••' - Si/ + 29z^ + ISxyz when 2j/ - .t + 3^. and z = 5.
10. Multiply {(i + b)'^ + {a-by^ by {a + b)(a-b\ and divide result
by tlie product of tlie two (/,/> -^-7/-. (■^/•,s find II -{-}}■{- ('-^ pM, sliow thnt (11 ^hy^
'}. If .i'-f-|/4;-H). show tlmt jix''-yz)-\->j if - xzj +z{z- - juj) =0.
(5. Prove (.»-/*)(./ + /> -'•) + (/'-'•) (/>+i'-a) = (a-r) (n + e-h).
7. If .»;^ = fT'' + 6'^, }/ = c'*-^fl\ which is greator, ..■(/ or being both
jiositive.
i/» T« ^-c 0-0 a-6 .1
10. If x= a , {/ = -(r' '^^'V *^^'^'" ^l/2 + .'H-(/ + 3-0-
EXERCISE XL.
1. If a, h. A- be positive integers, ascertain whether (a + A;)' —
(b+lif is divisil)le by a - b.
2. Factor 4(a + />)* + %, - />)« - 12{a^ - b-)-.
3. Factor 12.f2 - 31u;;/ + 20i/-' + 29r2 - 387;: + Uzi
4. A person bought 80 lbs. tea, some at oOc. and some at 75c.
He finds by selling all at 7oc. his gain would be $2.50 more than by
adding 12ic. per lb. to the price of each. How much of each did
he buy ?
5. Prove that any trinomial is a complete s(|uare if the square
of the middle term is ecjual to 4 times the product of the first and
last terms.
(). If 16a* + 48,»;*j/ + (/xV + 24.xi/* + 4/ be a perfect square, find q.
7. Prove that (\-2x + 3x^ - ix\ etc.) (1 + 2;r + 3.«- + 4.f' + ) = (1 + x^
+ x* + , etc.)'.
8. U 6- = a + ^ , show that a* + --2 = s'Ys^ - 4).
9. Find the equal factors of x^ + 4x(/ + 4i/2 - 4^ - 8(/ + 4,
10. Divide a\c -b) + b\a - c) + c\b - a) by a - 6.
62
KXKHCISKS IN AUJKBllA.
*
MISCELLANEOUS EXERCISES.
A.
1. Divide the product of 12«''-lla-.W juid 28a2-86a + 6G by
2hf--5a-44.
2. Divide (2'x^ + 3x - If - (x'^ + ix + by by the })roduct of (3x + 4)
(.. + 2).
3. Iix+ii = 2a, .>;-i/ = 2ft, prove that x* -23xhf + v*::={7a'^ -3b^)
4. Find the value of x* - 47xhf + y* in terms of p and (/ when
X + \i= p and X- y = q.
5. Show tl it the square of x + l exactly divides (r' + J^' + 4)' -
(x^-2x + 'Af.
6. Prove that (x + zf + S(x + zfif + 3(x + z)y'^ + }/ = {x+ iif + 3(x +
yyz + 3{x + vyj + ::\
7. Find the quotient by factoring of 9a- -|- 6ab + b" - 4*;'^ - 4cc? - +c)'' - «••' (c+g)"'- ;*''
(i+fr-fl />-fc-a c+a-6
U. Divide (/H J,)' -8 by (x -i)\
12. Resolve into 4 factors (x'''-3x)2-2(ic''- 3.«) -8.
13. If x = b + (' -a, y^c + a-b, z = a + b-c, Und the value of
y^ + i/ + z'- + 2xy -f- 2xz + 2yz in terms of a, b, c.
14. Divide (4w + ^bdy - (4(u? + 8/)c')'' by {a + 26) (c - 1/).
15. Divide, {x^ - 3xhjy - {3xy' - fy by {x - yf.
10. Find the difference between the squares oi 3503 and 3497.
17. Find the algebraical expression which, divided by x'^ + x-l^
gives 2x^ - Gx^ + 8u; - 14 as quotient and 22.* - 14 as remainder.
• 18. Prove thtit ,— — 4~- — r. = 1 when m
(TO-c)(m— +x*
x'*+x^y"+X'y+y^
x*-y*
23. Find by factoring the sq. root of (.7:^-3^; + 2) {x^-^x + 3)
(x^-5x + 6).
24. Find the co-efficient of x* in (x + a)^ x{x- fif.
25. Show that ac^ - {d^ + h)c^ + IP' is divisible by ac - 6.
26. Factor x-''-9xH 11* + 21.
27. If X - -^1, show that x^--^ = 4.
a; ' x^
28. One lb. tea and three lbs. sugar cost 75c., but if sugar were
to rise 50% and tea 10%, the cost would be 87^c. Find price of tea
and sugar per lb.
29. Find co-efficient of x in Ot;-|-2) (.x -6) (x - 10) (x + 14).
30. Find the first four terms of {[i- i/+>f - [P + )'.
1 1
31. Simplify
32. Solve
+
18
6a- 18 6a-M8 o- + a* + S\
bx-Gi 2a;-ll 4a;-55 x-&
a;- 13 x-6 x-W x-1
33. Resolve into 5 factors u' -I- x* - Kir* - 16.
34. Multiply (3 + X - 2x'0' - (3 - x + 2x'f hy (3 -{■ x + 2x'f - (3 - x-
2xy.
35. Divide the ])roduct of 2.<'^ -f- .*• «J and Hx'^-bx + i by 3x^ +
5x - 2.
36. Show that (2a' - 3) (.'' + 4) exactly divides the difierence of the
squares of 3jr-j-8x - 25 and .»'--|-3,'' - 13.
37. If x+ij^ta and .'.- !/-=/«, then H]{x* - 7 x- if + i/) = {5m' - n^)
(bn^ - m').
38. Find tlie value <>f x* - '2x^ij + 2xif - i/ when x=-(i+J>. ;/=-a - 6.
39. I f <( + 'M- '• - 0, sliow that (2(« - bf + {2b ~ cf + {2c - af = 3(2(t -
b) ^2b - <•) , 2f - a).
64
EXERCISES IN ALGEBRA.
4G. Factor x' + 3x^ - 13a; - 15.
41. What number must be added to x\x-\-2) + 7 in order that it
may be divisible by ac + 4 ?
42. Divide x'^ - xy + {%i/ by j; - 1«/.
43. Find the remainder when 5x* -7x^ + 3x^ - x + S is divided by
x-4.
44. Factor x-'^ - 2xy - '32'Sy\
45. A boy spent h of his money for marbles, J of the remainder
for oranges, and I of what then remained for a book, and had 120.
left ; what had he at first ?
46. Divide the square root of ia' - I2ab -Obc + 4ij -'3z 2x, c = 5z-3x-2y, then a +
6+o--=0.
bO. Solve 4=0; -^ — ^'
MISCELLANEOUS EXERCISK8.
65
61. Write down the quotient without actual division of 8x' +
8y^ + z^ - 12xyz by 2x + 2y + z.
62. Factor a^ - 26^ - Gc^ + ab-ac + Ihc.
63. Find the value of 3(x + ]/ + z)" - (x^ + y^ + ^s) ^hen x = 3, i/ =
-5,2-7.
64. Factor 4xV + 4(a + 6)a']/ + (a + 6y.
65. Factor (:c-3(/)3- ( J/- 3xf.
66. Factor {x' + 7x + 0) (x^ + 7x + 12) - 280.
67. Solve
123; _2_ ^ _2_
a;--9'^x + 3 a;-3
a'-xy\ . ja''-xy\^
„ ,., / a--xv\ I , a--xy\ , ,a^-xy\^
68. Simplify ( y - ^') (x + ^) + (-^r^ )
69. Solve ax + & (/ = c, a'^'x + 6'^ j/ = c\
70. Divide a* - 6* by a. - h, and from the result write down the
quotient of {a + hy - 16c* by a + b- 2c.
71. Multiply a^ + 256'^ + 40^ + oab - 2ae + 106c by a-5b + 2c.
72. Factor x^yV - xh - yh + 1.
73. Divide (a + 26 - 3c + df - (2a + 6 + 3c - df by a + 6.
74. Solve 15x + 17i/ = 79, I7x + 15(/ = 81.
^^ „ 1 4x4-18 , 3x-2 l O.c+28
75. Solve 2-^q^ + -j:f:3=-2Fr8"
76. Factor x^ - (/^ - 3x - j/ + 2.
77. Show without actual division that (6x2 - 4x + 2)' -(4.r^ + 6x
- 10)^ is exactly divisible by x - 2 or 2x - 0.
78. Show that (1 - xf is a factor of 1 - x - x^ + x*.
79. If 2{a'^ + b'') = {a + by, show that a = b.
80. Show that m(m + n) (w + 2h) (m + Sn) + n* is a perfect square.
81. Find a number such that if § of it be subtracted from 20, and
/,- of the remainder from ^ of the original number, 12 times the
second remainder will be h of the original number.
82. Factor iix' - iJif 2Qz' + 22yz ■\- Ixz - 5xj/.
66
EXERCISES IN ALGEBRA.
83. Which factor a; — | or x+I is likely to belong to cc'-^^ -
f- + |, and why?
84. Find by factoring the H.C.F. of a;'-8a;2+19x- 14 and x*-
7x3 + 8ic'^ + 28x-48.
85. Write doAvn the co-efficient of x in (x^- 21.c - 1.3) (x' - 2x - 1).
86. Write down the co-efficient of x* in 1 — 2x + 'ix" - 8x^ + 16x*
multiplied by 1 -f- 2x + 4x'^ + 8x^ + 16a;*.
87. Write down without dividing the quotient of x*-5xh/ + 4y*
by x'^ - 3xy + 2i/l
88. Factor ah{a + h) + bc{h + c) + ca(a + c) + 2abc.
89. A number consists of two digits and another is formed by
reversing the digits. If the sum of the two numbers is 99 and tlie
difference 45, find the digits.
90. Factor x* - x^ - Sx^ -|- 7x + 7.
91. Solve x--|-2j/-}-3z=4, £c-f-3i/-f-2 = 4z, aj-f23-)-3 = 4t/.
92. Find value of r-^ when x — —T~i-
93. Solve 49x- -f- 37i/ = 1230, 37a; + 49 ;/ = 1350.
94. Simplify u;"+*+'=xcc«+^-<'x.t''-''+<^xcc*+''-'»,
95. If a = y + z-2x, b — z+x-2y, c = x + y~2z, find the value of
b^ + c^ + 2bc-'a\
96. Find the remainder when a''-9a"* + llrt^-7 is divided 1)y
a -4.
97. Solve - + f = 3
a b
f +? = 5
1/ c
? + '- = 4.
a c
98. A starts frt)m London and travels If miles per hour, B starts
8 liours after in the same direction at Ig miles per hour ; how far
will he travel before he overtakes A ?
99. Factor (x2 + r)^- 8^ Y.
100. Factor6.f2_i3^y^6y2^5^_5^^^1^
MISCELLANEOUS EXERCISES.
67
MISCELLANEOUS EXERCISES.
B.
1. Factor (he + ca + ahf - (6%^ + c V + a%'').
2. What is the least multiplier tliat will make .«•* - bj^ + 5a: - 1 a
multiple of x'^ - 4a:; + 3 ?
3. Solve '¥' = ^^±^ + -?^?-
4. 44a*-83a3-74a'^ + 89a + 50 is the product of two factors, and
one of them is lld^ - 7a - 8, what is the other I
5. A man has two farms rented at |7^ i)er acre and his total
rent is ^3,375. If the rent of the tirst was reduced to $6|, and of
the 2nd to $5.00 per acre, his rent would be $2,500. How many
acres in each farm ?
6. Factor xS^ 3a; + 1 + 2 X- !/ + 1 4- 3 ;/ + yK
7. Factor x* + 2a:ht^ - x^ + a^ + i\x - 9.
8. Find co-efficient of .^ in (.»; - 1) (;/• - 2) (x - 3) (:c - 4) (x - 5).
9. Resolve (x - 1) {x - 3) - (,c - 1)^ into factors.
10. Factor {a? + 6'' + 1 + ah + a + 6)'^ - {ah + a + h)\
11. Extract the sq. root oi x^' - G..^" + 13./:^ - 14,- « + 10a-* - 4a;H 1.
12. Find H.C.F. of 3a;3- 13x'^ + 23.(-21 and iSj? + x' - Ux + 21
and what value of x will make both vaui.sh i
13. Divide l+^by 1-- •
14. Divide -i3|-i by -— -|-/- giving the ([uotient in its simplest
form.
15. Find the remainder when the divisor is .'-1-1 and the divi-
dend is the product of {x + 3) {x -f 4) \;x- 7).
1 1
16. Solve
^ + :^
a;+2 ' a;-MO x-f4 ' x-\-S
17. Extract the sq. root of (Ga^ -|- a - 2) (3f r ' 7'< - G) (2(/^ - 7« -I- 3).
18. Divide 20 into two parts so that the square of the greater
shall exceed the s(juare of the less by 80.
19. Find H. C.F. of 6x* -h 26.i» -|- lox^ - 1 Gx - 10 and 30.^'* + 13Gx'' -f
95a:2 _ 79^; _ (35^
68
EXERCISES IN ALGEBRA.
20. Resolve x* - 4x" + bx' - 20 into 3 factors.
21. A dealer adds 20% to the cost of an article to make the
selling price, but he gives a customer 10% discount from the
selling price, and then has a profit of 7oc. Find the cost price.
22. Find the value of ^-Jt+'^rll'- '•'"' .
6a;-
5x - 5
1
23. Solve ^'--^^Zl
9x+(i l2a;+8 12
24. Solve 3x - 2y = 13, 3// -2z- 16, 3z - 2x = 9.
25. Extract the square root of O.i-^- 12x'^ + 22.r* + xH12cr + 4.
26. Divide — + -- })v 1- •
l-a^l+a J' l-a l + a
27. Express (x^ - 3x^y - {3x - ly as the product of 5 integral
factors.
28. Simplify ^"•'-^"'^+^'-^» lZJ.
1 •' 7n' -2711" -4m +8
29. Fhid L.C.M. of o^ + 6a + 5 undo'*- a.
30. Factor 2abc + a\b + c) + b'^c + a) + c\a + 6).
31. A boy i)lucks from a tree a certain number of plums, an-
other ^ as many. They both have 5 times as many as a third takes.
All have 84. How many has each ?
32. Write down the quotient without actual division of x* - 4:x^u^
+ 4/ - x^ - (ixij - 9,/ by x' -x- 2(/' - '3ij.
33. Solve x-y + z = 5,3x + 4 1/ - 5,: = 13, x + ^ +
z
i ' 3"
14.
34. Solve '-z^zl + -^lz^-^^ _^-^^--^5 , ^-*^-n
35. Factor 200;^^ - llj; - 42.
3(). Find the remainder after dividing x* - 3.r + 7 by x-2.
;{7. Div'uo (4x- - 4// + 7-:)' - (3.*; - 10;/ - 7^)" by 7(.'' - 2y).
3S. Write down the square root of (.«•'■' - 7)'^ + 24.''(,>'^ - 7) + 144a;*.
39. Siuq,lify ('-'-,+ "- + l) (-«^^-)^ _ill(iLl-'i> .
40. Multiply x-^ + 2ax + 2bx + a' + 2ab + li' by x + a + b.
41. A roll of cloth was bought at 66c per yd., ami another n>!l
'lb yds. longer at 60c. per yd., the two together coat $241.80. How
Uiany yds. in each roll \
MISCELLANEOUS EXERCISES.
69
42. Find the value of ^-I^l^;^^!^! when x = 2y.
43. Solve 3.f - 1/ + 2z = 11, 3;/ - 2 + 2a; -=\), 3z-x + 2y = 16.
44. Express in words the following algebraical expression : y{y-
l){>l-2){y-:i) + l = {y'-'3y+lf.
2(x+'l)
x+6
40. OUnpmy ^_^^2)(x+.^) (x+5) (.c-I)'^(x'-l) (j;+2)
46. Solve Ki^'^' + 5) + K'^'- - '">) = K-^-*' + + K^-*' " !)•
47. Solve (/ - 3(.^- + 1), 4.<; - (/ + 1.
48. The product of two numbers is 75, and the quotient of the
sum by the ditference is 4 times the quotient of the difference by
the sum ; find the numbers.
49. Snnphfy ,y_,„^3+ ^,^,,,.3 +„,.^^-
50. Show that (x + // + 2 + ((^' - {x -y-z + a)'' = 4(.c + a) (y + z).
51. Show that -^ ab{t> - a) +ac{a - c) + hc.(c -b)\- ^{h- c) = (a - b)
(c- - a).
ah+'2a" - 'M)" - 4l><- - ac - c"
52. Show by factoring tliat
53. Show that
•2a + Sb+e
i'ld'-Tlab- 12^y - + (ic- Ibc - c-
= a-b-c.
4a — 36 — G.
3a+46+c
54. Factor x^ - %•' ij - 3 '' + 4yz - 2^.
55. Simplify (4.«' + 5;/ + 2)^ - l\{ix + 5y + zfz + 3(4x- + 6y + z)z' - z\
56. Find L.C.M. of u{x + l), b{x + l)(x-l), ''^-7u-+ ' ind remainder 34.''
-30 and quotient o:*-'' + 5.«' + 17, hnd the divisor.
68. Divide (pq + m'f - (pa + qr)- by (p - /•) (q - s).
69. FindH.C.F. of 3.«,"' + 5r'(/ + 9a'V + ^'/^ + 6'/* and 2,>* + ox'^y +
5a;V - 3uy - 9(/'.
70. Sh<.w that U^'r^^Y - ^7 1 )2 - {a - b) (a +h- 3x).
72. Prove that (« + 5)'^ -(<» +2>'' = 9(a + 5) (a + 2; + 27.
73. Solve :/; - 11(/-1, Illy - 9x = 99.
74 Simnlifv ("'-")Oi-a) (w-bU,i-h) (m-j^(n-c)
(r-h)
75. Express in factors ij.C.M. of 1 - 8.*' + 17.'-- + 2.i ' - 24.*'* and
l-2'x-13.i'' + 38.."^-24.f^
7Vk Find H.C.F. of (ix^ - llx'^ - 37:^' - 20 and 2j- - 4x' - mc - 7.
r.f- o- IT '■'•i'lX* - V.iX" + l
78. The sum of two numbers is 57«)0 and the ditterence is ^ of
the greater. Find the numbers.
hrn ui i.\ i. 12a;+10a , n7a + 28x io i
79. Show that ^^^^ + \m+2x ^^'^ when ..• = 3«.
80. Factor 40./-' + ()!.*•// 84//''.
81. Find by factoring tlie H.C.F. of 2r<-' - 21?/- - 45o''' + <»/) + 62/)r +
(U- and .'!«- - 21//- ~ 45(.-' - 2((h + 62/jc + dar.
82. Divide (22..' + :•. - zy - a7x - 2y + 3zy by ox + 5// - 4^.
8:5. Find the remainder after dividing .*■■'- 0.1-' + 7,c - 9 1^- x + 3.
MISCELLANKOUS EXKKC18ES.
71
84. Factor 45.r" - Ti^ - 'MOH.
85. Divide the sciuare root of ..•^ + 18.r« + 117jr* + 324x« + 324 by
80. Find L.C.M. of 8»'3 + 27, lHx* + .%x2 + 81 and 6x^-r)x-6.
87 . U •ix-2y = x + 2y - 1 , show that x^ + \f = 2xy + 4.
88. Write down the product of {x - 2>y - oz) (2x - S^y+z).
89. Factor8y'' + 18x!/-5i/'^-2.''-38i/-21.
90. Divide a- + (2ac - W^yx" + chi* by a - hx + cx\
91. How much greater is the co-efficient of x in the product of
(x + 1) {x + 2) (x + ii) (.0 + 4) than in that of (x + 2) {x + 3) (x + 4)?
92. Find the vahie of 25a'^ + (a + 4/>)^ when 3a + 26 = 7, a + b^2.
93. Find the value of ;*•* - llx» - lla-^ - 13a: + 11 when x = 12.
94. Factor 56x-2 + S6xy - 20y' + 28x - 10.
95. By what must a* + a^h + a'^b^ + ah^ + b*' be multiplied that the
product may be ,K
2x-\
3. .Solve ~-~ + 4a; = 12+ ^
.5 4 O
4. Simplify ii'^ + b'-\-c'^ -'■^ah-be-%ir. +,t{a Arh + c)-{h - cf and
divide result by a — h.
5. Factor l^{x' + >/)" + 40(.<;'^ + if)z^ + 25:«.
6. Without actual division find the remainder when r^-Sj-^ + O
is divided by .*; - 5.
7. Write down quotient and remaintier of ~- •
8. Simplify -±l}JlLLA±L .
* ^ (./;*+'••) (x«+«) {j;''+'')
9. Divide (x* - 1 )- 5(x - 1) l)y (.»•- 1)1
10. Divide(./j + l)(x + 2)(i*^ + 3) + 6})y u; + 4.
11. Solve -V,— .5 + roTj^ = /'? iv., , / ■ , \., •
12. Find the remainder when 2x^ -2x* + 3x^ - 7y^-hbx-S is di-
vided by .*' + 2.
13. Find the .S(iuare root of G7.c2 + 9x*-70x-3O.rH49.
14. Ex[«uid in consecutive powers of x the expression (1 -x + x'^)
(1 -.!;' + ;*•«).
15. What expression must be added to j."'' + 11j:"' +21 {x + l) that
it may be exactly divisible by x + (i 'i
16. Find all the factors of (d^ - 3a)'' - 2a^ + Ga - 8.
17. Multiply x(4x + 3//) - {x + 2yy by 44^; + y)-y{ilx- '3y) and
divide the product })y (3.*; - 4y) {-ix - 3*/).
18. Find co-eilicient of x^ in (x + 2) (x — 3) (x - J) (x -i- 8) (x - 9).
19. Factor (1 + x)'(l + y^) - (1 4- #(1 + x^).
M18(!ELLANIiOUS KXKJ-.r)34.,/>- «/)' + (/>-::/ = 3(/>-a:)
(p l/)(/'-4
25. Factor 6.i' + ir).' +1).
2b. Express an a HiiiLfle fraction ^■i^2x-'i^ x^^'^x^h'^ x*V*ix^l '
27 . Factor {x - 3) (x + 1 )" + (x - 3) (.r + 2)^
2H. Divide .;•' -\-y^ + x* + x^ + x"^ + I hy ..^ + ./;* + u"' + j-'^ + .»• + 1.
29. The batiki I discount on a sum of money at 5 ))er annum
is equal to the true di.sc.unt on a sum $50 larger. Find the sum.
30. Factor 2xy + 7' + «// + 21.
31. Factor x*-\- 4(;c - 1).
32. Factor (x 4- ;/ ' + 2xi/(± -x-y)-\.
33. Di vide '.r}'' + ^-^ + 11 .y .#•* + x + 1 .
34. Find the co-etticient <.f ..♦ in {\-x-¥x^-xy.
35. Write down the remainder of 2a* + 3a' + 4a'' + 5a + 6 divided
by a -3.
36. Show that
a + h-c ff-h+c A(l}-c)-
4(6 -P)
«_6+c (t + h-c a^-(h-c)- a+b e
37. Expand in powers of x, (1 - xY(l + x*').
38. bimphfy - ,._7^y-gj^ " "
39. Find co-e .cii-nt of .'•* in (1 +.»)'.
40. Fin«l the remainder when x^ + fjx^ + qx'^ + rx + s is divided by
X — a.
41. Factor {x!" + x)' + 4(x'^ + x) - 12.
42. Reduce to its lowest terms -TTa^. -3a"*.£^0a^J^2^ "
43. Factor a''- 14a26^-h6\
KXEltCISK8 IN ALOEBHA.
44. Ruhf rart (,r 5)'' from (r 3) (.t - I) (..• 4 .3) (x 4- 1).
45, Show by factoring that '^ .>' + if)- + 2(x+ ij) (z+ti)- b{z + 11)* is
divisiblo l)y r+y- . n and >\rit« down tpiotiynt.
40. Show witliout dividing that (l+x + .'i.'-'H3x')''' + (l -.»+3x'-
;ir')» iH divisiblo by l+.V.
47. Employ dotacbed co-efticients to divide jr'^ - lijc* + x* + x" - 3x
+ 1 by ..-fl.
4«. S( ,1 vo (n + j'Y 4- (h + J-)' + (<- + xf = IX<( + r) (/) + x) («• + x).
4J>. Solve
2a?i'+2j;4-:i
j-i 1
50. Find the rt'inaindor without division when x^ -7x^(i-^fixa* +
15(r' is divided l)y x + tid.
51. Find the continued product of a' + d + l, a'^ + a-l and a* -
lV + ,i'^ + 1.
52. Simplify
x*+a-x" -b-x^ -a-b- . .r» «*
a;*+a!'j"'-4-«*
^•'+a-'
C.J w If (2j-2 + .5j-+2)(j-'-3a!=-J-4-3)
o.i. Snn])lify , „ , ., „ , ,; ,„,,, .. , •
54. I f (!/)- prove that f = | •
55. Sliow that (4.'' + 7;/)* - (.V 4- H»/)* is divisible by 7x + 15i/ or a; - y.
5fi. Resolve Ki.r' -81.»'3- l«j't4-81 into five factors.
57. If x = h + ('- 2(1, ii = r. + (i-2b, z^a + h -2c, find the value of
'j^+if + z^-3xiiz.
58. Show that ( « + h)^ + {a + cf + (u + dy + ( J + c)'' + {b + df + (0 + 1^)^
= (a + ?> 4- + (/y^ + 2(< (' + b' + c' + (/-)•
59. Prove that (o + 'Ab)^ + {b 4r )•' + 8((t + [ib) {b - 4c) (a + 46 - 4c) =
{((+4b-4cf.
CO. Solve 5x + 2y + 'Sz= 13, 3x + 7y-- = 2, :*• - 2i/ + ^ = 5.
01. rV man is able to pay his creditors 25c. in the $ ; but if his
assets were 5 times as much and his debts rj of what they are, he
would have a balance of ^1,400. How much does he owe !■
62. Write the co-efhcient of x^ and x^ in the product of Sa-^-Sa^^
+ 5x'^-llx4-13anda;5 + 9a;* + 7x3-lla:^-8x + 2.
63. If 'x+- = y, find the value of a^ + ^, •
MlStKLLANi:ors KXIlKiHBlH.
75
64. Find the (liffHreiico of tlio Hr)«M' + 4/^ into factors.
72 Find the ju-oduct of (r"' 4- .'{.''^ 4- r))' - (/■^ + [h-'' -nf and {x' + x
7:1 Find the co-eHiciunt of .»■■» in the product of l-2x + x' and
l + '2.i+.V- + 4.»;'' + 5..-'.
74. A 's money, twice B's and V> times C's = $190
lis " " C's " 3 " A's= 175
A's " 3
Bs= 176.
How much had each?
75. Extract tlio square root of x^ + {l + x'^) (1 +x)\
76. Showthat(a' + o)(,r + ft)(.*- + c) = (a:-u)(.K-6)(x-c) + 2-J (a +
77. Multiply]/ - f ^y'l + l'
78. Find the sq. root of (2.c + l) (2x + 3) (2x + b) (2x + 7) + 16.
79. Solve -2^rr-+— 3i^-i 45":^"
80. If x* + 8*' -aa-^- 168.»; + 441 is an exact square, find a.
81. Divide (oc + hdy - {ad + bcf by (a - 6) {c - d).
82. Show that a' + a?) + 6-- a(a-c) + be = (a + 6) (?J + c).
•ix-- + l = 0, b + c + 4 = 0.
89. Factor 108,/^ - 1383,i-// + 4277 ;r.
90. Factor 4(;«' + 2)* - 37^'(^ + 2)-^ + S)x\ .
91. Find the H.C.F. of 21a;^ + :-;8..+r) and 129.»-'' + 221a- + 10.
92. Prove that (a; + 3)^ - (x + 2)^ is ecjual to 3.r-^ + 15a! + 19.
93. Divide by factoring a%b + e) + b%c + a) + c\a + b) + 2abc by ab
+ (ic + b'- + bc.
94. Find value of 3.<;»- 160.k* + 344.c^ + 700..- - 1910r + 1200 when
. — f;
51.
95. Simplify ■{ {a + %f + 2{n + 36) (a - b) + (« - bf [- ■',-:^p>-><=.{p:+ , )\
2. Find the relation that must exist among a, /^ «■ so that ,'■* +
(*,»''' + 6x'^ + (:,'' + l may be a complete scjuare as regards ,/•.
3. Find the value of x that H.."'' 3(l'''^ + o<'».' -39 may be a
complete cube.
4. Find the relarion between /> and c that y^ + '^''^ + l),>--{ r. may
be a perfect cube for all values of .»•.
6. Show that (a^ + h'^ + c~) {x'' + y' + ~P') - {ax + Jni + czf - (1r, - cyf +
(ex — azY + {a [I - hxy.
G. Under what C(mditi(ms is - + 7 + - = , . . > when a. h, <; are
not each eijual to zero{
H ti 1 13a; -10 , 4a;+» "(a; -2) lax -28
7. Solve .-^^— +----— ^ =mr6^-
8. Find 4 values of a for which (m-^ -fare -35 is resolvable into
factors of the Hrst degree in x wliose co-efficients are integral
numbers. State how many more could be found by your method.
9. Find the values of c and d so that x^-\- I2.t'^ + 8,0^ + 0,'' + '^ may
be the sijuare of an expression in the form «»f x' -\-i)x-\-(i.
10. Find the value of p and q if '^x'' -V2x*if + 'M,-h/ ^Aj^y* -
pj'if-{-<[[l^ is a perfect s(piare.
11. li x = a-\-d, y=^b + d, z = e + d, then x'^ + y'^ + r.^ -xy -xz—yz =
a'^ + b'^ + c'^ - «/' - w - be
12. Show that if any integer be put for x in tlie expression x*^ -
4.';^-|-14,i^*-32x'' + 49,r--60x + 3() the result will be a square number.
13. If (6 + c)x = 'f, (c + rt)(/ = 6, {a+b)z = c, prove xz+ifz + X)i + 2xiiz
-1-0.
14. Write down the quotient of x^ -3x^y + '3x*if ~ x^i/^ - x'^ -S-
6x^ -12x hy x^ - x -xii-2.
15. Extract the s([. n^ot of (.'/ + -) - 4( j/ — ) •
IG. Prove the following identity :
+
+
'8
P:XEU0ISES in Al.liEliRA.
..
17. pA"t-raot thfi sij. root of (m - I) (m - 3) (m - 5) (m -7)4- 16.
IX. Resolve 9rr(.,-» + 1.2a/>'0 (4^^ + 2430.^) into four factors.
19. Sliow tliat (h(. -I- /(, + /' + t'^ + 4;( + 4 ).*•'' + (2'^ 8a + 2.
30. If 2.)'-' - lO.'-^j/ + 25.o''ir - Rxi/ + '20;/^ is divisible by x'' - 'Sxy +
'iy'^ without a remainder, lind Ji.
31. Factor (3a''^ - 5« - 2).>;- + (^a^ + m + 2)r + - 1' + 2a.
32. Factor .*;« - / + 2x!i(x* + .<-hi' + ;/*).
33. Find the value of 4..'> + 9..'' -r),«,-- + 23..+() if 2,.;-^ = 3x-4.
34. Show that 2{d- + lr + r'-\-id, + nr-\-hc)-{ab + ac-{-bc)^{a^b^
•''' "*" a-^b+c
35. Show that {2x + 3i/y^ + i2ii + 3,"}'^ + (2,: + 3.i;)-' + 2(2.r + 3(/)(2«/ + 2>z)
+ 2(2(/ + 3;:) (2;: -f 3./,') + 2(2^ + 3.-; ) {2x + 3i/) - 25(^ + ;/ + zY.
36. Simplify
-^^^ ^"'^^ 2-3x + cT^ + 10+^=^-
MISCELLANEOUS EXERCISES.
79
38. Find the value of a in the expression lOOcc^ + SOx fa so that
one of the factors of the expression may be 4 times the other and
the sum of the factors is 25x + 10.
21 fi SI
39. Extract the sq. root of IQx^ - 9Qx + 216 - ^ + j-, •
40. Solve
X--2.X x--bx+\ x^+1x~% a;M--c-12
a;^-3a;+2 aj'-^-fi.c+S x" + x-l'2 x^-\Q
41. Find an expression containing no higher power of x than the
first which added to x* + ^x^-\-12x^ + ^x+\ will make it a complete
square.
42. Find the value of a when the fraction ^.t^..^^^^^^,,,. 3^^ ^ admits
of reduction, and reduce it.
43. Obtain an expression which will divide both 4a^''^ + a.'« - 10 and
4a;3 + bx^ -3x- 15, if ^ = 2a + 1 = 7.
44. Find what values of ta will make 3mx"'' + (6m- 12)x + 8 a
perfect S(|uare.
x*+2x '^+x--7x-S _ x*+6x'>+2x"-16x-4 ^
j?^s+3d:+5 "" x'^+lx+lO.
45. Solve
46. fennphfy ^^^zT)^:^Ti'
47. If {a + hy + {b + cy-t:<' + + cf = =' + c^ - 'Sabc.
65. Show that x*^+i/ + {x + yy is divisible by j;'- + ,'■;/+*/- without
a remainder.
66. What is the least integral multiplier that will nrike 17^;'* -
68a;*i/ + 102xY-^8icY + 17a;?/* a complete cube ?
67. Show that the product of any four consecutive integers
increased by unity is a perfect square.
68. If |(6-r)+ t{r-~a)+'j{a-b):^0, prove i (,-,/)+ |(.,-3)
+ l(y-x)^0.
69. It — 26;r" + "^^~" ' + •'«// =" ^•' '*'^''"' ^^^^ (" +^- '■) (^ +
c-/))(fe + o-rt) = 0.
2ac
70. If (rt^ - be) (b'' - ac) {c' - «6) = 0, show that
rt""''t^' c"^ a"b^c-
X'-y- xy
71. If-^ •/ =-^"and ,
a-o 2 b-c
y--z^ yz
,, Z--X- zx
, then —
J- ' c-a 1/
72. If 3((<- 4- 6- + <-')= (" + '' + <•)% prove Tove bx + ay =nb find ay = hx.
82. If (a + h- c - d)x = cd - ab, prove (a + x) (b + x) = (c + .*•) (d f x).
83. If (a'^~bc)x + (b--ca)ii + (c''-ab)z^O and ;>■ + ;/ f,--0, prove
ax-\-by + rz = 0.
FA. If (2a - 3i/)v -= (^ - xf and (2a - oz)z = {x- yY then x + y + z = a
and(2a-3..>c = (i/--)l
85. If a = ^, 6 = ;;-^ r=^, then prove (ti«)(;t:)(S) = 1-
I
on
86. Show that (1 + x) (1 + ;.-') (1 +/*)... -to n factors =
87. Is x^ - xy + y"^ a factor of (x - yf - xy{x - ;/) (.»■' + !/2^ ?
88. Prove (x - yf - x^> + y^ =-- 5.i-i/(x' - .'•;/ + ,'/-).
89. li{x-y)z^ = c?,{y-z)x' = o\ {x-z)y^ = ¥ and (x-y)(y - z)(z - x)
= 3abc, prove ct^ + b^ + c^- 3abc = 0.
90. If x{l + y) = l and ]/(l + ;;) = ;:, prove - .: - i + x + 2x' + 4x^ + etc.
91. The H.C.F. of two ex})res:nons is a 7. and the L.C.M. a^ -
lOrt'^ + lla + 70, and one of the quantities is a'~12(r + 3o, what is
the other ?
92. Simplify -
x"*- V'
.»yn+l
x'-^y
93. Prove that if the sum of three (juantities is zero, then the
sum of their cubes is equal to three times their product.
82
EXKRCISKS IN ALGEBRA.
94. If the sum of the cubes of three quantities be equal to three
times their jiroduct, then the sum of the quantities is zero.
95. Prove that a'^ — hc + h'^-nc + r'^-ab is not changed by sub-
tracting the same quantity from each a, b, c.
96. Show that the vahie of x^ + 1/ + z^ - 3xy:: is not changed if
X' - yz, y^ - xz, z^ - xy be substituted for x, y, z respectively.
97. Find the value of ;»; that will make both of the following
equal to zero, icHSxH I2x-Ui and y^ - 13x + 12.
98. If a + 6 + c = 0, show that \, „ + ■ , ■ :. h _ ,. =0.
h-c
c-a
a-b
99. Determine the values of }> «iid q that will make 4»/* - }2)/ + py^
+ qy + 16 a perfect square for all values '>f .»•.
100. If ax'^ + bx + c becomes 8, 22, 42 respectively when x = 2, 3, 4,
tind its value when x= - |.
101. Fuid the value of x that wi)! make x* + 6x^ + i^h'- + I'Sx 1 a
perfect square.
102. Detennine numerical values for A, B, C, 1), so that 2.*"'' -
13.r2 + 26.>; - 14 - A{x - 1) (x - 2) {x - 5) + £(x-\) (x-2) + C(x - 1) +
D, may be an identity.
103. If x + a is a connmm factor of x'^ + px + (( and x^ + lx + )ii, show
that'"-^
= tt.
l-P
104. Find H.C.F. of 1
?((
- >H^ + vv" and 1 - m* — m^ - m?.
105. For what numerical values oip can the fraction -^f^A^^Z^t "
be reduced to lower terms ?
106. Show that xy + xz + yz is a factor of {x? - yz) {y' - xz) + iz^ - xy)
(t/' - .xz) + {z^ - xy) {x^ - yr.) and tind the other quadratic factor.
ANSWERS,
ANSWERS.
EXERCISE I.
ADDITION.
Page 1. (1.) 84a + 12/) -7c. (2.) 7ax'' + 21ax ~2hy-3i/ + o.
(3.) ,V* + rti^ft + |A'^. (4:.)2a+2b + 2d. (h.)'p + ,i + s.
(6. ) 3x2 - 5^3. (7. ) 9(1 - 7h + 4c. (8. ) 70(a6c + a%'c-).
(9.) 6x-3y + lbz. (10.) 2^ •
EXERCISE II.
SUBTRACTION.
(1.) 2a-2j: + 18. (2.) (t'-^- 14^/ + 2(y'' + 4;:'' + m.
(3. ) 16« - 14<^ + 14 CI/- - V3\/a'- h\
(4.) i)--17(/-22)'/ + 99.
Page 2. (5. ) ((^^ + "■■'& + 9a/>'^ - 2/>». (6. ) x^ - \xy.
(7. ) 12(f + \0h - 22c. (8. ) x^ - Q.c'y + llxi/' - 6i/'.
(9.)aH« + TV (10.) -V'.
EXERCISE III.
ADDITION AND SUBTRACTION.
(1.) -4« + 27c^ (2.) 2 + 20X + 29A
(3. ) bx - 3fxyz + 11 1/ + 9z. (4. ) x? -a^+ if + b'.
(5.) ' (6.) c\ (7.) 0." (8) 6'^
(9.) ?5'' + 26. (10.) (r + /)'^ + cl
EXERCISE IV.
Page 3. (1.) a-46 + 3c. (2.) 3a-2;r + c+l. (3.) 3c. (4.) c.
(5.)5^-.V. {H.)2a~b-il. (7.) -46. (8.; 0.
(9.) 6/> + b(/-<>r. (10.) a.
[851
I
86
Page 4.
EXEROISES IN AI.OKBRA.
BXERCISB V.
MULTIPLICATION.
A.
(1 . ) ^"^ - 3.r'i/ + '^.>•^f - >/ + J-' - 2..;!/ + J/'.
(2. ) r.r'' I/-' -f z' + 'Xniz. (.'i. ) 1 - ^"^ ■ 1 2..
(4.) :V2yHiA (r>.) <(*-2a^//' + M + 4(i/>r'-n*.
((i.) ..« - 57^-H2<5(i/^- 1. (7.) 1 -X-. (8.) (x'-a«)^
(9.) x2"' + 2x"»i/'» + iy'^". (10.) a''-^^
B.
..4
(1,) ^„^i, + r, + df. (2.) ,/« -4a* + l«a^-16
(3. ) 27x-=* + Sif + z' - 18.'!/.:. (4. ) 1 + \i' + ■:'' -
(5. ) ax, - a'x*. ( 0. ) a>' - 2a^/>* + />"•
(7. ) u:* - \/ - s* + 41/".^ - 6jy-;:;' + 4i/r'. (8. ) j-^"
(9.) d'-{mx-nx''f. (10.) a;«-^-
:>i/2.
C.
(1.) x'-'+!/". (2.) (6 -a).
(3.) (.'•■' + «/>)' - («•« + /^•'•)'- (") 0.
(4.) a-" - 2;>'V(/ + n^if - !/^ (5.) :>:' - - ( + '*'' + '>'')^ - "^'■•
(7.) Co-etticient of ,'• above m(ab + a<' + hr.) :.S>iS + 8y. -
2 + 3 X -2 = 2.
(8.) ,c^-(l+2 + 3).t'^ + (2 + 3+tJ).r-0-x='-6x'^ + llx-6.
(9.) x^ - 15x2 + 71x - 105. aO.) 1408.
EXERCISE VI.
DIVISION.
A.
(1.) 4a2 - 3a + 5. (2.) a'' - 2ax + x\
(S.)x*~x^ + x''-x+L (4.) ..• + /). (5.) .r'-ax + b.
Page 5. (7.) 8x-3!/. (H.) x' + iSx' + llx + (l (9.) .r^ + j/».
(10.) (x + ay^-0e + */)/>-f6''.
ANMWKKS.
B.
8;
(1.) a + 6 + 2r. 2.) .r* + Sx^ + 2.
(,S.) Hint (I'-^ + h^ c^ + Snhr is (livJHihle by + 4fc2. (H. ^ rt* - a»+ 1 . (*.».) x - .n/ + */*.
(10. 'ivitlu in the (irdiimry way, and since renuiindcr in
zero, « = 2.
C.
(1.) a 20, 6 = 85. (2.) m-ofi.
(.1.) Apidv |)i'i u 7-^ . ett ., then - „ ' , „ . ■ > - -
4,,.'^ + 8r (/ + 7 !/' - 6x2 + 'Mfz + 9^'.
(4. ) .'^ - .'•* + 1 .
(5.) Aj»j»ly ditterencc of 8.)x~Ik (7.) 6 + c-a.
Paged. (8.) 8.'''''-22«a-4-15a-. {U.) 7x + ^z. {W.)u+b + c.
EXERCISE VII.
MISCELLANEors EXERCISE.
(1. ) a' 4- 4/. (3. ) hx -y-z.
(4. ) J'* - 1 0.,'^ + 9. (5. ) 4x' - Hx + 7.
(8.) 2an.
(0.) A-u + 2u^-4a». (7.) i+?f-?
(9.) a = 7. (10.)^^-Y^ + 7j •
(11.) Write 1st (9.. - - 6ax + a') - {x^ + 4.
IMAGE EVALUATION
TEST TARGET (MT-3)
m
f/
/.
/
1.0
;siM iiM
:!f 1^ 12.0
i.l
y5 lllll-L4_ mil 1.6
6" —
V^
'<^>
W
^
^m oS
O
fjy^//;'/.
J
Photographic
Sciences
Corporation
4h
<^
^^' + 81 .^^ - 243.r + 729.
(27.) ((=-1. (28.) 10. (29.) ;i,-^ + 2a; + 3.
(30.) 2.*+ 3.
EXERCISE VIII.
HORNER' S METHOD OF DIVISION.
A.
(1.) a' + 2a+A. (2.) 5x' + llu; + lL
(3.) .c3-3x'^ + 3x + l. (4.) 3x*-2x-3-x + 5.
(5. ) 2x' + 3x - 1. (C.) x^ - xy + f. (7.) 2xH x + 1.
(8.) ir*-4*=^ + 6..-^-4x' + l.
(10.) 3x3 - 2.i;2 - 5x - 3.
(9.) x^- 29^3 + 47^2 -25.
Page 8. (1.) -7.
(5.) 101.
. (10.) -7617. (11.) 0. (12.) 0.
B.
(2.) 15. (3.)
(6.) 20. (7.)
-205. (4.) -G400.
1. (8.) 1. (9.) 943.
EXERCISE IX.
Ii;VOLUTION.
(1.) a2 + 2a?> + 6^ 4^(2 + i2a^ + 9//' ;
(2 .) d^x^ + 2obx + })' ; 225x2 ^ 420.x (/ + 19())/ ;
^a^ 8 , 1^\ i= 4. 2 . ^\
SSx--"^ ^ '^
■9 "" 6 "^16' 16
6.1- -'j/2 16y«
5 ' 25
(5 . ) a'^ + 6H c2 + 2tt6 + 2(tc + 26c ;
4x2 + 9,j^2 ^ i(5.i + I2x J/ + ICfs + 24i/2 ;
l + 2x + 3x2 + 2x3 + x*.
)e
ANSWERS.
89
(6. ) Ida' + 25^2 ^ 3^,.-. ^ 4,)^.^,, ^ ^g^^^. ^ ^^^^^ _
4+9+16+3+4+6' ^+^ + l2" + 3+|
(7. ) r/-' + h'' + r^ + 2(«/) - 2ar - 2hc ;
«2 + 62 + c-^_2a6 + 2ac-26c;
a'^ + //^ + '-' - 2(t/> - 2ac + 2hc.
(8.) x^ + |)/Hl-.«v + 2x-j/;
a;* - 2(tx-3 + ((t^ - 2b)x' + 2ahx + //^.
/Q \ X* 2.r'' , 4a;2 , ,
(^•) -9+-3-+-3-+^+l;
9.t-*-2.r3- 171^.2 + 2^ + 9; !!i! + »!il_2
9/4= 4w-
(10. ) a V + ?,2,/ + ^4 + 2ff A- + 2a6,n/ + 2hc'y ;
a;" H-' »= •>« o- <^..
^-' + ^'4.1= I !? 4. 22 ,2?/
?/
EXERCISE X.
Page 9. (1.) .T-H3a'V + 3,«yH?/^;x''-3xV+3a;i/-j/3.,.3 + ^3 + ,3 +
3x^,/ + 3^^'^ 4 'd.nf + ^xz^ + 3j/s^ + 3(/'^;^ + Qxyz ; a;^ +
i/« - z^ + Zx-hj - ^x^z + ^xy' + a.-;^^ + 3^^v2 _ 3 ,•,„ _ g^^^
(2-)mH^ + 3m+|; m^*
— T- — 3m + - ;
(3.) (t3 _ ^,3 ^ ^3 _ 3^^7^ ^ 3^^^, _!_ 3^^«^ _^ 3^^^,, _^ 2^^^ _ ^^^^ _
6a6e ; 0} - W - c^ - 3(f -^t + 3a6'' - 3a'^(; + ^ac^ - 36^c -
36c^ + Gabc ; 1 + 3a; + 0*'^ + 1x} + 6a;* + 3^-^ + .r«
(4.) 4(a + i)^ (5.) a\ (6.) (7.)
(8.) 2(rt-c)(6-rf). (9.) 2(1 + 3a*). (10.) 27.r'.
EXERCISE XI.
MISCELLANEOUS EXERCISE.
(!•) (2.) 0. (3.)
(4.) x2 + i/ + c'^ + 2.i;|/ + 2.r~ + 2i/,t. (5.) 2('l + 3a;*)
(6.) {a+hf.
(7.) Factor expression u-" - 8j/''' - 27/ - 18.ri/.:; and o..e
factor \fi x-2y- 'Sz, which is ecmal to zero. • a:' -
8i/3-27z' = 18.np.
(8.) =0. (9.) 8x3. • (10.) 0. (11.) a\
(12.) 8(x'^ + |/^)l
90
EXKRCIHii'S IN ALGEBRA.
FACTORING.
EXERCISE XII.
Page 10. (1.) (a + b + cd)x; (a+p) (x + y + z).
(2.) {a-b)(x-y){x + y); (l-a)(l-6).
(3. ) 3h\:^a* + lla'b - 4/>^) ; (1 - x') (1 + x^ +p + q).
(4. ) 3ac%oh''c + 4rt^fe - 7c') ; (2a' - I) (x" - 1).
(5".) (4x+ii)(a + b); {n-l)(a + b).
(6.) {2x + 2f)(a + b); (x-3)(x~y).
(7. ) (ax - b) (ex + d) ; (u-^ - a') {x' + ax + a').
(S.)(l-a + b)(l+p + q).
(9.) (l-b)(a-b + c); (a^-l) (a + 1).
(10.) (a + b-c)(d-e+f).
EXERCISE XIII.
COMPLETE SQUARES.
(l.)(a + 4^)^ (a + 7by. (2.) (a + 18)'; (x~5ay.
(3.) (xy-Sf; b'^lx-oy)\ (4.) (mV + l)'^; (4rx' + 2)\
(o.) (a-^Y; (1-A.xy. (^.) (^x"" + 2^jy ; (C^-lf.
(7.) {xy-'-Qf; (a + b + c+d)\
(8.) {x + y + zY; (Ax-' + ^yy.
(9.) (3a -26+40)2. (lo.) (3x + 2y-z)\
Page 11.
B.
(1. ) (^x!" - 4i/s)^ ; (a - 6 + cf. (2.) 0.
(3.) (2a'^-3& + 4c)2.
(4.) (.--- + — + ^j .
Note. — Question shovild be — tt— •
(5.) (26 + 3c-l)^ (6.) {x- l + l)'-
(7.) i^ + q + r-sf. (8.) g--7;36t/'.
(9.) r2a'^-3a + 4)'^ (10.) (a' + b"" - c^f.
ANSWEHS.
91
C.
(1.) -{ 2{a + h) + '^(c + d) y^ (2.) {2a-h + cy.
(4.) Multiply second expression by 2 and add to first, etc.
(5.)a«-aS-i7a* + "''^'- 1"^"'
■4« + ,
(6.) (3a + 2)2 (a - 3)'^ (2a. - 1)1 (7.) (f + 3 - f )'
(8.) Multiply out and re-;irrange, etc.
(9.) (.e'-2xy + yy. (10.; (2-^-£)^
EXERCISE XIV.
DIFFERENCE OF SQUARES.
0\2
(1.) (2x-Sy) (2x + 3y) ; (I2x-17y) (12x + 17y) ;
(4x'^-l) (4,*;''' + l).
(2.) (2a - 6 - c) (2a - 6 + c) ; (4x'+ */ - z) (4x + y + z) :
(3r/i + 2)1 +p) (3m + 2m - j?).
(3. ) (200) (198) ; (x - y+ ;;) (x + y- z) ;
(a-36 + c) (a-6-c).
(4. ) (x' + 1/2 + z^ + 2xz) {x" + y' + z^- 2xz) ;
(a-b + x + y) (a -b-x- y).
Page 12. (5.) (b + c-a + d) {b + c + a-d) (a + d-b + c) {a + d +
b-c); (a + b + r) (u + b- c) {c + a - b) (c -a + b).
(6.) (x«-i/) {x" + y-) ; 16(l + a-) (1 -;.•) ; 4(a + c) (b + d).
(7. ) (x' + y' + z") (x-^ + 1/2 + z' - 2xy - 2xz - 2yz).
(8.) lo(x-2y)(x + 2y); 3(9x' - 4.y') {9x' + 4y^) ;
{l-2ab'')(l + 2ab^).
(9.) (3a-56 + 4c)(-a + 6-4c);
(a' + a-b' + b){a' + a + b'-b).
{10.) {x + 2z)(x-2y).
B.
(1.) 7x-5y + z. (2.) (x-' + yy-zK
(3. ) (a^ + b' + c' + d') (a' + U' -c'~ d').
(4.) Factor dividend. (o.) 840.
Apply difference of squares to 6, 7, 8, 9 and 10.
02
EXEUCISE.-^ IN AUiEBRA.
EXERCISE XV.
EXTENDED APPLICATION OF (x±yy AND x^-tf.
A.
(!.)(;*'- "^'Xy + 2i/2) (:r2 + 2xy + 2y^) ;
(x' - 3x- 3) (x^ + Sx - 3) ; (x' -x + 1) (x^ + x + 1).
(2. ) (lOx^ + 4x + l) (K).*'^ - 4j- + 1) ;
(x' + 3..' + 7){x'-3x + 7y, (a' + 3ah- b^) (a' - 3a/> - 6^).
(3.) (2a2 - 5a& - 3b') {2a' + Mb - 3b'') ; (3x^ - a;j/ + i/)
(3j;''^ + i^'.V + ?/'0 ; (i«''^ - 4xiy - /) (x"^ + 4xy - y').
(4. ) (m' + Amn — n') (m^ - 4»/i?i - 71^^) ; (x*-x^ + l)
(x* + a;2 + 1 ) ; (c'^ - ac + a^) (c'^ + a/- + f t^).
(6. ) (a' - 4((l> + 8/>'^) (a' + 4<(b + Sb'') ; (26a^ - 5a + 1)
{2oa' + 5(t + 1) ; (o- - bab + 3b'') {a' + 5ab + 36^).
(G.) {3<(''-ab + ^) (3a' + ab + ^-^) ;
(2x^-1 -3) (2x^+1 -3).
Page 13. (7.)(.^-f + ^^)(x^+f4-;^);
(x'^-5x + 25)(x''' + 5x + 25).
(8. ) (4a' - 3 .
B.
(1 . ) (3a'' + 3a?; + 2b') (3r»2 _ 3a/> + 2¥) ;
(x' + x + 4)(x'-x + 4);
{4x' - 6xy + 9(r) (4x' + Gxy + 9?/').
■ (2.)(r'"'+i)(C+"''+3);
ne ~ r2 ■" 9 / Vl() "^ 12 ''" 9 / '
(3. ) (a' - j'-c'- 2br) (a^ -b^'-c'^- 2bc).
(4.) ^x^-2x(^i^-z) + 2{y^z)'y
^ x-^ + 2x(y + :-■) + 2(y + zf y ; (a' + 3^2) (3a' + b"^).
AXSWKRS.
9d
)■
-n
'■)•
n.
(5.) (J..-f.UM(l-U-')-
(6.) 4(r»'' + 5(t/> -2//0 (/>' + 5rf/, - 2a-).
(7.) ■\Aa'-ha{h-c) + 2{b-cy)- -^4a» + 5a(6-c) + 2
(8. ) -{ (^-^ - x// + ff - 3(..;» + ?/>) + (x+ yf y ^ (x^ - xy
(9.) {a' - 2ab -f 5//^ {5a' - 2ab + b'') ; (LV - x-i/ - 3v^)(2;r'-i
xij ~ 3if).
EXERCISE XVI.
TRINOMIALS.
A.
(1.) (x + 2) (x + 6) ; (x + 4) (,x + 5) ; (a; + 37) (a; + 10).
(2.) (.*' + 40)(.c- + 49); (x- 13) (.--14) ; (.,• - 25) (.• + C)
(3. ) (,. + 20) (,. - 4) ; (,: - 26) (a- - 62) ; (x - 40) {x + 3).
(4.) (5?; + 4) (3,.- + 1) ; (3a' + 2xj) {2x - 3*/) ;
(4c-7a)(4c + 3u).
(5.) (^• + i)(^--i); (a; + f)(cc-f); (a;-l)(x-}|).
(G. ; (,i- + 12) {x + 21) ; {x - 99) (.«■ + 7) ; {x - 48) (x + 11 ).
(7. ) (3.. - 7i/) (7x 2;/) ; (x^+ i) (r^ - |) ; (x- - |) (.
(8.) 13x(13//). (9.) \ 4(,f + 2)^'-x'^ ^ -^ (x + 2y
(10.) -^(a-^)*"-!! ^-^ (a-6)'»-33[..
+
+
^)-
■11M(«
B.
Page 14. (1. ) (8x - 9) (9^ - 8) ; (4.t - 5) (2x
9a;2 }..
-7).
f>2).
(2. ) (3.« - 4//) (8x + ^) ; (5./; - 1) (2x' - 3).
(3.) (15a; + 99)(a; + l); (4x- - 3) (3a; + 7).
(4.) {2a ^W) (3a - hb) ; (4;:; - 5x) (8,-; + 4ic).
(5.) Multiply by 4 times co-efficient of first term thus—
4 X 4132*^ - 4 X 413 X 606»j/ - 4 x 413 x 299*/^ then
add (606//)2-(600)/y^ .-. we have difference of
two .squares - 1^826^; - GOG;/)'' - {9t2%y)\ Factor
in ordinary way and divide result by 4 x 413, =
(59.« + 23|/) (7x-13w). Second part (17a; + 8y)
(12a; - 25)/).
i)t
EXRIUJIHKS In AI.fiEHRA.
(6.) (5..- + 151) (<>,.• 140) ; (i\.,+:>:i) (rxr+w)).
(7. ) (!.•;..• 4;»r>) ((;.,■ '.17 > ; (7,.-^ 1,;,-)) (Sr - 1«;9).
iH.) (<;,.• - 111) (7.. ■+ 107) ; (8.M-I(M0 (12y-01).
(J>.) (17.v + 2ir))(2.r-14;i). (10.) (7r/ -437) (4a + 191).
EXERCISE XVII.
POLYNOMIALS.
(L) (4a;-2i/)(5.>; + %-2)
(3.) (x-6y){7~2x-:iy).
(5.) (x-3y)(x + 2ij~4::).
(7. ) (3a: + 2!/ - 4,^) (2.r - 3j/ + 5^;)
(8. ) (ll(t -b- He) (5a - 06 + 2c).
(9.) (2a-3fe + 4c)(3a-7/>-c).
(10. ) (3m -n- br) {m + n + r).
(2.) (2a -56) (3a + 46 -3).
(4.) (r + 5;/)(3a- + 4// + 2).
(0.) (3x'-2//)(G.^--4*/ + 34
B.
(1.) (7a; + 6i/ + 8)(a;-y-2).
(2.). (5a;-5j/-22)(4a,- + // + 4).
(3. ) {Ax + 5 J/) (5a; - 4y + 7). (4. ) {x + 3*/) (x- - 4 ./ - 5).
(5.) (3x-2i/-2.:)(2..;-3;/ + 4;v).
Page 15. («;. ) (2a - 56 - 7c) (2r< + 36 + 3c).
(7. ) (5.«' + 4;/ - 6) (3x - 1y). (8). (5a - 46 - 2) (a - 36).
(9. ) (6x - 4 J/ + 3) (3a; - by). (10. ) (5a; + 4 */ - 6) (4.« + 3 ).
C.
(1.) (a-36)(4a + 76 + 4). (2.) (3a; + 4.y-8;:)(2.x-5y + 6^).
(3.) (2a- + //4-7;;)(.c + 2i/ + 3,;). (4.) (3.f + 5v)(8x--y + 4).
(5.) (3.v-4]/ + ,-;)(a; + i/ + ,':).
(G. ) (2a; + 3m - As) (a; + m + 3«). (7. ) Am + 3p- 9n.
(«•) . (9.) .
(10.) Factor in ordinary way (8x- - 3j/ + 0,~) {2x-by+8z).
Then ^ llie simi = ()ne (]nantity, ^ the diiierence
■{Xw otlier
(5.,.-4// + 7;)^-(3.*' + ^-~)^
AXSWKUS. 96
EXERCISE XVIII.
APPLICATION OF j'^±y\
(1. ) (a + h) (a^ - ah + fe') ; (a + x + y) (a' + 2ax + x^- ay -
^y + y'^) ; (m + w + jo + n) (m + nf - (m + n) {p + y) +
(?' + '/)'.
(2. ) 2(wi'-^ + n') (m^ + 5m2w2 + n«) ; (a^ + 1>') (a* - a»fc-^ + h%
(3.) (a* + />0 {a*" - o^)* + />') ; (a^ + />») («'" - a'Jf + />'") ;
(2a + a/;)(4a'-^-Of(/> + %0.
(4. ) (x« + y>) (x^' - jt^y^ + iy6) ; (Sx^ + 8 (/«) (25x" - 40:r' i/« +
64(^«); ^ (o -;>-<•) ;- ^ a2 + a6 + ac + 6H26c-|-c2 )>.
(5. ) (2a; - 4i/) (4^-2 + 8:/-// + IGy^) ; («« - 6") (a'« + a«6" +
6") ; (ic - (t + 6) (x'-^ - 2ax' + a» - 6x + a6 + 6*).
(6.) (7.) (9.) (10.) Use ^^^', etc.
Pagre 16, (8.) {x + af -h{x + a)-\-lA
x±y
EXERCISE XIX.
GENERAL EXERCISE IN FACTORING.
A.
(1.) (x + y){ax + ay-bc); (5jt> + 24) (3j3 - 1).
(2. ) 2a(26 - 2c) ; {a-b-c-2) {a + h + c).
(3. ) (2x + 3// + z) {X + 4*/ + 3:;) ; {x' + 4y'') (x' - y'').
(4.) (b-c)(x + ay; {2ai-2h + l) (a + h + 2).
(5. ) {x + y) (x - y) (u- + .r // + ,/) ;
(a - 1 - 6) ((('^ - 2a + 1 + tt6 - 6 + 6'^).
(6.) (a^ + 62) (c^ + d') ; (x'^ + 5;*^ + 4) (a;'^ + 5a; + 6).
(7. ) (..■ + !/) (a;2 + xy + >/) (x' - x,/ + r) ;
(a;'^ + l)(c«^ + *-!).
(8.) (a-l) (a'-a + l);
write exjiression x^ + 1 + 4a'''' + 5a; + 1 factor by i)arts ;
{x + 1) (a'-'' + 3;,' + 2) ; (x + 1 ) (x + l){x + 3).
(9.) (..' + 1 ) (.>' + 2) (.' + 3) ;(.'-- 1 ) (.,; - 2) (x - 4) :
(a'-2)(.r 3)(.,'-4).
(10.) (,. + l)(.,.-2)(,.' + 3); (a: -2) (a- -4) (.. + 5).
(.^-l)(.c; + 2)(.«;-3).
96
KXKUn.SKH I>f ALfJKHUA.
B.
(1.) (x + 2)(x + :\)(2x + l); (x + l)(x + 2)(3x + 2).
(2. ) (x + 1 ) (.'Ir- + 2.1- + r.) ; (x + 1 ) (x + ;{) (2;*; - 1).
(3. ) {2x 4- 1 ) (2x - 1 ) (x + 2) ; (M.r + 2) (3u; - 2) (x - 5).
(4. ) (x + 2) {x - []) {iix - 5) ; (a + 2by.
(5.) . {(I) (x-l)(x + i){x^-px + q).
(7. ) 3a/>c. (8. ) (x + 3) (..■ + fi) (.*•'' + lb- - 2).
(9.) (x - 1) (x + 1) (x'^ - 10). (10.) (x + l){x- 1) (x - 2).
EXERCISE XX.
H. C. F.
A.
Page 17. (i.) 2(a-x); a + h. (2.) x-a. (3.) x-7.
(4.) a; -12. (5) x^-2. (6.) x-2. (7.) 2x + 3.
(8.) 12a;'^-5. (9.)ft-l. (10.) a^(3a + 2).
>il
(1.) a; + G.
(4.) a; -3.
(7.) x + S;
(10.) x»(a;-l)(a;-2)».
B.
(2.) 7a' - 2y. (3.) cc' + 2x1/ - ■»/.
(5.) 3u;'^-2. (6.) x + y.
: x= -3. (8.) a = 6. (9.) x-l.
EXERCISE XXI.
L. C. M.
Page 18. (1.) ()x\3x-l) ; (2.) (x + 2) (x + 3) (3x + 2).
(3.) (:x-l)(x + l)(x + 2).
(4.) (x + ^) (x + 1) {x-2) (x + S).
(5.) (rt2-l)(rt2_9)(„4-5).
(0. ) (ic + 3) (x + 4)(x + 4) (x + 5).
(7.) (.«; - 1) (u- - 2) (.. - 3) (.. - 4). (8.) (aHl) (a«-l).
(9.) (uj^-i/OM-^^ + a-'y + ■?/*).
(10.) (.r-3)(.,--8)(x + 8)(.f + 9).
ANHWKH8.
97
EXERCISE XXII.
(JENERAL EXKUCISE li. C. F. AND L. 0. M.
(I.) H. C. F.=a-1; L. C. M. .»»-5aH7«'-a-2.
(2.) H. 0. F.-(.r+l)(.'' + 2);
L. C. M. (.r+1) (.r + 2) (.r + .'J) (.'• - 2).
Note — (J>ue.sti<)ii .shoiiid be w^ + .!•'', etc.
(8. ) (.r' + 5u; + (}) (x' + Ix + 8). (4. ) a -^ 12.
(5. ) .* 20. ((). ) a ^- 1 2, t -- 12. (7. ) <* = 1 0.
(8.) />-2. (9.)f= 114. (10.),,-^*). (II.) nhx\
Page 19. (12.) w-28. (l.'J.) 4ax ; %x and 2x.
(14.) «— {); other expression i»" + 2. (lf>.)
(16.) . (17.) . (18.) x-' + dx + d.
(I».) . (2(».)
(21.) (.T + 1) (;i!4-2) (:*; + :i) (x - 7), .-. a- = 7 to make each
vanislj.
(22.) H. C ¥.=x~ 1, .'. .7—1 to make each vanish.
98
EXKKCI8B8 IN AI/JKHKA.
FRACTIONS.
EXERCISE XXIII.
Paere 20. (I.) "— • ?— — . (*/)''—■ "
(^.)a + h + r; ^-. (4.)^'= 1. (5.) f ;
fix X
/^ \ (a~iy . a-Zh
(8.)
2a + 4
(7.)
a;-3//
(9.)
(a-l)(a-2) "^"'^ (x-1) (:i-x)
EXERCISE XXIV.
(10.)
221 - .{Ox
14
(a!«-l)»
Pa«e21. (4.)|^.
(!•) 'tS^^^^ (2.) a (3.) ^^-^^
(5.)
(8.) 4a' -9x'^. (().)
(x - 2a)s
2ffl(a«+/>')2
3x+l
05.)
(a^-b'^y^
"^ • (7)0
(10.) X.
EXERCISE XXV.
av ab+ae+bc ^ .„ . a^+x^ 24xj/
x-3
0='-x8 ' 9x'^ -4i/2
2a-'f«f2+afe»-6i
a(a--b^)
(5.)
(6.)0. (7.)^:- (8.)1. (9.) a. (10.)^/;ii^,
EXERCISE XXVI.
Pagre 22. (1.) 1.
(o \ ^±3: . (2a+3) (4a+5) .„
^ •>'6-a' (3a+4")(5aT6)' V^'-' ^ 5 ^•
(4.)
8««
a*-x«
ax
X* -y«
(•^•)1- (C-)~|-- (7.)
X'-'j/-'
2a6
(8-) -x-i^^- (9-)i. (10.) 0.
ANHWKFiH.
99
■24
113
EQUATIONS.
EXERCISE XXVII.
A.
Page 23. (1.) a; = 7. (2.) x-16. (.'J.) a; =15. (4.) y = 2 .
(6.) a! = 3. («.).r = 8. (7.)a;-13. (8.) a: = 28!'
(9.) a; = l«. (10.) .1-10.
B.
(1.) x-3. (2.);r = 5. {•.\.)x:
(4.)r--107. (5.) ..•..7ij. («.) .r = 2f (7.) .r-H.
Page 24. (8.) x- - 3IJ (9.) .r:^7. (10.) u: = 8.
C.
(1.) a; = 20. (1-.) a^= -2. (3.) x = 4, (4.) a; = 8.
(5. ) u' - 4. ((i. ) T = 2. i7.)x = 3. (8. ) u' - 5.
(9.) cc = J. (10.) x = 8.
D.
(1.) ae«2. (2.) x = 2. (3.) ic==7. (4.) a;=4.
(5.) x = S.
Page 25. (fi.) x=7. (7) x^^^^^^^^. (8.) x= -2.
(9.) u;-l. (10.) x-= --H.
E.
(1.) a; =4. (2.) .«•
2A.
(3.) x = ^
cd-ab
ac
/ A \ Itt Ct" - I) -
a+ft-fl-rf
(6.) a; = i ; .
rtft
ah
a-h
(5.) j' = (tfec.
(7.)^=-/>. (8.) X:
m + »
*/i
(9.) x- = 4a. (10.) x-^'
F.
(1.) :c = ll. (2.) a;- -21. (;j.) x-24. (4.) ,-^5.
Page 26. (5.) x- = 7. («.)x-l3. (7.) .«-10. (8.) .<• H.
(9.) x = l (10.) ,'^ -2.
100
EXEIUJIKKS IN ALGEBRA.
(I
f
(3.)
(5.)
(7.)
(9.)
Page 27. (10.)
(13.)
(10.)
(18.)
(20.)
(23.)
Page 28. (24.)
(27.)
(30.)
(33.)
(35.)
(37.)
EXERCISE XXVIII.
PIU)BLEM8.
22 miles. (2.) $180 fcr liorse, $HX) for burrgy.
A §^93.50, B .1?280.r)0, C !5«1]22. (4.) 4^ liours"
!^3200. ((J.) 240 yds. long, 80 yds. wi(fe.
A $142.50, B $47.50. (8.) 15 at $38 and 8 ac $50.
$15.00.
$0. (11.) $800, $3200, $1000. (12.) 50 yds.
$1.60. (14.) $20000. (15.) $750.
90 head. (17.) 18, 22, 10, 40.
40 and 35 bags. (19.) A $2542, B $2422, C $2430.
08. (21.) $11100. (22.) 182 and 10.
A $048, B $472, C $410.
$18000. (25.) $2400, $1000. (2<5.) 11 horses.
41 a lbs. (28.) 09 and 81. (29.) 144 sq. yds
$1050, (31.) 84. (32.) 18x12 ft.
10 and 24. (34.) A $70, B $120, C $190.
10 vols. (30.) $(550, $750, $050, $450.
24000 men.
EXERCISE XXIX.
Pa^e 29. (1.) r, = 7 ; // = 2. (2.) c*' = 7 ; 7/=3.
(3.) ;. = 7; ?/-3. (4.) ^' = 3; ,/ = 5.
(5.) u' = 5; // = 1. (6).i. = 90; (/ = 72.
(7.)j- = U>; yr=24. (8.):»'-12; (/ = 12.
(«•) ■>' = !; II--1. (10.),r==18; 7/= 10.
Note- Question should be r + - =8.
3 5
(11.) :*=00; // = .30. (12.) .r = 12; y^S.
(13.) x^a + b; ,j.-a-h. (14.) x
iii"-n- n--m-
ati - hill
(17.) X-^-h; If = 2.
» - >n am - n
«,-i ; y
(15.) .• =
(1().) .;
a-l
am -tin '
_'''■ . .„ '"'
« + '> ' ^ "^ a^-b
(18.) .r^2; y^\. (ID.) .,...2; ,/-4; .^0.
(20.) ..^ -I -y^i- ::^0, (21.) .,.:{; „^\ .
(22.) .r^l; y.-.2; Z = 3. (23.) .:^3; .,=^5; z
-1.
A NSW Kits.
101
Paere 30. (24.) a-lO ; y = Q ; z = 0. (25.) x-^ ; y= J^ ; z = \.
(20.).r=-i; i/ = i; . = 1.
(27.) a- = 2; |/ = 1 ; .~=--4 ; p-3.
(28.) a- = 1(5; |/ = 7-7r); 2 = 5-5.
(29.) x^r, ; !/=3 ;~=4'
(30.) ^■ = — ; !/ = -2-; '~=^^-
= 8,
(4.)
(7.)
Page 31. (8.)
(10.)
(13.)
(15.)
(17.)
(20.)
Page 32. (23.)
(25.)
(32.)
(35.)
Page 33. (30.)
(37.)
(38.)
(41.)
EXERCISE XXX.
17 yds. ; 13 yds. (2.) | ton ; 1^ tons. (3.) 45.
GOc; l()c. (6.) $1.00; GOc. ((5.) lo ; 25.
A lOOc, BGOc.
$48 = cow, $96 = horse. (9.) 8 and 15.
$180 and $120. (11.) 3, 4, 5. (12.) 8, 12, 18.
A = $1.00, B-$1.12. (14.) 31 and 23.
John = $22, Tom = $2r). (16.) 41 and 7.
72c. and 40c. (18.) 35 and 65. (19.) 24.
3
(21.) 40 and 90. (22.) 3,
40 and 65. (24. ) A - $232, B = $332.
A-$31, B = $27. (26.) jV (27.) f^
fandf. (29.) 26. (30.) 75. (31.) 69.
7 1 and 4^ hours. (33.) $5000 each. (34.) 35.
72, 64, 56, 48.
$540 and $360.
30 and 50, and 70 and 20, or 60 and 20, and 40 and 50.
12 sheep, $40. (39.) 10, 22, 2C>. (40.) 2Js., 2s.
3, 5, 8. (42.) $3()0 and $600.
(43.) 80 and 120. ( : i) 48c. and 40c.
MISCELLANEOUS EXERCISES.
A.
Page 34. (1.) y^-4x + ll. (2.) 0. (3.) j^-6x+8.
(4.) (..-I) (..■-3). (5.) 16.n/. Hi.) ~4ab.
(7. ) 2.r. (8. ) ((/ + b) (a - 2). (9. ) x'' + Sx"" - 153.
{h).) »,^ \ h\ (11.) 43. (12.) .»'' + H;.-!/»7!/-.
(13.) al,{ii+2h) {2(1 +l>).
(14.) x{:ix + 2ij); 5/»(3(r-2/> + 3f). (15.) x-y.
102
EXERCISES IN ALGEBRA.
(16.)
(19.)
(22.)
Page 35. (25.)
(28.)
-47. (17 . ) a^ - b' - --" + i . (18. ) abc(^^ -3b + 2c»).
$70. (20.)m'-n^-3?riH(m-n). (21.) |^-
(8..' + 2:^) (x - 2). (28.) 10 - 8./;. (24.) x - 5.
(x + 4ii + o)(;x + y). (2().) 0. (27.) 12r»-146.
(4.r - 11) {7x - 8). (29. ) x = 7. (30.) 60 and 40.
28a. (32.) -2. (33.) 94.
(31.)
(34.) (ax -ay) (ax + ay). (35.)
(37.)
(41.)
(44.)
(46.)
(48.)
Page 36. (49.)
(53.)
(57.)
(60.)
(62.)
(64.)
(68.)
(71.)
Page 37. (73.)
(75.)
(1.)
(3.)
(4.)
(6.)
(10.)
(14.)
(17.)
(18.)
Page 38. C-O. )
(23.)
(26.)
(38.)
a + h
X- -4
(36.) x-2.
X*
(39.) ;^^ (40.)(x + 2)(.: + 3).
4.
1. (42.) ;r^ + 3.T + 5. (43.) 4.
1150 and .^120. (45.) {x - 1) (;i: - 4) {x + 1) (x + 4).
(47.) ic^ + t/^ + «'- 3x1/2.
3x + /y
Zx - y
(2cc-3i/ + z)'.
9. (50.) a(a'^ + &'0. (51.) 0. (52.) a' = 4.
a« - 1 . (.54.) X = 7. (55. ) d'h - .0. (56.) 74
-2i/. (58.) a- = 7. -"^ A„„i„^-.v^
(59.) App]y^-,56(x + j/)
x-y
(61.) rt = 65.
a;- -2a;+3
(4a; - 15^) (6.r + Qy). (63. ) 2(m2 + (f) {x^ + ]/').
14. (65.) a- = 7. (66.) -1. (67.) a">-l.
x = 7. (69.) 0- = 3. (70.) (a- -4) (a; -5) (.-^ + 11).
A - $160, B = $400. (72. ) (2.r - 11) (a- - 5).
X = 10| . (74. ) (/>i -n + k-I) (m -n-k + l).
(d - h) (rt + m + 1).
B.
(2.)
2a;''
46. ,^., ,
"^ '' X*+X' + l
x^ + (a + l> - i')x'- + {ah - ac - hc)x — abc.
x^ + 10.r^ - 47.'' - 504. (5. ) (^1'^ + c«9 + a^ + a^ + l.
^^;^. (7.) .-2^.
(50
(8.) h:ach$10. (9.)
a+x
u'-7. (11.) -2bc. (12.) u;- 3. (13.)^.
72. (15.) 4. (16.) 0. '^
Examine for complete square a^.
,,-•4- //-' + ,.-' _ 21,,. ^,fi,_ „c_ (^] t)_) 2xy{x'' + if).
1 >»f tiist, 3 of .second.
.'• + 3. (24.) x^-H.
16//»-27r'-36(/^(4(y-3;s)
(21.) 0. (22.)
(27.) xy.
4{a-+b-)
(a -6)- '
ANSW'KRS.
103
(28.)
(29.
(33.
(35.
(37.
(38.
(41.:
Page 39. (43.
(4t;.;
(49.;
(50.
(54.
(58.;
(GO.
(61.
(63.
Page 40. {m.
(67.;
(C8.;
(69.
(70.
(71.
(72.
(73.
Multiply first e(| nation by ) <.r (rr - hr) ^ {a' ~ be)' ~ {Ir - ac) {c' ~ ab) \- +
(f - '"•) ■' (/'' - ^y _ (,t^ _ be) (// - ,,r) \- = a(a' - hr) -> (a» +
b^ + c^ - Sabc) + b{b' - ,((•) („•■* + h^ 4- o3 - 3,j6c) + c
(c" ~(ib) )-, etc.
(79.) Write expression a* + lOx^ + 2bx' - 8(x' + 5x) -
33=^(x' + 5x - 11) (x-' + ^x + 'A). (80.)
(81.) (r<-^-//0(a-4/r). . (82.) m.
(83.) (2^ + />8.
(9. ) {a - 36) (a + 26) ; (<«' -i- 6'' - 5((6) (a^ + 6^ + 5a6) ;
(5x + 4]/)(3,« + 4|/).
(10.) Apply principle, difference of square.
EXERCISE II.
\x
(l-)-^- (2.) (l + a-6 + c)(l-a + 6 + c).
(3. ) a-''^ + '\f -^-z^- xy -xz- yz. (4. ) ,
^'- ) ^y ' (^0 (^^'^ + ^fO- - («(^ + &C)^
(7.) (}ix + 2>j){2x-3if); (:>c' + y*)(x^-xy + ,/);
(2a + 36 + l) (a + 2/> + 2). (8.) -1. (9.) |+|
(10.) (a-b)(b-c){c-a).
EXERCISE III.
Paere 42. a.) Ih.
(2.) Reduce each fraction to a mixed number, hence
x = 2. (3.) A - $840, B = |G00, C - $840.
ANSWRnS.
105
(4.) Put in form of fraction and eanci;!, —x^-xy + y-.
(b.) 2x'-'3xy + 7if. (Vk) x- + :h-+\.
(7. ) 4(./^ - xy + >f) (:>•' + .«•»/ + I/-') ; {h - c + o) (b-c-n)',
{2a~x)(n+2x).
(8.) x^9. (9.) u;-lll. (10.)
EXERCISE IV.
(1.) X. (2.) a;'^>--l)(x + 2)0r + 3). (3.) c = l, (ii) No.
(4.) . (5.)ay^+l + ^..-
(6.) Factor denominator and cancel, 1.
(7.) Apply ''^;J;;J', etc., 2a* + 10a'b'' + 2h\ (8.) x-20.
(9.) a; = 7. (10.) Factor dividend, (x + y-zf.
EXERCISE V.
Page 43. (1.) Apply ''-l^\ etc. (2.) -2b.
(3.) 74. (4.) 13.
a;-' +?/•■'
(5.) (a + by-c*.
(6.) Apply
(7.) -14.
, etc., {x + ay^-b(x + a) + b^.
(8.) (ic-l)(.c + 2)(.«-3).
(9.) 4(x'H]/Hs^). (10.) 8.
EXERCISE VI.
(1.) a= -4. (2.) x^ + 4.x^^-lQ,x.
(3.) Write expression (a;'^ - ;c)"'' - (2)\ apply * ~'^
x-y
, etc.,
(ic2 - « - 2) (x* - 2^3 + 3x'^ - 2.*; + 4).
(4. ) (9.K^ - 5) (4.x- + 3). (5.) a;3 + 24u'i/(a' + 8j/) + 512i/.
(6.) x^-~^' (7.) 2(a4-6 + c).
(8.) 8 first-class.
EXERCISE VII.
Page 44. (1.) 4. (2.) (a + />)(a-c).
(3.) Apply principle difference of .sojiares, 7x + y + 2.
(4.) 2{a-b). (5.) a = 4. (0.) 1. (7.) x-5.
(8.) Reduce fractious tu mixed numbers, u; = 3.
(9.) 15 and 20. (10.) x = 7.
106
EXERCISES JN ALGEBRA.
EXERCISE VIII.
(1.) x = 5.
(2.) z(y-x) (y + j-~z), (.'»;- tt) (x - M ; (x - 4a - 46)
(x + a + b). ^ a/ ^ f
(3.) 0. (4.) G0(x-l)(.,- + l)(a;-2).
(8.) Multiply and 3)^ = {x' + 9x + 27) (x* - 3x + 27).
'i/'2l
f ac +
EXERCISE XIII.
Page 47. (1.) 4(2x^ - 1) (2x^ - 3x - 1). (2.)
(4.) u;(3x + 4)(x-6). (5.) G4 miles.
(7. ) (6x + 1) (3x + 2) (3x + 4) (2x - 1).
(8.) a*-bnH)c. + l^lf-c\
(9.)
4a:-'-15a;+13
(10.)
. (3.) ar = 3.
(6.) «">-!.
65c.
EXERCISE XIV.
(1.) 2x^ - 5x + 1. (2.) 9(a + 2x) {a - 2x) (2a - x)\
(3. ) 20 cattle. (4.) (x - a) (x - l^. (5.) (i/ + y) (x - y).
(6.) h. (7.) Ai)ply^4:«''^*«-;«' + «(2'^-3c) + (26-3c)='.
/a \ 2+3a;
L+5a;
(9.) H-/- + ,2_,^_,.
^2.
(10.) 3ai
5ff'
Page 48.
= -6.
(1.) «-
^•
EXERCISE XV.
(2.) (x + l)(x-l)(x + a + l)(x + a-l).
m~y
(3.) (a + ?>)(<^-' + a/> + n (4.) . (6.) ^^
(0.) The denominator =^{ac + h(iy + {ad-hc>)\ which is
greater than the numerator, etc.
(7.) ■!/* + 2//=' + 3!y'^ + 2/; + l. (8.) {x+p) {^ + m + n).
(9.) 14,17,20. (10.) Apply difference of squares, etc.
108
EXKUC'ISKS IX AL(JRimA.
III
(1-)
coffee.
EXERCISE XVI.
(2.) 10. (3.) 90 lbs. tea, 120 lbs.
(4.) Expression a'^ - h'^ +-..- .- =
1 (a" - bi) (a^b^) , b^-a*
a-b"
u-b*
(!'^ab')("al') = (l-'0 i''^-i)
(5. ) -%zr ' (t>. ) Factor last expression, etc.
(7.) (u; + l)(..--l)r!/+l)(i/-l), (a~b){a-c){h-c).
(8.)u. = l. (9.)"^~K-T- (10-) 0.
EXERCISE XVII.
Page 49. (1.) x = 4. (2.) (d' + b-') {c:' + d') = l, etc. (3.) 0.
(4.) 'j:*-x'yz + 7in''.
(5.) Divide, and remainder equals zero, .'. a = 7, b = Hj.
(().) 12.t;'^ + 12.
(7.) Left side = a' + + b') + {a' - 2ac + c + (b' - 2bc + e') -
{n-by + ia-cy-{b-c)\ etc.
(8.) 5 and (5. (9.) Factor as a^ + b^ + c^-'3abc, etc.
(10.)
EXERCISE XVIII.
(1.) Add = "»and..' + // + ;:==0, .-. (x+!/ + ;:)2 = 0, etc.
(2.)0. Ql)^- (^.)^- (5.)
(6.) . (7.) . (8.) 0.
(9.) 1328 yards and 432 yards. (10.)
EXERCISE XIX.
Page 50. (1.) (3,f-2)(9..'-ll). (2.) . (3.) 280.
(4.) (a^ - .«^) (// - >/). (5. ) [j-tJ 1-25- + -5- + — ; •
(6.) x^-1. (7.) x = l. (8.) x = 6.
(9.) Let m be added to each a, 6, c, .". (a + my-(b + m)
(c + m) + (b + my - (c + m) (a + m) + (c + my -
{a + w) {b + m). Multiply out and add, etc.
(10. ) Write ^"^J^±f^, etc. , 16x-* - 24.x^ + mx" - 64a; + 81.
ANSWKHS.
109
EXERCISE XX.
(1.) 140 lbs., 60 11)8. (2.) VMix'-2S9. (3.) 1.
(4. ) (3.; - 2,1) (3.>- + 2y) (2x - :hj) (2,' + 3,/).
(5.) 993 yds. nearly. ((}.) - ll.i--' + 17x - 12.
(7. ) « = 7. (8. ) 4. (t). ) (2rf - bb + (k) (3a + 4h - He).
(10.) /> = 4(i.
EXERCISE XXI.
Pagre 51. (1.) -()().
(2.) Square each =« and add, .•. 2(x^ + y^ + z^ + xy +
xz + yz) = a' + h' + ('■' - 0, hence, etc.
(3.) a2 + 3a + 2. (4.) (./' + 2i/) (j;-2./).
(5.) a-13, A = l. (G.) ^-i, x-2, i; + 3.
(7.) a == 1 - -, .-. cH ^ =1^ hence etc.
(8.) 23 J. {^.) {3x'-x + iy.
(10. ) If a > 6, then a - 6 > 0, .-. a'^^ - ftz > 2a6 or
5 + ->2, etc.
>yi.
EXERCISE XXII.
(1.) Equal. (2) 3x(a;-7).
(3.) Apply difference of squares. (4.) (--*)'.
(6.) (7a;-101) (8..+97) ; (3.- + 49) (9x-83). (7.) 10.
Page 52. (8.) Write „-^^ ,^,, etc
(9.) A IGO, B $140, C $200. (10.) 2x + 3.
EXERCISE XXIII.
(1.) Square each, add and factor. (2.'i 4oG0.
(3.) :f = 7c<. (4.)x>=|. (5.) .$1480. (6.)
(7.) Write x^-l-^ 8,.;^ - 79./- + 70 + 1 ^ {x - 1) (a- - 6)
(.*•■ + 14). (8.) The latter.
(9.) Factor expression,aud one factor is equal to zero, etc.
i:
110 RXERCISES IN ALOKDUA,
(10,) 'rraiiHpMst!, jiihI x'^ - 2.»'i/ 4- y' ^- .'/■' - 2}/,~ + z^ + z'^ -
'2ii:: + 11- --^ (x - J/)-' + ((/ - zy + (r; + a)'. Sinco the
s(|naro <»f fmy(|U!mtity is positive, .". each (expres-
sion ia jjositivi!, Jind cniinoi ho zero iinleHH each
(juaMtity is zero, .". j;-i/ = 0, y~z = 0, z~u = Oy
:, x = y=z=n.
EXERCISE XXIV.
(1.) '<'-8a'' + 2.3rt 20. (2.) . (3.) . (4.)
Page 53. (6.) 21) miles. ((J.)-- (7.) . (8.)
(9.) x' -((i + hyx + dh^x^ + x + l. Since co-etticients of
like i)ower3 are equal, .". a + b= — 1 and a6 = l, .'.
(«» + ?>» -2.
(10.) a + b= -c, multiply by (t — }>, etc.
EXERCISE XXV.
(1.)
13a
(7.) 5^-^ -2^-1. (8.) x = 10.
(5.)a = 8. (6.)-:-.
(9.) Let 05 — 3, X - 1, x + 1, x + 3, be the numbers, etc.
(10.)
EXERCISE XXVI.
Page 64. (1.) x = 10a. (2.) Let iC = one, x + d the other, etc.
(3-) -%tf-- +1 = ^^ + 1' ^'tc. (4.) 216.
(6.) a^ + 2a'b-ab''-2h\ (6.) m^- 12m + 35.
(7. ) (x' - 3x + 17) (x' + 3,c + 17).
(8.) a;'^-3x + 2 is a factor and =0, .'. expression =0.
(9.) Write (l - 1+1-1+1-1-1)^2-
(^ + l+^)'^t«-'=l- (10-)
EXERCISE XXVII.
4a;-+2a;-l
(1.) Factor the expression. (2.) ^
(3.) . (4.) . (5.) -ia + f/>-^c.
(6.) . (7.) ];;..
Page 55. (8.) G. (9.) 405 yards. (10.) x = a + b + c.
ANHWKKH.
Hi
EXERCISE XXVIII.
(l.)a (2.)20x-32;/. (3.) (.•- J )(.*•- ^ )
(4.) i\. (6.) l + 3x + (M;'' + 7j'' + 0.'* + 3a;Hx«.
(6.) l+.r + ]!.fH.^.>'" +?,'•♦. (7.) Oft.
(S.) l-ia' + 'ib + lh\ (9.) . (10.)7a-56.
EXERCISE XXIX.
(1.) x = a + b + c. (2.) 2(a* + x + V>a). (7.) x.
(8.) 3-4x + 7^-'-10a:». (9.) -2.
(10.) (7a; + 6i/-9)(x-f/ + 4).
EXERCISE XXXI.
(1. ) - 20. (2. ) (1 + .*• + x'Y -(1-X + xy - 6x{x* + x^ + l)
is a cube, etc.
(3.)
(4.)
b" - m-
2(>« - a)
(5.) 20 years.
Page 57. (6. ) (^' + 2|/ + 3~~)'^ + (4 ./ + 5.-)'^ + (6zy.
(7. ) {x - a) {x' - b-'). (8. ) {x' + 6x + 1 1) (x'^ + 6x + 3).
(9. ) (x^ - 6x + 4) (x' + ().>• + 4).
(10.) Apply difference of squares.
EXERCISE XXXII.
(1.) 200 lbs. (2.) Apply difference of squares.
(3.) 3y^-7.«' + ll.
(4.) Divide the expressiim by product of (2a; - 3)
(3x + l), and the co-efficients of like powers in
the remainder must be e(][ual ; m = C, 71= -37.
112
EXEKCI8KS I\ ALOKMIiA.
.Hi
i
(5.) 2 in. (6.) (8,t + 15/)) {Ha - 9h).
(7 .) ViicUiV ]iih hnud Hide, etc. (8.) (.r + z).
(9. ) a* -pa' + qa' - m + .s ^ 0. (10.) ^ ^'^ •
EXERCISE XXXIII.
(1.) ;) = 26, q^ -24. (2.) Apply ^]-^^ otc.
(•U . (4.) . (5.)
Page 58. (. ) Write 9./"'' + .•^Cu;^ + 1 2..'^ + 48.r + 4;i- + 1(5 - 9/^(..- + 4) +
12.r(ie + 4) + 4(..- + 4) = (.'J^i; + 2f (.*: + 4).
(10.) (2x + 3i/ + ;j) (x + 4i/ + 3^).
1
EXERCISE XXXIV.
0)
(2.) (rt , 4- a. 4- a .,, - 114)3: + (^i + o ... - a., + a^ )y + (a j - a^
(3.) a-''-3tt62 + 2c3 0. (4.) ^*-2. (5.)
(6.) A cube. (7.) ''=31. (H.) -I. (9.) .r = 4.
(10.) Multiply Hrst =n by a, second by 6, third by c.
EXERCISE XXXV.
(1.) -1024. (2.) . (.3.)
(4.)(2j/-x + a)(i/-2x-r0. 0->.) .2^-^48 •
(6.) 2(? + ^)p + i')-
Page 59. (7.) Let .r2+wcc+i/s = aq. root of expression. Square
ami e'jiate co « flicieuts, 2m— p 2mp/6' = r, .*.
y/^' - /-.
20:2/
(8-) (:-:+:-:+! +r- (»•)
(10.) Multiply each term by x^-y'\ etc.,
EXERCISE XXXVI.
(1.) ,.-10.
(2.) Factor, simplify ; .square remainder =a'' + 6' + c' -
2ab + 2ac -26c.
ANHWKHH.
113
(3.) Factor ftiul othorJactor ri«iuire(l ==a;-2.
H.) KxpresHion = ^^—^--^ = ----^^ •
(5.) Factors arc (r - I)' ('• + !), •. wc muHt multiply hy
(r -l)(r + l)-. (0.) 2,^uml7«}.
(7.)5-r («•)
(9.) Write cxprossiou j-^ (.i: + :k)' + 25k'' + tM.« + .'k),
etc. , = 2'J* - 260. ( 10. ) 2(a - b).
EXERCISE XXXVII.
(1.) Sinco <(-/» = !, ..(a- />)» = !, .. (a - W^t + '')'=«' +
2ab + h' = "'"''- + ah = a« - /»» + a/* .
(2. ) Multiply by a - 1 , etc. (3. ) w = 2.
(4.) a; + i/ = 2, multiply Wy .*•- ij, etc.
Page 60. (5.)
((•>.) Since :.■" + !/' iw divisible by ..• + !/,.•. C'' *)" + (//*)' i«
divisible by ..• * + >J K lle8\dt, x* - x hj ^ 4- »/ *.
(7.) a;^ + a;'^ + 2.i+l -2u3'^—2ic>0,.'. expression is positive,
(8.) The former.
(9. ) x(x + y + z) ( j;' + if + z' - xy - x.z - yz).
(10.) 35 miies.
EXERCISE XXXVIII.
(1.) (ir- = b'^; add 2h<' + e'^ to oiich and divide by <■, etc.
(2.) If a - /) is ])ositive, .-. a > />, also b ^- c, :. a > e, hence
<•- (f is negative. (3.) . (4.)
(5.) r or ''/• (6.) - xi/^(a- + v + 4
(7.) Subtract 2nd from 1st and factor, etc.
{8.) x' = x-2,:.x* = (.'• - 2y. 1 1 ence x^ = x(x - 2)'^ = -
3ic* + 2x= -3(x-2) + 2x=-x + ^.
(9.) . (10.) A $648, B $472, C $416.
EXERCISE XXXIX.
(1.) 2 or i. (2.) See hint, question 10, Exercise xxiii.
Page 61. (3.)
(4. ) {-) . (7.) ;'•'/ iH greater.
(H. ) }(,« + 1> <„2 + n or ,r - /i + 1 > <>i or (n - ] )2^0, etc.
(10.) aw/;:; = ^--^:i:^-''-)-^''> (>. + ,, i. -A ^ (^>-^)(^ -^)(«-^)
.'. , etc.
EXERCISE XL.
(1.) Apply ^^^^ etc. (2.) •{ 2{a + hf-'^{n-hf y.
(3.) (3:r, - 4?/ + 2;;;) (4..- - 5,/ + 7"). (4.) 50 lbs., .'30 Djs.
(5-) . ((i.) (/ = r)2.
(l + a;Hx*, etc.) (! + »;''' + .«♦, etc.) = (l + .*y^ +
u'* + , etc.)'^.
(8.) . (9.) (»- + 2?/-2)l (10.) (a- .0 (0-6).
[jf
MISCELLANEOUS EXERCISES.
A.
Page 62. (1. ) (4a - 6) (4a - 9).
(2.) Factor l)y difference of squares, (.7^ + 1) (.v-3).
(3. ) x=- a + h, y = (,-b, expression = -{ (.<■ + y}' + 3xy \.
■{(x- yy - 3x11 \- = (4a^ + 3a' - 'Sh') (46^ - 3a'^ +
3/>0, etc. (4.) ,V i^P' - f) {5'l' - r).
(5.) Apply — _'-, .". expression is divisible by (x^ +
a;2 + 4) - (.,.••' - 2x + 3) - .f 2 + 2x + 1, etc.
(C.) Each side of =//acube. (7.) 'So +h + 2(' + d.
(8. ) (x - m - „) (x - w + „). (9. ) (a - h) (h - c) (r - a).
(10.) Divide numerator of each by denominator, etc.
(11.) Dividend is divisible by (.rH^-2). Apply prin-
ciple^:f;.-H2.«H^+J, + 6.
(12.) C;- + l)(.^-l)(.r-2)(,.--4).
(13.) Add the equations, etc., (a + 64-c)^
(14.) A[»j)ly difFereufe of sciuares, l(\(a^2l>) (c + d). ■
( 1 .5. ) (x + (i) (x' - 4x,i + if'). (10. ) 420( )().
(17.) '^x^-4x\ (18.)
ANSWERS.
115
Page 63. (19. ) 1. (20. ) {x' - if) (x* + xhf + /),
(21.)^+/J- (22.)
(24.)
(20.)
(23.) (x -.-«)(;. -2) (,.-3).
0. (25.)
Factors of 21 are ±1, ±3, ±7. Honce (r + l)
Page 64.
Page 65.
(28.)
(30.)
(32.)
(33.)
(34.)
(35.)
(36.)
(38.)
(40.)
(43.)
(46.)
(4?)
(51.)
(53.)
(55.)
(58.)
(61.)
(62.)
(64.)
(66.)
(68.)
(70.)
(71.)
(73.)
(74.)
(75.)
(76.)
(78.)
(x - 3) {x - 7). (27.) Cube x- i = 1, etc.
Tea 62^ cts., sugar 6 J cts (29.) 512.
,f-2y^+3f-4f. (31.) /!|^,-
Reduce fractions to uuxecl numbers and eciuate
remainders, etc., x = iO.
(x - 2) (x + 2) (x-^ + 4) (x + 1) (:«2 - x + 1).
Apply difference of squares, 144,r'^(l - 4.*;''').
{2x - 3) (2x - 1).
Fact(;r by difference of squares.
mih\ (39.)
(x + l){x-3)(x + 5). (41.) 25.
884. (44.) (x-19//)(* + 17i/).
2a-3h+c
(37.)
(42.).-f.
(45.) 45 cents.
(47.)(.'; + 9;/ + l)(..--4;/). (48.)
8x 1
2a -3c
Gx' + 8xy + 7y\ (50.) x^
. (52. ) (3x - 4 */ - 3;;) {3x - 4 j/ + 3^).
(llx + 13|/) (dx - 111/). (54. ) X - 13, y = 7.
x" + y\ (56.) . (57.) 125.
600. (59.) Add =- us, etc. (60.) x = b, y = 2.
Ax^ + 4|/ + ^i''^ - 4.f 1/ - 2xz -2yz.
{a + 2b '- 3c) (a -b + 2c). (63. ) 1.30.
(2x11 + « + '>y- (<5S-) 4(.'- - !/) (7x2 _ 2ot/ + 7//"0.
(.,. _: 1) (,,. + 8) (.«2 + 7.,. + 26). (67. ) X = 1.
a
(69.)
c(c - b)
c(c- a)
'' b{!l>-a)
a{a - by
a3 + «-7> + nl,-' + J>\ c. (72.) {xJ^z - 1) {ifz - 1).
Apply "~ ^" ; I'csult 3(6 - n - 6(,' + 2(i).
;»-3, // = 2.
Reduce to mixed numbers, etc., ,'—8.
(..■ + ;/ -1) (,.■-;/ 2).
. (71>.) (80.)
(77.) Apply ^:;f, etc.
no
EXERCISES IN ALGEBRA.
n
I
(81 . ) 24, (S2. ) (3x + 2»/ - 4^) (2x - 3i/ + 5z).
Page 66. (83.) The second. (84.) x-2. (85.) 47. (86.) 16.
(87. ) x' + 'Sxy + 2,/. (88.) (, + h){h + c) (c + a).
(89.) 7 and 2.
(90.) (f-x-l)(x'-7). (91.) x=-l, y^l, z = l.
(92.) ^J. (93.) a; = 10, ,/-20. (94.) a;2«+'^''+^
(95. ) Factors are (h + c,~a)(b + c + «), but b + c + if. = 0, .-.
expression =0.
(96.) 14249. (97.) x=:a,y = 2h,z = 3c. (98.) 70 miles.
(99. ) (x - yY (x* + if + 2xhj + 2xif f Gx'Y)'
(100. ) {2x - 3i/ + 1) (3..; - 2y + 1). '
MISCELLANEOUS EXERCISES.
B.
Page 67. (1. ) 2abc(a +b + c). (2.) x - 3. (3.) x=5.
(4.) 4«2 _ oa - 7. (5.) 200 acres, 250 acres.
(G.) (x + y + l)(x + y + 2).
(7. ) (cr^ + a' + X - 3) (.«2 + a2 _ a; + 3). (g.) 85.
(9.) (l-.T)(;«2_3a; + 4). (10.) (a + b + iy{a^ + b^ + l).
(11.) x«- 3.^* + 2^2-1. (12.) n.C.F.-3a:-7, .-. x = 2l
(13.) /-^ . (14.) .^''-y^ - (15.) 48.
(16. ) x=-(\. (17.) (2r( - 1) (.3a + 2) (« - 3).
(18.) 12 and 8. (19.) 6x'^ + 2..--5.
Page 68. (20. ) (x-2)(x + 2) (x^ + 5). (21.) $9.37^
(22. ) ^^^, . (23.) X = 2k (24. ) cc =-- 3, 1/ = - 2, . = 5.
(25. ) 3x' - 2x" + 3a; + 2. (20.) ^ •
(27. ) (x - 1) (x - 1) (x - 1) (.K + 1) (x2 - 4x + 1).
(28.) ;^^ (29.)a(«-t-5)(a''=-l).
(30. ) ((( + b) (a -h (■) (b + c). (31.) .30, 40, 14.
(32. ) x' + x- 2if + 3y. (33. ) x - 6 , ;/ = 10, 2 = 9.
(34.) Reduce to mixed numbers and etjuate remaining
fractions, x = 7. (35.) (5x' + <))(4,»; - 7). (36.) 17.
(37. ) .'■ + 6 (/ + 14^. (38. ) x' + 12.(; - 7. (39. ) ^- •
(40.) {x + a + by. (41.) 180 yds., 205 yds.
ANSWERS.
117
Page 69. (42.)
8(1/ + 2)
8.V-]
(43.) x = 2, .v = 3, 2 = 4.
(44.) The ymxluct of any four consecutive numbers in-
creased by unity is a perfect sc^uare.
(^^■) (.---^kx^^' (4fi.)- = 5. (47.).: = 4,!/ = 15.
(48.) 15 ajul 5. (49.) 7. (50.) . (51.)
(52.) . (53.) . (54.) (;>' + !, -;:)(x-3y + ::).
(55.) (4.i'+5!/)l (5«.) ahrd(x-l){.,- + l){x + 'A).
(57. ) ,.: = a -f h + r. (58.) 120 sheep.
(5'.». ) (2rt + 7h - 3<') (2rt - 7h + 3c). (00.) 0. (61.) />.
Page 70. (02.) ,.=1, i/ = l. (03.)
(04.) -; {a+2)x + a-l \- ■{ (a -}),, + <, + 1 )-.
(65.) .*•=3r^ (66.) A = 48. (07.) .'■- - 3,/; + 2.
(68. ) {p + /•) (q + .s). (69. ) x" + 2x11 + 'W'-
(70.) . (71.) (a.-&)x. (72.)
(73.) :>^ = 100, ;/ = 9. (74.) 1.
(75. ) (1 - 5,.'. + Ox--) (1 - 3./; - 4.^0 (1 + 3-'- " 4.-^;')-
(76.) ,>;+ 1. (77.) —^fr' ("^•) ^"^^^^ ^"'^ 2304.
(79.) . (80.) (5.v + 12;/)(8,>:-7»/).
(81.) H. C. F. =(a-Sb + or).
(82.) Apply difference of squares, 39x + |/ + 22!.
(83.) -102.
Page 71. (84.) (9,*; + 71) (5.; -48). (85.) x' + ii.
(86.) (3,»'4-2)(64,.;«-729). (87.)
(88. ) 2.i_'2 + 9if - 5.:'-' + 1 2//~ - 9xz - 9.ni.
(89. ) (4.r -ij-7) (2..' + 5;/ + 3). (90. ) a + hx + cx\
(91.) 24. (92.) 226. (93.) -1.
(94.) (4,.' + 4j/ + 2)(14,^--5i/).
(95.) a -/^ (96.) . (97.) u; = 6, i/-=l.
(98.) { + ,i\ + ar + ,s. (41.) (x' + .x + 6) (x'+x - 2).
X +1^ • (43- ) (<''^ - ^(.s, etc., 0. (58.) . (59.)
X - 3, */ = - 1, ;^ = 0. (61.) $2400.
156 and 13. (63.) ]/(//^-3).
4 times. (65.) ^±-^ •
(2x -f- y) (x - 2//) (2 - ;r) (4 + 2x + x'^. (67.) x = 51.
.-:4. (69.) 1. (70.) (x + ;>)(x'^-^x + ^r).
(// + 2x) (// 2x) (2x + 1 ) (2x - 1) (4x'^ - 2x + 1) (4x^ +
2x + l). (72.) 80x^(x'^-9). (73.) -6.
ANSWERS.
119
(74.) A JB'ia/B $.".(), 0$;;5. (75.) 1+^- + :*•"'• (7<"».)
(77.) "1^;/ • (78) 4.i;H1(m:+11. (7!>.) ^'--l-
(80.) rr-2a (81.) {a + h)(c + ,l). (82.) . (8.'}.) a; = 3.
Page 76. (84.) 45. (85.) . (8«i.) j ■
(87.) n- 10. (88.) (^-5. (89.) {S)x - 47!/) (12x - Ol./).
(00.) 4(1 -x) (1 + 2,1;) (a; + 4) (3.r + 4). (01.) 3x + 5.
(92.) . (93.) a + (!. (94.) 27. (95.) 4(<(•^-//0'^
(96.) 1. (97.) 36u;«-217:«* + 40().t;''-225. (98.)l-x.
(99. ) (12a 4- 1 2/> + <■) (a - 12?> - 12^0. (100.) x = 2|, (/ = 3^.
MISCELLANEOUS EXERCISES.
D.
Page 77. (1.) • (2.) a = c and 4?) = c2 + 8. (3.) a; = G.
(4.) ?/' = 27cl (5.)
(().) a + /> or 64-c or c + « is eciiml to zero. (7.) ;'' = 6.
(8.) Factor in ordinary way. The product of G and 35
= 210, and the difference of the factors of 210
will be co-efiicient of 2nd term, or equal a ; for
example 1 x 210 is one pair, and .'. 2nd term
would be 209 and expression 6.x2 + 209x-35.
The other co-efficients of x would be 103, 67,
37, 29, 23, 11, 1.
(9. ) c = - 1G8, d = 190. (10. ) /) = 20, r^ = 25.
(11.) .»••- = «' + 'lad + (^2, f = , etc.
(12.) S(i. root =x3 + 2a;'H5a;-6, etc. (13.)
(14.) Write expressioji (.»•- - x\})^ - (.' + 2)1 Apply prin-
cii)le of dift'erence of two cubes, x> - 2j'Sj-\-x^f-\-
x^ - xhj + 3./;2 - 2..' J/ + 4u; + 4.
(15.) !/-,^ -2. (1(1.)
Page 78. (17.) »*(-■- 8w + 11.
(18. ) (:j( ( + 26) (3,t - 26) (,.■ ^ 3a) {x" + ^ax + 9a2).
abc
x-y + xy
V
(21.) a- =
(24.)
a+b+c
abc
(19). . (20.) x^
(22.) Hi\f- C-^'M
(28. ) 24. (2t>. ) -; (« + 2)..' + a-l\- ■{ {a + 2)x + a-2)-.
120
EXERCISES IN ALGEBRA.
(.'iO.
(.'i2.
:j;3.
('
(.'{4.
Page 79. (:w.
(40.
(42.
(45.
(40.
(47.
(48.
(50.
(53.
(5().
Page 80. (57.
(5l>.
(60.
(02.
(04.
(00.
(08.
(09.
(70.
(71.
(72.
Page 81. (74.
(75.
(77.
K^'M. CM.) pu' + .r + a) (a.r - 2,r + ,r-f2).
( .'•'•■' + 2,»';/ - //-') (.>■- + .r,i + ,r) (x- ^ j-tj + ,f).
Divide l)y Ilonior's inetlKxl nnd the reiruiiiulur will
bu tho v.-iliio, divisor ^2x^-3;c + 4, answer -=10.
. (35.) . (;}(}.) 4. (.37.) .*:-H.
a -10. (39.) 4;*;- 12+^. .
Reduce to mixed miml)urs aud ecjuate remainders
ill lowest terms, .*; = 2i. (41.) O.f + 3.
" =^ ' ! (7TT? • (^'^•> -^-^^ - '-♦■ (•^^•) "^ = <^ "^^^ if-
Reduce to mixed numl)ers, etc., .♦: = 10.
.>•'-.>■ + 1.
See i)age 52, Ex. xxiii, (juestion 10, etc.
.,.« + LV' + 3.r-* + 2..'''' + J. (49.) .,•= -4.
(.»• + '( ) (.*■ - b) (x - 1 ). (5 1 . ) 35. (52. ) 0,0.
4a-lr. (54.) 1. (55.) {.<'"- >j") {.,■-'" + .»■'" if + i/*').
Divide by (x - 2) (x - 5) and remainder is zero, .-.
a = 74, />-120.
r, = 0, 6--36. (58.)
Reduce lst = ?i, xz + xij = 2y::, divide by ;*•//,:, etc.
The former. ((il.) x= -].
8x'~4x-l. (03.) 10.
{a + h + rf = a^ + h'^+r'^ + :\(<,h + („■ + ,■<() (,t j-h + c)-
'6abc, :. {(t + b + if^a^ + h^ + r^-;i,,hcHUn;v((b +
bc + ca^i). (05.)
P]xpres.sion = 17.«(.'' - //)*, .■. to make a complete cube
we must nuiltiply by 289,i-(.«' //)l (07.)
Multiply by xyz, re-arrange terms and divide by
abc, etc.
Write expression ^J:i^-1 + '•^+«=r'^+ i +
ihc
a" + b" -(■-
2ah ^""^^^ simplify, etc.
Reduce to form it^b"^ + aV^ + bV^--=(d)r*, + etc., and
divide by (r'6'V', etc.
~,^— =a-^ y^ =b~e; . . , etc.
See page 52, Ex. xxiii, question 10. (73.) 3.
Factor expression, ;. factor recpiired is .*; -3.
J- -7. (70.)
ii(' + b'){r- + iP) = ,etc. (78.)
ANSWERS.
121
. 38
(71K ) x^y = z(x - ,^)■^ + 2 j/^sc -z)-\-'^ \i\ :. z{x - zf = xhj - 2yz
{x-z)~zi/in-{.r - zy=-ijz.
(80.) Multiply l»y .»• uiul mU unity to (\'i<;h .side ; .'.
( I .*•)", etc.
(81 . ) /> V - '-ca-((' + bc)ij = {a'-b<' -c' + ah)z,
etc.
(84.) Subtrnct 2nd from 1st, divide by y-z, etc.
(85.) l + '^^l + l^^ and l-. = l-^.-.j:«=^,etc.
(8(5.) Write (\^) (;:::),etc.
(87. ) x^ - xij + / = 0, .•. (x - \if = - xij, :. expression =
x^y'\x - ;/) - Xji{x - y)x[i — 0, .". x'^ — x\j + \f is a
factor. ' (88.) ' .
(89.) Add the etiualities, etc., but left hand will be
(■'' - .'/) {{I " ■') (' ~ ■'■) which ='6abc, etc.
(90. ) - ,: - ^2ox ) \\\n^\\ divided out gives l + x + 'Ix' + , etc.
(91.) .r- 5a -14. (92.) _^. (98.)
Page 82. (94.)
(95.) Let m be quantity subtracted, and instead of a, 6, r,
write a - m, b - m,c - m ; .'. ex])ression = {a - m)'^ -
(b - m) (c - m) +{b- m)'^ - {a - in) {c - m) + {c-
m)'^ - (a - m) {b - tn). JSiniplify, etc.
• (90.) . (97.) x = l.
(98.) Expression ^a{b'^ + bc + c^) + ,etc., ^(a + b + c){bc +
ca + a ■>), .-. = 0. (9!>. ) p = 25, q= - 24.
(100.) -f. (101.) x^5.
(102.) A=2, B = 3, 0=1, D=l.
(103.) Divide each by x + a, and remainders =0. Sub-
tract, .-. a{l - p) = in - q, etc. (104.) 1 - »<•' - //(*.
(105.) If reduced, x + 1 <>i' •'' + 2 must be a factor, :.x= - 1
or - 2, and hence jl» = 3 or ^.
(10(>. ) {.I If + x:: + ijz - .c^ - (/'^ - z^) is the other factor.
|