL+^^:;^'+^-'')'^^-'^. 
 
 ' -' a -h ' b-c c-a 2(a - h) (h - c) (c - a) 
 
 EXERCISE XXX. 
 
 1 Simplify ^^L-'^^lzi^-^l'r , (a>/ -^a-p+(3a;-2//)^ 
 ^' •> 5(i/-a;) ^ y+a; 
 
 2. Prove (<(^ + h'' + r') {x' + y^ + z') = (aij - hx)' + (ex- azy+ (bz- 
 cajY + {ax + />;/ + <'2:)''^. 
 
 3. Add aw - cl — Ini and en ~ al — hw, and from the sum take 
 — cm - hi - an, and divide the result l)y b -c - a. 
 
 4. Prove that if one quantity measures two otliers it will also 
 n^asure the ditierence of any multiples of these two (quantities. 
 
 5. Factor (,r- + ;/ + ;; + a)' - {x - // - :; + af. 
 
 6. Factor 20a;' + 12rt.';H25/w2 + ir)r«?>x. 
 
 7. Find remainder without actual divisit)n of (or* - 3,i;^ + 4x* - 
 
 2.c + l)-^0*•^-.r+l). 
 
 8. Extract square root of \) - 24.^; + oH.r''' - iUVK^+VlSh-* - 140,c° + 
 lOOc*. 
 
 9. Simplify (,-«)(,s ~-l)H^r;.) when 2« = a + 6 + c. 
 
 10. Factor 7.'^'' - • «);/^ - x;/ + 19^; + 3% - 3G. 
 
 EXERCISE XXXI. 
 
 1. Apply Horner's method to find value of o.«'^ + 497,r* + 2()0a'^ 
 + 19Gj;^ - 218x - 2000, when x= - 99. 
 
 2. Show without expansion that {\ ■'t ■<' -\- x'^f - {\ - x + xA^ - i\x 
 (a,-' + .''' + l)-8.i--0. 
 
 3. Show that a\b-{-c)-}}\c + a)-irc'{a-irb)->rabi' is divisible by 
 a-h + e. 
 
 4. What value of « and b will make x'^ + 2ax + b^ the square of 
 
 5. A man is three times as old as his son, but 10 years ago he 
 was 5 times as old. Find son's age. 
 
MISOELLANKOUS EXKUC'ISES. 
 
 67 
 
 ♦I. Kxprcss ,r-f*J(>i/' + 70;.H 52//;: + 4.I-I/ + (),*•;. as the Hum «.f three 
 S({uaroN. 
 
 7. What ((uantity will divido without reiiiain»li!r into .»•* - 
 2ax^ + {ii' - h')x' + 2al)'x - aV and ;/;* - (a' + h'^)x^ + o-h' ( 
 
 8. Factor x* + 12,r'' + HOx^ + 84..- + 33. 
 
 1). Express .»•* — 28,*''^ +• \(\ as the product of two (juadratic factors. 
 10. Prove that (3.x'^ - ox + 8)- - (2x^ -x + 4)'^ is divisible by (..■ - 2)». 
 
 EXERCISE XXXII. 
 
 1. How much tea at BOc. per lb. must be mixed with 100 lbs. at 
 87Ac. per lb. that the mixture may be worth «)2ic. per lb. i 
 
 2. Show that (dx-^y)'^- {7x + 3yf is a multiple of 2u;- 7;/ and 
 Idx — If. 
 
 3. Extract sq. root of 9x* - A2x-^ + IWx^ - 154.x; + 121. 
 
 4. Find the conditions that mr^ + nic''^ + 32x + 15 may be divisible 
 by 2x - 3 and 3x + 1 f(jr all values of x. 
 
 5. Find the value of (m-n) ('m + n)-{m + n) (m + n) when 3w 
 + 2n ^ 45 and 3/t + 2m = 15. 
 
 6. Factor 112«H 138a6 - 1356'^. 
 
 7. Show that (5.f- - 'Sx + 2)- - (2x' + 3x - 1)'^ = 3(7.''- + 1 ) (x - 1 f. 
 
 9. Find the conditions that x* ~ px!* -\- qx^ - rx + n may be exactly 
 divisible by a; -a. 
 
 10. Divide 
 
 
 2 - in 
 
 by 
 
 '2+m , 2.-m 
 
 2+?ft •' 2-)/( 2+/rt 
 
 EXERCISE XXXIII. 
 
 1. Determine the value of p and </ when the expression 4j/'*- 
 12i/-\-py^-{-<iy + lQ is a complete square. 
 
 2. Show that ^^"^^-^^ = ^^ . 
 
 (c - a)" - (a - 6)' ?*+c-2a 
 
 3. The product of any three consecutive integers being found,' 
 and also that of any other three, tlie difference of the products will 
 be a nmltiple of the ditlerence of the middle integers of the two sets. 
 
 4. Show that ax^-'rhx'^ + cx + d is divisible by .*'- + //^ if ad = bc. 
 
 5. If x + a be the H.C.F. of x'^+px + q and x'^ + mx + 71, then 
 
 a- n 
 a^- • 
 
5ft 
 
 Kxi'ju'fsRs IV .\F,(;i.;uuA. 
 
 (». If x' + 2u .-'.ih' is <liviail)lo hy x-o, provo a^h or -h, 
 
 7. Wtml v.'iluo of ^> will make '.\x-Ai\ niensuro of J8u;'^-/>.. +28? 
 
 8. Rosolvo into 5 factors .*■"'- (JHo.'JO. 
 
 9. Factor 9.*;'' + 48.1-2 -i- r)2.i; + 1(». 
 
 10. l^.ictor2.i;H1b;i/ + 12//' + 7j- + l.V + 3;j». 
 
 EXERCISE XXXIV. 
 
 1. If x + 1/ + :; = 0, show that ^^^^ + ^i'L-j?!! . i(£!Lzl!) _ n 
 
 y-z ^ z-x ^ x-y ~"- 
 
 2. A rrango (.« + ,/ + ,)a , + (,• + ,, _ ,),, ^ + (.,. + .. _ „),, , + (v + ^ - .'■)«. 
 Ill thruo teriiiH involving x, y, z respectively with co-otticieuts a,! 
 «2» «;j> 'h- 
 
 3 Find tlie condition that x' - Sb'^x + 2c-' may be divisil)le by x - a 
 whatever })e the value of ic. 
 
 4. a;*- 4u:3 + 6a;2-4x + l is a multiple of x'^-ax + l, Hnd a. 
 
 5. Prove that the product of K.C.f. and L.C.M. of any two 
 quantities is ecjual to the product of the quantities. 
 
 r/ f; ^ih'^'i'^^.'V*^''''.?^ expanding(a;2 + ^.j/+,/.)3 + (.^2_ ^. 2)34. 
 G{x^+\/){x* + xY+i/). -' J I ' 
 
 7. If 9./:*-30.«3y + axV-10.ty + ?/* is a i)t!rfect sfpiare, find a. 
 
 8. Find value of 3.«5 + 54^ » + 50.^3 _ j 9 ^.2 _ 35^ _ ^g ^^j^^^^ _^ ^ _ j^ 
 
 9. Solve i^^i-l-i?^±l=5?-t. 
 
 18 13a; - 16 9 
 
 10. If lr:-cy=p, cx-az = q, aii-hx = r, then <ip + b<j-\-cr=0. 
 
 EXERCISE XXXV. 
 1. Find value of 2x* - 510r' - 513.«2 + 25(u; - 1024 when a; = 256. 
 
 2 Prove by fact.ms that (7a; - 3)H (7x - 3) ^^ + 2) + 7x-(x - 4) - 3 
 ( it' - 4) = ( < .1; - 3j (9x - 5). 
 
 3. H x = a + 2b + 3e, y = b + 2c + 3a, z = c + 2^ +3b, show x + y + z 
 = b{a + b + c). . 
 
 4. Facte )r 2y-^ ~ hxy + 2a;^ -ay -ax- a\ 
 
 5. Reduce to lowest terms — i'iL'-i«*-i2 __. 
 
 2a;-'-l(ijr'-!-'24;r+'288 
 
 0. What number addel to fj + 1; + ;'!; + ^^ will make it a perfect; 
 scjuare? -^ " '"' ' 
 
MIHCKLLANEOUi) EXKliCIUES. 
 
 59 
 
 7. If .rj* + px^ + qx'' + r.r + s be a perfect square, show that r' = p»s. 
 
 8. Find tvvti o(|ual fuctors of 
 
 9. Show that the sum of the cubes of any three consecutive 
 numbers is divisible by 3 times the second of tliym. 
 
 10. Simplify ~ • 
 
 X - )/ x-\-y 
 
 EXERCISE XXXVI. 
 
 1. Solve 1 + 1-1 + 1 = 78- 
 
 Z. Write down the .s(juaro of ~^Z\ z '•' "^s simi)lyst form. 
 
 .'i. Find a (juantity which when multi[)lied into .*■•'' - 4j"^ + 5*- - 2 
 will make it a perfect square. 
 
 4. * ind the sunplest form of n — \ -r • 
 
 5. By what quantities must x^-x^-jc + 1 be multiplied to make 
 it a complete cul)e. 
 
 G. Find the values f)f {-, + - ) and "^ " when x = 6, u = 4 ; 
 will the values be the same if |/ = t) and x = 4: 1 
 
 7. Find the (juotieut of -r - '- by ^ + V+'-^- 
 
 8. Prove that the ditt'eronce of the s(}uares of any two consecu- 
 tive even (or odd) numbers is 4 times the intermediate number. 
 
 9. Find value of :>••' - Si/ + 29z^ + ISxyz when 2j/ - .t + 3^. and z = 5. 
 
 10. Multiply {(i + b)'^ + {a-by^ by {a + b)(a-b\ and divide result 
 by <i^ + a-b + ub'^ + b^. 
 
 EXERCISE XXXVII. 
 
 1. If (t - /) = 1, show that (a - bf (a + b)- = a^ -b^ + ab. 
 
 2. If a^ + cf + l-O, show that a^-l. 
 
 3. What value of m will make 6x*-2x^ + 2mx^ + 2x + m exactly 
 divisible by x'' - a; + 1 ? 
 
 4. If x + y-z — 0, show th&t x'^ + yz=y^+xz. 
 
 I 
 
f! 
 
 00 EXKUC18U.S KV ALUUUUA. 
 
 r». Prove thixt .»"4-»/ is divisihlo by .'•*4-l/* and write tho result. 
 
 7. If X is pi.Hitive, sliow that ^^"1 + -— - 2 is positive. 
 
 8. Which is greater ^-, + |, or j+ ^, when .*■ aiul ;/ are positive/ 
 
 9. Find two linear and one (lu.idratic factor of (/^ -!/-)'-(«/'' - 
 
 10. A courier ])as3ing throutch a certain place (I') g()es 2^ miles 
 per hour ; 4 hours later another passes through, ,i,'oin<,' 'Mi nules per 
 fxour. How far will tho second travel from (I') before he overtakes 
 the tirstV 
 
 EXERCISE XXXVIII. 
 
 1. If ac = 6-, show that {a + 2h + c) = ^""f • 
 
 2. Show that a-h, h - r, c-a cajinot be all ])ositive or all 
 negative. 
 
 3. Show that a^ + // is greater than a%-^ab'^ unle.ss a = /i. 
 
 4. Prove a + h = -^^ + ^~' 
 
 X , a 
 
 c . a 
 c 
 
 5. Find by factoring for what values of x are - + ^«i»d - 4- 
 equal to each other. 
 
 6. Ii2a = y + z, 2b = z + x, 2c = .»• + !/, find the value . - a* + b* + c* 
 - 2a^b'^ - 2aV'2 - 2b'^c^ in terms of /, y, z. 
 
 7. If axi + bhi-r^ = 0, (n/ + h^x - c^ = 0, and x + u-e = 0, then 
 b^ = ac. 
 
 8. If ic^ = x-2, show that xP= -x + (i. 
 
 9. If a;'' = j: + l, show that .T» = 5,r + 3. 
 
 10. A sum of nvmey is divided among A, B, C ; A is to have 
 1?120 less than half, B ^0 less than J of it, C $32 more than i of it, 
 what did each i*eceive ? 
 
 EXERCISE XXXIX. 
 
 1. Find by factoring the value of a in order that x = 2 may be a 
 
 , ,. n ox , X ^'iaxi-2 
 
 solution ot : + „- = — .vir— • 
 
 a - 1 2a dax 
 
 2. If — H — ^ + — =0, show that x = y = z. 
 
 x-y y-z t-x ' * 
 
maCBLLANEOUS FXERCIflRH. 
 
 61 
 
 3. Prove that if any two <|uantitio.s be added together and their 
 «uni divided by tlm sum uf thoir reeinnxials, the quotient will be 
 ei|iiHl ti> tlie product of tlie two <iuantitieH. 
 
 4. If (f -/>(/,/> -^-7/-. (■^/•,s find II -{-}}■{- ('-^ pM, sliow thnt (11 ^hy^ 
 
 '}. If .i'-f-|/4;-H). show tlmt jix''-yz)-\->j if - xzj +z{z- - juj) =0. 
 (5. Prove (.»-/*)(./ + /> -'•) + (/'-'•) (/>+i'-a) = (a-r) (n + e-h). 
 
 7. If .»;^ = fT'' + 6'^, }/ = c'*-^fl\ which is greator, ..■(/ or <ir + hd, ad 
 being not e(|ual to be ? 
 
 8. Which is greater, ii^ + l or n'-'+u, ;i being not = I / 
 
 9. Show that - +^~^ -1 and ^ + -' -2, a and /> being both 
 jiositive. 
 
 i/» T« ^-c 0-0 a-6 .1 
 
 10. If x= a , {/ = -(r' '^^'V *^^'^'" ^l/2 + .'H-(/ + 3-0- 
 
 EXERCISE XL. 
 
 1. If a, h. A- be positive integers, ascertain whether (a + A;)' — 
 (b+lif is divisil)le by a - b. 
 
 2. Factor 4(a + />)* + %, - />)« - 12{a^ - b-)-. 
 
 3. Factor 12.f2 - 31u;;/ + 20i/-' + 29r2 - 387;: + Uzi 
 
 4. A person bought 80 lbs. tea, some at oOc. and some at 75c. 
 He finds by selling all at 7oc. his gain would be $2.50 more than by 
 adding 12ic. per lb. to the price of each. How much of each did 
 he buy ? 
 
 5. Prove that any trinomial is a complete s(|uare if the square 
 of the middle term is ecjual to 4 times the product of the first and 
 last terms. 
 
 (). If 16a* + 48,»;*j/ + (/xV + 24.xi/* + 4/ be a perfect square, find q. 
 
 7. Prove that (\-2x + 3x^ - ix\ etc.) (1 + 2;r + 3.«- + 4.f' + ) = (1 + x^ 
 + x* + , etc.)'. 
 
 8. U 6- = a + ^ , show that a* + --2 = s'Ys^ - 4). 
 
 9. Find the equal factors of x^ + 4x(/ + 4i/2 - 4^ - 8(/ + 4, 
 10. Divide a\c -b) + b\a - c) + c\b - a) by a - 6. 
 
62 
 
 KXKHCISKS IN AUJKBllA. 
 
 * 
 
 MISCELLANEOUS EXERCISES. 
 
 A. 
 
 1. Divide the product of 12«''-lla-.W juid 28a2-86a + 6G by 
 2hf--5a-44. 
 
 2. Divide (2'x^ + 3x - If - (x'^ + ix + by by the })roduct of (3x + 4) 
 
 (.. + 2). 
 
 3. Iix+ii = 2a, .>;-i/ = 2ft, prove that x* -23xhf + v*::={7a'^ -3b^) 
 
 4. Find the value of x* - 47xhf + y* in terms of p and (/ when 
 X + \i= p and X- y = q. 
 
 5. Show tl it the square of x + l exactly divides (r' + J^' + 4)' - 
 (x^-2x + 'Af. 
 
 6. Prove that (x + zf + S(x + zfif + 3(x + z)y'^ + }/ = {x+ iif + 3(x + 
 yyz + 3{x + vyj + ::\ 
 
 7. Find the quotient by factoring of 9a- -|- 6ab + b" - 4*;'^ - 4cc? - <P 
 di vided by 3a + b — 2c ~ d. 
 
 8. Factor x'^ - 2mx + m'^ — w^. 
 
 9. Factor (a - b) (a^ - c') -(a- c) (a^ - 6"). 
 
 = 2{a + b + cy+ai + b^ + c\ 
 
 10. Show that 
 
 (a+b)'''-c-' (?> +c)'' - «••' (c+g)"'- ;*'' 
 (i+fr-fl />-fc-a c+a-6 
 
 U. Divide (/H J,)' -8 by (x -i)\ 
 
 12. Resolve into 4 factors (x'''-3x)2-2(ic''- 3.«) -8. 
 
 13. If x = b + (' -a, y^c + a-b, z = a + b-c, Und the value of 
 
 y^ + i/ + z'- + 2xy -f- 2xz + 2yz in terms of a, b, c. 
 
 14. Divide (4w + ^bdy - (4(u? + 8/)c')'' by {a + 26) (c - 1/). 
 
 15. Divide, {x^ - 3xhjy - {3xy' - fy by {x - yf. 
 
 10. Find the difference between the squares oi 3503 and 3497. 
 
 17. Find the algebraical expression which, divided by x'^ + x-l^ 
 gives 2x^ - Gx^ + 8u; - 14 as quotient and 22.* - 14 as remainder. 
 
 • 18. Prove thtit ,— — 4~- — r. = 1 when m 
 
 (TO-c)(m— <i) 
 
 a+b-c-d 
 
MISCELLANEOUS EXERCISES. 
 
 63 
 
 19. Simplify 
 
 (x -y)(y- z)+(y -z)(z-x)+(z- x) (x - y) 
 
 x(,z-x) + y{x -y)+ z{y - z) 
 
 20. Find h.CM.oix^-if, x^ + f, x"" + xhf + y*. 
 
 21. Find the fraction in its lowest terms which is the sq. root of 
 
 l+4x-2x--12x^+9x* 
 
 22. Simplify 
 
 l-4x+Gx--ix'>+x* 
 
 x'*+x^y"+X'y+y^ 
 x*-y* 
 
 23. Find by factoring the sq. root of (.7:^-3^; + 2) {x^-^x + 3) 
 (x^-5x + 6). 
 
 24. Find the co-efficient of x* in (x + a)^ x{x- fif. 
 
 25. Show that ac^ - {d^ + h)c^ + IP' is divisible by ac - 6. 
 
 26. Factor x-''-9xH 11* + 21. 
 
 27. If X - -^1, show that x^--^ = 4. 
 
 a; ' x^ 
 
 28. One lb. tea and three lbs. sugar cost 75c., but if sugar were 
 to rise 50% and tea 10%, the cost would be 87^c. Find price of tea 
 and sugar per lb. 
 
 29. Find co-efficient of x in Ot;-|-2) (.x -6) (x - 10) (x + 14). 
 
 30. Find the first four terms of {[i- i/+>f - [P + )'. 
 
 1 1 
 
 31. Simplify 
 
 32. Solve 
 
 + 
 
 18 
 
 6a- 18 6a-M8 o- + a* + S\ 
 bx-Gi 2a;-ll 4a;-55 x-& 
 
 a;- 13 x-6 x-W x-1 
 
 33. Resolve into 5 factors u' -I- x* - Kir* - 16. 
 
 34. Multiply (3 + X - 2x'0' - (3 - x + 2x'f hy (3 -{■ x + 2x'f - (3 - x- 
 2xy. 
 
 35. Divide the ])roduct of 2.<'^ -f- .*• «J and Hx'^-bx + i by 3x^ + 
 5x - 2. 
 
 36. Show that (2a' - 3) (.'' + 4) exactly divides the difierence of the 
 squares of 3jr-j-8x - 25 and .»'--|-3,'' - 13. 
 
 37. If x+ij^ta and .'.- !/-=/«, then H]{x* - 7 x- if + i/) = {5m' - n^) 
 (bn^ - m'). 
 
 38. Find tlie value <>f x* - '2x^ij + 2xif - i/ when x=-(i+J>. ;/=-a - 6. 
 
 39. I f <( + 'M- '• - 0, sliow that (2(« - bf + {2b ~ cf + {2c - af = 3(2(t - 
 
 b) ^2b - <•) , 2f - a). 
 
64 
 
 EXERCISES IN ALGEBRA. 
 
 4G. Factor x' + 3x^ - 13a; - 15. 
 
 41. What number must be added to x\x-\-2) + 7 in order that it 
 may be divisible by ac + 4 ? 
 
 42. Divide x'^ - xy + {%i/ by j; - 1«/. 
 
 43. Find the remainder when 5x* -7x^ + 3x^ - x + S is divided by 
 x-4. 
 
 44. Factor x-'^ - 2xy - '32'Sy\ 
 
 45. A boy spent h of his money for marbles, J of the remainder 
 for oranges, and I of what then remained for a book, and had 120. 
 left ; what had he at first ? 
 
 46. Divide the square root of ia' - I2ab -Obc + 4<iti + %'' + c'^ by 
 2a -3c. 
 
 47. Factor x^ + bxy- 30]/''' + x- 4'i/. 
 
 48. Tf X -^ =1, prove that x^ + \^=S. 
 
 49. By what (juantity must 3.f'^-4xt/ + 5/ be multiplied to give 
 18x* + 19a;2|/'^ + 12.r ;/ + 35 1/* ? 
 
 50. Multiply {x - I) by {x - ^^) • 
 
 51. Show that (a + b + ef + a' + b' + c^ = (a + by + (6 + cf + (c + a)\ 
 
 52. Factor dx' - 24xij - 9^'^ + Hiy'. 
 
 53. Factor 99x2 4.ci/-143!/'. 
 
 54. Solve 19x - 21(/ - 100, 21x - I9y = 140. 
 
 55. Find the s(i. root of (x - yY - 2(x' + y'') (x - yy + 2{x* + y*). 
 
 50. Without actual division prove that x^-7x* + 17x^ - 22a3''' + 
 25x - 18 is divisible by x - 2 without a remainder. 
 
 57. Find the remainder when xHUx^-o-f'^ + Ox + K^ is divided 
 by X 2. 
 
 58. What must be added to 5(t*-7"^ + to make it exactly 
 divisible by a + 3 ? 
 
 59. If « - 5x - 3{/ - 2;:, b-=r>ij -'3z 2x, c = 5z-3x-2y, then a + 
 
 6+o--=0. 
 
 bO. Solve 4=0; -^ — ^' 
 
MISCELLANEOUS EXERCISK8. 
 
 65 
 
 61. Write down the quotient without actual division of 8x' + 
 
 8y^ + z^ - 12xyz by 2x + 2y + z. 
 
 62. Factor a^ - 26^ - Gc^ + ab-ac + Ihc. 
 
 63. Find the value of 3(x + ]/ + z)" - (x^ + y^ + ^s) ^hen x = 3, i/ = 
 
 -5,2-7. 
 
 64. Factor 4xV + 4(a + 6)a']/ + (a + 6y. 
 
 65. Factor (:c-3(/)3- ( J/- 3xf. 
 
 66. Factor {x' + 7x + 0) (x^ + 7x + 12) - 280. 
 
 67. Solve 
 
 123; _2_ ^ _2_ 
 a;--9'^x + 3 a;-3 
 
 a'-xy\ . ja''-xy\^ 
 
 „ ,., / a--xv\ I , a--xy\ , ,a^-xy\^ 
 
 68. Simplify ( y - ^') (x + ^) + (-^r^ ) 
 
 69. Solve ax + & (/ = c, a'^'x + 6'^ j/ = c\ 
 
 70. Divide a* - 6* by a. - h, and from the result write down the 
 quotient of {a + hy - 16c* by a + b- 2c. 
 
 71. Multiply a^ + 256'^ + 40^ + oab - 2ae + 106c by a-5b + 2c. 
 
 72. Factor x^yV - xh - yh + 1. 
 
 73. Divide (a + 26 - 3c + df - (2a + 6 + 3c - df by a + 6. 
 
 74. Solve 15x + 17i/ = 79, I7x + 15(/ = 81. 
 
 ^^ „ 1 4x4-18 , 3x-2 l O.c+28 
 
 75. Solve 2-^q^ + -j:f:3=-2Fr8" 
 
 76. Factor x^ - (/^ - 3x - j/ + 2. 
 
 77. Show without actual division that (6x2 - 4x + 2)' -(4.r^ + 6x 
 - 10)^ is exactly divisible by x - 2 or 2x - 0. 
 
 78. Show that (1 - xf is a factor of 1 - x - x^ + x*. 
 
 79. If 2{a'^ + b'') = {a + by, show that a = b. 
 
 80. Show that m(m + n) (w + 2h) (m + Sn) + n* is a perfect square. 
 
 81. Find a number such that if § of it be subtracted from 20, and 
 /,- of the remainder from ^ of the original number, 12 times the 
 second remainder will be h of the original number. 
 
 82. Factor iix' - iJif 2Qz' + 22yz ■\- Ixz - 5xj/. 
 
66 
 
 EXERCISES IN ALGEBRA. 
 
 83. Which factor a; — | or x+I is likely to belong to cc'-^^ - 
 f- + |, and why? 
 
 84. Find by factoring the H.C.F. of a;'-8a;2+19x- 14 and x*- 
 7x3 + 8ic'^ + 28x-48. 
 
 85. Write doAvn the co-efficient of x in (x^- 21.c - 1.3) (x' - 2x - 1). 
 
 86. Write down the co-efficient of x* in 1 — 2x + 'ix" - 8x^ + 16x* 
 multiplied by 1 -f- 2x + 4x'^ + 8x^ + 16a;*. 
 
 87. Write down without dividing the quotient of x*-5xh/ + 4y* 
 by x'^ - 3xy + 2i/l 
 
 88. Factor ah{a + h) + bc{h + c) + ca(a + c) + 2abc. 
 
 89. A number consists of two digits and another is formed by 
 reversing the digits. If the sum of the two numbers is 99 and tlie 
 difference 45, find the digits. 
 
 90. Factor x* - x^ - Sx^ -|- 7x + 7. 
 
 91. Solve x--|-2j/-}-3z=4, £c-f-3i/-f-2 = 4z, aj-f23-)-3 = 4t/. 
 
 92. Find value of r-^ when x — —T~i- 
 
 93. Solve 49x- -f- 37i/ = 1230, 37a; + 49 ;/ = 1350. 
 
 94. Simplify u;"+*+'=xcc«+^-<'x.t''-''+<^xcc*+''-'», 
 
 95. If a = y + z-2x, b — z+x-2y, c = x + y~2z, find the value of 
 b^ + c^ + 2bc-'a\ 
 
 96. Find the remainder when a''-9a"* + llrt^-7 is divided 1)y 
 a -4. 
 
 97. Solve - + f = 3 
 a b 
 
 f +? = 5 
 
 1/ c 
 
 ? + '- = 4. 
 a c 
 
 98. A starts frt)m London and travels If miles per hour, B starts 
 8 liours after in the same direction at Ig miles per hour ; how far 
 will he travel before he overtakes A ? 
 
 99. Factor (x2 + r)^- 8^ Y. 
 
 100. Factor6.f2_i3^y^6y2^5^_5^^^1^ 
 
MISCELLANEOUS EXERCISES. 
 
 67 
 
 MISCELLANEOUS EXERCISES. 
 
 B. 
 
 1. Factor (he + ca + ahf - (6%^ + c V + a%''). 
 
 2. What is the least multiplier tliat will make .«•* - bj^ + 5a: - 1 a 
 multiple of x'^ - 4a:; + 3 ? 
 
 3. Solve '¥' = ^^±^ + -?^?- 
 
 4. 44a*-83a3-74a'^ + 89a + 50 is the product of two factors, and 
 one of them is lld^ - 7a - 8, what is the other I 
 
 5. A man has two farms rented at |7^ i)er acre and his total 
 rent is ^3,375. If the rent of the tirst was reduced to $6|, and of 
 the 2nd to $5.00 per acre, his rent would be $2,500. How many 
 acres in each farm ? 
 
 6. Factor xS^ 3a; + 1 + 2 X- !/ + 1 4- 3 ;/ + yK 
 
 7. Factor x* + 2a:ht^ - x^ + a^ + i\x - 9. 
 
 8. Find co-efficient of .^ in (.»; - 1) (;/• - 2) (x - 3) (:c - 4) (x - 5). 
 
 9. Resolve (x - 1) {x - 3) - (,c - 1)^ into factors. 
 
 10. Factor {a? + 6'' + 1 + ah + a + 6)'^ - {ah + a + h)\ 
 
 11. Extract the sq. root oi x^' - G..^" + 13./:^ - 14,- « + 10a-* - 4a;H 1. 
 
 12. Find H.C.F. of 3a;3- 13x'^ + 23.(-21 and iSj? + x' - Ux + 21 
 and what value of x will make both vaui.sh i 
 
 13. Divide l+^by 1-- • 
 
 14. Divide -i3|-i by -— -|-/- giving the ([uotient in its simplest 
 form. 
 
 15. Find the remainder when the divisor is .'-1-1 and the divi- 
 dend is the product of {x + 3) {x -f 4) \;x- 7). 
 
 1 1 
 
 16. Solve 
 
 ^ + :^ 
 
 a;+2 ' a;-MO x-f4 ' x-\-S 
 
 17. Extract the sq. root of (Ga^ -|- a - 2) (3f r ' 7'< - G) (2(/^ - 7« -I- 3). 
 
 18. Divide 20 into two parts so that the square of the greater 
 shall exceed the s(juare of the less by 80. 
 
 19. Find H. C.F. of 6x* -h 26.i» -|- lox^ - 1 Gx - 10 and 30.^'* + 13Gx'' -f 
 95a:2 _ 79^; _ (35^ 
 
68 
 
 EXERCISES IN ALGEBRA. 
 
 20. Resolve x* - 4x" + bx' - 20 into 3 factors. 
 
 21. A dealer adds 20% to the cost of an article to make the 
 selling price, but he gives a customer 10% discount from the 
 selling price, and then has a profit of 7oc. Find the cost price. 
 
 22. Find the value of ^-Jt+'^rll'- '•'"' . 
 
 6a;- 
 
 5x - 5 
 
 1 
 
 23. Solve ^'--^^Zl 
 
 9x+(i l2a;+8 12 
 
 24. Solve 3x - 2y = 13, 3// -2z- 16, 3z - 2x = 9. 
 
 25. Extract the square root of O.i-^- 12x'^ + 22.r* + xH12cr + 4. 
 
 26. Divide — + -- })v 1- • 
 
 l-a^l+a J' l-a l + a 
 
 27. Express (x^ - 3x^y - {3x - ly as the product of 5 integral 
 factors. 
 
 28. Simplify ^"•'-^"'^+^'-^» lZJ. 
 
 1 •' 7n' -2711" -4m +8 
 
 29. Fhid L.C.M. of o^ + 6a + 5 undo'*- a. 
 
 30. Factor 2abc + a\b + c) + b'^c + a) + c\a + 6). 
 
 31. A boy i)lucks from a tree a certain number of plums, an- 
 other ^ as many. They both have 5 times as many as a third takes. 
 All have 84. How many has each ? 
 
 32. Write down the quotient without actual division of x* - 4:x^u^ 
 + 4/ - x^ - (ixij - 9,/ by x' -x- 2(/' - '3ij. 
 
 33. Solve x-y + z = 5,3x + 4 1/ - 5,: = 13, x + ^ + 
 
 z 
 i ' 3" 
 
 14. 
 
 34. Solve '-z^zl + -^lz^-^^ _^-^^--^5 , ^-*^-n 
 
 35. Factor 200;^^ - llj; - 42. 
 
 3(). Find the remainder after dividing x* - 3.r + 7 by x-2. 
 
 ;{7. Div'uo (4x- - 4// + 7-:)' - (3.*; - 10;/ - 7^)" by 7(.'' - 2y). 
 
 3S. Write down the square root of (.«•'■' - 7)'^ + 24.''(,>'^ - 7) + 144a;*. 
 
 39. Siuq,lify ('-'-,+ "- + l) (-«^^-)^ _ill(iLl-'i> . 
 
 40. Multiply x-^ + 2ax + 2bx + a' + 2ab + li' by x + a + b. 
 
 41. A roll of cloth was bought at 66c per yd., ami another n>!l 
 'lb yds. longer at 60c. per yd., the two together coat $241.80. How 
 Uiany yds. in each roll \ 
 
MISCELLANEOUS EXERCISES. 
 
 69 
 
 42. Find the value of ^-I^l^;^^!^! when x = 2y. 
 
 43. Solve 3.f - 1/ + 2z = 11, 3;/ - 2 + 2a; -=\), 3z-x + 2y = 16. 
 
 44. Express in words the following algebraical expression : y{y- 
 l){>l-2){y-:i) + l = {y'-'3y+lf. 
 
 2(x+'l) 
 
 x+6 
 
 40. OUnpmy ^_^^2)(x+.^) (x+5) (.c-I)'^(x'-l) (j;+2) 
 
 46. Solve Ki^'^' + 5) + K'^'- - '">) = K-^-*' + + K^-*' " !)• 
 
 47. Solve (/ - 3(.^- + 1), 4.<; - (/ + 1. 
 
 48. The product of two numbers is 75, and the quotient of the 
 sum by the ditference is 4 times the quotient of the difference by 
 the sum ; find the numbers. 
 
 49. Snnphfy ,y_,„^3+ ^,^,,,.3 +„,.^^- 
 
 50. Show that (x + // + 2 + ((^' - {x -y-z + a)'' = 4(.c + a) (y + z). 
 
 51. Show that -^ ab{t> - a) +ac{a - c) + hc.(c -b)\- ^{h- c) = (a - b) 
 (c- - a). 
 
 ah+'2a" - 'M)" - 4l><- - ac - c" 
 
 52. Show by factoring tliat 
 
 53. Show that 
 
 •2a + Sb+e 
 i'ld'-Tlab- 12^y - + (ic- Ibc - c- 
 
 = a-b-c. 
 
 4a — 36 — G. 
 
 3a+46+c 
 
 54. Factor x^ - %•' ij - 3 </'' + 4yz - 2^. 
 
 55. Simplify (4.«' + 5;/ + 2)^ - l\{ix + 5y + zfz + 3(4x- + 6y + z)z' - z\ 
 
 56. Find L.C.M. of u{x + l), b{x + l)(x-l), <ix'' + 2x-S), d{x-' + 
 4x + S). 
 
 __ ,,1 X (I , X-h X-C .) /I ,1 , 1 \ 
 
 57. Solve .^. + ~- + -^= 2 (- +,-+- ). 
 
 68. A man bought sheep for $528, and having lost 10, and sold 
 20 that were diseased at $1.20 per head less than cost, he disposed 
 of the rest for .S4<)4, thereby realizing his outlay. How many did 
 he buy '( 
 
 59. Factor 42br + ix' - iiW - dc". 
 
 60. Simplify j:^,^-^:^- =^t- 
 
 61. Find the value of 
 
 i + 
 
 a-b 
 l + ba 
 a{a - b) 
 
 l + oA 
 
70 
 
 EXEHCISES IN ALGEBRA. 
 
 62. Solve a(x + y) + h{r - y) = 2a , y(a + 1) - x(a ~h) = 2h. 
 
 63. Show that the sum of the cubes of 2x-3y and 2x + 7y is 
 divisible by 4{x-\-y). 
 
 64. Factor (a' + a- 2y + {2a^ + ,( + '^).»' + a^ - 1 . 
 
 65. Solve ,. , +-S , ,. ^IH- 
 
 ix + a 2x+^n 
 
 66. At an examination A got 3 marks above 50% and B got 6 
 less than .'{3.'j ■' , and A's marks were twice B's, iiow many had each ? 
 
 67. If the dividend be .'li*-4..'H8.>''^-7u-+ ' ind remainder 34.'' 
 -30 and quotient o:*-'' + 5.«' + 17, hnd the divisor. 
 
 68. Divide (pq + m'f - (pa + qr)- by (p - /•) (q - s). 
 
 69. FindH.C.F. of 3.«,"' + 5r'(/ + 9a'V + ^'/^ + 6'/* and 2,>* + ox'^y + 
 5a;V - 3uy - 9(/'. 
 
 70. Sh<.w that U^'r^^Y - ^7 1 <J!±21S}^Iizm!Lz3) I ^ .'^'zl)! . 
 
 ^ 12 Z ' 1. 432 ' -256 
 
 71. Simplify (a; - af - (.»• - />)2 - {a - b) (a +h- 3x). 
 
 72. Prove that (« + 5)'^ -(<» +2>'' = 9(a + 5) (a + 2; + 27. 
 
 73. Solve :/; - 11(/-1, Illy - 9x = 99. 
 
 74 Simnlifv ("'-")Oi-a) (w-bU,i-h) (m-j^(n-c) 
 
 (r-h) 
 
 75. Express in factors ij.C.M. of 1 - 8.*' + 17.'-- + 2.i ' - 24.*'* and 
 l-2'x-13.i'' + 38.."^-24.f^ 
 
 7Vk Find H.C.F. of (ix^ - llx'^ - 37:^' - 20 and 2j- - 4x' - mc - 7. 
 
 r.f- o- IT '■'•i'lX* - V.iX" + l 
 
 78. The sum of two numbers is 57«)0 and the ditterence is ^ of 
 the greater. Find the numbers. 
 
 hrn ui i.\ i. 12a;+10a , n7a + 28x io i 
 
 79. Show that ^^^^ + \m+2x ^^'^ when ..• = 3«. 
 
 80. Factor 40./-' + ()!.*•// 84//''. 
 
 81. Find by factoring tlie H.C.F. of 2r<-' - 21?/- - 45o''' + <»/) + 62/)r + 
 (U- and .'!«- - 21//- ~ 45(.-' - 2((h + 62/jc + dar. 
 
 82. Divide (22..' + :•.</ - zy - a7x - 2y + 3zy by ox + 5// - 4^. 
 
 8:5. Find the remainder after dividing .*■■'- 0.1-' + 7,c - 9 1^- x + 3. 
 
MISCELLANKOUS EXKKC18ES. 
 
 71 
 
 84. Factor 45.r" - Ti^ - 'MOH. 
 
 85. Divide the sciuare root of ..•^ + 18.r« + 117jr* + 324x« + 324 by 
 
 80. Find L.C.M. of 8»'3 + 27, lHx* + .%x2 + 81 and 6x^-r)x-6. 
 
 87 . U •ix-2y = x + 2y - 1 , show that x^ + \f = 2xy + 4. 
 
 88. Write down the product of {x - 2>y - oz) (2x - S^y+z). 
 
 89. Factor8y'' + 18x!/-5i/'^-2.''-38i/-21. 
 
 90. Divide a- + (2ac - W^yx" + chi* by a - hx + cx\ 
 
 91. How much greater is the co-efficient of x in the product of 
 
 (x + 1) {x + 2) (x + ii) (.0 + 4) than in that of (x + 2) {x + 3) (x + 4)? 
 
 92. Find the vahie of 25a'^ + (a + 4/>)^ when 3a + 26 = 7, a + b^2. 
 
 93. Find the value of ;*•* - llx» - lla-^ - 13a: + 11 when x = 12. 
 
 94. Factor 56x-2 + S6xy - 20y' + 28x - 10. 
 
 95. By what must a* + a^h + a'^b^ + ah^ + b*' be multiplied that the 
 product may be <i^ -b^'i 
 
 m. Show that (x' + Gxy + ^y^f + (x^ + 2xy + 4 j/^)^ is exactly divisible 
 by x- + 4x2/ + 4j/^. 
 
 97. Solve 5ic + 2y-l = 3x-i/ + 14-ic + 19|/ + 6. 
 
 98. Write down the quotient of the sum of the cubes of a + 6 and 
 c + d, by a + b + c + d. 
 
 99. Solve 4x '- 6y - 3 = 7.'»- + 2 j/ - 4 - 3y - 2x + 24. 
 
 100. A farm was rented, ])art at S5.00 and part at $8.00 per acre 
 for $t)80, but if the rates had been interchanged the amount would 
 have been ^620. How many acres in the farm i 
 
KXKUOiSEa IS ALOKBKA. 
 
 MISCELx^ANBOUS EXERCISES. 
 
 r. 
 
 1. Write down the (luotieut with- ul aotiml division of {x + if)^-\- 
 3(x + ijYz + Six + y)z^ + ;;» by {x + »ip + 2(.i; + ijc. + ::'. 
 
 2. Find tliu fa-.tors of the quotient of 84./ ♦ - 5rw;»i/ - a^O^V - 
 G0.r|/* + l05;/* divided by 1y^-\-'Avji-'.\>,K 
 
 2x-\ 
 
 3. .Solve ~-~ + 4a; = 12+ ^ 
 
 .5 4 O 
 
 4. Simplify ii'^ + b'-\-c'^ -'■^ah-be-%ir. +,t{a Arh + c)-{h - cf and 
 divide result by a — h. 
 
 5. Factor l^{x' + >/)" + 40(.<;'^ + if)z^ + 25:«. 
 
 6. Without actual division find the remainder when r^-Sj-^ + O 
 is divided by .*; - 5. 
 
 7. Write down quotient and remaintier of ~- • 
 
 8. Simplify -±l}JlLLA±L . 
 
 * ^ (./;*+'••) (x«+«) {j;''+'') 
 
 9. Divide (x* - 1 )- 5(x - 1) l)y (.»•- 1)1 
 
 10. Divide(./j + l)(x + 2)(i*^ + 3) + 6})y u; + 4. 
 
 11. Solve -V,— .5 + roTj^ = /'? iv., , / ■ , \., • 
 
 12. Find the remainder when 2x^ -2x* + 3x^ - 7y^-hbx-S is di- 
 vided by .*' + 2. 
 
 13. Find the .S(iuare root of G7.c2 + 9x*-70x-3O.rH49. 
 
 14. Ex[«uid in consecutive powers of x the expression (1 -x + x'^) 
 (1 -.!;' + ;*•«). 
 
 15. What expression must be added to j."'' + 11j:"' +21 {x + l) that 
 it may be exactly divisible by x + (i 'i 
 
 16. Find all the factors of (d^ - 3a)'' - 2a^ + Ga - 8. 
 
 17. Multiply x(4x + 3//) - {x + 2yy by 44^; + y)-y{ilx- '3y) and 
 divide the product })y (3.*; - 4y) {-ix - 3*/). 
 
 18. Find co-eilicient of x^ in (x + 2) (x — 3) (x - J) (x -i- 8) (x - 9). 
 
 19. Factor (1 + x)'(l + y^) - (1 4- #(1 + x^). 
 
M18(!ELLANIiOUS KXKJ<Cl8Ka. 
 
 73 
 
 20. Simplify ^^, ^ ,. ,27»:Tri * 
 
 21. ^nuplify ^— ,y,-^^^j), - ^«., 
 
 22. Solve 7'+ 0|/- 7 1, 9.*--7!/ = 17. 
 
 23. Muj! 1 [.ly .,' + 4ar'» + 6e-' + 4j + I by j"^ - 3.i-"^ + .3x - 1. 
 
 24. Tf 3/) = .r + i/-HM .sh()wthat(/>-.r)34.,/>- «/)' + (/>-::/ = 3(/>-a:) 
 (p l/)(/'-4 
 
 25. Factor 6.i' + ir).' +1). 
 
 2b. Express an a HiiiLfle fraction ^■i^2x-'i^ x^^'^x^h'^ x*V*ix^l ' 
 
 27 . Factor {x - 3) (x + 1 )" + (x - 3) (.r + 2)^ 
 
 2H. Divide .;•' -\-y^ + x* + x^ + x"^ + I hy ..^ + ./;* + u"' + j-'^ + .»• + 1. 
 
 29. The batiki I discount on a sum of money at 5 ))er annum 
 is equal to the true di.sc.unt on a sum $50 larger. Find the sum. 
 
 30. Factor 2xy + 7' + «// + 21. 
 
 31. Factor x*-\- 4(;c - 1). 
 
 32. Factor (x 4- ;/ ' + 2xi/(± -x-y)-\. 
 
 33. Di vide '.r}'' + ^-^ + 11 .y .#•* + x + 1 . 
 
 34. Find the co-etticient <.f ..♦ in {\-x-¥x^-xy. 
 
 35. Write down the remainder of 2a* + 3a' + 4a'' + 5a + 6 divided 
 by a -3. 
 
 36. Show that 
 
 a + h-c ff-h+c A(l}-c)- 
 
 4(6 -P) 
 
 «_6+c (t + h-c a^-(h-c)- a+b e 
 
 37. Expand in powers of x, (1 - xY(l + x*'). 
 
 38. bimphfy - ,._7^y-gj^ " " 
 
 39. Find co-e .cii-nt of .'•* in (1 +.»)'. 
 
 40. Fin«l the remainder when x^ + fjx^ + qx'^ + rx + s is divided by 
 X — a. 
 
 41. Factor {x!" + x)' + 4(x'^ + x) - 12. 
 
 42. Reduce to its lowest terms -TTa^. -3a"*.£^0a^J^2^ " 
 
 43. Factor a''- 14a26^-h6\ 
 
KXEltCISK8 IN ALOEBHA. 
 
 44. Ruhf rart (,r 5)'' from (r 3) (.t - I) (..• 4 .3) (x 4- 1). 
 
 45, Show by factoring that '^ .>' + if)- + 2(x+ ij) (z+ti)- b{z + 11)* is 
 divisiblo l)y r+y- . n and >\rit« down tpiotiynt. 
 
 40. Show witliout dividing that (l+x + .'i.'-'H3x')''' + (l -.»+3x'- 
 ;ir')» iH divisiblo by l+.V. 
 
 47. Employ dotacbed co-efticients to divide jr'^ - lijc* + x* + x" - 3x 
 + 1 by ..-fl. 
 
 4«. S( ,1 vo (n + j'Y 4- (h + J-)' + (<- + xf = IX<( + r) (/) + x) («• + x). 
 
 4J>. Solve 
 
 2a?i'+2j;4-:i 
 
 j-i 1 
 
 50. Find the rt'inaindor without division when x^ -7x^(i-^fixa* + 
 15(r' is divided l)y x + tid. 
 
 51. Find the continued product of a' + d + l, a'^ + a-l and a* - 
 
 lV + ,i'^ + 1. 
 
 52. Simplify 
 
 x*+a-x" -b-x^ -a-b- . .r» «* 
 
 a;*+a!'j"'-4-«* 
 
 ^•'+a-' 
 
 C.J w If (2j-2 + .5j-+2)(j-'-3a!=-J-4-3) 
 
 o.i. Snn])lify , „ , ., „ , ,; ,„,,, .. , • 
 
 54. I f (<r 4- /' ') (.'■'••' + if) - (-?.'• + '>!/)- prove that f = | • 
 
 55. Sliow that (4.'' + 7;/)* - (.V 4- H»/)* is divisible by 7x + 15i/ or a; - y. 
 5fi. Resolve Ki.r' -81.»'3- l«j't4-81 into five factors. 
 
 57. If x = h + ('- 2(1, ii = r. + (i-2b, z^a + h -2c, find the value of 
 
 'j^+if + z^-3xiiz. 
 
 58. Show that ( « + h)^ + {a + cf + (u + dy + ( J + c)'' + {b + df + (0 + 1^)^ 
 = (a + ?> 4- + (/y^ + 2(< (' + b' + c' + (/-)• 
 
 59. Prove that (o + 'Ab)^ + {b 4r )•' + 8((t + [ib) {b - 4c) (a + 46 - 4c) = 
 {((+4b-4cf. 
 
 CO. Solve 5x + 2y + 'Sz= 13, 3x + 7y-- = 2, :*• - 2i/ + ^ = 5. 
 
 01. rV man is able to pay his creditors 25c. in the $ ; but if his 
 assets were 5 times as much and his debts rj of what they are, he 
 would have a balance of ^1,400. How much does he owe !■ 
 
 62. Write the co-efhcient of x^ and x^ in the product of Sa-^-Sa^^ 
 + 5x'^-llx4-13anda;5 + 9a;* + 7x3-lla:^-8x + 2. 
 
 63. If 'x+- = y, find the value of a^ + ^, • 
 
MlStKLLANi:ors KXIlKiHBlH. 
 
 75 
 
 64. Find the (liffHreiico of tlio H<iimreH of the hi','hoHt find lowest 
 of any three conhecutivct uuuibera in terms of the middle number. 
 
 65. Simplify 
 
 ■X 
 
 '^-7+i 
 
 <;<5. Factor Km' Uhf ~2x^ + 2xY-'dxy(S ■ x*). 
 07. !?»(j1vo 
 
 17 
 
 3 
 
 2 
 
 68. Solve ^-__^_-^ = ^^,-„— • 
 
 6t). Simplify {l - ^:,+J^,] I I + ,U'^hy 
 
 70. Divide (...'' - p-) (x* +p'x' + /»*) 1 .y (^- - p) {x' + px +p'). 
 
 71. Uu.solve 64.';'';/'-' - (/ - t>r)«M' + 4/^ into factors. 
 
 72 Find the ju-oduct of (r"' 4- .'{.''^ 4- r))' - (/■^ + [h-'' -nf and {x' + x 
 
 7:1 Find the co-eHiciunt of .»■■» in the product of l-2x + x' and 
 
 l + '2.i+.V- + 4.»;'' + 5..-'. 
 
 74. A 's money, twice B's and V> times C's = $190 
 lis " " C's " 3 " A's= 175 
 
 A's " 3 
 
 Bs= 176. 
 
 How much had each? 
 
 75. Extract tlio square root of x^ + {l + x'^) (1 +x)\ 
 
 76. Showthat(a' + o)(,r + ft)(.*- + c) = (a:-u)(.K-6)(x-c) + 2-J (a + 
 
 77. Multiply]/ - f ^y'l + l' 
 
 78. Find the sq. root of (2.c + l) (2x + 3) (2x + b) (2x + 7) + 16. 
 
 79. Solve -2^rr-+— 3i^-i 45":^" 
 
 80. If x* + 8*' -aa-^- 168.»; + 441 is an exact square, find a. 
 
 81. Divide (oc + hdy - {ad + bcf by (a - 6) {c - d). 
 
 82. Show that a' + a?) + 6-- a(a-c) + be = (a + 6) (?J + c). 
 
 •ix--<lx+5 4a;=- 5x4-7 
 
 I 
 
 83. Solve 
 
 3x-4 
 
 4«-6 
 
7() 
 
 KXEHOISKS IN AUilCHRA. 
 
 84. A number consists of two digits. If the left hand digit be 
 incri ised l)y 5 and the right diniinislied l)y 5 the original number 
 will be doubled. If these digits be transposed the result will be 1 
 of the original numl)er. Find the number. 
 
 85. l*rove that half the sinn of the squares of 
 
 x+a J a; -a 8n-x- , ■. 
 
 80. Simplify -_--^ - +~-^---- • 
 
 87. If 9x* + 24:X-'ij + ny'y'-Kfii^ + t/ be a perfect square, find n. 
 
 88. Find what value of d wi'l make <i- b + e-d{-bc -ad + bd- 
 m' + a'^ + //^ + c^ vanish when 4a -t- .,6 = (;, 3a + 4/> + l = 0, b + c + 4 = 0. 
 
 89. Factor 108,/^ - 1383,i-// + 4277 ;r. 
 
 90. Factor 4(;«' + 2)* - 37^'(^ + 2)-^ + S)x\ . 
 
 91. Find the H.C.F. of 21a;^ + :-;8..+r) and 129.»-'' + 221a- + 10. 
 
 92. Prove that (a; + 3)^ - (x + 2)^ is ecjual to 3.r-^ + 15a! + 19. 
 
 93. Divide by factoring a%b + e) + b%c + a) + c\a + b) + 2abc by ab 
 + (ic + b'- + bc. 
 
 94. Find value of 3.<;»- 160.k* + 344.c^ + 700..- - 1910r + 1200 when 
 
 . — f; 
 
 51. 
 
 95. Simplify ■{ {a + %f + 2{n + 36) (a - b) + (« - bf [- ■',<i-b\- \ 
 
 9o, Simplify 
 
 a^ -X" 
 
 «••' - x^ 
 
 97. Write down the [ji-oduet of iy^ + llh''' - 4j- -\d by Ox'-lSx'^ 
 -4.f + 15, 
 
 93. Find H.C.F. of 1 - .'• + ij + z- j-y + j/;;; -xz- xyz and 1-x-y- 
 
 z + xii + yz-i-^.z-xij::. 
 
 99. Factor 12«'^ - 132rt/; - 143ac - 1566c - 1446- - 12c''. 
 
 ,, 12.C+97 . 
 
 100. Solve ^:^7. =G, 
 ■ 1^ ' 
 
 4J-+81 
 10m ■ 
 
 15y - 17 
 
MISrELLANKOUS EXEHCISES. 
 
 77 
 
 i 
 
 ab 
 
 MISCELLANEOUS EXERCISES. 
 
 D. 
 
 1. Ups = qr, show that ^1- + ¥>-:^p>-><=.{p:+ , )\ 
 
 2. Find the relation that must exist among a, /^ «■ so that ,'■* + 
 (*,»''' + 6x'^ + (:,'' + l may be a complete scjuare as regards ,/•. 
 
 3. Find the value of x that H.."'' 3(l'''^ + o<'».' -39 may be a 
 complete cube. 
 
 4. Find the relarion between /> and c that y^ + '^<t.>''^ + l),>--{ r. may 
 be a perfect cube for all values of .»•. 
 
 6. Show that (a^ + h'^ + c~) {x'' + y' + ~P') - {ax + Jni + czf - (1r, - cyf + 
 (ex — azY + {a [I - hxy. 
 
 G. Under what C(mditi(ms is - + 7 + - = , . . > when a. h, <; are 
 not each eijual to zero{ 
 
 H ti 1 13a; -10 , 4a;+» "(a; -2) lax -28 
 
 7. Solve .-^^— +----— ^ =mr6^- 
 
 8. Find 4 values of a for which (m-^ -fare -35 is resolvable into 
 factors of the Hrst degree in x wliose co-efficients are integral 
 numbers. State how many more could be found by your method. 
 
 9. Find the values of c and d so that x^-\- I2.t'^ + 8,0^ + 0,'' + '^ may 
 be the sijuare of an expression in the form «»f x' -\-i)x-\-(i. 
 
 10. Find the value of p and q if '^x'' -V2x*if + 'M,-h/ ^Aj^y* - 
 pj'if-{-<[[l^ is a perfect s(piare. 
 
 11. li x = a-\-d, y=^b + d, z = e + d, then x'^ + y'^ + r.^ -xy -xz—yz = 
 a'^ + b'^ + c'^ - «/' - w - be 
 
 12. Show that if any integer be put for x in tlie expression x*^ - 
 4.';^-|-14,i^*-32x'' + 49,r--60x + 3() the result will be a square number. 
 
 13. If (6 + c)x = 'f, (c + rt)(/ = 6, {a+b)z = c, prove xz+ifz + X)i + 2xiiz 
 -1-0. 
 
 14. Write down the quotient of x^ -3x^y + '3x*if ~ x^i/^ - x'^ -S- 
 6x^ -12x hy x^ - x -xii-2. 
 
 15. Extract the s([. n^ot of (.'/ + -) - 4( j/ — ) • 
 
 IG. Prove the following identity : 
 + 
 
 + 
 
 
'8 
 
 P:XEU0ISES in Al.liEliRA. 
 
 .. 
 
 17. pA"t-raot thfi sij. root of (m - I) (m - 3) (m - 5) (m -7)4- 16. 
 
 IX. Resolve 9rr(.,-» + 1.2a/>'0 (4^^ + 2430.^) into four factors. 
 
 19. Sliow tliat (h(. -I- /(, + /' + <i)"- = {m + nf + {m + pr + (m + q^ + 
 {n+pf + in + qY + ip + qY - 2(m''+H' + p- + q'^). 
 
 '20. Solve - -f ,- +- - h{a + b + cf h{ ,"- + 'V + A") ' 
 a.r bx rx -^ ' - ^ hex acx abx ' 
 
 be ar "'' ^" '• 
 
 nh 
 
 ^(( ' b 
 
 22. Fmd value of (- -,,, + , J in + yr,- ,Zl) ' 
 2'A. Fiiul sq. root of (■'■-' + "'-' 2.'') ( 1 + J-J 4- 1 . 
 
 24. Simplify 2 (- -}- ^^ + ,. ) ,^. -^ -„y- • 
 
 25. Show that {x. + yY + {x - nY - 2(.r-^ - ,fY^l6x'y\ 
 2G. Find the s(i. root of ,.•* - .r'-hr" + 4r 2+- • 
 
 27. From the sum of the extremes of ^^ ; ^^y^ ; ^^ ; ^:p^„take 
 the sum of the means. 
 
 28. What (juaniity must be added to 9.r* -a.'3 + 4.V^ - 14.C + 25 to 
 make it a complete s(|iiare ;' 
 
 29. Factor {>t'^ + 4;( + 4 ).*•'' + (2<r + a - •))..■ + <>'^ 8a + 2. 
 
 30. If 2.)'-' - lO.'-^j/ + 25.o''ir - Rxi/ + '20;/^ is divisible by x'' - 'Sxy + 
 'iy'^ without a remainder, lind Ji. 
 
 31. Factor (3a''^ - 5« - 2).>;- + (^a^ + m + 2)r + - 1' + 2a. 
 
 32. Factor .*;« - / + 2x!i(x* + .<-hi' + ;/*). 
 
 33. Find the value of 4..'> + 9..'' -r),«,-- + 23..+() if 2,.;-^ = 3x-4. 
 
 34. Show that 2{d- + lr + r'-\-id, + nr-\-hc)-{ab + ac-{-bc)^{a^b^ 
 
 •''' "*" a-^b+c 
 
 35. Show that {2x + 3i/y^ + i2ii + 3,"}'^ + (2,: + 3.i;)-' + 2(2.r + 3(/)(2«/ + 2>z) 
 + 2(2(/ + 3;:) (2;: -f 3./,') + 2(2^ + 3.-; ) {2x + 3i/) - 25(^ + ;/ + zY. 
 
 36. Simplify 
 
 -^^^ ^"'^^ 2-3x + cT^ + 10+^=^- 
 
MISCELLANEOUS EXERCISES. 
 
 79 
 
 38. Find the value of a in the expression lOOcc^ + SOx fa so that 
 one of the factors of the expression may be 4 times the other and 
 the sum of the factors is 25x + 10. 
 
 21 fi SI 
 
 39. Extract the sq. root of IQx^ - 9Qx + 216 - ^ + j-, • 
 
 40. Solve 
 
 X--2.X x--bx+\ x^+1x~% a;M--c-12 
 
 a;^-3a;+2 aj'-^-fi.c+S x" + x-l'2 x^-\Q 
 
 41. Find an expression containing no higher power of x than the 
 first which added to x* + ^x^-\-12x^ + ^x+\ will make it a complete 
 square. 
 
 42. Find the value of a when the fraction ^.t^..^^^^^^,,,. 3^^ ^ admits 
 of reduction, and reduce it. 
 
 43. Obtain an expression which will divide both 4a^''^ + a.'« - 10 and 
 4a;3 + bx^ -3x- 15, if ^ = 2a + 1 = 7. 
 
 44. Find what values of ta will make 3mx"'' + (6m- 12)x + 8 a 
 perfect S(|uare. 
 
 x*+2x '^+x--7x-S _ x*+6x'>+2x"-16x-4 ^ 
 j?^s+3d:+5 "" x'^+lx+lO. 
 
 45. Solve 
 
 46. fennphfy ^^^zT)^:^Ti' 
 
 47. If {a + hy + {b + cy-t:<' + <lY=^4(ah + be + cd) then a=-^h = c = d. 
 
 48. Multiply and arrange in descending powers of x the expres- 
 sion {\+X + X^ (1 + J^ + X*) {1-X + x'). 
 
 49. Solve ig{x + 4) - ^^ ~^) = - " ^^ ' ^•«) " i(^ + ^)- 
 
 50. Factor x^ -\-ia-b~- i)x^ - (« ~b + ab)x + ab. 
 
 51. Find the co-efticient of x^ in (j -f 1)'. 
 
 52. Find the co-efficient of ..• and x^ in (1 +.»+j;0'' + (l -x + x^)'. 
 
 53. When a^ + b-==c\ find the value of {a + h + c) {h + c-a) (a + 
 c- b)(<i + h-c). 
 
 20X-+13X-21 I2x'^+x-m 22a!---H03x-f91 
 
 54. Snnpliry y,^;j^iQx--i\ ^ ■i4x--i7x-m l0a;''+49a;+49 ' 
 
 55. Find the factors of .i-^'" - (/•*" when m and n are positive 
 integers. 
 
 56. Find the conditions that x^ + bx'' -ax + b may be divisible by 
 both X - 2 and x - 5. 
 
80 
 
 EXEROiSES IN ALGEBRA. 
 
 57. Find the conditions that x'^ + 73c^ + ax + h may be divisible by 
 x + 3 and x-2 for all values of x. 
 
 58. If h — — = r h rr~ » prove a = b. 
 
 a-x a+x b-x h+x^ '■ 
 
 2 
 a* 
 
 o9. If H = -.prove -+ - 
 
 x-y x-z a-'i y z 
 
 60. Determine which is the jj;reater fraction, ,"^ or t— when 
 
 ° ' 4 + m 4-H 
 
 m is any positive number, and ?t any positive number less than 4. 
 
 61 . What must be the value of x in order that -—^^r— . ., =11 
 
 when a = 67 ? 
 
 a-+70aa;+3a:- 
 
 62. The first two terms of a certain jjerfect square are 64.*'^ - 64.i"\ 
 and the last two terms 14a; +f^. Find the square root of the 
 expression. 
 
 6."}. What number must be added to the product of any four con- 
 secutive odd numbers to make it a complete s(juare i 
 
 64. If ah + hc + ca = 0, prove that (a + !> + cf = <i^ + />=' + c^ - 'Sabc. 
 
 65. Show that x*^+i/ + {x + yy is divisible by j;'- + ,'■;/+*/- without 
 a remainder. 
 
 66. What is the least integral multiplier that will nrike 17^;'* - 
 68a;*i/ + 102xY-^8icY + 17a;?/* a complete cube ? 
 
 67. Show that the product of any four consecutive integers 
 increased by unity is a perfect square. 
 
 68. If |(6-r)+ t{r-~a)+'j{a-b):^0, prove i (,-,/)+ |(.,-3) 
 + l(y-x)^0. 
 
 69. It — 26;r" + "^^~" ' + •'«// =" ^•' '*'^''"' ^^^^ (" +^- '■) (^ + 
 
 c-/))(fe + o-rt) = 0. 
 
 2ac 
 
 70. If (rt^ - be) (b'' - ac) {c' - «6) = 0, show that 
 
 rt""''t^' c"^ a"b^c- 
 
 X'-y- xy 
 
 71. If-^ •/ =-^"and , 
 
 a-o 2 b-c 
 
 y--z^ yz 
 
 ,, Z--X- zx 
 
 , then — 
 
 J- ' c-a 1/ 
 
 72. If 3((<- 4- 6- + <-')= (" + '' + <•)% prove <t-/j^c'. 
 
 7ii. Find the co-etticient t»f .*•* in multiplying 1 +2.Af;i/;^ + 4u;'-|- 
 5a;* by 1 - 2.'' + :3^- 4.*« + 5a;*. 
 
MISCELLANEOUS KXERCISKS. 
 
 81 
 
 n 
 
 74. What is the least factor that will make x^ - 11.k^ + 40x-48 a 
 complete square ? 
 
 75. What is the least expression used as a multrplier that will 
 make x^-bx^ + bx— 1 a multiple of 5»'2-8u'4-7 ; 
 
 76. If x^ = 3ic - 4, prove that ;<;« + 45x = 44. 
 
 77. Prove that the product of the sum of the s(piares of any two 
 quantities and the sum of the squares of any other two quantities is 
 always equal to the sum of the squares of two quantities. 
 
 78. Prove that if the sum of two numliors be multiplied by the 
 sum of their reciprocals the product is not less than 4. 
 
 70, If x^j/ =z(x + y- ,-)^ prove (.r - zf = yz. 
 
 80. If X + !/ + = - ryz = 2, prove (1 - ,':)'•' = (1 - x//) (1 - xz). 
 
 81. If b(hx'^ + a^y) = a{aif + h'^x), \:>Tove bx + ay =nb find ay = hx. 
 
 82. If (a + h- c - d)x = cd - ab, prove (a + x) (b + x) = (c + .*•) (d f x). 
 
 83. If (a'^~bc)x + (b--ca)ii + (c''-ab)z^O and ;>■ + ;/ f,--0, prove 
 ax-\-by + rz = 0. 
 
 FA. If (2a - 3i/)v -= (^ - xf and (2a - oz)z = {x- yY then x + y + z = a 
 and(2a-3..>c = (i/--)l 
 
 85. If a = ^, 6 = ;;-^ r=^, then prove (ti«)(;t:)(S) = 1- 
 
 I 
 
 on 
 
 86. Show that (1 + x) (1 + ;.-') (1 +/*)... -to n factors = 
 
 87. Is x^ - xy + y"^ a factor of (x - yf - xy{x - ;/) (.»■' + !/2^ ? 
 
 88. Prove (x - yf - x^> + y^ =-- 5.i-i/(x' - .'•;/ + ,'/-). 
 
 89. li{x-y)z^ = c?,{y-z)x' = o\ {x-z)y^ = ¥ and (x-y)(y - z)(z - x) 
 = 3abc, prove ct^ + b^ + c^- 3abc = 0. 
 
 90. If x{l + y) = l and ]/(l + ;;) = ;:, prove - .: - i + x + 2x' + 4x^ + etc. 
 
 91. The H.C.F. of two ex})res:nons is a 7. and the L.C.M. a^ - 
 lOrt'^ + lla + 70, and one of the quantities is a'~12(r + 3o, what is 
 the other ? 
 
 92. Simplify - 
 
 x"*- V' 
 
 .»yn+l 
 
 x'-^y 
 
 93. Prove that if the sum of three (juantities is zero, then the 
 sum of their cubes is equal to three times their product. 
 
82 
 
 EXKRCISKS IN ALGEBRA. 
 
 94. If the sum of the cubes of three quantities be equal to three 
 times their jiroduct, then the sum of the quantities is zero. 
 
 95. Prove that a'^ — hc + h'^-nc + r'^-ab is not changed by sub- 
 tracting the same quantity from each a, b, c. 
 
 96. Show that the vahie of x^ + 1/ + z^ - 3xy:: is not changed if 
 X' - yz, y^ - xz, z^ - xy be substituted for x, y, z respectively. 
 
 97. Find the value of ;»; that will make both of the following 
 equal to zero, icHSxH I2x-Ui and y^ - 13x + 12. 
 
 98. If a + 6 + c = 0, show that \, „ + ■ , ■ :. h _ ,. =0. 
 
 h-c 
 
 c-a 
 
 a-b 
 
 99. Determine the values of }> «iid q that will make 4»/* - }2)/ + py^ 
 + qy + 16 a perfect square for all values '>f .»•. 
 
 100. If ax'^ + bx + c becomes 8, 22, 42 respectively when x = 2, 3, 4, 
 tind its value when x= - |. 
 
 101. Fuid the value of x that wi)! make x* + 6x^ + i^h'- + I'Sx 1 a 
 perfect square. 
 
 102. Detennine numerical values for A, B, C, 1), so that 2.*"'' - 
 13.r2 + 26.>; - 14 - A{x - 1) (x - 2) {x - 5) + £(x-\) (x-2) + C(x - 1) + 
 D, may be an identity. 
 
 103. If x + a is a connmm factor of x'^ + px + (( and x^ + lx + )ii, show 
 that'"-^ 
 
 = tt. 
 
 l-P 
 104. Find H.C.F. of 1 
 
 ?(( 
 
 - >H^ + vv" and 1 - m* — m^ - m?. 
 
 105. For what numerical values oip can the fraction -^f^A^^Z^t " 
 be reduced to lower terms ? 
 
 106. Show that xy + xz + yz is a factor of {x? - yz) {y' - xz) + iz^ - xy) 
 (t/' - .xz) + {z^ - xy) {x^ - yr.) and tind the other quadratic factor. 
 
ANSWERS, 
 
ANSWERS. 
 
 EXERCISE I. 
 ADDITION. 
 
 Page 1. (1.) 84a + 12/) -7c. (2.) 7ax'' + 21ax ~2hy-3i/ + o. 
 
 (3.) ,V* + rti^ft + |A'^. (4:.)2a+2b + 2d. (h.)'p + ,i + s. 
 (6. ) 3x2 - 5^3. (7. ) 9(1 - 7h + 4c. (8. ) 70(a6c + a%'c-). 
 
 (9.) 6x-3y + lbz. (10.) 2^ • 
 
 EXERCISE II. 
 SUBTRACTION. 
 
 (1.) 2a-2j: + 18. (2.) (t'-^- 14^/ + 2(y'' + 4;:'' + m. 
 (3. ) 16« - 14<^ + 14 CI/- - V3\/a'- h\ 
 (4.) i)--17(/-22)'/ + 99. 
 Page 2. (5. ) ((^^ + "■■'& + 9a/>'^ - 2/>». (6. ) x^ - \xy. 
 
 (7. ) 12(f + \0h - 22c. (8. ) x^ - Q.c'y + llxi/' - 6i/'. 
 (9.)aH« + TV (10.) -V'. 
 
 EXERCISE III. 
 ADDITION AND SUBTRACTION. 
 
 (1.) -4« + 27c^ (2.) 2 + 20X + 29A 
 
 (3. ) bx - 3fxyz + 11 1/ + 9z. (4. ) x? -a^+ if + b'. 
 (5.) ' (6.) c\ (7.) 0." (8) 6'^ 
 
 (9.) ?5'' + 26. (10.) (r + /)'^ + cl 
 
 EXERCISE IV. 
 
 Page 3. (1.) a-46 + 3c. (2.) 3a-2;r + c+l. (3.) 3c. (4.) c. 
 (5.)5^-.V. {H.)2a~b-il. (7.) -46. (8.; 0. 
 (9.) 6/> + b(/-<>r. (10.) a. 
 
 [851 
 
 I 
 
86 
 
 Page 4. 
 
 EXEROISES IN AI.OKBRA. 
 
 BXERCISB V. 
 MULTIPLICATION. 
 
 A. 
 
 (1 . ) ^"^ - 3.r'i/ + '^.>•^f - >/ + J-' - 2..;!/ + J/'. 
 
 (2. ) r.r'' I/-' -f z' + 'Xniz. (.'i. ) 1 - ^"^ ■ 1 2.. 
 
 (4.) :V2yHiA (r>.) <(*-2a^//' + M + 4(i/>r'-n*. 
 
 ((i.) ..« - 57^-H2<5(i/^- 1. (7.) 1 -X-. (8.) (x'-a«)^ 
 
 (9.) x2"' + 2x"»i/'» + iy'^". (10.) a''-^^ 
 
 B. 
 
 ..4 
 
 (1,) ^„^i, + r, + df. (2.) ,/« -4a* + l«a^-16 
 (3. ) 27x-=* + Sif + z' - 18.'!/.:. (4. ) 1 + \i' + ■:'' - 
 (5. ) ax, - a'x*. ( 0. ) a>' - 2a^/>* + />"• 
 (7. ) u:* - \/ - s* + 41/".^ - 6jy-;:;' + 4i/r'. (8. ) j-^" 
 (9.) d'-{mx-nx''f. (10.) a;«-^- 
 
 :>i/2. 
 
 C. 
 
 (1.) x'-'+!/". (2.) (6 -a). 
 
 (3.) (.'•■' + «/>)' - («•« + /^•'•)'- (") 0. 
 
 (4.) a-" - 2;>'V(/ + n^if - !/^ (5.) :>:' - - (<t - hf. 
 
 (6.) 3-3 - (a 4- /) + c).';^ + ("'> + '*'' + '>'')^ - "^'■• 
 
 (7.) Co-etticient of ,'• above m(ab + a<' + hr.) :.S>iS + 8y. - 
 
 2 + 3 X -2 = 2. 
 (8.) ,c^-(l+2 + 3).t'^ + (2 + 3+tJ).r-0-x='-6x'^ + llx-6. 
 
 (9.) x^ - 15x2 + 71x - 105. aO.) 1408. 
 
 EXERCISE VI. 
 
 DIVISION. 
 
 A. 
 
 (1.) 4a2 - 3a + 5. (2.) a'' - 2ax + x\ 
 
 (S.)x*~x^ + x''-x+L (4.) ..• + /). (5.) .r'-ax + b. 
 
 Page 5. (7.) 8x-3!/. (H.) x' + iSx' + llx + (l (9.) .r^ + j/». 
 (10.) (x + ay^-0e + */)/>-f6''. 
 
ANMWKKS. 
 
 B. 
 
 8; 
 
 (1.) a + 6 + 2r. 2.) .r* + Sx^ + 2. 
 
 (,S.) Hint (I'-^ + h^ c^ + Snhr is (livJHihle by <t + /».■, 
 
 {,,f + {'2"\^ - ('^ ' ' 18..(/;; is diviHi})k' by j-' + '2y - A~. 
 
 Rem)' ^.h'^-2xy + 3xz + iiyz. 
 
 (4.i (o + l') -;j(c4-rf). (6.) (l+X. (fi.) (x + b)(.r-\-r). 
 (7.) '2<r - 3M/> + 4fc2. (H. ^ rt* - a»+ 1 . (*.».) x - .n/ + */*. 
 (10. 'ivitlu in the (irdiimry way, and since renuiindcr in 
 
 zero, « = 2. 
 
 C. 
 
 (1.) a 20, 6 = 85. (2.) m-ofi. 
 
 (.1.) Apidv |)i'i u 7-^ . ett ., then - „ ' , „ . ■ > - - 
 
 4,,.'^ + 8r (/ + 7 !/' - 6x2 + 'Mfz + 9^'. 
 (4. ) .'^ - .'•* + 1 . 
 
 (5.) Aj»j»ly ditterencc of 8<iuaies. Result, «-- 6. 
 H>.)x~Ik (7.) 6 + c-a. 
 Paged. (8.) 8.'''''-22«a-4-15a-. {U.) 7x + ^z. {W.)u+b + c. 
 
 EXERCISE VII. 
 
 MISCELLANEors EXERCISE. 
 
 (1. ) a' 4- 4<t + 4. (2) x' - 7.<'"'//'- + >/. (3. ) hx -y-z. 
 (4. ) J'* - 1 0.,'^ + 9. (5. ) 4x' - Hx + 7. 
 
 (8.) 2an. 
 
 (0.) A-u + 2u^-4a». (7.) i+?f-? 
 
 (9.) a = 7. (10.)^^-Y^ + 7j • 
 
 (11.) Write 1st (9.. - - 6ax + a') - {x^ + 4<ix +4:a^\ 2nd 
 (9..'^ + Cidx + f<0 + (x' + 4:ax + 4a'). Sum unci differ- 
 ence, etc. 
 
 (12.) .r + 1 4- p, • (Ki) x'' + 3x + l. 
 
 (14.) Perform the divisicm and remainder nuist be zero, 
 etc., r^^a(i+pb-2ab~a'^p + a^, s — bq-b'^-apbi- 
 a'h. 
 
 (15. ) X* + x' + 1 + -\ + 7. • (16. ) - 26. (17. ) a« - 6« 
 Page 7. (18.) a---- -1, 6^0. (19.) j, + |. + ;i -^,- 
 
 (20.) u = 5, 6-3. (21). X - i • (22.) m = 2. 
 
^1 
 
 <l^ 
 
 "^.^^ 
 
 .a>. 
 
 
 IMAGE EVALUATION 
 TEST TARGET (MT-3) 
 
 m 
 
 f/ 
 
 /. 
 
 
 
 / 
 
 
 1.0 
 
 ;siM iiM 
 
 :!f 1^ 12.0 
 
 i.l 
 
 y5 lllll-L4_ mil 1.6 
 
 6" — 
 
 
 V^ 
 
 '<^> 
 
 W 
 
 
 ^ 
 
 ^m oS 
 
 
 O 
 
 fjy^//;'/. 
 
 J 
 
 Photographic 
 
 Sciences 
 Corporation 
 
 4h 
 
 
 <^ 
 
 ^<b 
 
 \ 
 
 23 WEST MAIN STREET 
 
 WEBSTER, NY. 14580 
 
 (716) 872-4503 
 
 
 ^ 
 
 o^ 
 
88 
 
 EXERCISES IN ALGEBRA. 
 
 (23.) f^- 6, ^*-ll, .'= -6. 
 24.) Divide in (n-diuHiy way and remainder must be 
 
 zero ". n^(('^ - iio'^ = a'^ or n'^ = ?< + 1 . 
 (26. ) a* + 2rt* f Aa^ - Sa^ - 16a - 32. 
 (26. ) a;« - 3x^ + O.r^ - 27;>^' + 81 .^^ - 243.r + 729. 
 (27.) ((=-1. (28.) 10. (29.) ;i,-^ + 2a; + 3. 
 (30.) 2.*+ 3. 
 
 EXERCISE VIII. 
 
 HORNER' S METHOD OF DIVISION. 
 
 A. 
 
 (1.) a' + 2a+A. (2.) 5x' + llu; + lL 
 (3.) .c3-3x'^ + 3x + l. (4.) 3x*-2x-3-x + 5. 
 (5. ) 2x' + 3x - 1. (C.) x^ - xy + f. (7.) 2xH x + 1. 
 (8.) ir*-4*=^ + 6..-^-4x' + l. 
 (10.) 3x3 - 2.i;2 - 5x - 3. 
 
 (9.) x^- 29^3 + 47^2 -25. 
 
 Page 8. (1.) -7. 
 (5.) 101. 
 . (10.) -7617. (11.) 0. (12.) 0. 
 
 B. 
 
 (2.) 15. (3.) 
 (6.) 20. (7.) 
 
 -205. (4.) -G400. 
 1. (8.) 1. (9.) 943. 
 
 EXERCISE IX. 
 Ii;VOLUTION. 
 
 (1.) a2 + 2a?> + 6^ 4^(2 + i2a^ + 9//' ; 
 
 (2 .) d^x^ + 2obx + })' ; 225x2 ^ 420.x (/ + 19())/ ; 
 
 ^a^ 8 , 1^\ i= 4. 2 . ^\ 
 SSx--"^ ^ '^ <da- ' y'- ^ x'^ 
 
 (3. ) i^ - %ih + ¥ ; a'^ - 4a6 + 46^ ; 
 
 4x^ - 24x1/ + 36*/^ ^'-2+'S- 
 
 91/ ^^ 
 
 (4.) 49x* - 70xV + 25y* ; |. - 2 +; 
 
 .2> 
 
 ■9 "" 6 "^16' 16 
 
 6.1- -'j/2 16y« 
 
 5 ' 25 
 
 (5 . ) a'^ + 6H c2 + 2tt6 + 2(tc + 26c ; 
 
 4x2 + 9,j^2 ^ i(5.i + I2x J/ + ICfs + 24i/2 ; 
 l + 2x + 3x2 + 2x3 + x*. 
 
)e 
 
 ANSWERS. 
 
 89 
 
 (6. ) Ida' + 25^2 ^ 3^,.-. ^ 4,)^.^,, ^ ^g^^^. ^ ^^^^^ _ 
 
 4+9+16+3+4+6' ^+^ + l2" + 3+| 
 (7. ) r/-' + h'' + r^ + 2(«/) - 2ar - 2hc ; 
 
 «2 + 62 + c-^_2a6 + 2ac-26c; 
 a'^ + //^ + '-' - 2(t/> - 2ac + 2hc. 
 
 (8.) x^ + |)/Hl-.«v + 2x-j/; 
 
 a;* - 2(tx-3 + ((t^ - 2b)x' + 2ahx + //^. 
 /Q \ X* 2.r'' , 4a;2 , , 
 
 (^•) -9+-3-+-3-+^+l; 
 
 9.t-*-2.r3- 171^.2 + 2^ + 9; !!i! + »!il_2 
 
 9/4= 4w- 
 
 (10. ) a V + ?,2,/ + ^4 + 2ff A- + 2a6,n/ + 2hc'y ; 
 
 a;" H-' »= •>« o- <^.. 
 
 ^-' + ^'4.1= I !? 4. 22 ,2?/ 
 
 ?/ 
 
 EXERCISE X. 
 
 Page 9. (1.) .T-H3a'V + 3,«yH?/^;x''-3xV+3a;i/-j/3.,.3 + ^3 + ,3 + 
 3x^,/ + 3^^'^ 4 'd.nf + ^xz^ + 3j/s^ + 3(/'^;^ + Qxyz ; a;^ + 
 i/« - z^ + Zx-hj - ^x^z + ^xy' + a.-;^^ + 3^^v2 _ 3 ,•,„ _ g^^^ 
 
 (2-)mH^ + 3m+|; m^* 
 
 
 — T- — 3m + - ; 
 
 (3.) (t3 _ ^,3 ^ ^3 _ 3^^7^ ^ 3^^^, _!_ 3^^«^ _^ 3^^^,, _^ 2^^^ _ ^^^^ _ 
 
 6a6e ; 0} - W - c^ - 3(f -^t + 3a6'' - 3a'^(; + ^ac^ - 36^c - 
 36c^ + Gabc ; 1 + 3a; + 0*'^ + 1x} + 6a;* + 3^-^ + .r« 
 (4.) 4(a + i)^ (5.) a\ (6.) (7.) 
 
 (8.) 2(rt-c)(6-rf). (9.) 2(1 + 3a*). (10.) 27.r'. 
 
 EXERCISE XI. 
 
 MISCELLANEOUS EXERCISE. 
 
 (!•) (2.) 0. (3.) 
 
 (4.) x2 + i/ + c'^ + 2.i;|/ + 2.r~ + 2i/,t. (5.) 2('l + 3a;*) 
 
 (6.) {a+hf. 
 
 (7.) Factor expression u-" - 8j/''' - 27/ - 18.ri/.:; and o..e 
 factor \fi x-2y- 'Sz, which is ecmal to zero. • a:' - 
 8i/3-27z' = 18.np. 
 
 (8.) =0. (9.) 8x3. • (10.) 0. (11.) a\ 
 
 (12.) 8(x'^ + |/^)l 
 
90 
 
 EXKRCIHii'S IN ALGEBRA. 
 
 FACTORING. 
 
 EXERCISE XII. 
 
 Page 10. (1.) (a + b + cd)x; (a+p) (x + y + z). 
 
 (2.) {a-b)(x-y){x + y); (l-a)(l-6). 
 (3. ) 3h\:^a* + lla'b - 4/>^) ; (1 - x') (1 + x^ +p + q). 
 (4. ) 3ac%oh''c + 4rt^fe - 7c') ; (2a' - I) (x" - 1). 
 (5".) (4x+ii)(a + b); {n-l)(a + b). 
 (6.) {2x + 2f)(a + b); (x-3)(x~y). 
 (7. ) (ax - b) (ex + d) ; (u-^ - a') {x' + ax + a'). 
 (S.)(l-a + b)(l+p + q). 
 (9.) (l-b)(a-b + c); (a^-l) (a + 1). 
 (10.) (a + b-c)(d-e+f). 
 
 EXERCISE XIII. 
 COMPLETE SQUARES. 
 
 (l.)(a + 4^)^ (a + 7by. (2.) (a + 18)'; (x~5ay. 
 
 (3.) (xy-Sf; b'^lx-oy)\ (4.) (mV + l)'^; (4rx' + 2)\ 
 
 (o.) (a-^Y; (1-A.xy. (^.) (^x"" + 2^jy ; (C^-lf. 
 
 (7.) {xy-'-Qf; (a + b + c+d)\ 
 
 (8.) {x + y + zY; (Ax-' + ^yy. 
 
 (9.) (3a -26+40)2. (lo.) (3x + 2y-z)\ 
 
 Page 11. 
 
 B. 
 
 (1. ) (^x!" - 4i/s)^ ; (a - 6 + cf. (2.) 0. 
 (3.) (2a'^-3& + 4c)2. 
 
 (4.) (.--- + — + ^j . 
 
 Note. — Question shovild be — tt— • 
 (5.) (26 + 3c-l)^ (6.) {x- l + l)'- 
 (7.) i^ + q + r-sf. (8.) g--7;36t/'. 
 
 (9.) r2a'^-3a + 4)'^ (10.) (a' + b"" - c^f. 
 
ANSWEHS. 
 
 91 
 
 C. 
 
 (1.) -{ 2{a + h) + '^(c + d) y^ (2.) {2a-h + cy. 
 
 (4.) Multiply second expression by 2 and add to first, etc. 
 
 (5.)a«-aS-i7a* + "''^'- 1"^"' 
 
 ■4« + , 
 
 (6.) (3a + 2)2 (a - 3)'^ (2a. - 1)1 (7.) (f + 3 - f )' 
 (8.) Multiply out and re-;irrange, etc. 
 (9.) (.e'-2xy + yy. (10.; (2-^-£)^ 
 
 EXERCISE XIV. 
 DIFFERENCE OF SQUARES. 
 
 0\2 
 
 (1.) (2x-Sy) (2x + 3y) ; (I2x-17y) (12x + 17y) ; 
 (4x'^-l) (4,*;''' + l). 
 
 (2.) (2a - 6 - c) (2a - 6 + c) ; (4x'+ */ - z) (4x + y + z) : 
 (3r/i + 2)1 +p) (3m + 2m - j?). 
 
 (3. ) (200) (198) ; (x - y+ ;;) (x + y- z) ; 
 
 (a-36 + c) (a-6-c). 
 (4. ) (x' + 1/2 + z^ + 2xz) {x" + y' + z^- 2xz) ; 
 (a-b + x + y) (a -b-x- y). 
 Page 12. (5.) (b + c-a + d) {b + c + a-d) (a + d-b + c) {a + d + 
 
 b-c); (a + b + r) (u + b- c) {c + a - b) (c -a + b). 
 (6.) (x«-i/) {x" + y-) ; 16(l + a-) (1 -;.•) ; 4(a + c) (b + d). 
 (7. ) (x' + y' + z") (x-^ + 1/2 + z' - 2xy - 2xz - 2yz). 
 (8.) lo(x-2y)(x + 2y); 3(9x' - 4.y') {9x' + 4y^) ; 
 
 {l-2ab'')(l + 2ab^). 
 (9.) (3a-56 + 4c)(-a + 6-4c); 
 (a' + a-b' + b){a' + a + b'-b). 
 {10.) {x + 2z)(x-2y). 
 
 B. 
 
 (1.) 7x-5y + z. (2.) (x-' + yy-zK 
 (3. ) (a^ + b' + c' + d') (a' + U' -c'~ d'). 
 (4.) Factor dividend. (o.) 840. 
 
 Apply difference of squares to 6, 7, 8, 9 and 10. 
 
02 
 
 EXEUCISE.-^ IN AUiEBRA. 
 
 EXERCISE XV. 
 EXTENDED APPLICATION OF (x±yy AND x^-tf. 
 
 A. 
 
 (!.)(;*'- "^'Xy + 2i/2) (:r2 + 2xy + 2y^) ; 
 
 (x' - 3x- 3) (x^ + Sx - 3) ; (x' -x + 1) (x^ + x + 1). 
 (2. ) (lOx^ + 4x + l) (K).*'^ - 4j- + 1) ; 
 
 (x' + 3..' + 7){x'-3x + 7y, (a' + 3ah- b^) (a' - 3a/> - 6^). 
 (3.) (2a2 - 5a& - 3b') {2a' + Mb - 3b'') ; (3x^ - a;j/ + i/) 
 
 (3j;''^ + i^'.V + ?/'0 ; (i«''^ - 4xiy - /) (x"^ + 4xy - y'). 
 (4. ) (m' + Amn — n') (m^ - 4»/i?i - 71^^) ; (x*-x^ + l) 
 
 (x* + a;2 + 1 ) ; (c'^ - ac + a^) (c'^ + a/- + f t^). 
 (6. ) (a' - 4((l> + 8/>'^) (a' + 4<(b + Sb'') ; (26a^ - 5a + 1) 
 
 {2oa' + 5(t + 1) ; (o- - bab + 3b'') {a' + 5ab + 36^). 
 
 (G.) {3<(''-ab + ^) (3a' + ab + ^-^) ; 
 (2x^-1 -3) (2x^+1 -3). 
 
 Page 13. (7.)(.^-f + ^^)(x^+f4-;^); 
 (x'^-5x + 25)(x''' + 5x + 25). 
 (8. ) (4a' - 3<ib - b'') {4a' + 3ab - b') ; 
 
 (x^"* - 4x''"(/'» + 8)/'*") (x'-^'" + 4x"»)/'" + Sy""") ; 
 (x'^-3x + i)(x'^ + 3x + l). 
 (9. ) (4m' - 2mn - 3n') (4?n2 + 2mn - 3n''). 
 (10.) -{ (,t + yy'-3z(x + y) + z' y -{ (x + y)' + 3z(x -\- y) 
 + z"-', 
 ^ (a -f oY - c(a + b)-c'\- -{{a + b)' + (-(a + b}- c^) J> . 
 
 B. 
 
 (1 . ) (3a'' + 3a?; + 2b') (3r»2 _ 3a/> + 2¥) ; 
 
 (x' + x + 4)(x'-x + 4); 
 
 {4x' - 6xy + 9(r) (4x' + Gxy + 9?/'). 
 
 ■ (2.)(r'"'+i)(C+"''+3); 
 
 ne ~ r2 ■" 9 / Vl() "^ 12 ''" 9 / ' 
 
 (3. ) (a' - j'-c'- 2br) (a^ -b^'-c'^- 2bc). 
 (4.) ^x^-2x(^i^-z) + 2{y^z)'y 
 
 ^ x-^ + 2x(y + :-■) + 2(y + zf y ; (a' + 3^2) (3a' + b"^). 
 
AXSWKRS. 
 
 9d 
 
 )■ 
 -n 
 
 '■)• 
 
 n. 
 
 (5.) (J..-f.UM(l-U-')- 
 
 (6.) 4(r»'' + 5(t/> -2//0 (/>' + 5rf/, - 2a-). 
 
 (7.) ■\Aa'-ha{h-c) + 2{b-cy)- -^4a» + 5a(6-c) + 2 
 
 (8. ) -{ (^-^ - x// + ff - 3(..;» + ?/>) + (x+ yf y ^ (x^ - xy 
 
 (9.) {a' - 2ab -f 5//^ {5a' - 2ab + b'') ; (LV - x-i/ - 3v^)(2;r'-i 
 xij ~ 3if). 
 
 EXERCISE XVI. 
 
 TRINOMIALS. 
 
 A. 
 
 (1.) (x + 2) (x + 6) ; (x + 4) (,x + 5) ; (a; + 37) (a; + 10). 
 (2.) (.*' + 40)(.c- + 49); (x- 13) (.--14) ; (.,• - 25) (.• + C) 
 (3. ) (,. + 20) (,. - 4) ; (,: - 26) (a- - 62) ; (x - 40) {x + 3). 
 (4.) (5?; + 4) (3,.- + 1) ; (3a' + 2xj) {2x - 3*/) ; 
 
 (4c-7a)(4c + 3u). 
 (5.) (^• + i)(^--i); (a; + f)(cc-f); (a;-l)(x-}|). 
 (G. ; (,i- + 12) {x + 21) ; {x - 99) (.«■ + 7) ; {x - 48) (x + 11 ). 
 (7. ) (3.. - 7i/) (7x 2;/) ; (x^+ i) (r^ - |) ; (x- - |) (. 
 (8.) 13x(13//). (9.) \ 4(,f + 2)^'-x'^ ^ -^ (x + 2y 
 (10.) -^(a-^)*"-!! ^-^ (a-6)'»-33[.. 
 
 + 
 
 + 
 
 ^)- 
 
 ■11M(« 
 B. 
 Page 14. (1. ) (8x - 9) (9^ - 8) ; (4.t - 5) (2x 
 
 9a;2 }.. 
 
 -7). 
 
 f>2). 
 
 (2. ) (3.« - 4//) (8x + ^) ; (5./; - 1) (2x' - 3). 
 
 (3.) (15a; + 99)(a; + l); (4x- - 3) (3a; + 7). 
 
 (4.) {2a ^W) (3a - hb) ; (4;:; - 5x) (8,-; + 4ic). 
 
 (5.) Multiply by 4 times co-efficient of first term thus— 
 4 X 4132*^ - 4 X 413 X 606»j/ - 4 x 413 x 299*/^ then 
 add (606//)2-(600)/y^ .-. we have difference of 
 two .squares - 1^826^; - GOG;/)'' - {9t2%y)\ Factor 
 in ordinary way and divide result by 4 x 413, = 
 (59.« + 23|/) (7x-13w). Second part (17a; + 8y) 
 (12a; - 25)/). 
 
i)t 
 
 EXRIUJIHKS In AI.fiEHRA. 
 
 (6.) (5..- + 151) (<>,.• 140) ; (i\.,+:>:i) (rxr+w)). 
 (7. ) (!.•;..• 4;»r>) ((;.,■ '.17 > ; (7,.-^ 1,;,-)) (Sr - 1«;9). 
 
 iH.) (<;,.• - 111) (7.. ■+ 107) ; (8.M-I(M0 (12y-01). 
 
 (J>.) (17.v + 2ir))(2.r-14;i). (10.) (7r/ -437) (4a + 191). 
 
 EXERCISE XVII. 
 POLYNOMIALS. 
 
 (L) (4a;-2i/)(5.>; + %-2) 
 (3.) (x-6y){7~2x-:iy). 
 (5.) (x-3y)(x + 2ij~4::). 
 (7. ) (3a: + 2!/ - 4,^) (2.r - 3j/ + 5^;) 
 (8. ) (ll(t -b- He) (5a - 06 + 2c). 
 (9.) (2a-3fe + 4c)(3a-7/>-c). 
 (10. ) (3m -n- br) {m + n + r). 
 
 (2.) (2a -56) (3a + 46 -3). 
 (4.) (r + 5;/)(3a- + 4// + 2). 
 (0.) (3x'-2//)(G.^--4*/ + 34 
 
 B. 
 
 (1.) (7a; + 6i/ + 8)(a;-y-2). 
 (2.). (5a;-5j/-22)(4a,- + // + 4). 
 
 (3. ) {Ax + 5 J/) (5a; - 4y + 7). (4. ) {x + 3*/) (x- - 4 ./ - 5). 
 (5.) (3x-2i/-2.:)(2..;-3;/ + 4;v). 
 Page 15. («;. ) (2a - 56 - 7c) (2r< + 36 + 3c). 
 
 (7. ) (5.«' + 4;/ - 6) (3x - 1y). (8). (5a - 46 - 2) (a - 36). 
 (9. ) (6x - 4 J/ + 3) (3a; - by). (10. ) (5a; + 4 */ - 6) (4.« + 3 </). 
 
 C. 
 
 (1.) (a-36)(4a + 76 + 4). (2.) (3a; + 4.y-8;:)(2.x-5y + 6^). 
 (3.) (2a- + //4-7;;)(.c + 2i/ + 3,;). (4.) (3.f + 5v)(8x--y + 4). 
 (5.) (3.v-4]/ + ,-;)(a; + i/ + ,':). 
 (G. ) (2a; + 3m - As) (a; + m + 3«). (7. ) Am + 3p- 9n. 
 
 («•) . (9.) . 
 
 (10.) Factor in ordinary way (8x- - 3j/ + 0,~) {2x-by+8z). 
 Then ^ llie simi = ()ne (]nantity, ^ the diiierence 
 
 ■{Xw otlier 
 
 (5.,.-4// + 7;)^-(3.*' + ^-~)^ 
 
AXSWKUS. 96 
 
 EXERCISE XVIII. 
 APPLICATION OF j'^±y\ 
 
 (1. ) (a + h) (a^ - ah + fe') ; (a + x + y) (a' + 2ax + x^- ay - 
 
 ^y + y'^) ; (m + w + jo + n) (m + nf - (m + n) {p + y) + 
 
 (?' + '/)'. 
 (2. ) 2(wi'-^ + n') (m^ + 5m2w2 + n«) ; (a^ + 1>') (a* - a»fc-^ + h% 
 (3.) (a* + />0 {a*" - o^)* + />') ; (a^ + />») («'" - a'Jf + />'") ; 
 
 (2a + a/;)(4a'-^-Of(/> + %0. 
 (4. ) (x« + y>) (x^' - jt^y^ + iy6) ; (Sx^ + 8 (/«) (25x" - 40:r' i/« + 
 
 64(^«); ^ (o -;>-<•) ;- ^ a2 + a6 + ac + 6H26c-|-c2 )>. 
 (5. ) (2a; - 4i/) (4^-2 + 8:/-// + IGy^) ; («« - 6") (a'« + a«6" + 
 
 6") ; (ic - (t + 6) (x'-^ - 2ax' + a» - 6x + a6 + 6*). 
 
 (6.) (7.) (9.) (10.) Use ^^^', etc. 
 
 Pagre 16, (8.) {x + af -h{x + a)-\-lA 
 
 x±y 
 
 EXERCISE XIX. 
 GENERAL EXERCISE IN FACTORING. 
 
 A. 
 
 (1.) (x + y){ax + ay-bc); (5jt> + 24) (3j3 - 1). 
 (2. ) 2a(26 - 2c) ; {a-b-c-2) {a + h + c). 
 (3. ) (2x + 3// + z) {X + 4*/ + 3:;) ; {x' + 4y'') (x' - y''). 
 (4.) (b-c)(x + ay; {2ai-2h + l) (a + h + 2). 
 (5. ) {x + y) (x - y) (u- + .r // + ,/) ; 
 
 (a - 1 - 6) ((('^ - 2a + 1 + tt6 - 6 + 6'^). 
 (6.) (a^ + 62) (c^ + d') ; (x'^ + 5;*^ + 4) (a;'^ + 5a; + 6). 
 (7. ) (..■ + !/) (a;2 + xy + >/) (x' - x,/ + r) ; 
 
 (a;'^ + l)(c«^ + *-!). 
 (8.) (a-l) (a'-a + l); 
 
 write exjiression x^ + 1 + 4a'''' + 5a; + 1 factor by i)arts ; 
 
 {x + 1) (a'-'' + 3;,' + 2) ; (x + 1 ) (x + l){x + 3). 
 (9.) (..' + 1 ) (.>' + 2) (.' + 3) ;(.'-- 1 ) (.,; - 2) (x - 4) : 
 
 (a'-2)(.r 3)(.,'-4). 
 (10.) (,. + l)(.,.-2)(,.' + 3); (a: -2) (a- -4) (.. + 5). 
 
 (.^-l)(.c; + 2)(.«;-3). 
 
96 
 
 KXKUn.SKH I>f ALfJKHUA. 
 
 B. 
 
 (1.) (x + 2)(x + :\)(2x + l); (x + l)(x + 2)(3x + 2). 
 
 (2. ) (x + 1 ) (.'Ir- + 2.1- + r.) ; (x + 1 ) (x + ;{) (2;*; - 1). 
 
 (3. ) {2x 4- 1 ) (2x - 1 ) (x + 2) ; (M.r + 2) (3u; - 2) (x - 5). 
 
 (4. ) (x + 2) {x - []) {iix - 5) ; (a + 2by. 
 
 (5.) . {(I) (x-l)(x + i){x^-px + q). 
 
 (7. ) 3a/>c. (8. ) (x + 3) (..■ + fi) (.*•'' + lb- - 2). 
 
 (9.) (x - 1) (x + 1) (x'^ - 10). (10.) (x + l){x- 1) (x - 2). 
 
 EXERCISE XX. 
 H. C. F. 
 
 A. 
 
 Page 17. (i.) 2(a-x); a + h. (2.) x-a. (3.) x-7. 
 
 (4.) a; -12. (5) x^-2. (6.) x-2. (7.) 2x + 3. 
 (8.) 12a;'^-5. (9.)ft-l. (10.) a^(3a + 2). 
 
 >il 
 
 (1.) a; + G. 
 
 (4.) a; -3. 
 
 (7.) x + S; 
 
 (10.) x»(a;-l)(a;-2)». 
 
 B. 
 
 (2.) 7a' - 2y. (3.) cc' + 2x1/ - ■»/. 
 (5.) 3u;'^-2. (6.) x + y. 
 : x= -3. (8.) a = 6. (9.) x-l. 
 
 EXERCISE XXI. 
 L. C. M. 
 
 Page 18. (1.) ()x\3x-l) ; (2.) (x + 2) (x + 3) (3x + 2). 
 (3.) (:x-l)(x + l)(x + 2). 
 (4.) (x + ^) (x + 1) {x-2) (x + S). 
 (5.) (rt2-l)(rt2_9)(„4-5). 
 
 (0. ) (ic + 3) (x + 4)(x + 4) (x + 5). 
 
 (7.) (.«; - 1) (u- - 2) (.. - 3) (.. - 4). (8.) (aHl) (a«-l). 
 
 (9.) (uj^-i/OM-^^ + a-'y + ■?/*). 
 
 (10.) (.r-3)(.,--8)(x + 8)(.f + 9). 
 
ANHWKH8. 
 
 97 
 
 EXERCISE XXII. 
 (JENERAL EXKUCISE li. C. F. AND L. 0. M. 
 
 (I.) H. C. F.=a-1; L. C. M. .»»-5aH7«'-a-2. 
 (2.) H. 0. F.-(.r+l)(.'' + 2); 
 
 L. C. M. (.r+1) (.r + 2) (.r + .'J) (.'• - 2). 
 Note — (J>ue.sti<)ii .shoiiid be w^ + .!•'', etc. 
 (8. ) (.r' + 5u; + (}) (x' + Ix + 8). (4. ) a -^ 12. 
 (5. ) .* 20. ((). ) a ^- 1 2, t -- 12. (7. ) <* = 1 0. 
 (8.) />-2. (9.)f= 114. (10.),,-^*). (II.) nhx\ 
 Page 19. (12.) w-28. (l.'J.) 4ax ; %x and 2<ix ; 4l>x. 
 (14.) «— {); other expression i»" + 2. (lf>.) 
 (16.) . (17.) . (18.) x-' + dx + d. 
 
 (I».) . (2(».) 
 
 (21.) (.T + 1) (;i!4-2) (:*; + :i) (x - 7), .-. a- = 7 to make each 
 vanislj. 
 
 (22.) H. C ¥.=x~ 1, .'. .7—1 to make each vanish. 
 
98 
 
 EXKKCI8B8 IN AI/JKHKA. 
 
 FRACTIONS. 
 
 EXERCISE XXIII. 
 Paere 20. (I.) "— • ?— — . (*/)''—■ " 
 
 (^.)a + h + r; ^-. (4.)^'= 1. (5.) f ; 
 
 fix X 
 
 /^ \ (a~iy . a-Zh 
 
 (8.) 
 
 2a + 4 
 
 (7.) 
 
 a;-3// 
 
 (9.) 
 
 (a-l)(a-2) "^"'^ (x-1) (:i-x) 
 
 EXERCISE XXIV. 
 
 (10.) 
 
 221 - .{Ox 
 14 
 
 (a!«-l)» 
 
 Pa«e21. (4.)|^. 
 
 (!•) 'tS^^^^ (2.) a (3.) ^^-^^ 
 
 (5.) 
 
 (8.) 4a' -9x'^. (().) 
 
 (x - 2a)s 
 2ffl(a«+/>')2 
 
 3x+l 
 
 05.) 
 
 (a^-b'^y^ 
 
 "^ • (7)0 
 (10.) X. 
 
 EXERCISE XXV. 
 
 av ab+ae+bc ^ .„ . a^+x^ 24xj/ 
 x-3 
 
 0='-x8 ' 9x'^ -4i/2 
 
 2a-'f«f2+afe»-6i 
 a(a--b^) 
 
 (5.) 
 
 (6.)0. (7.)^:- (8.)1. (9.) a. (10.)^/;ii^, 
 
 EXERCISE XXVI. 
 
 Pagre 22. (1.) 1. 
 
 (o \ ^±3: . (2a+3) (4a+5) .„ 
 
 ^ •>'6-a' (3a+4")(5aT6)' V^'-' ^ 5 ^• 
 
 (4.) 
 
 8«« 
 a*-x« 
 ax 
 
 X* -y« 
 
 (•^•)1- (C-)~|-- (7.) 
 
 X'-'j/-' 
 
 2a6 
 
 (8-) -x-i^^- (9-)i. (10.) 0. 
 
ANHWKFiH. 
 
 99 
 
 ■24 
 113 
 
 EQUATIONS. 
 
 EXERCISE XXVII. 
 A. 
 Page 23. (1.) a; = 7. (2.) x-16. (.'J.) a; =15. (4.) y = 2 . 
 
 (6.) a! = 3. («.).r = 8. (7.)a;-13. (8.) a: = 28!' 
 (9.) a; = l«. (10.) .1-10. 
 
 B. 
 
 (1.) x-3. (2.);r = 5. {•.\.)x: 
 
 (4.)r--107. (5.) ..•..7ij. («.) .r = 2f (7.) .r-H. 
 Page 24. (8.) x- - 3IJ (9.) .r:^7. (10.) u: = 8. 
 
 C. 
 
 (1.) a; = 20. (1-.) a^= -2. (3.) x = 4, (4.) a; = 8. 
 (5. ) u' - 4. ((i. ) T = 2. i7.)x = 3. (8. ) u' - 5. 
 (9.) cc = J. (10.) x = 8. 
 
 D. 
 
 (1.) ae«2. (2.) x = 2. (3.) ic==7. (4.) a;=4. 
 (5.) x = S. 
 
 Page 25. (fi.) x=7. (7) x^^^^^^^^. (8.) x= -2. 
 
 (9.) u;-l. (10.) x-= --H. 
 
 E. 
 
 (1.) a; =4. (2.) .«• 
 
 2A. 
 
 (3.) x = ^ 
 
 cd-ab 
 
 ac 
 
 / A \ Itt Ct" - I) - 
 
 a+ft-fl-rf 
 
 (6.) a; = i ; . 
 
 rtft 
 
 ah 
 
 a-h 
 
 (5.) j' = (tfec. 
 (7.)^=-/>. (8.) X: 
 
 m + » 
 
 */i 
 
 (9.) x- = 4a. (10.) x-^' 
 
 F. 
 
 (1.) :c = ll. (2.) a;- -21. (;j.) x-24. (4.) ,-^5. 
 Page 26. (5.) x- = 7. («.)x-l3. (7.) .«-10. (8.) .<• H. 
 (9.) x = l (10.) ,'^ -2. 
 
100 
 
 EXEIUJIKKS IN ALGEBRA. 
 
 (I 
 f 
 
 (3.) 
 (5.) 
 
 (7.) 
 (9.) 
 
 Page 27. (10.) 
 (13.) 
 (10.) 
 (18.) 
 (20.) 
 (23.) 
 
 Page 28. (24.) 
 (27.) 
 (30.) 
 (33.) 
 (35.) 
 (37.) 
 
 EXERCISE XXVIII. 
 PIU)BLEM8. 
 
 22 miles. (2.) $180 fcr liorse, $HX) for burrgy. 
 
 A §^93.50, B .1?280.r)0, C !5«1]22. (4.) 4^ liours" 
 
 !^3200. ((J.) 240 yds. long, 80 yds. wi(fe. 
 
 A $142.50, B $47.50. (8.) 15 at $38 and 8 ac $50. 
 
 $15.00. 
 
 $0. (11.) $800, $3200, $1000. (12.) 50 yds. 
 
 $1.60. (14.) $20000. (15.) $750. 
 
 90 head. (17.) 18, 22, 10, 40. 
 
 40 and 35 bags. (19.) A $2542, B $2422, C $2430. 
 08. (21.) $11100. (22.) 182 and 10. 
 
 A $048, B $472, C $410. 
 
 $18000. (25.) $2400, $1000. (2<5.) 11 horses. 
 
 41 a lbs. (28.) 09 and 81. (29.) 144 sq. yds 
 $1050, (31.) 84. (32.) 18x12 ft. 
 
 10 and 24. (34.) A $70, B $120, C $190. 
 10 vols. (30.) $(550, $750, $050, $450. 
 24000 men. 
 
 EXERCISE XXIX. 
 
 Pa^e 29. (1.) r, = 7 ; // = 2. (2.) c*' = 7 ; 7/=3. 
 (3.) ;. = 7; ?/-3. (4.) ^' = 3; ,/ = 5. 
 (5.) u' = 5; // = 1. (6).i. = 90; (/ = 72. 
 (7.)j- = U>; yr=24. (8.):»'-12; (/ = 12. 
 («•) ■>' = !; II--1. (10.),r==18; 7/= 10. 
 
 Note- Question should be r + - =8. 
 
 3 5 
 
 (11.) :*=00; // = .30. (12.) .r = 12; y^S. 
 
 (13.) x^a + b; ,j.-a-h. (14.) x 
 
 iii"-n- n--m- 
 
 ati - hill 
 
 (17.) X-^-h; If = 2. 
 
 » - >n am - n 
 
 «,-i ; y 
 
 (15.) .• = 
 
 (1().) .; 
 
 a-l 
 
 am -tin ' 
 
 _'''■ . .„ '"' 
 « + '> ' ^ "^ a^-b 
 
 (18.) .r^2; y^\. (ID.) .,...2; ,/-4; .^0. 
 
 (20.) ..^ -I -y^i- ::^0, (21.) .,.:{; „^\ . 
 
 (22.) .r^l; y.-.2; Z = 3. (23.) .:^3; .,=^5; z 
 
 -1. 
 
A NSW Kits. 
 
 101 
 
 Paere 30. (24.) a-lO ; y = Q ; z = 0. (25.) x-^ ; y= J^ ; z = \. 
 (20.).r=-i; i/ = i; . = 1. 
 (27.) a- = 2; |/ = 1 ; .~=--4 ; p-3. 
 (28.) a- = 1(5; |/ = 7-7r); 2 = 5-5. 
 
 (29.) x^r, ; !/=3 ;~=4' 
 
 (30.) ^■ = — ; !/ = -2-; '~=^^- 
 
 = 8, 
 
 (4.) 
 
 (7.) 
 
 Page 31. (8.) 
 
 (10.) 
 
 (13.) 
 
 (15.) 
 
 (17.) 
 
 (20.) 
 
 Page 32. (23.) 
 
 (25.) 
 
 (32.) 
 (35.) 
 Page 33. (30.) 
 (37.) 
 (38.) 
 (41.) 
 
 EXERCISE XXX. 
 
 17 yds. ; 13 yds. (2.) | ton ; 1^ tons. (3.) 45. 
 
 GOc; l()c. (6.) $1.00; GOc. ((5.) lo ; 25. 
 
 A lOOc, BGOc. 
 
 $48 = cow, $96 = horse. (9.) 8 and 15. 
 
 $180 and $120. (11.) 3, 4, 5. (12.) 8, 12, 18. 
 
 A = $1.00, B-$1.12. (14.) 31 and 23. 
 
 John = $22, Tom = $2r). (16.) 41 and 7. 
 
 72c. and 40c. (18.) 35 and 65. (19.) 24. 
 
 3 
 
 (21.) 40 and 90. (22.) 3, 
 
 40 and 65. (24. ) A - $232, B = $332. 
 
 A-$31, B = $27. (26.) jV (27.) f^ 
 
 fandf. (29.) 26. (30.) 75. (31.) 69. 
 
 7 1 and 4^ hours. (33.) $5000 each. (34.) 35. 
 
 72, 64, 56, 48. 
 
 $540 and $360. 
 
 30 and 50, and 70 and 20, or 60 and 20, and 40 and 50. 
 
 12 sheep, $40. (39.) 10, 22, 2C>. (40.) 2Js., 2s. 
 
 3, 5, 8. (42.) $3()0 and $600. 
 
 (43.) 80 and 120. ( : i) 48c. and 40c. 
 
 MISCELLANEOUS EXERCISES. 
 
 A. 
 
 Page 34. (1.) y^-4x + ll. (2.) 0. (3.) j^-6x+8. 
 
 (4.) (..-I) (..■-3). (5.) 16.n/. Hi.) ~4ab. 
 
 (7. ) 2.r. (8. ) ((/ + b) (a - 2). (9. ) x'' + Sx"" - 153. 
 {h).) »,^ \ h\ (11.) 43. (12.) .»'' + H;.-!/»7!/-. 
 (13.) al,{ii+2h) {2(1 +l>). 
 (14.) x{:ix + 2ij); 5/»(3(r-2/> + 3f). (15.) x-y. 
 
102 
 
 EXERCISES IN ALGEBRA. 
 
 (16.) 
 
 (19.) 
 
 (22.) 
 
 Page 35. (25.) 
 
 (28.) 
 
 -47. (17 . ) a^ - b' - --" + i . (18. ) abc(^^ -3b + 2c»). 
 
 $70. (20.)m'-n^-3?riH(m-n). (21.) |^- 
 (8..' + 2:^) (x - 2). (28.) 10 - 8./;. (24.) x - 5. 
 (x + 4ii + o)(;x + y). (2().) 0. (27.) 12r»-146. 
 (4.r - 11) {7x - 8). (29. ) x = 7. (30.) 60 and 40. 
 28a. (32.) -2. (33.) 94. 
 
 (31.) 
 
 (34.) (ax -ay) (ax + ay). (35.) 
 
 (37.) 
 
 (41.) 
 (44.) 
 (46.) 
 
 (48.) 
 
 Page 36. (49.) 
 
 (53.) 
 
 (57.) 
 
 (60.) 
 
 (62.) 
 (64.) 
 (68.) 
 
 (71.) 
 Page 37. (73.) 
 
 (75.) 
 
 (1.) 
 (3.) 
 (4.) 
 (6.) 
 
 (10.) 
 
 (14.) 
 
 (17.) 
 (18.) 
 
 Page 38. C-O. ) 
 (23.) 
 (26.) 
 
 (38.) 
 
 
 a + h 
 
 X- -4 
 
 (36.) x-2. 
 
 X* 
 
 (39.) ;^^ (40.)(x + 2)(.: + 3). 
 
 4. 
 
 1. (42.) ;r^ + 3.T + 5. (43.) 4. 
 1150 and .^120. (45.) {x - 1) (;i: - 4) {x + 1) (x + 4). 
 (47.) ic^ + t/^ + «'- 3x1/2. 
 
 3x + /y 
 
 Zx - y 
 
 (2cc-3i/ + z)'. 
 
 9. (50.) a(a'^ + &'0. (51.) 0. (52.) a' = 4. 
 a« - 1 . (.54.) X = 7. (55. ) d'h - .0. (56.) 74 
 -2i/. (58.) a- = 7. -"^ A„„i„^-.v^ 
 
 (59.) App]y^-,56(x + j/) 
 
 x-y 
 
 (61.) rt = 65. 
 
 a;- -2a;+3 
 
 (4a; - 15^) (6.r + Qy). (63. ) 2(m2 + (f) {x^ + ]/'). 
 
 14. (65.) a- = 7. (66.) -1. (67.) a">-l. 
 
 x = 7. (69.) 0- = 3. (70.) (a- -4) (a; -5) (.-^ + 11). 
 
 A - $160, B = $400. (72. ) (2.r - 11) (a- - 5). 
 X = 10| . (74. ) (/>i -n + k-I) (m -n-k + l). 
 (d - h) (rt + m + 1). 
 
 B. 
 
 (2.) 
 
 2a;'' 
 
 46. ,^., , 
 
 "^ '' X*+X' + l 
 
 x^ + (a + l> - i')x'- + {ah - ac - hc)x — abc. 
 
 x^ + 10.r^ - 47.'' - 504. (5. ) (^1'^ + c«9 + a^ + a^ + l. 
 
 ^^;^. (7.) .-2^. 
 
 (50 
 
 (8.) h:ach$10. (9.) 
 
 a+x 
 
 u'-7. (11.) -2bc. (12.) u;- 3. (13.)^. 
 72. (15.) 4. (16.) 0. '^ 
 
 Examine for complete square a^. 
 ,,-•4- //-' + ,.-' _ 21,,. ^,fi,_ „c_ (^] t)_) 2xy{x'' + if). 
 
 1 >»f tiist, 3 of .second. 
 
 .'• + 3. (24.) x^-H. 
 
 16//»-27r'-36(/^(4(y-3;s) 
 
 (21.) 0. (22.) 
 (27.) xy. 
 
 4{a-+b-) 
 (a -6)- ' 
 
ANSW'KRS. 
 
 103 
 
 (28.) 
 
 (29. 
 
 (33. 
 (35. 
 (37. 
 (38. 
 
 (41.: 
 
 Page 39. (43. 
 
 (4t;.; 
 (49.; 
 
 (50. 
 
 (54. 
 
 (58.; 
 
 (GO. 
 
 (61. 
 
 (63. 
 Page 40. {m. 
 
 (67.; 
 (C8.; 
 
 (69. 
 (70. 
 
 (71. 
 (72. 
 
 (73. 
 
 Multiply first e(| nation by <i, second by h, third 
 by c, etc. 
 
 I (30.) x = h. (31.) 0. (32.) ^:^^' 
 
 (m + q + n- p) (in + r/ - /(. + p). (34 . ) ,*• + - • 
 
 (x + y + a) {X + II + h). (36.) 3 + 66. 
 
 v^ - bax + la'K 
 
 m=-510. (39.) x = 10rt. (40.) 
 
 
 (42.) w. 
 
 (44.) 
 
 x+l 
 
 (45.) 
 
 X'-x-XI 
 
 Second, ^^^—2^; + 2. \--. , 
 
 . (47.) -30. (48.) l-rW. 
 x'~xy + y\ (ii) (x'-.r^,/ + y*){x'-jcy + y') 
 (x'^ + xy + y'^). 
 
 39. (51.) 
 
 1-// 
 
 (52.) x*-4.«;H16. (53.) -8. 
 
 ^:- (P^-)'^- (5«.)8. (57.) 
 
 a- -46^ 
 
 a 
 
 27y'' 
 
 i,3 
 
 2a 
 
 (l-4a^)(H-a) 
 
 a(a - 1) (a + 1) (a + 3) (a - 6). (62.) ^" 
 
 3x+2 
 
 C. (64.) 
 
 5a;+l 
 
 (65.) 
 
 (74.) 
 (75.) 
 
 {x 2y + u) (x^ + 4y^ + x'^ + 2xy + 2)/s - xz). 
 (x + 2i/ + z) (x^ + 4y'' + z' - 2yz - xz - 2xy). 
 (2a + 36 - (•) W + 96'^ + 0^ + 3/n; + 2uc - Qnh). 
 (2a - 36 - (0 (4<t2 + {)6' + c- - 36c + 2ac + 6a6). 
 {x-\-2y- 1) (iT'-' + 4)/" - 2x[i + ;r + 2;/ +1). 
 (ic - 2|/ - 1) {x^ + 4(/- + X + 2.;,-*/ - 2y + 1). 
 (:.' + l)(..' + l)(./:~^2)0r-3).' 
 
 Hint.— If there is a binomial factor the co-efticient 
 of X is unity, and the second term nmst be ± 
 one of the factors of 105. Using the remainder 
 theorem, the expression vanishes when 1, 3, -^ 5 or 
 - 7 is put for X, :. factors = (a- — l){x- 3) (;x + 5) 
 (x + 7). 
 
 Write {x-'-7xy + 22{x'-7x) + 120, etc., {x-2) 
 (x-3)(.,-- 4)(.i--5). 
 
 (.*■ -S){x- 5) (x + i){x + 8). (76.) 
 
104 EXERCISES IN ALGfiBRA. 
 
 {11 .) it' +h'' - c:'- - (IK 
 
 (78.) Write oxpmssioii {ir -hcf ~ {a' -he) (h'-ac) (e^- 
 oJ>) <.r (rr - hr) ^ {a' ~ be)' ~ {Ir - ac) {c' ~ ab) \- + 
 (f - '"•) ■' (/'' - ^<cf - (<^^ - ab) {a' - be) \- +(c' - ab) 
 ^ (,'i _ al>y _ (,t^ _ be) (// - ,,r) \- = a(a' - hr) -> (a» + 
 b^ + c^ - Sabc) + b{b' - ,((•) („•■* + h^ 4- o3 - 3,j6c) + c 
 (c" ~(ib) )-, etc. 
 
 (79.) Write expression a* + lOx^ + 2bx' - 8(x' + 5x) - 
 
 33=^(x' + 5x - 11) (x-' + ^x + 'A). (80.) 
 (81.) (r<-^-//0(a-4/r). . (82.) m. 
 (83.) (2<r-.,y^(a-.-)2. (84.) ^•=-.110. 
 
 (86.) Note.- Question sliouldljoay-^ + G?/"-;, etc.,.-. factors 
 (x + 5m + ^hi) (x + m - 37(). 
 
 (80.) a,'« + ^; + i. (H1.)Q(a^b)(a' + ah + b'). 
 (88-) . (89.) a;'^ + «l (90.) li=6h 
 
 EXERCISE I. 
 EXAMINATION PAPERS. 
 
 Page 41. (1.) 96. (2.) k (3.) 4*. (4.) 12. (5.) 21. 
 
 (0. ) 3.r'' - 2x' - 5.*; - 2. (7. ) (m - n)' -(p- qf. 
 (8.) a« + a*/>^ + />8. 
 
 (9. ) {a - 36) (a + 26) ; (<«' -i- 6'' - 5((6) (a^ + 6^ + 5a6) ; 
 (5x + 4]/)(3,« + 4|/). 
 
 (10.) Apply principle, difference of square. 
 
 EXERCISE II. 
 
 \x 
 
 (l-)-^- (2.) (l + a-6 + c)(l-a + 6 + c). 
 
 (3. ) a-''^ + '\f -^-z^- xy -xz- yz. (4. ) , 
 
 ^'- ) ^y ' (^0 (^^'^ + ^fO- - («(^ + &C)^ 
 
 (7.) (}ix + 2>j){2x-3if); (:>c' + y*)(x^-xy + ,/); 
 
 (2a + 36 + l) (a + 2/> + 2). (8.) -1. (9.) |+| 
 (10.) (a-b)(b-c){c-a). 
 
 EXERCISE III. 
 Paere 42. a.) Ih. 
 
 (2.) Reduce each fraction to a mixed number, hence 
 x = 2. (3.) A - $840, B = |G00, C - $840. 
 
ANSWRnS. 
 
 105 
 
 (4.) Put in form of fraction and eanci;!, —x^-xy + y-. 
 
 (b.) 2x'-'3xy + 7if. (Vk) x- + :h-+\. 
 
 (7. ) 4(./^ - xy + >f) (:>•' + .«•»/ + I/-') ; {h - c + o) (b-c-n)', 
 {2a~x)(n+2x). 
 
 (8.) x^9. (9.) u;-lll. (10.) 
 
 EXERCISE IV. 
 (1.) X. (2.) a;'^>--l)(x + 2)0r + 3). (3.) c = l, (ii) No. 
 (4.) . (5.)ay^+l + ^..- 
 
 (6.) Factor denominator and cancel, 1. 
 (7.) Apply ''^;J;;J', etc., 2a* + 10a'b'' + 2h\ (8.) x-20. 
 (9.) a; = 7. (10.) Factor dividend, (x + y-zf. 
 
 EXERCISE V. 
 Page 43. (1.) Apply ''-l^\ etc. (2.) -2b. 
 
 (3.) 74. (4.) 13. 
 
 a;-' +?/•■' 
 
 (5.) (a + by-c*. 
 (6.) Apply 
 (7.) -14. 
 
 , etc., {x + ay^-b(x + a) + b^. 
 
 (8.) (ic-l)(.c + 2)(.«-3). 
 (9.) 4(x'H]/Hs^). (10.) 8. 
 
 EXERCISE VI. 
 
 (1.) a= -4. (2.) x^ + 4.x^^-lQ,x. 
 
 (3.) Write expression (a;'^ - ;c)"'' - (2)\ apply * ~'^ 
 
 x-y 
 
 , etc., 
 
 (ic2 - « - 2) (x* - 2^3 + 3x'^ - 2.*; + 4). 
 (4. ) (9.K^ - 5) (4.x- + 3). (5.) a;3 + 24u'i/(a' + 8j/) + 512i/. 
 (6.) x^-~^' (7.) 2(a4-6 + c). 
 (8.) 8 first-class. 
 
 EXERCISE VII. 
 
 Page 44. (1.) 4. (2.) (a + />)(a-c). 
 
 (3.) Apply principle difference of .sojiares, 7x + y + 2. 
 (4.) 2{a-b). (5.) a = 4. (0.) 1. (7.) x-5. 
 (8.) Reduce fractious tu mixed numbers, u; = 3. 
 (9.) 15 and 20. (10.) x = 7. 
 
106 
 
 EXERCISES JN ALGEBRA. 
 
 
 EXERCISE VIII. 
 (1.) x = 5. 
 
 (2.) z(y-x) (y + j-~z), (.'»;- tt) (x - M ; (x - 4a - 46) 
 (x + a + b). ^ a/ ^ f 
 
 (3.) 0. (4.) G0(x-l)(.,- + l)(a;-2). 
 
 (8.) Multiply and <i + l=0, :. «=-l, b + a + l = • 
 (^•) Apply ^, etc. ilO.)^{iy-{iY. 
 
 EXERCISE IX. 
 Page 45. (1.) a-^ + u^^ + i + I +i . (2.) a«-/A (3.) 
 
 (4.) a- = 17. (5. ) Apply ~±^l^, etc. , x' - 4xhjz + 7yh^. 
 
 (a -by 
 
 (6 5j-\' and .38jV past 4. (8.) ^ ^. 
 
 (9.) ^•«-.o« + 2.r'-'-2. (10.) u.-^ + (a + 6 + c)x'^ + (afc + rtc + 
 bc)x + ahc, x^ - (w. + u +p)x'^ + (mn + mp + np)x - 
 mnp. 
 
 EXERCISE X. 
 
 (1.) -(4a6 + 4ac). (2.) (x + iy. 
 
 (3.) x^-x+l + l+^^. (4.) Barley oOc, wheat 65c. 
 
 (5.)x-4. (Q.) a-^ + ab + b'. (7.) x- 
 
 (8.) ,;= «''^ . (9.) ,„ 1 
 
 ^ ^ ah-ac + bc ^ -' 
 
 af(i* - d) 
 
 n 
 
 a- c 
 (10.) x = 2. 
 
 EXERCISE XI. 
 Page 46. (1.) a + x. 
 
 (2.) Write the expression —^ x 
 
 l + x-'^ +;*;*, etc. ^"-^ 
 
 1 - X" 1 + x« 1 - «*« 
 
 1+. 
 
 1 
 
 -X' 
 
 (3.) x = 95. (4.) a + b + e. (5.) .!•= - 6, |/ = 11,;2= -6. 
 
 (0.) (x^-m) (x + n). (7.) ^r + 27. (8.) 
 
 (9.) 
 
 a+ab+l 
 
 (10.) 
 
 
A NSW K us. 
 
 107 
 
 I -4b) 
 
 = 0, 
 
 EXERCISE XII. 
 
 (1. ) Factors are (x + 1)'^ (x - 2), .•. other factor x-2. 
 
 (2.) . (3.) . (4.) =400 gallons. 
 
 (5.) ^^ (C.) 2x^-7x-3. 
 
 (7 . ) (^- + 2 + 2a - '(/) (x + 2 - 2a + y). (8.) y = 1. 
 
 (9.) !8!7r)2. 
 
 (10.) Write expression x* + Mx"^ + 729 + 6x(x'' + 27) - 
 27.'y^ - {x' + 21 f + ^x{x' + 27) + 9x^ - 3(u-^ = (.^^ + 
 27 + 3x)'' - (6.>3)^ = {x' + 9x + 27) (x* - 3x + 27). 
 
 'i/'2l 
 
 f ac + 
 
 EXERCISE XIII. 
 
 Page 47. (1.) 4(2x^ - 1) (2x^ - 3x - 1). (2.) 
 
 (4.) u;(3x + 4)(x-6). (5.) G4 miles. 
 (7. ) (6x + 1) (3x + 2) (3x + 4) (2x - 1). 
 (8.) a*-bnH)c. + l^lf-c\ 
 
 (9.) 
 
 4a:-'-15a;+13 
 
 (10.) 
 
 
 . (3.) ar = 3. 
 
 (6.) «">-!. 
 
 65c. 
 
 EXERCISE XIV. 
 
 (1.) 2x^ - 5x + 1. (2.) 9(a + 2x) {a - 2x) (2a - x)\ 
 
 (3. ) 20 cattle. (4.) (x - a) (x - l^. (5.) (i/ + y) (x - y). 
 
 (6.) h. (7.) Ai)ply^4:«''^*«-;«' + «(2'^-3c) + (26-3c)='. 
 
 /a \ 2+3a; 
 
 L+5a; 
 
 (9.) H-/- + ,2_,^_,. 
 
 ^2. 
 
 (10.) 3ai 
 
 5ff' 
 
 Page 48. 
 
 = -6. 
 
 (1.) «- 
 
 ^• 
 
 EXERCISE XV. 
 
 (2.) (x + l)(x-l)(x + a + l)(x + a-l). 
 
 m~y 
 
 (3.) (a + ?>)(<^-' + a/> + n (4.) . (6.) ^^ 
 
 (0.) The denominator =^{ac + h(iy + {ad-hc>)\ which is 
 greater than the numerator, etc. 
 
 (7.) ■!/* + 2//=' + 3!y'^ + 2/; + l. (8.) {x+p) {^ + m + n). 
 
 (9.) 14,17,20. (10.) Apply difference of squares, etc. 
 
108 
 
 EXKUC'ISKS IX AL(JRimA. 
 
 III 
 
 (1-) 
 
 coffee. 
 
 EXERCISE XVI. 
 
 (2.) 10. (3.) 90 lbs. tea, 120 lbs. 
 
 (4.) Expression a'^ - h'^ +-..- .- = 
 
 1 (a" - bi) (a^b^) , b^-a* 
 
 a-b" 
 
 u-b* 
 
 (!'^ab')("al') = (l-'0 i''^-i) 
 
 (5. ) -%zr ' (t>. ) Factor last expression, etc. 
 
 (7.) (u; + l)(..--l)r!/+l)(i/-l), (a~b){a-c){h-c). 
 
 (8.)u. = l. (9.)"^~K-T- (10-) 0. 
 
 EXERCISE XVII. 
 
 Page 49. (1.) x = 4. (2.) (d' + b-') {c:' + d') = l, etc. (3.) 0. 
 (4.) 'j:*-x'yz + 7in''. 
 
 (5.) Divide, and remainder equals zero, .'. a = 7, b = Hj. 
 (().) 12.t;'^ + 12. 
 (7.) Left side = a' + <t'' + b^ + h' + c" + c' - 2ab - 2uc - 2bc = 
 
 (<(' -2<d> + b') + {a' - 2ac + c + (b' - 2bc + e') - 
 
 {n-by + ia-cy-{b-c)\ etc. 
 
 (8.) 5 and (5. (9.) Factor as a^ + b^ + c^-'3abc, etc. 
 (10.) 
 
 EXERCISE XVIII. 
 
 (1.) Add = "»and..' + // + ;:==0, .-. (x+!/ + ;:)2 = 0, etc. 
 
 (2.)0. Ql)^- (^.)^- (5.) 
 (6.) . (7.) . (8.) 0. 
 (9.) 1328 yards and 432 yards. (10.) 
 
 EXERCISE XIX. 
 Page 50. (1.) (3,f-2)(9..'-ll). (2.) . (3.) 280. 
 
 (4.) (a^ - .«^) (// - >/). (5. ) [j-tJ 1-25- + -5- + — ; • 
 
 (6.) x^-1. (7.) x = l. (8.) x = 6. 
 
 (9.) Let m be added to each a, 6, c, .". (a + my-(b + m) 
 (c + m) + (b + my - (c + m) (a + m) + (c + my - 
 {a + w) {b + m). Multiply out and add, etc. 
 
 (10. ) Write ^"^J^±f^, etc. , 16x-* - 24.x^ + mx" - 64a; + 81. 
 
ANSWKHS. 
 
 109 
 
 EXERCISE XX. 
 
 (1.) 140 lbs., 60 11)8. (2.) VMix'-2S9. (3.) 1. 
 (4. ) (3.; - 2,1) (3.>- + 2y) (2x - :hj) (2,' + 3,/). 
 (5.) 993 yds. nearly. ((}.) - ll.i--' + 17x - 12. 
 (7. ) « = 7. (8. ) 4. (t). ) (2rf - bb + (k) (3a + 4h - He). 
 (10.) /> = 4(i. 
 
 EXERCISE XXI. 
 Pagre 51. (1.) -()(). 
 
 (2.) Square each =« and add, .•. 2(x^ + y^ + z^ + xy + 
 
 xz + yz) = a' + h' + ('■' - 0, hence, etc. 
 (3.) a2 + 3a + 2. (4.) (./' + 2i/) (j;-2./). 
 (5.) a-13, A = l. (G.) ^-i, x-2, i; + 3. 
 (7.) a == 1 - -, .-. cH ^ =1^ hence etc. 
 
 (8.) 23 J. {^.) {3x'-x + iy. 
 (10. ) If a > 6, then a - 6 > 0, .-. a'^^ - ftz > 2a6 or 
 5 + ->2, etc. 
 
 >yi. 
 
 EXERCISE XXII. 
 
 (1.) Equal. (2) 3x(a;-7). 
 
 (3.) Apply difference of squares. (4.) (--*)'. 
 
 (6.) (7a;-101) (8..+97) ; (3.- + 49) (9x-83). (7.) 10. 
 
 Page 52. (8.) Write „-^^ ,^,, etc 
 
 (9.) A IGO, B $140, C $200. (10.) 2x + 3. 
 
 EXERCISE XXIII. 
 
 (1.) Square each, add and factor. (2.'i 4oG0. 
 
 (3.) :f = 7c<. (4.)x>=|. (5.) .$1480. (6.) 
 
 (7.) Write x^-l-^ 8,.;^ - 79./- + 70 + 1 ^ {x - 1) (a- - 6) 
 
 (.*•■ + 14). (8.) The latter. 
 (9.) Factor expression,aud one factor is equal to zero, etc. 
 
i: 
 
 110 RXERCISES IN ALOKDUA, 
 
 (10,) 'rraiiHpMst!, jiihI x'^ - 2.»'i/ 4- y' ^- .'/■' - 2}/,~ + z^ + z'^ - 
 '2ii:: + 11- --^ (x - J/)-' + ((/ - zy + (r; + a)'. Sinco the 
 s(|naro <»f fmy(|U!mtity is positive, .". each (expres- 
 sion ia jjositivi!, Jind cniinoi ho zero iinleHH each 
 (juaMtity is zero, .". j;-i/ = 0, y~z = 0, z~u = Oy 
 :, x = y=z=n. 
 
 EXERCISE XXIV. 
 
 (1.) '<'-8a'' + 2.3rt 20. (2.) . (3.) . (4.) 
 
 Page 53. (6.) 21) miles. ((J.)-- (7.) . (8.) 
 
 (9.) x' -((i + hyx + dh^x^ + x + l. Since co-etticients of 
 like i)ower3 are equal, .". a + b= — 1 and a6 = l, .'. 
 («» + ?>» -2. 
 
 (10.) a + b= -c, multiply by (t — }>, etc. 
 
 EXERCISE XXV. 
 
 (1.) 
 
 13a 
 
 (7.) 5^-^ -2^-1. (8.) x = 10. 
 
 (5.)a = 8. (6.)-:-. 
 
 (9.) Let 05 — 3, X - 1, x + 1, x + 3, be the numbers, etc. 
 (10.) 
 
 EXERCISE XXVI. 
 
 Page 64. (1.) x = 10a. (2.) Let iC = one, x + d the other, etc. 
 
 (3-) -%tf-- +1 = ^^ + 1' ^'tc. (4.) 216. 
 
 (6.) a^ + 2a'b-ab''-2h\ (6.) m^- 12m + 35. 
 
 (7. ) (x' - 3x + 17) (x' + 3,c + 17). 
 
 (8.) a;'^-3x + 2 is a factor and =0, .'. expression =0. 
 
 (9.) Write (l - 1+1-1+1-1-1)^2- 
 (^ + l+^)'^t«-'=l- (10-) 
 
 EXERCISE XXVII. 
 
 4a;-+2a;-l 
 
 (1.) Factor the expression. (2.) ^ 
 
 (3.) . (4.) . (5.) -ia + f/>-^c. 
 
 (6.) . (7.) ];;.. 
 
 Page 55. (8.) G. (9.) 405 yards. (10.) x = a + b + c. 
 
ANHWKKH. 
 
 Hi 
 
 EXERCISE XXVIII. 
 
 (l.)a (2.)20x-32;/. (3.) (.•- J )(.*•- ^ ) 
 (4.) i\. (6.) l + 3x + (M;'' + 7j'' + 0.'* + 3a;Hx«. 
 (6.) l+.r + ]!.fH.^.>'" +?,'•♦. (7.) Oft. 
 (S.) l-ia' + 'ib + lh\ (9.) . (10.)7a-56. 
 
 EXERCISE XXIX. 
 (1.) x = a + b + c. (2.) 2(a* + <W + h*). (3.) 291. 
 (4.) 1. (5.) 1 - ix - kx'+hp-' - i^*- (<■'•) i^^OO. 
 Pa^e56. (7.) ^^ - 3^ (J - J) • 
 
 (8.) Let X, x + 1, x + 2, x + S be the numbers, etc. 
 (9.) Apply diuorence of (squares. (10.) 0. 
 
 (3.) l-m-n. 
 
 EXERCISE XXX. 
 
 (1.) 2Ga;'-48j-i/ + 2();A (2.) 
 (4.) . (5.) 4(.«- + a)(i/ + s). 
 
 (6.) (4x'' + 6bx){r>x + V>a). (7.) x. 
 
 (8.) 3-4x + 7^-'-10a:». (9.) -2. 
 
 (10.) (7a; + 6i/-9)(x-f/ + 4). 
 
 EXERCISE XXXI. 
 
 (1. ) - 20. (2. ) (1 + .*• + x'Y -(1-X + xy - 6x{x* + x^ + l) 
 is a cube, etc. 
 
 (3.) 
 
 (4.) 
 
 b" - m- 
 2(>« - a) 
 
 (5.) 20 years. 
 
 Page 57. (6. ) (^' + 2|/ + 3~~)'^ + (4 ./ + 5.-)'^ + (6zy. 
 
 (7. ) {x - a) {x' - b-'). (8. ) {x' + 6x + 1 1) (x'^ + 6x + 3). 
 (9. ) (x^ - 6x + 4) (x' + ().>• + 4). 
 (10.) Apply difference of squares. 
 
 EXERCISE XXXII. 
 
 (1.) 200 lbs. (2.) Apply difference of squares. 
 
 (3.) 3y^-7.«' + ll. 
 
 (4.) Divide the expressiim by product of (2a; - 3) 
 (3x + l), and the co-efficients of like powers in 
 the remainder must be e(][ual ; m = C, 71= -37. 
 
112 
 
 EXEKCI8KS I\ ALOKMIiA. 
 
 .Hi 
 
 i 
 
 (5.) 2 in. (6.) (8,t + 15/)) {Ha - 9h). 
 
 (7 .) ViicUiV ]iih hnud Hide, etc. (8.) (.r + z). 
 
 (9. ) a* -pa' + qa' - m + .s ^ 0. (10.) ^ ^'^ • 
 
 EXERCISE XXXIII. 
 
 (1.) ;) = 26, q^ -24. (2.) Apply ^]-^^ otc. 
 (•U . (4.) . (5.) 
 
 Page 58. (<J.) . (7.) p-\'^. 
 
 (8.) Write (./•)'•■' -(2)'". Henco (..•" i- 2") (r^ 2*) (.-«« + 2») 
 
 (.• + 2)(,r-2). 
 ({>. ) Write 9./"'' + .•^Cu;^ + 1 2..'^ + 48.r + 4;i- + 1(5 - 9/^(..- + 4) + 
 
 12.r(ie + 4) + 4(..- + 4) = (.'J^i; + 2f (.*: + 4). 
 (10.) (2x + 3i/ + ;j) (x + 4i/ + 3^). 
 
 1 
 
 EXERCISE XXXIV. 
 
 0) 
 
 (2.) (rt , 4- a. 4- a .,, - 114)3: + (^i + o ... - a., + a^ )y + (a j - a^ 
 
 (3.) a-''-3tt62 + 2c3 0. (4.) ^*-2. (5.) 
 (6.) A cube. (7.) ''=31. (H.) -I. (9.) .r = 4. 
 (10.) Multiply Hrst =n by a, second by 6, third by c. 
 
 EXERCISE XXXV. 
 (1.) -1024. (2.) . (.3.) 
 
 (4.)(2j/-x + a)(i/-2x-r0. 0->.) .2^-^48 • 
 (6.) 2(? + ^)p + i')- 
 Page 59. (7.) Let .r2+wcc+i/s = aq. root of expression. Square 
 ami e'jiate co « flicieuts, 2m— p 2mp/6' = r, .*. 
 
 y/^' - /-. 
 
 20:2/ 
 
 (8-) (:-:+:-:+! +r- (»•) 
 
 (10.) Multiply each term by x^-y'\ etc., 
 
 EXERCISE XXXVI. 
 
 (1.) ,.-10. 
 
 (2.) Factor, simplify ; .square remainder =a'' + 6' + c' - 
 2ab + 2ac -26c. 
 
ANHWKHH. 
 
 113 
 
 (3.) Factor ftiul othorJactor ri«iuire(l ==a;-2. 
 
 H.) KxpresHion = ^^—^--^ = ----^^ • 
 
 (5.) Factors arc (r - I)' ('• + !), •. wc muHt multiply hy 
 (r -l)(r + l)-. (0.) 2,^uml7«}. 
 
 (7.)5-r («•) 
 
 (9.) Write cxprossiou j-^ (.i: + :k)' + 25k'' + tM.« + .'k), 
 etc. , = 2'J* - 260. ( 10. ) 2(a - b). 
 
 EXERCISE XXXVII. 
 
 (1.) Sinco <(-/» = !, ..(a- />)» = !, .. (a - W^t + '')'=«' + 
 2ab + h' = "'"''- + ah = a« - /»» + a/* . 
 
 (2. ) Multiply by a - 1 , etc. (3. ) w = 2. 
 (4.) a; + i/ = 2, multiply Wy .*•- ij, etc. 
 Page 60. (5.) 
 
 ((•>.) Since :.■" + !/' iw divisible by ..• + !/,.•. C'' *)" + (//*)' i« 
 
 divisible by ..• * + >J K lle8\dt, x* - x hj ^ 4- »/ *. 
 (7.) a;^ + a;'^ + 2.i+l -2u3'^—2ic>0,.'. expression is positive, 
 
 (8.) The former. 
 
 (9. ) x(x + y + z) ( j;' + if + z' - xy - x.z - yz). 
 (10.) 35 miies. 
 
 EXERCISE XXXVIII. 
 
 (1.) (ir- = b'^; add 2h<' + e'^ to oiich and divide by <■, etc. 
 (2.) If a - /) is ])ositive, .-. a > />, also b ^- c, :. a > e, hence 
 <•- (f is negative. (3.) . (4.) 
 
 (5.) r or ''/• (6.) - xi/^(a- + v + 4 
 
 (7.) Subtract 2nd from 1st and factor, etc. 
 
 {8.) x' = x-2,:.x* = (.'• - 2y. 1 1 ence x^ = x(x - 2)'^ = - 
 
 3ic* + 2x= -3(x-2) + 2x=-x + ^. 
 (9.) . (10.) A $648, B $472, C $416. 
 
 EXERCISE XXXIX. 
 
 (1.) 2 or i. (2.) See hint, question 10, Exercise xxiii. 
 
 Page 61. (3.) 
 
 (4. ) {<t + by + {b + rf + 2ac - 2ac = {c + af + 2h{a + b + c) - 
 2ac = , etc. (5.) Multiply out and factor, etc. 
 
114 
 
 EXERCISES IN AUiKHKA. 
 
 0>-) . (7.) ;'•'/ iH greater. 
 
 (H. ) }(,« + 1> <„2 + n or ,r - /i + 1 > <>i or (n - ] )2^0, etc. 
 
 (10.) aw/;:; = ^--^:i:^-''-)-^''> (>. + ,, i. -A ^ (^>-^)(^ -^)(«-^) 
 .'. , etc. 
 
 EXERCISE XL. 
 
 (1.) Apply ^^^^ etc. (2.) •{ 2{a + hf-'^{n-hf y. 
 (3.) (3:r, - 4?/ + 2;;;) (4..- - 5,/ + 7"). (4.) 50 lbs., .'30 Djs. 
 (5-) . ((i.) (/ = r)2. 
 
 (l + a;Hx*, etc.) (! + »;''' + .«♦, etc.) = (l + .*y^ + 
 u'* + , etc.)'^. 
 
 (8.) . (9.) (»- + 2?/-2)l (10.) (a- .0 (0-6). 
 
 [jf 
 
 MISCELLANEOUS EXERCISES. 
 
 A. 
 
 Page 62. (1. ) (4a - 6) (4a - 9). 
 
 (2.) Factor l)y difference of squares, (.7^ + 1) (.v-3). 
 (3. ) x=- a + h, y = (,-b, expression = -{ (.<■ + y}' + 3xy \. 
 ■{(x- yy - 3x11 \- = (4a^ + 3a' - 'Sh') (46^ - 3a'^ + 
 3/>0, etc. (4.) ,V i^P' - f) {5'l' - r). 
 (5.) Apply — _'-, .". expression is divisible by (x^ + 
 
 a;2 + 4) - (.,.••' - 2x + 3) - .f 2 + 2x + 1, etc. 
 (C.) Each side of =//acube. (7.) 'So +h + 2(' + d. 
 (8. ) (x - m - „) (x - w + „). (9. ) (a - h) (h - c) (r - a). 
 (10.) Divide numerator of each by denominator, etc. 
 (11.) Dividend is divisible by (.rH^-2). Apply prin- 
 
 ciple^:f;.-H2.«H^+J, + 6. 
 
 (12.) C;- + l)(.^-l)(.r-2)(,.--4). 
 
 (13.) Add the equations, etc., (a + 64-c)^ 
 
 (14.) A[»j)ly difFereufe of sciuares, l(\(a^2l>) (c + d). ■ 
 
 ( 1 .5. ) (x + (i) (x' - 4x,i + if'). (10. ) 420( )(). 
 
 (17.) '^x^-4x\ (18.) 
 
ANSWERS. 
 
 115 
 
 Page 63. (19. ) 1. (20. ) {x' - if) (x* + xhf + /), 
 
 (21.)^+/J- (22.) 
 
 (24.) 
 (20.) 
 
 
 (23.) (x -.-«)(;. -2) (,.-3). 
 
 0. (25.) 
 
 Factors of 21 are ±1, ±3, ±7. Honce (r + l) 
 
 Page 64. 
 
 Page 65. 
 
 (28.) 
 (30.) 
 (32.) 
 
 (33.) 
 (34.) 
 (35.) 
 (36.) 
 (38.) 
 (40.) 
 (43.) 
 (46.) 
 
 (4?) 
 (51.) 
 (53.) 
 (55.) 
 (58.) 
 (61.) 
 (62.) 
 (64.) 
 (66.) 
 
 (68.) 
 
 (70.) 
 
 (71.) 
 (73.) 
 
 (74.) 
 (75.) 
 
 (76.) 
 (78.) 
 
 (x - 3) {x - 7). (27.) Cube x- i = 1, etc. 
 Tea 62^ cts., sugar 6 J cts (29.) 512. 
 ,f-2y^+3f-4f. (31.) /!|^,- 
 
 Reduce fractions to uuxecl numbers and eciuate 
 
 remainders, etc., x = iO. 
 (x - 2) (x + 2) (x-^ + 4) (x + 1) (:«2 - x + 1). 
 Apply difference of squares, 144,r'^(l - 4.*;'''). 
 {2x - 3) (2x - 1). 
 
 Fact(;r by difference of squares. 
 mih\ (39.) 
 
 (x + l){x-3)(x + 5). (41.) 25. 
 884. (44.) (x-19//)(* + 17i/). 
 
 2a-3h+c 
 
 (37.) 
 
 (42.).-f. 
 (45.) 45 cents. 
 
 (47.)(.'; + 9;/ + l)(..--4;/). (48.) 
 
 8x 1 
 
 2a -3c 
 
 Gx' + 8xy + 7y\ (50.) x^ 
 
 . (52. ) (3x - 4 */ - 3;;) {3x - 4 j/ + 3^). 
 
 (llx + 13|/) (dx - 111/). (54. ) X - 13, y = 7. 
 
 x" + y\ (56.) . (57.) 125. 
 
 600. (59.) Add =- us, etc. (60.) x = b, y = 2. 
 
 Ax^ + 4|/ + ^i''^ - 4.f 1/ - 2xz -2yz. 
 
 {a + 2b '- 3c) (a -b + 2c). (63. ) 1.30. 
 
 (2x11 + « + '>y- (<5S-) 4(.'- - !/) (7x2 _ 2ot/ + 7//"0. 
 (.,. _: 1) (,,. + 8) (.«2 + 7.,. + 26). (67. ) X = 1. 
 
 a 
 
 (69.) 
 
 c(c - b) 
 
 c(c- a) 
 '' b{!l>-a) 
 
 a{a - by 
 a3 + «-7> + nl,-' + J>\ <r' + b^ + 3a^b + 3(1^^ + 2a-c + 2/A^ + 
 
 4<d)c + 4nc' + 4:hc' + 8c\ 
 a^ - 125// + 8r' + 30a/>c. (72.) {xJ^z - 1) {ifz - 1). 
 
 Apply "~ ^" ; I'csult 3(6 - n - 6(,' + 2(i). 
 
 ;»-3, // = 2. 
 
 Reduce to mixed numbers, etc., ,'—8. 
 
 (..■ + ;/ -1) (,.■-;/ 2). 
 
 . (71>.) (80.) 
 
 (77.) Apply ^:;f, etc. 
 
no 
 
 EXERCISES IN ALGEBRA. 
 
 n 
 
 I 
 
 (81 . ) 24, (S2. ) (3x + 2»/ - 4^) (2x - 3i/ + 5z). 
 Page 66. (83.) The second. (84.) x-2. (85.) 47. (86.) 16. 
 (87. ) x' + 'Sxy + 2,/. (88.) (</, + h){h + c) (c + a). 
 (89.) 7 and 2. 
 
 (90.) (f-x-l)(x'-7). (91.) x=-l, y^l, z = l. 
 (92.) ^J. (93.) a; = 10, ,/-20. (94.) a;2«+'^''+^ 
 
 (95. ) Factors are (h + c,~a)(b + c + «), but b + c + if. = 0, .-. 
 expression =0. 
 
 (96.) 14249. (97.) x=:a,y = 2h,z = 3c. (98.) 70 miles. 
 
 (99. ) (x - yY (x* + if + 2xhj + 2xif f Gx'Y)' 
 
 (100. ) {2x - 3i/ + 1) (3..; - 2y + 1). ' 
 
 MISCELLANEOUS EXERCISES. 
 
 B. 
 
 Page 67. (1. ) 2abc(a +b + c). (2.) x - 3. (3.) x=5. 
 (4.) 4«2 _ oa - 7. (5.) 200 acres, 250 acres. 
 (G.) (x + y + l)(x + y + 2). 
 (7. ) (cr^ + a' + X - 3) (.«2 + a2 _ a; + 3). (g.) 85. 
 (9.) (l-.T)(;«2_3a; + 4). (10.) (a + b + iy{a^ + b^ + l). 
 (11.) x«- 3.^* + 2^2-1. (12.) n.C.F.-3a:-7, .-. x = 2l 
 
 (13.) /-^ . (14.) .^''-y^ - (15.) 48. 
 
 (16. ) x=-(\. (17.) (2r( - 1) (.3a + 2) (« - 3). 
 (18.) 12 and 8. (19.) 6x'^ + 2..--5. 
 Page 68. (20. ) (x-2)(x + 2) (x^ + 5). (21.) $9.37^ 
 
 (22. ) ^^^, . (23.) X = 2k (24. ) cc =-- 3, 1/ = - 2, . = 5. 
 
 (25. ) 3x' - 2x" + 3a; + 2. (20.) ^ • 
 
 (27. ) (x - 1) (x - 1) (x - 1) (.K + 1) (x2 - 4x + 1). 
 
 (28.) ;^^ (29.)a(«-t-5)(a''=-l). 
 
 (30. ) ((( + b) (a -h (■) (b + c). (31.) .30, 40, 14. 
 (32. ) x' + x- 2if + 3y. (33. ) x - 6 , ;/ = 10, 2 = 9. 
 (34.) Reduce to mixed numbers and etjuate remaining 
 fractions, x = 7. (35.) (5x' + <))(4,»; - 7). (36.) 17. 
 (37. ) .'■ + 6 (/ + 14^. (38. ) x' + 12.(; - 7. (39. ) ^- • 
 (40.) {x + a + by. (41.) 180 yds., 205 yds. 
 
ANSWERS. 
 
 117 
 
 Page 69. (42.) 
 
 8(1/ + 2) 
 8.V-] 
 
 (43.) x = 2, .v = 3, 2 = 4. 
 
 (44.) The ymxluct of any four consecutive numbers in- 
 creased by unity is a perfect sc^uare. 
 
 (^^■) (.---^kx^^' (4fi.)- = 5. (47.).: = 4,!/ = 15. 
 
 (48.) 15 ajul 5. (49.) 7. (50.) . (51.) 
 
 (52.) . (53.) . (54.) (;>' + !, -;:)(x-3y + ::). 
 
 (55.) (4.i'+5!/)l (5«.) ahrd(x-l){.,- + l){x + 'A). 
 
 (57. ) ,.: = a -f h + r. (58.) 120 sheep. 
 
 (5'.». ) (2rt + 7h - 3<') (2rt - 7h + 3c). (00.) 0. (61.) />. 
 Page 70. (02.) ,.=1, i/ = l. (03.) 
 
 (04.) -; {a+2)x + a-l \- ■{ (a -}),, + <, + 1 )-. 
 
 (65.) .*•=3r^ (66.) A = 48. (07.) .'■- - 3,/; + 2. 
 
 (68. ) {p + /•) (q + .s). (69. ) x" + 2x11 + 'W'- 
 
 (70.) . (71.) (a.-&)x. (72.) 
 
 (73.) :>^ = 100, ;/ = 9. (74.) 1. 
 
 (75. ) (1 - 5,.'. + Ox--) (1 - 3./; - 4.^0 (1 + 3-'- " 4.-^;')- 
 
 (76.) ,>;+ 1. (77.) —^fr' ("^•) ^"^^^^ ^"'^ 2304. 
 
 (79.) . (80.) (5.v + 12;/)(8,>:-7»/). 
 
 (81.) H. C. F. =(a-Sb + or). 
 
 (82.) Apply difference of squares, 39x + |/ + 22!. 
 
 (83.) -102. 
 Page 71. (84.) (9,*; + 71) (5.; -48). (85.) x' + ii. 
 
 (86.) (3,»'4-2)(64,.;«-729). (87.) 
 
 (88. ) 2.i_'2 + 9if - 5.:'-' + 1 2//~ - 9xz - 9.ni. 
 
 (89. ) (4.r -ij-7) (2..' + 5;/ + 3). (90. ) a + hx + cx\ 
 
 (91.) 24. (92.) 226. (93.) -1. 
 
 (94.) (4,.' + 4j/ + 2)(14,^--5i/). 
 
 (95.) a -/^ (96.) . (97.) u; = 6, i/-=l. 
 
 (98.) {<t+hy-{a + h){c + d)^-{c + d)\ 
 
 (99.) .1-3, «/= -1. (100.) 100 acres. 
 
 Page 7 
 
 MISCELLANEOUS EXERCISES. 
 
 C. 
 
 (l.) ,.• + ,/ + •:. (2.) (4,.' + 5(/)(3..'-7!/). (3.) .r = 3. 
 (4.) 2.< <•. (5.) (4y- + 4;r + 5::7'. (0.) 3005. 
 (7 . ) .f'" + .'•'■'// + .'"ir + .'• ' !/'' + .'•"!/* + x^i/ + .!•*/ + xhf + x'Y 
 + u;j/*+;/", remainder 2]/". 
 
118 
 
 EXERCISES IN ALflKBRA. 
 
 (" I' 
 
 (8. 
 (11. 
 (14. 
 (16. 
 
 (18. 
 
 Page 73. (20. 
 
 (22. 
 (24. 
 
 (26. 
 
 (27. 
 (28. 
 (31. 
 (32. 
 (33. 
 (36. 
 (38. 
 (40. 
 
 » (42. 
 
 Page 74. (44. 
 
 (46. 
 
 (48. 
 
 (49. 
 (50. 
 
 (53. 
 
 (55. 
 (56. 
 (57. 
 (60. 
 
 (62. 
 
 Page 75. (64. 
 
 (66. 
 (68. 
 
 (71. 
 
 yi-\-h+c^ (<).) :,-3 + 2.-«2 + 33; + 4. (10.) ,r' + 2x + 3. 
 a- = l. (12.) -166. (13.) 3,f2-5:« + 7. 
 1 - X + x' - ..•••' + ,,■* - x^ + .*•" - ,.•' + x\ (15. ) 2x + 21. 
 (ti - 1) (a + 1) (a - 2) (a - 4). (17.) x"" - -/'. 
 -63. (10.) 3(1 + ;*:) (1 + ;/^ (x - (l) (I - xy). 
 
 X-+X+1 ' v'^'-'' a:2-l\ x"-i /■ 
 
 x = b,y = A. (23.) (..;2-l)«(x + l). 
 
 . (25.) 3(.*: + l)(2x + 3). 
 3a;'' + 15:r2_-i^^315 
 
 ix+3)(^5j(^+7j' 
 
 (x-;i){2x + 'A)(x' + 3x + 3). 
 x'-x + l, (2».) $1000. (30.) (2,1 + 7) (x + 3). 
 (.•-])2(^H2,.,- + 3). 
 (x + y - 1 ) (u;- + }f + X + y-\-l). 
 x^-x-' + x}-:t'* + j,^-x + l. (34.) 3. (35.) 300. 
 . (37. ) 1 - 3.C + 3,1 '- - .«3 + X* - 3xs + 3x« - x^ 
 (.i- + 8//)(./- x). (.39.) 35. 
 (t^ + a'> + ,i\ + ar + ,s. (41.) (x' + .x + 6) (x'+x - 2). 
 
 X +1^ • (43- ) (<''^ - ^<th + h') (a' + ^ab + b'). 
 -16. (45.) 3(.: + //) + 5(-+»0. 
 Apply ~S- • (47. ) X* - 4x3 + o,*9 - 4a: + 1. 
 
 ;«: 
 
 
 Reduce to mixed numbers, etc., x = 2. 
 
 - 37a'^ (51.) ftS - 2^" + a* + 4^3 - 1. (52.) *^^' • 
 
 Apply difference of squares. 
 
 (x - 1) (,,.-' + .T + ]) (2x - 3) (2x4-3) (4x'' + 9). 
 
 Add =>(.s, etc., 0. (58.) . (59.) 
 
 X - 3, */ = - 1, ;^ = 0. (61.) $2400. 
 
 156 and 13. (63.) ]/(//^-3). 
 
 4 times. (65.) ^±-^ • 
 
 (2x -f- y) (x - 2//) (2 - ;r) (4 + 2x + x'^. (67.) x = 51. 
 .-:4. (69.) 1. (70.) (x + ;>)(x'^-^x + ^r). 
 (// + 2x) (// 2x) (2x + 1 ) (2x - 1) (4x'^ - 2x + 1) (4x^ + 
 2x + l). (72.) 80x^(x'^-9). (73.) -6. 
 
ANSWERS. 
 
 119 
 
 (74.) A JB'ia/B $.".(), 0$;;5. (75.) 1+^- + :*•"'• (7<"».) 
 
 (77.) "1^;/ • (78) 4.i;H1(m:+11. (7!>.) ^'--l- 
 
 (80.) rr-2a (81.) {a + h)(c + ,l). (82.) . (8.'}.) a; = 3. 
 
 Page 76. (84.) 45. (85.) . (8«i.) j ■ 
 
 (87.) n- 10. (88.) (^-5. (89.) {S)x - 47!/) (12x - Ol./). 
 (00.) 4(1 -x) (1 + 2,1;) (a; + 4) (3.r + 4). (01.) 3x + 5. 
 (92.) . (93.) a + (!. (94.) 27. (95.) 4(<(•^-//0'^ 
 (96.) 1. (97.) 36u;«-217:«* + 40().t;''-225. (98.)l-x. 
 (99. ) (12a 4- 1 2/> + <■) (a - 12?> - 12^0. (100.) x = 2|, (/ = 3^. 
 
 
 MISCELLANEOUS EXERCISES. 
 
 D. 
 
 Page 77. (1.) • (2.) a = c and 4?) = c2 + 8. (3.) a; = G. 
 
 (4.) ?/' = 27cl (5.) 
 
 (().) a + /> or 64-c or c + « is eciiml to zero. (7.) ;'' = 6. 
 (8.) Factor in ordinary way. The product of G and 35 
 = 210, and the difference of the factors of 210 
 will be co-efiicient of 2nd term, or equal a ; for 
 example 1 x 210 is one pair, and .'. 2nd term 
 would be 209 and expression 6.x2 + 209x-35. 
 The other co-efficients of x would be 103, 67, 
 37, 29, 23, 11, 1. 
 (9. ) c = - 1G8, d = 190. (10. ) /) = 20, r^ = 25. 
 (11.) .»••- = «' + 'lad + (^2, f = , etc. 
 (12.) S(i. root =x3 + 2a;'H5a;-6, etc. (13.) 
 (14.) Write expressioji (.»•- - x\})^ - (.' + 2)1 Apply prin- 
 cii)le of dift'erence of two cubes, x> - 2j'Sj-\-x^f-\- 
 x^ - xhj + 3./;2 - 2..' J/ + 4u; + 4. 
 
 (15.) !/-,^ -2. (1(1.) 
 
 Page 78. (17.) »*(-■- 8w + 11. 
 
 (18. ) (:j( ( + 26) (3,t - 26) (,.■ ^ 3a) {x" + ^ax + 9a2). 
 
 abc 
 x-y + xy 
 
 V 
 
 (21.) a- = 
 (24.) 
 
 a+b+c 
 
 abc 
 
 (19). . (20.) x^ 
 
 (22.) Hi\f- C-^'M 
 
 (28. ) 24. (2t>. ) -; (« + 2)..' + a-l\- ■{ {a + 2)x + a-2)-. 
 
120 
 
 EXERCISES IN ALGEBRA. 
 
 (.'iO. 
 
 (.'i2. 
 
 :j;3. 
 
 (' 
 
 (.'{4. 
 
 Page 79. (:w. 
 
 (40. 
 
 (42. 
 
 (45. 
 (40. 
 (47. 
 (48. 
 (50. 
 (53. 
 (5(). 
 
 Page 80. (57. 
 (5l>. 
 (60. 
 (02. 
 (04. 
 
 (00. 
 (08. 
 (09. 
 
 (70. 
 
 (71. 
 (72. 
 Page 81. (74. 
 (75. 
 (77. 
 
 K^'M. CM.) pu' + .r + a) (a.r - 2,r + ,r-f2). 
 ( .'•'•■' + 2,»';/ - //-') (.>■- + .r,i + ,r) (x- ^ j-tj + ,f). 
 Divide l)y Ilonior's inetlKxl nnd the reiruiiiulur will 
 bu tho v.-iliio, divisor ^2x^-3;c + 4, answer -=10. 
 . (35.) . (;}(}.) 4. (.37.) .*:-H. 
 
 a -10. (39.) 4;*;- 12+^. . 
 
 Reduce to mixed miml)urs aud ecjuate remainders 
 ill lowest terms, .*; = 2i. (41.) O.f + 3. 
 
 " =^ ' ! (7TT? • (^'^•> -^-^^ - '-♦■ (•^^•) "^ = <^ "^^^ if- 
 Reduce to mixed numl)ers, etc., .♦: = 10. 
 .>•'-.>■ + 1. 
 
 See i)age 52, Ex. xxiii, (juestion 10, etc. 
 .,.« + LV' + 3.r-* + 2..'''' + J. (49.) .,•= -4. 
 (.»• + '( ) (.*■ - b) (x - 1 ). (5 1 . ) 35. (52. ) 0,0. 
 4a-lr. (54.) 1. (55.) {.<'"- >j") {.,■-'" + .»■'" if + i/*'). 
 Divide by (x - 2) (x - 5) and remainder is zero, .-. 
 a = 74, />-120. 
 
 r, = 0, 6--36. (58.) 
 
 Reduce lst = ?i, xz + xij = 2y::, divide by ;*•//,:, etc. 
 
 The former. ((il.) x= -]. 
 
 8x'~4x-l. (03.) 10. 
 
 {a + h + rf = a^ + h'^+r'^ + :\(<,h + („■ + ,■<() (,t j-h + c)- 
 
 '6abc, :. {(t + b + if^a^ + h^ + r^-;i,,hcHUn;v((b + 
 
 bc + ca^i). (05.) 
 
 P]xpres.sion = 17.«(.'' - //)*, .■. to make a complete cube 
 we must nuiltiply by 289,i-(.«' //)l (07.) 
 
 Multiply by xyz, re-arrange terms and divide by 
 abc, etc. 
 
 Write expression ^J:i^-1 + '•^+«=r'^+ i + 
 
 ihc 
 
 a" + b" -(■- 
 
 2ah ^""^^^ simplify, etc. 
 
 Reduce to form it^b"^ + aV^ + bV^--=(d)r*, + etc., and 
 divide by (r'6'V', etc. 
 
 ~,^— =a-^ y^ =b~e; . . , etc. 
 
 See page 52, Ex. xxiii, question 10. (73.) 3. 
 
 Factor expression, ;. factor recpiired is .*; -3. 
 
 J- -7. (70.) 
 
 ii(' + b'){r- + iP) = ,etc. (78.) 
 
ANSWERS. 
 
 121 
 
 . 38 
 
 (71K ) x^y = z(x - ,^)■^ + 2 j/^sc -z)-\-'^ \i\ :. z{x - zf = xhj - 2yz 
 {x-z)~zi/in-{.r - zy=-ijz. 
 
 (80.) Multiply l»y .»• uiul mU unity to (\'i<;h .side ; .'. 
 ( I .*•)", etc. 
 
 (81 . ) /> V - <t',j'' = <(hh- - (iVnj, etc. 
 
 (82.) {a + b)x + (ih=-, etc. 
 
 {&3.)x=-{ii + z), .: -{,j + z) {a'-bc) + {h'-m)y + (c'- 
 ah)z=^), :. {l>'-ca-((' + bc)ij = {a'-b<' -c' + ah)z, 
 etc. 
 
 (84.) Subtrnct 2nd from 1st, divide by y-z, etc. 
 
 (85.) l + '^^l + l^^ and l-. = l-^.-.j:«=^,etc. 
 
 (8(5.) Write (\^) (;:::),etc. 
 
 (87. ) x^ - xij + / = 0, .•. (x - \if = - xij, :. expression = 
 x^y'\x - ;/) - Xji{x - y)x[i — 0, .". x'^ — x\j + \f is a 
 factor. ' (88.) ' . 
 
 (89.) Add the etiualities, etc., but left hand will be 
 (■'' - .'/) {{I " ■') (' ~ ■'■) which ='6abc, etc. 
 
 (90. ) - ,: - ^2ox ) \\\n^\\ divided out gives l + x + 'Ix' + , etc. 
 
 (91.) .r- 5a -14. (92.) _^. (98.) 
 
 Page 82. (94.) 
 
 (95.) Let m be quantity subtracted, and instead of a, 6, r, 
 write a - m, b - m,c - m ; .'. ex])ression = {a - m)'^ - 
 (b - m) (c - m) +{b- m)'^ - {a - in) {c - m) + {c- 
 m)'^ - (a - m) {b - tn). JSiniplify, etc. 
 • (90.) . (97.) x = l. 
 
 (98.) Expression ^a{b'^ + bc + c^) + ,etc., ^(a + b + c){bc + 
 ca + a ■>), .-. = 0. (9!>. ) p = 25, q= - 24. 
 
 (100.) -f. (101.) x^5. 
 
 (102.) A=2, B = 3, 0=1, D=l. 
 
 (103.) Divide each by x + a, and remainders =0. Sub- 
 tract, .-. a{l - p) = in - q, etc. (104.) 1 - »<•' - //(*. 
 
 (105.) If reduced, x + 1 <>i' •'' + 2 must be a factor, :.x= - 1 
 or - 2, and hence jl» = 3 or ^. 
 
 (10(>. ) {.I If + x:: + ijz - .c^ - (/'^ - z^) is the other factor.