,.'^.. IMAGE EVALUATION TEST TARGET (MT-3) ** /q ^ ^^^ ^^'-.V^. 4.- ^"^^ Z. 1.0 :^>^ ■ I.I 1.25 2.5 tii lU 1 2.2 2.0 IS2 ■ 40 1.4 1 1.6 Photographic Sciences Corporation 23 WBT MAIN STRUT WBBSTIR.M.Y. 14580 (716) •72-4903 .V <;. 4Sf ^4^ /A CIHM/ICMH Microfiche Series. CIHM/ICMH Collection de microfiches. Canadian Institute for Historical Microreproductions / Institut Canadian de microreproductions historiques Technical and Bibliographic Notes/Notes techniques et bibliographiques The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below. D D D D Coloured covers/ Couverture de couleur I I Covers damaged/ Couverture endommagde Covers restored and/or laminated/ Couverture restaur^e et/ou pelliculie Cover title missing/ Le titre de couverture manque I I Coloured maps/ Cartes g^ographiques en couleur Coloured init (i.e. other than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire) I I Coloured plates and/or illustrations/ D Planches et/ou illustrations en couleur Bound with other material/ Relid avec d'autres documents Tight binding may cause shadows or distortion along interior margin/ La re Mure serrde peut causer de I'ombre ou de la distortion le long de la marge int6rieure Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajout^es lors d'une restauration apparaissent dans le texte, mais, lorsque cela itait possible, ces pages n'ont pas 6X6 fiim^es. Additional comments:/ Commentaires suppl6mentaires; L'Institut a microfilm^ le meilleur exemplaire qu'il lui a 6tA possible de se procurer. Les details de cet exemplaire qui sont peut-Atre uniques du point de vue bibliographique, qui peuvent modifier une ii'^age reproduite, ou qui peuvent exiger une modification dans la methods normale de filmage sont indiquis ci-dessous. I I Coloured pages/ D Pages de couleur Pages damaged/ Pages endommagies Pages restored and/oi Pages restauries et/ou pelliculAes Pages discoloured, stained or foxe< Pages d6color6es, tacheties ou piqu6es Pages detached/ Pages d^tachdes Showthrough/ Transparence Quality of prir Qualiti in^gale de I'impression Includes supplementary materif Comprend du materiel suppl^mentaire Only edition available/ Seule Edition disponible r~n Pages damaged/ I I Pages restored and/or laminated/ I ~| Pages discoloured, stained or foxed/ r~| Pages detached/ r~y| Showthrough/ I I Quality of print varies/ I I Includes supplementary material/ I I Only edition available/ Pages wholly or partially obscured by er. ita slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont 6t6 film6es 6 nouveau de fapon d obtenir la meilleure image possible. This item is filmed at the reduction ratio checked below/ Ce document est 1i\m6 au taux de reduction indiquA ci-dessous. 10X 14X 18X 22X 26X 30X B 12X 16X 20X 24X 28X 32X aire I details uet du t modifier ger une i filmage The copy filmed here has been reproduced thanks to the generosity of: IMoriitat Library University of Ottawa The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications. Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impres- sion, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impres- sion, and ending on the last page with a printed or illustrated impression. / Lides L'exemplaire film6 f ut reproduit grflce A la gAnArosit6 de: Bibliothique Moriuet University d'Ottawa Les images suivantes ont 4t4 reproduites avec ie plus grand soin, compte tenu de la condition et de la nettett de l'exemplaire film6, et en conformity avec les conditions du contrat de filmage. Les exemplaires originaux dont la couverture en papier est imprimte sont filmto en commenpant par Ie premier plat et en terminant soit par la derniire page qui comporte une empreinte d'impression ou d'illustration, soit par Ie second plat, salon Ie cas. Tous les autres exemplaires originaux sont filmis en commengant par la premiere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernlAre page qui comporte une telle empreinte. The last recorded frame on each microfiche shall contain the symbol — ^ (meaning "CON- TINUED"), or the symbol y (meaning "END"), whichever applies. Un des symboies suivants apparaftra sur la dernidre image de cheque microfiche, selon Ie cas: ie symbols —► signifie "A SUIVRE", ie symbols V signifie "FIN". lire fAaps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method: Les cartes, planches, tableaux, etc., peuvent dtre filmds it des taux de reduction diff^rents. Lorvcjue Ie document est trop grand pour Atre reproduit en un seul cliche, il est filmA d partir de Tangle sup6rieur gauche, de gauche d droite, et de haut en bas, en prenant Ie nombre d'images ndcessaire. Les diagrammes suivants illustrent la m^tiiode. by en Ma led to >nt me peiure, a9on d 1 2 3 32X 1 2 3 4 5 6 ? ^b Phofesso ^1 :i^ I n AXALVTIG .\vn ;1(Ai"HCAL K < * 1»LAXE A\H sriiK]lil(vVL TKlGOi\0:,iET]{,Y y^ .--1 ?fOr fiji' «5f of i uit5 'jiriiooi*6. Hv PnoFESSuli „!■■ Civil. KN.yNKn;iM; IN Tin: CjUKCK (U' OTTAWA. O'I'TAW \. ^1 :i^ I'iiir. t l.y 111.. .^iM.'is of 111.' ciJdj) ;-:iir;i'iij:i;i>. ^i Prokes j^T ^ C /-Vv 3 /-y- \l<^^' r--/ .^' (J j^ ANALYTIC AND PRACTICAL PLANE AND SPHERICAL TRIGONOMETRY [ ^ot if^t me of gofffges aub ^Aooh. By Phofessor of Civil Enoinkkiuno f\ thk Com.egk op Ottawa OTTAWA 1878 Printed l>y the Sisters of the GOOD SHEPHERD :n\ vP 0, M. 1. i «vj Entered according to Act of i'arllament of Canada, f i in the year 1877, by L. PhiUbert. Paquln, in the office of the Minister of Agriculture. I I'llKFACi:. The fo'iljwins trtnti.-io, d'^signi'tl I'oi' ejlli",'^', ami lilgh sdiools, and niovf cspcciiUly for ;-ludontH in Eu,yiiiociiug, is iirepiircd uiwii iv thji'jJi^aly now mdhod — It t'tiiljodios uveiy thing nc- (jessiiiy for a courae of Trigouometricid ntudy Huflicienfly extcnsivi' to ('na))lo tlie studfcnt to comprehend n^adily any applications of Trigouonieliy h" may meet with in the l)!wt modern works on ajie- culative !ind applied niathcniaticH. A particular attention haa lieon paid to theanvlytical department of the subject. Chapter IV, especially devoted to tliis ) art, eni- bra^l .1 .. I tM V' AnOUi.AI Ml THAI. Pnge 16 line 2H " .1 ti &i " (Ml 72 74 81* 87 111 112 111) KRRATA, 20 ornl 21;/o-c h read x 18/or positive read ncsfltlvo 21 /or negative read powltlve. 1 4/or sin 2A read 8ln iA 19 /or cos {A + A) read coa{A i-B) \/or coseo B + cosoc A read ooseo B - coHec A 12 for 2 Hill ^sln B read - 28lii H Hin fl 16/or tan 2»' read tan ' .8 10/or fee* .<1 Bco » J9 f cosco ''A ooaoo »fl rwid Bee ''A sec «fl cosec »/l c(»scc -B 16 for t«n (.<1 iB )read sin (.4 t B) 28 before the third sine read i 5/or sin - if read sin 'iB bfor»\n ^(A r .8) read «ln i(.4 i C) Wfin- (655) read (255) l.S/or(l»))reud(500] the second mpmbers or(5()7)and(508) must bo Interchanged, the second meinborm)!" [511] and [512] must, l)o Interchimgo*!. Vaiiiation Angulaii [NVERni: J Relations Triangle V tJ^ f v PAiir { PLANE TRIGONOMETRY. CHAll^EU I. I'aob. Anou;.au Funotfons 8 CHAl'li;]! II. Ml'TllAI, HKI.ATIONK DETWEK.N AnoUI.AR FuNCTfONH 13— 2'J Formulu! fov sine and coaiuu ];) f onnulic for tiingoiit and cotangent 15 Formulas for wecant and cosecant 17 Formula! for versed flino and covcrned sine 18 Table of Fundamental Formulie 21 CHAPTER III. Vauiations OF Angulah Functions 22 40 Algebraic signs of Angular Functions 23 Numerical values of Angular Functions 30 . P'unctions of Negative Angles 41 CHAPTER IV. Angulah Functions involving more than one VAniAni.E 47—92 Fundamentid proposition 47 Angular Functions of 1 ^1 + J^l and {A — /f j 48 Angular Functions of 2^4 ;,63 Angular Functions of 3.4 55 (lenoral Formula; for multiple Anglos 68 Formula) e.xpressing the sum or the dili'erence of two functions 61 < Formulas expressing the product of functions 71 Formula; expres.ing the quotient of Functions... . 73 Deductions 77 Functions involving three angles 80 Reduction of Trigonometrical expicssions 88 CmAFTER V. IwERW Akqular Functions 92 — 90 CHAFTER VI. Relations between Angular Functions and sides of Triangles 96 113 T I. 'I Jj^: lil i' i ) ( •Haiti:;! vn. TiiioosoMKTHio Taiii,i:n 113— I'JJ (HAITKK VIII, Sum Ti')s ur Tku\oi.i;h 12()-13!» ]{i;,'lit-Aii;,'lfil Triaii'^'li'M Ilio Obliijuo An^'lixl 'I niuiL^ln.-i IJ') Um of'Fuhsiiliiiiv Aii;,'U.'s 131 Ar'ii of 11 Pliiui! Triiiii^,'ln 132 M I'lisu rt'incnt ol' 1 )iMiunuiH 135 CIIAl'TKU IX. I):vi;r,oi'MKNT OP Axoiii.Aii Kunctidns into hkiiikh 139— K>!) (lcupri\l {tiinciiilo of DitfiTontiiiiion 140 J)ilfi'icnti;iliou of Aiifjular FiinetioUH Ml Dillcionliiition of Inverse A nj^uliir Functions I4(i .SuocoHnivH l)illor"ntintion of Angitiiir FiinctiunH...l4y 'lavljr's Tlmorom and Miicliiurin'H llit'orom ir)0 J''\[ian.sionof Aiigulai Finn;lionH in liuniHoftlicarc!. ITk' I'ApaUHion of iiics in tciiii.sol ^iii, cosand tan lr»r) Eult'r'H Foiiiiulii', and IM- Moivic'H Formula irwi ]Cxllan:^ion of jjoweis of nin j- and co.s .r l.')f< Di^vi'lopnicnt of .iin and (!oh of uiultiplti an;,'!"- i<)l Ut!.solulion of sin x and cos j: iulo faotois Itl'^i (^oinjiutatiou of - ICiS Computation of Tiiyononuiliic 'I'abli'H 1(10 I'AUT 11 HI'IIEUICAL TIJIGOXOMKTUV Objjsox op Spin;nic'AL Tkioonomkthv 100 CHAPTER J. liELATlONB IIBTWKRN 8IDi;s AND AnOLKS OP yPIIHU ThIANOI.KK. 170 Particular caao of Kiglit- Angled Spherical Triangle 1 6 1 Napier's rule l'-4 Oblique Angled Triangle and lu-rpendiculur 184 CHAPTEIi 11. Solution OP Spiiericai, Trianolbh 186 Eight- Angled Spliorical Triangles 180 Quadrantal Triangles 1U4 Oblinue- Angled Spheiical Triangles 194 k! r\ r PART I. PLANK TRKiONOMETRY. UlUKCT or TltlOuNuMtTHY. TRiauNuiiiCTRY, in its ori({initi and restricted senne, teacheH Low tu tnvSHtigate the relatiuna nubaiHtm^ between the angles and the sides of triangied. Plane Trigcnoiuetry treats of pliiue triangles; Spherical Trigono- metry treats of spherical triangles. In modern analysis, Trigonometry has a much wider meaning: its object havin'.^ beim extended to all algebraic investigations re- lating to plane angles whether they belong to triangles or not, and its forniuhc, being extensively employed as instruments of calcu- lation in almost every department cf scientific investigation. Plane Trigonometry is called PraetinU when rcstricteil to the computiition of triangles, and /lHM///^(V,'rt7 when taken in its cnlar ^ed signification, Analiticai. TniooNOMETKV may 1h! defined that branch of Mathe- matics whosi; objret is to investiy the i)roi>ortion[/] Fwmuhin fur Vcrned Sine iiiid Con-rsi-U Sim: [24] I* 'By deUuitiou(/»»;/e 10) wo bavt- VITH = ^1 M But AM = ('A — CM Thorelbrc vera = 1 — cob BecauHe vers = 1 —cos, by (25) we have vers 1 90° — a) = 1 — cos (90° —a) hence covcis = 1 — sin a or generally coveic = 1 — sin (25) (26) Beeides tlio ahove formula , many others may he obtained by com bining them. The moat iismlly emjiloyed are the following; Substituting (19) in (2) givi-s tan sm = V[l + tan'] Substituting (18) in (3) give; cos ^ [cosec* — 1 J Substituting (22) in (5) givi-s tin = Substituting (22) hi (7) gives cos = - Substituting (14) in (8) givea cos = 1 V [14- cot' J cot V LI + c"t*] sm VT^ec"'— IJ (27) (28) (29) ( 30) i31) —19— Substituting (19) in (10) gives 1 ''««=V[l+tan'] Substituting (6) in (11) givoa tiaa = sm V[l — sin'] Substituting (1) in (11) gives cos Substituting (1) and (6) in (11) gives V[l — 3in»] Substituting (17) in (12) gives tan = 1 cos X coseo Substituting (1) in (16) gives cot = cos V[l — COS*] Substituting (6) in (16) gives sm Substituting (6) and (1) in (15) gives ^ V[ l -8in'] Substituting (13) in (16) gives cot = sin X see (32) (831 (34) (35) I (361 (37) (38) (39) (40) ,'(J— 1*^^ Hiilwliluting (0) in (20) given HOC = 1 Hiilwtituting iDi in (20) gives HOC = 1 Bin X cot Mutwtituting (1) iu I'il) givcM sec = • Subntituting (li in (23) gives COdt'C = - SubNtitutiug (4) in (23) gives cosec = SubBtituting (6i in i24) gives cosec = tan V[l-C08»] V [1— cos*] 1 tan X cos cot V[l— 8in«] (41) (431 (43) (44) (46) (46) By the above deductions wo see tlmt Sine and Cosecant are le- ciprocul to each other, oa are, also, Cosine and Secant, and Tangent and Cotangent; ho that we may write Sin :< Cosec = 1 Cos :< Sec = 1 Tan X tot = 1 The above results being of the highest importance in all funda- mental investigations, are collected and arranged in the following table, in which u denotes any angle or arc. ^ ■■H -L'l- ).4 ^secant are le- at, and Tangent 36 in all fnnda- 1 the following TADLE I. Fundamental Koiimulas. Hiu « = y'[l — cos* A Cos a = ^/ [1 — sin* a tan cot a co8ec a _ COH ll , mn u cot II tan (( — CO* (( tan It =• pin fi col rt 1 cosec a _ 1 ~ sec a tan a cot Tana = V [l+t«n* «] cos o ^ [cosec' a — 1] 1 V [1 4-'cot» a ] sin ti cos r/ I V [l + cot» rt] sin u ^[ sec'a — 1] 1 Lot « — — : — cot a = sin !• is fi- -fuos (270° -f (J I — sin"(2W'~-f ai 1_ -|-coH |90' — (t) 1 1 — cos (180" +rt) 1 + COS (270° + ai 1 -f sin 1 90-'— a) 1 + wn i90° + rt 1 — iiiu ,180°+ ,1 -2G — '^rrzl: = — pot i270'' 4- a\ = +sec (90' — (i\ = — see i90°4-,0 = — sec ;18(i°-l-(n = + see (270' -fJC '90' + "l g , — = — coacc ilHO' -]•- a I 1 n^y27T)^-j-<(T . co.sec (2iO' -|- rI.E II. Relative VAniATio:,"t! of AXCJL.vn Fum:tio;.'3 1 1. Qiiiul. •-'. (^i....l. 3. (yMi i. Qiiiid. i Sin + + Cos -i- — + Tun + -_ + Cot -1- + Sec H- — + ' 1 ^Cosec + -f A\'rs -1- -j- + H- Covers + + 4- + « 11 1 y -30— Nnwcrical Variatiuns (*f Annnhtr FtinctldHn. ]X'> 11; Tlin variable angle, or the anglo of (liH'erent iimgnitudcs, which angular functions aro icferrtMl to, may V)e concoivi-d ax generated hy the levolutioD of a movable radiuH 6'/* I round 6', from the fixed radius A<', in a direction to the loft. It is manifest that as | the angle decreaseM, the sine, also, decreas- es, because Z*,^, is less than P^M, When tlie rcivolving laclius coincides with | CA, or the angle ))eflomes ft, PM - 0. Therefore we have sin 0' = |71)' When the revolving r;idiu8 coincides with CJi, or the nngle be- comes ylC^, a right angle, Pj»/ also coincides witli 67^, and is equal to the radius = 1. Therefore, we have sin 90° ■--- 1 |72| Again, when the revolving radiiis proceeds in the second quad- rant, the sine diminiMhos as the angle increases, becAuso P^Af^ia great- er than P^M^ When the revolving radius coincides with CA^, or the angle is equal to two right angles, PM = O.Theiefore we have sin 180' = (73) Reasoning in the same manner for the third and fourth quad' rants, we shall find sinQIO' = — 1 (74) sin 360" = sin 0° = (75) If now we observe the variations of cosine, we see evidently that as the angle increases, the cosine decreases in the first quad. rant, increases in the second, decreases in the third, and incraesea in the fourth, and we have cos 0° = C4 = 1 eo8 90° = cos 180° = — 1 cos 270° = (79) cos 360° = cos = 1 (80) Thenegatire sign is employe* for sin 270° and cos 180°, be- (76) (77) (78) ?,]■ lie nnRle he- Ciiuao C'/?, is liulow .l.l., aud ('At is lo tlio loll yf /Hi . ilunou it is hcoii, first, that sine increases with + from to 1, iu tlio Ist ((iiadraul/ Hint when the valiio nt one <|iuulruut Ix added or Hiibtractcd from twoniiglCR, the relation of equality whlrh waHfotiiid t'xlHtlng between the nrmerlcnl valucKofsome fUnrtlonsof the primitive an. Klea flubslats between the rcmalnderR. For uHHiimo the urog Al*i, JJPv, Jiiv, Ail'4 All's Bil% Bil'i, AI'n t4> be all equal to one another. Ihoii IttveaNy to prove geometrically, by the equality of trianglei, that PiMi = P4M4 - I'm* = PiiMi and l'»M' -■ PaMi = - PivMi -= PiMj But P«M n Is the Kine of the arc A Ai Pi; and l':i m , Is the dno of tlw ftfo APj; Umro- fore We have sin AAipn ^ hIii AP.i Hiibtracting fiP«subtruct the qnadrun. P4P., there remains AA,P-' whose sine is P,M.i and AP4 whoso sine Is P4A ' B"t I';M4-=P4«4;nenco '' The same holds tnie, If, lnstia-1 of (Kmlnl^hlng AA, Pa by the qiiiulrnnt iVP In ca"r " "' '"^''' '"■■ ''*'" - '''''* ^'''" ■*"" "- p»ie isge:!., f,.; The same result Is obtained by adding or subtracUng twoqnfldrant* oranv ..th..r multiple of full quadrants, us Is evident. '^v^inftaranw, orany other It must bo borne m mind that the equality relates only to the numerical »„l ue, an not to the olgebrolc signs, which change aocordinu to X" Iw m . ^ulcs the relative vorlatlons, as before established. "'""'""^ '" '"" '"" """ 1 Ill —34— ]5y lullowing ji «iiiiilar procoiw wt* obtain — con (270" — lit = Hin a or COM (270° — «i = — nil! u (fjO) Sinco l)oth Sini! and CoHinn docroaMu from 1 to (t, in tho Hunio jtropoitiou, till* t'orintT Ix'twccn 270" and :l(!()°, and the latliilM... t,w™n 0'^ and 9(»°, it I'oIIowh, olwervinKtlit' ride Ibr tlu! Si;,'ns tiiat — Hin 270° = COM 0° — «in 27r = 008 1° — Hiu 272° =coH 2° and generally — sin (270° +'«! = com u Hin(270° 4-M = — coH(( And for the same reason we have coti (270° -f'«' = win (89) Because cos *( — — sin (270° -f u , ]>y i!)l i ""'l cos(i = — sin (270° — ,/i, l,y iKiJi we have — >io (270° — «i = —sin (270'-|-rti lionce — sin 1360° — «| = sin (180' -f ai, xec />fi ,,■ 33 but — sill (180°-f-a) = Hiu «, by H7) thert'font —sin (3G0° — fl) = sin ^< or 8in(360°— a) = — sin '< By following a similar |irocess, we obi lin, obsorvin-,' tho conven- tion for the signs, coa(360'' — al. ..08<( ^l^^ Sinco the movable radiu.i, after running through 360°, recom- mences tho same revolution as before, we have, sin (360°-f-al = sin « ,95, (J)3) cos (3G0° + «|= cos a (96) that is (he Sine and Cosine of an awjie vhirf, exceeds 360° are the same as those of the excess above 300°. The HincM bi-lng oquul.Ko will be tho i'(,8li)p, since cos , 1 ;;i77: Tho sines urnj cosines boing equal, so will l^ all the trlgononiolrln llnog. since they are cxpresNoU In tfrnriH of sine mid cosine. It Is evident that wlint Is said here of the nros Is nppllcnblo to the nnirle which the arcs mcadiir*. ^ V iuj,' the conveii- h 360°, ivconi- or but therefore i9G| (Is 3G0° aid the Also or but therefore mctrlr lliiHH, Kincc Also iblo Ui tho angle or .1 p „ Tho iiii|ioitaiit .Ic.liictioin wlii<'h |iiv.',',..I n.av I,c \n,H.Ml ^'.-ouio- liimlly, Cor the satisluctioii ot the •'tu.lriii, l,_j t]„. uuuex..! ligiu.) Hhui) llii' lire .1/', ii ~~ iniiile ei|niil to ii; n\.A | ih(^ arcs /?/». ///', ,1, P„ .1,/'. II I', B,P., AP^MvA\s\\Y- |lUS('ll„ or its iMiual CM/, = P,.I/, cos AP, = sin A Pi AP, = An—flPr-W- a cos (90° — ai = Pin a (81) PM,= CM, sin. I/", = cos ilP, sin (90° -f*/ 1 = cos a (83| - PjD, or its equal 03f, = P,M, -cos AP,, = sinvlP, therefo e — cos (90° -f — OTAO 1 therefore — sin (270° + a) = cos a or sin(270° + a) = — cosaOl) Also P.D,, or its equal CM^ = p,M, that is cos(270° + o) = sina —37- Aiso p,M, = p,m; or — smAA^Pi = sin APi but AA,P, = AA,BA, — AP, = S(iO° — , therefore — sin (360° — n) = sin a (94) Also CM^ is the cosine of both Avl,P, and AP,; therefore cos (360° — a) = cos a (94) Substituting the above values of Sine and Cosine in (20) (23) gives ^ ^- sin 0° tan 0° = = — =0 cos 0° 1 „^„ sin 90° 1 tan 90° = = — = 00 ■ cos 90° (11) (15) 1971 (98) % .1 , ,„„_ sm 180° tan 180° „ = =0 cos 180° 1 (99) ^^.^^._sin270°_l cos 270° (100) tan 360° - ^ '''' - ^ = o cos 360^ 1 (101) cos O"" 1 cot 0° — . ^ , = =00 sin 0' (102) , - ._ cos 90° cot 90° — -^_- = =0 sin 90° 1 (103) ^,_-o cos 180° 1 ''' ''' - sin 180° = = " . (104) cot 270° - -^ ^,^^«: = ^ _0 sin v'70° 1 ■ (105) ' C0t360°=''°«^«f:= ' =00 sin 360" (106) '■ * • I ll "Hi i '.*- I ; —38— fir III 1 1 cos 0^ 1 sec 90= 1 cos 90'' 8f 180° =-- 1 1 sec 270° = cos 180° 1 Oc COS 270" _ }__ sec 360° = 1 cos 360° 1 ilOTi (108) 1 1091 (110) dill cosec 0° sin (112) cosec 90° = -T 1 cosec 180° sin 90-' 1 = 1 1 sin ISO-' cosec 270° = - sin 270- — 1 qoBec 360° = ■ .,-,.o = — - 3C sin 360 ai3i lll4i (115) (116i I ! sin(90°— A) cos a ^ ,,_^ tan (90° — a\= —^—5 = —. = fot n (117) cos ^90° — a) sin a „ . sin (90° 4- a) cos a . ^ n a\ tan (90° + a = ^ — ~ - = -. — = —cot a 1II8 wn(,»u -r co8(90° + rt) —sin a .:*; cot a ill7) = — cotrt 1.118) tan 1 180°— a) = tarn 180°+ a]= 9in(180°— «) __ siu a cos (180°— a) ~ ^^^^cos « sin 1180° + «) — sinrt = — tana |11()| = tan a (120) tani270^_«i tan (270° + ai tan (360° — r/ 1 tan f360° + a) cot (90° — a] z cot (90° 4-rt)= cot(180° — a|=: oot (180°-f-rt) = coH(180°+o) — cosrt ain (270° — g) — cosrt n^o lOTfio T ~ : — = cot a (121\ cos(i70°— a — amo "•'^' COS a __ sin (270° -}-rt| _ cos(270°~+^~ sh:;, ^ sin (360° — 01 _ _sin a cos (360°— a I c^^ ^ ^mj360°j4-«) _ sin a __ cos (360° + «r "^a - *'''" « cos 1 90° — a) sinrt = — cot a (122l = —tan a (123l CO." (7 sin i90°_,( c os (90° -4 - g; —sinrt sini90°-f:rt) ~^a ~ fan ()i wlience by ( 1 1 1 and (15i , tin I — «/') — sin a tan ( — = soc ,t cosec (300° + «i = cosec a Thus we see that Sine and Cosine iniy liavc any value between — 1 and +1; Tangent and Cotangent may have any value be- tween and oc; Secant nnd Cosecint may have any value V^tween 1 and oc. Exercises. 1. To determine the value of the. angular functions of 45° By the equation [a], paife 13, we have sin^ -\- cos'- = 1 but sin 45° = cos 45°, by (82) therefore sin' 45° = cos' 45° = ^ sin 45' = -^ = 0.707 U)68. hence and V2 cos 45° = -\ = 0.7071068. whence •„ sin 45° , tan 45° = -^ = 1 cos 45 *< cot ii cot a tiin a tan ii ■cot It cot II si'C a sec a C08CC a ■ coaec iktcrmiiiethv rahie of Aii(/ular Finirtiom of 110''. Since 120° = 90° + 30° then sin 120° = cos 30° = .8000254.... cos 120° = — sin 30° =: — J tan 120° = —cot 30° = — 1 .7320508.... cot 120° = — Um 30° = — .5773502 and so on. It i.s manifest tliat in the siinu! way, we may obtain, at once, the angular functions of 135°, 150°, 210°, 225°, 240°, etc., which are respectively equal to 90° + 45°, 90° + 00°, 180° + 30°, 180° + 45M80°4-C0°.... CHAPTKR IV. AxOlt/^ll F'oXCTIOXH ISVOIAIXG MoRK THAN ONE \'.rilAl)I,E. FuuJaiiu'iUiil Pioiio-iition iinil Foniiulu. The niiK' of till .^11 m cf (wo om/li-x or ,ircM, ix equal in the sum "t llif /ridticf of til,' nine of (hfjir.st into thu cosine of the secoinl, iind till' /,/v ihict of till- ro.-iiir ,,/ tli<-jir.it Into tint nine of the sect/nd. Tlli^^ proposition u ciiilccl funiliiini'iitii! on account of its gnmt iiniiortancc, as hcinj;, to^cthor witli tlic t'linilanicntai fornnihu f,'iv- en in Chapter II. and rolatiuK to functions of a ain','l(; angle, tlm h\wi\ of the. whole trigonoiiietncil scii'iicc Thi.s proposition will ho proved f,'ooiiietrically; and wo will noxt proceed n analytical invt.stif^atiou Let the arc A P = A ; and tht* arc PT) = //; then the arc AD = AP-\-PD= A -4- B. On CA let fall th<' ])erp<'n- iliculars / O, TL, l>M. ])iaw tho radius CP; ako DT perpendicu- lar on VP. and ■{ \f -48- y.S' jK^i'iii'iKlicular on UM. Tlum wt- Imve, by dt liiiilioii !//«(/<• 8i: PO = Dill A (!0 = coH i4 1)T= Hill B CT = COH Ji DM = sin A1J=: mi \A + H^ By conHtruction it iH Kvideut timt. tlie triaiit^lus ('FO, CTL, ami TlJHtm- oiiiiiliir, tlieroJore; tultiiig tlin ladiiw us unity, w« hivu or AIho or from [A] w»! obtain f'roui [/] wo obtain Adding but UP : PO :: CT: TL 1 : «in /I .• ; C08 B : TL [/.J aP : r'O : : /)'/ ; 7>.S 1 : cos i4 : : nin U : 1>S [/J 7*7/ = sin A com Z^ DS = 008 i4 liin Ji TL + />.S = Hin /I coH « 4- cos /I sin li TL + DS = MS +Dii= DM = sin \A + H\ Therefore sin iA -{- B, = sin A con W -f- ooh i4 sin /V which in the funiltiniKntal formula involving two angli-s. Angular Funt'tlom of [A -j- 7^) H'ltl \A KeHuming the last formula: sin (A-\- B) = sin A con B-\- cos A s'n B B). llfiS) sin [A—B] = sin {\m° — [A — B)^, by (HSi = «in [(180° — i^li + ^], which is evident. = 8inU80° — .4) C08i3-fc08 1180" — iil sin B, by (166) = sin A coH B — los il tn h (166) .by substituting for sin (180° — A) and cos il80^ — A\ their values as foxind in (85) and (86). cos (A-\-B\- sin [90° 4- (^ + ^']. ''Y t«3) = sin [|90° + i4l + /?], whish is evident. = 8in (9C°-t--«4) co8.B-f coB(90° + .4)sini?, (165) —49— y — COH A cos I}-- sin i4 sin fl, tty (83i and (84 1. (nSi cos /I — /il = — coH [180' — (i4 — //i], hy i86i = — COH [|1H0° — yll + H], which is eviilfnt. =-- — [co8il80° — /tj COM n-Hin ilHO' — /li sin //], by (1571 = -.cos(180° — i4i cos /y + «in ] HO" ~ A) n'm li = coH A cox /^ -f- «'" A niii //, by 8Ci and 185 , i lfl8| . . Hill {A -{• li) , ,, taui^-f 7^1 = , ; ,,,hy ,11) cox >A + Hi riiii A uoH H -\-coi A hIji // cox A coH H — Mill A m\ Ji' by il.'55, and (16Ci dividing niiniorator and dpnoniinilorby cox A cox li: sin A COS li cox /I sin // . cox A cos /i cos A cos // cos i4 cox Ji sin /f sin .t cos A cox /y cos ,1 cox y* I tan yl -f tan W i — tan A tan 7? (Ift9) ^ „ Bin (.4 — Z?l , , , tan (i4 — 7?) = rr, by dli cos {A — Ji) •' sin yl cos ^ — cos A sin li cos A cos 7/ -|- fin ^t siu 77 Proceeding as bofore. tan A — tan 5 1 -1- tan yl tan B (160) —50— coa {A-\-n, cot 1^ 4-7ii=: ----- - by (15) Hin '^ -\- Jl< cos ^ COS /y — sin ^ sin 7? sin A cos yy -|- cos A sin 7; dividing iiuiii. and den by sin A sin B, iindrednc- ins; cot A cot Ji — 1 cot Jfy -f cot A ^ ^ ,, cos {A — yyi , cot {A — JJ\ — , by ;15) sin 1^ — Jj] cos A cos Ji + sin A sin 7i sin A cos Ji — cos A sin JJ * Proceeding us before: cot ^ cot /;-f 1 cot 7y — cat A (161) ll62) soc ^ -f 7ii = • •-•-, by (20) cos A + /ii cos A cos 7i — :;in A sin /y •I. Multiplying num. and den. by sec A sec JJ: si'c A sec B 1 — tan i4 tan .fl (163) Multiplying num. and den. of ^l63) by cosec A co- sec B, and observing that by (10) and (3^). tan X cosec = sec: 11- *|!i n —51- sec A sec B coaec A coaec .B cosec A cosecTB — seciisecS (164) *-r: ,| sec {A — B) = 13, iind re 2 sin* A. cm A sin il Dividing num. and den. by sin* A ;. _ cost'c* A _\-{- cot* A 2 cot .4" 2cotil Also, by (168): sec* A cosec' A 2 sec A cosec ^ Dividing num. and den. by sec A cosec A '■ sec /4 cospc A " 2 AiKjUlar Functions of ZA . (193) (194) (195) Sin 3 -4 = sin (2 i4 + ^ I = sin 2 .4 cos .(4 + cos 2 /I sin .4 = 2 sin ^ cos* .4 + (1 — 2 sin" .4) sin A = 2 sin (1 — 8in*i4)4-(l — 2 sin" ^) sin i4 - 3 sin ^1 — 4 sin' 4 (196) (Jos 3 i4 = cos (2 .4 -j- ^ ) = cos 2 i4 cos i4 — sin 2 il sin il = (2 cos' A — 1) cos i4 — 2 cos .4 sin' A = 12 cos'/l — 1) cos il — 2 cos^ (1 — cosM) I m —56- 3= 4 cos'' A — 3 cos i4 t&n 2 A -{■ tan A |197. tan 3 yl = t&n r2 A + A) = 1 — tun 2 A tan yl 2 tan yl , , . — + tan A 1 — tan'yl ^ 1 2 tun A , by il8Gi 1— tanM tan A Multiplying num. and lien, by 1 — tan" A, and re- ducing : _ 3 tan .4 — tan ' A ~ 1—3 tan' A Dividing num. and den by tan A : 3 — tan-il il08) cot il — 3 tan A cot 3. 1 = cot(2A + A) = cos ^i / (219) (220) (2211 (222) (223) (2241 1225) ^, -Gl— cosec _ n 2 8i!C A V (227) Formulas nxpresshm thit sum or the difference of two Functions ineludinij one or two variahleH. By a simple algebnuc artifice, we may take h = ^[A-\-li]~}i (A —Ii\ whence Sin A + mMB = sin [^ U + /i) + i (/I _ /ii] -|- mn [i [A + 7?) — i(^ — Z/i] = 8iniU4-iy) cosi U— Z/) + co8j (il + /i) sill i (i4 — B\ -f sin ^ U -f //( cos i (yl — /i) — cos i Ii4 + /i) sin ^(.4 — /?) = 2 sin J (i4 -f(fl) co=f i (/I - /y) (2281 Sin A — sin /i = sin l\^A -\- B] + ^\A — /ii] — sin,[^ (A + 7y) ■-i(/l — 73)] = sin i 1^1 + 7i| cos ^ (/I — 7^1 + cos ^ ul + U) sin ^ 1/1 — Z?) — sin i (^ + ^1 cos J (yl _ J3) + cos ^ (/J 4- 7?) sin \[A—B) = 2 cos i ( /I -f ^) sin ^ ;-4 — B\ (229) Cos ^ -I- COB i? = cos [i (/i + J3) + i (^ — 7?)] + cos [i (/I + zy ) _i(yl_7yi] = cos i (^ + 7i) cos i (i4 — 7?) — sin J (.4 + 7? ) sin J (yl — B\ + COR i [A .+ 7f) cos ^ (^ — 7?, + sin A (/I + 7?) ft» i .t* -OJ- sin k iA — //i T= L' COR K lA -f /;. ruM J, ,.-1 — // rj:t<» ,;oH /I .- COS 7/ = coH[hA 4- //( -f A (/I — /yij — cos [A i/i + yy) — A(/i — y/i] ~ cos i (/I 4- //) coa i 1/1 — //I — sin i (yl + /A Min A {A — //) — coH i ( yl + 7^1 coH A I/I — //) — Hill J {A -j- /ii sill A (i4 — li) Mill i ./I + //I sill A ul — //, (2311 Aiu A-\- COH A — -j- ^ [m\\ a -\- cos A)''], which in I'vidont — + v[ *•'"' ■^ + •2°^" ^ + 2 sin >! COH /I J = 4- V[l + '''"2i4],l)y il79ianiUh(MM|imtioJi[a] (2321 Ihit is -4-v'[14-'1] = + W —• «'° 2 A] (233) that is = + ^[1 — sin 2 A] 1. for ail values of ^ whoen sin is positivo and cos negative; 2. for values of A whose sin and cos have un- like signs when sin is jjreator and positive, or less and negative. Otherwise: = —^[l—Bm2A\ „ sin i4 , sin i? tan A4-ta.n B= 7- + ;; — ^ cos A cos a _cn— n coH [A \A -f- H) »iu i (yl + Ji. Hin J 1/1 -|- JJ\ I (2311 H cviiloiit [ COM A] tlic ('i|imtion[a] i232i ml cos arc lioth I cos have unlik cot A cot yy sin /I gin B cos /I COB fl sin i4 COS ^ — cos il sin B cos A cos /f Bin (i4 — /i) cos A cos £ also = cot A cotB cot B — cot A cot A cot B ^ „ cot A , cos /? cos A Bin B-\- sin ^4 coa B sin i4 sin Zf si n {A -{■ B) sin A sin if also = - tan A tan B tan A + tanjB tan j4 tan B cot j4 — cot /i = cos A cos i^ sin B sin ii (2341 (2351 (236) (237) (238) (239) I f^ —64— cos A siu B — sill A cos B sin ^ ain £ .in [B — A) sin ^ sin B (240) alno •= - 1 tun A tan /i tan i? — tau A tan ^ tan /I i241) cot A — tan i4 -f cot fi •4- cos B Hin cos A sin J5 cos j4 cos li -}- sin il sin B cos i4 sin B COS (i4 — fij also cot A — tan i? cos A 9in5 1 cot A ' tan 5 cos A sin B sin -4 cos jB cos A cos /5 — sin A C( _ cos ;A4-A) tan 5 + cot i4 tan B cot -4 sin A sin J3 i/ sin A cos 5 (242) (2431 (244) sec ^-f-B sec B — Bci also ~ tan j4 cot B cot fi — tan i4 cot B tan ^ (245) cosoc ^ -f- cq tan Ar^oot A = sin A I cos i4 COS A '^ sin A —65— (240\ ^ (241) A (242) ^. (243^ ^.A (245) an A _ Bin* A + (JOS' A __ I sin A COS A ~ sin il coa il cot A — tan i4 = 2 sin i4 cos A sin 2 il 008 A sin il sin il COS il cos* il — sin" il sin il cos il COS 2 il 2 cos 2 il sin ilcos il sin 2 il = 2 cot 2 il sec A-\-6ecB= -, -- cos il coaB 1 cos il -|- cos £ COS il cos B _ 2 COS ^ (il-f B) co8 j iA — B) cos il COB B soc B — sec il = 1 1 cos il — cos 5 COS B cos il cos il cos B _ 2 sin i (il + B, sin i(il —B) coscc A -f- cosec B cos il cos B 1 sin il -{- sin B sm .1 sin B sin il sin B 2sin ^ (lil 4- B\ cos ^jA—B) slJ il sin B (246) (247) (248) (249) (250) I it I m -66— cosec B 4" cos^c ^ = ^^ 2 cos ^ 1 sin A — sin B cot iA + /fi sin 4 sin A sin 5 J^ + g) sin k (^ — jgL sin A sin 5 (2611 in(i4 + B) + 8m(4-B) = sin sin(il + 5) — 8in(i4 — 5) = cos COS (A+B) + co8(il — 5) = (^ _j_ 5) _ COS (il — /<) = COS (A — B) — COS (il + 5) = tan(^ + 5) + tJin|^-2?) = sec {A-^/i) (166) + (156) 2 sin il cos B . (262) (155) — 166) 2 cos A sin 5 (263) sec {A + B) ,167) + (158) 2 COB A cos £ (264) (167) — (158) 2 sin i4 sin B <265) COS(!C (^ + J ,158) — (167) 2 sin i4 sin B ,159) + (160) (?66) cosec (^ -|- , 2 tan il + 2 tan 4 tan fi* (257) tan(^ + IJ)-tan(/l--B) cot'a + «) + cot(yl— -tf) 1— tan»il tan»i^ : (159) - (160) 2 tan 5 + 2 t an* ^ tan .g 1 — lan*H tan* B (161) t (162) 2 cot ^ + 2 cot A cot* -» cotT/i -- cot* ^ (268) ,269) Let VI be vious tliiit I228i (229' sin iwi + 1 1 -C7— . cot i7l + /?i— coliyt — /ii= 1I6I1— (162) _ — 2 cot /? — 2 cot A cot n ~ cot'''"^ — 'cot» A social + yil 4- sec {A — D\= il64l + il66i 2 soc A sGc B cosdc- A ensue''' li (2601 V-J261, = cosec' A cosec' /^ — sec' A sec" fl sec |>1 + fil — ace (/I — 7ii = (164l — (166' i sec' A sec ' i/ coaec A cosec if cosec* yl cost'c/r' — secM.sec' 7^ cosec 1^ -f- ^1 + <'0''"C 1-^ — 7^' = 1I681 f > 171)1 2 sec" ^ sec li cosec /I cosec' Ji sec' j4 cosec'^ i^ — sec' H cosec" yl cosec \A -\- Bi -- cosec lA — li\ = 1I68! — (170i _ 2 sec il coaec B cosec' A sec' li spc " ^4 cosec' 7? — - cosec' A sec' 7i' 263) 264 1 lj3t m be any positive number greater than unity; then il is ob- vious that ■\ m -\-\\-\-^ \iH — 1 1 =r m h iw -f- li — h\m — ll =: 1 or (w -f 1 i + ()/( — 1 1 — 2 hi (»i + 1 ) — [in — 1 1 = 2 ; whence, by 12281 (229', i230i, (231): sin iw -{-\\A-\-6\vim — \\ A =2 siD[-Jr m -f 1 1 ^ -f. \{:n— 1 )A] X cos ["i {m — W A — I [\\\ — \\a\ '■■ i . > =2 sin m A cos A (26fK t \ ■ ■! 4 I ?> ; -68— sin (/n+ 1) 4— sinuft— 1 ) A =2 cos [^ (m+l) A -\-^(m—l) A"] X. sin [J(m-fl) il — i (m— l)il] = 2 cos m .^ sin i4 1 266) co»{m-^\)A-^coa{m—h A = 2 C08[J {m + I) A+ ^{m —1) A] X cos [^ (ni-f l)i4 — i(»« — 1)^] = 2 COB 7n A cos A (2671 cos (m -f l)A— cos (ffi — 1) ^ = - 2 8in[^ (»« + 1 U + i{m—l)A] 8in[i (»( + 11-4— itni — l)i4J = — 2 sin «) A sin i4 1 268) tan (m + DX + tan (m - 1) i* = ■ --- sin l(m+ 1) il + (m— 1) .4] cos (m + 1 1 .4 cos i»i — 1 ) il by (2341 sin 2 m A cos [m + \\ A cos (»i — li A i269i sin tan (Mi + l)i4— tan(w — Dil = - [(7/. +1)4 — (w — 1) A]^ cos |7« H- 1) A cos Iffi — 1)4 by (236) sin 2 4 cos (»« + 1)4 Ci.t8 iJrt 1) A ,(2701 sin [(»» + 1 )4 4 (w — 1) 4 ], cot (TH 4- 1) ^ + cot iw - 1) ^ = ~8in (nt + 1) 4 sin (m- 1) 4 by (238) cosec (m + sin 2 m 4 sin(f» + 1)4 sin (m — 1)4 =ro <^"i ' > I >l ^(m— 1) A] him-DA] (266) hil'n-l)4] (267) (268) — i269i m — h A cos im — h A . , (2701 . + \m—\\A], sin (wi — ll A 1 ,071, -69— oot tm — ll i4— cot »i + I) A = -. — != TT'ii—- — ; vnr am [tn + I) A sin (m — I) A by (240) siu 2 il sin (m -f 1) i4 sin (»i— 1) A i272) , . cosfm+lM — »» — 1)^1. tan (»i i-l)A+ cot m- 1) ^ = '■','■ y-T cos [Tn + I) A sm (?« — li A by (242) cos 2 A cot (»« + IM — tan'm — \] A = co8( m-{-\) A sin (jw — 1) A cos [(7?/. + I) ^ + (wi— 1) A} (273) sin (»M + 1) A cos (m — 1) A by (244i cos 2 III A sin (m + 1 1 X cos (m — I) A (274) By applying the same method of substitution and reduction to the formulse (248), (2191, (260), (261), we easily obtain: sec {m 4 1 ) X + sec (m — 1 ) ^ = sec (m — l)i4 — secfm + l)^ — - C08ec(»i + \)A +■ cosec(w — l)^ = cosecdn — l)il — coseolwi + \)A = 2 cos m il cos il (m — M il cos (TO + 1)^ cos (Ml — 1) A (275) 2 sin m il sin A cosiw-f liil cos( wi — I) A (276) 2 sin m i4 cos il sin [ni-\-}) A sin (m — 1) A (277) 2 cos in A sin A sin (m + 1) ^ sin m — 1) ^4 (278) i.F Let A I"' 45°, 30'. or GO", in il'52i, i253i, i2')4i. and iL'5r>i: tlu^n wi' obtain innuyiliattdy ; sin (4B" + //I + ^in t45° — Ji\ = 2 sin 45° cos B sin i45° + /;• — sin i45° — 7}i = 2 cos 45° sin Ji = sin n V- '-80' COS (45° + ]i\ + cos i45° —Bt = 2 cos 45° cos U = cos n ^2 (2811 008 (45° + i^) — cos (45° — i)'| = — 2 sin 45" sin B = 2sinyyv- '282i sin (30° -\- B) + sin (30' —B) = 2 sin 30" cos /i = cos /^ (283; sin (30° + B\ — sin (30° — B\ = '1 cos 30° sin B ::= sin y>' v3 (2841 cos (30° + B\ + (OS (30° — B\ = 2 cos 30' cos B = cos B y/?, (2851 cos (30° -I- B\ — cos (30' _ yyi = — 2 sin 30' sin B = — sin B (28oi sin (60° ■\-B\-\- sin (60° — i^l = 2 sin 60° cos B = COM B v'S i287i sin (60° -\- B\ — sin (60° — H) = 2 cos 60' sin B = sin B (288 1 cos 1 60° + B\ + cos (60° — yyi = 2 cos 60° co, 7V = cos B (289) cos (60° + i^i —cos (60° — B) = — 2 sin ()0° sin B (290) Formm ein (^ 4". cos (A-{-l tan (-4 + y = — 8in B ^3 —71— 265 1 : tlwn (2791 li B 1 280 1 i281i (282) (283: (284) ,28r)) (286. (287t 1 288) l289, (290) Formulae expressing the Product of two Functiom including, each, one or two Variables. Bin (A + B) sin (A — B) = (165) x (156) = (sin A cos B-{- cos A sin B) X (sin A coa B — cos 4 sin B) = sin" A cos' B — cos' A sin' B = sin' A (I— sin' B) — (l — sin' A) X sin' B = sin' 4— sin' 5 (291) or = (1 — cos' A) cos' B — cos' A X (1 — cos'fi) • = cos' 5 — cos' A (292) cos (A 4- B) cos (A — 5) = (157) x (168) = (cos A cos B — sin A sin B) X (cos A coa B-\- sin A sin B) = cos' A cos' B — sin' A sin' B = cos' -4 (1 — sin' 5) — (1 — cos' il) X sin' B = cos' ^ — sin' 5 (293) or = cos' fi — sin' i4 (294) or = cos' A + cos' B — 1 (296) tan (A + B) tan (A — B) = also = sin (A + B] bin A - -B) cos [A -{- B) cos [A - -B) sin' -4 — sin' J3 cos' A — sin'^ cos' B — cos' A cos' B — sin' A tan' ^— tan' 5 1 — tan' zltan' i< (296) (297) (298) . ' i: >^l —72— ! « cot -51 cot (A-B] = co8^(^ -f-^)coB(^-^) sin (yl -\- H) sin (4 — J3) __ cos* A — sin* ^ ~ sin* A — sin* J? cos* J9 — sin* i4 cos* ^ — cos* A 299) (3001 cot A cot J? cot»i4cot*fi— 1 .» = ae.,M.c. = ^— ^-i«, 8oc [A 4- J5) sec (A—B) = (164) x (166) __ sec' A sec'^— cosec" ^1 coaoc' 5 cosec' ^ cosec' ^"^ec'I mo'^^ '^^^' cosec (/l+i?l co-sec (.'1~J9) = .l^cM 8«;»^_cosecM co seo^Jg sec ■ A cosec' // - nee' li cosec' -4 ' In the preceding fonnnlae, write ^ (^ 4- B\, for A; and* (^ -/i, for B, then since j^ (.4 ^ B)-\-^ [A — B) = A " and i (^ + yy, = I (^ _ /?, = ^^ ,y^ j,t,t^i^ •in .1 ain 5 = sin' ^[A-\-B) -sin' J (^ _£) or = cos»^(^_Zfl — cos' J(^-f 5) cos AcoiB= cos' ^ (.4 +£) — 8in' ^(A~B) or = co8'i(^_5|_gin«|,^^^j tan ^ tan i^ = ^^J^±±Z:^i^ ^ U^-Bl . cos' i (^ + i^) _ Pin-.' ^ ^A—B) or = co"'^ !^ — ^^— co^^ (A — B) cos* ^(A—B) — sin* i (.4 — ^) (304) (305) (306) (307) (308) (309) -73— cot A COl JJ = ■ , 1 , . I — 57" — . . . , . 5: Bin* ^{A-\-B) — sin* J (A — J?) (SIO) cos' ^ (/I — B) — ain' ^ (i4 -{- g) co8» i{A — B) — cos' i (/I -f fl) (311) Fomtulas expressing the quotient of Functiont including, eachy one or two Variables. sin {A-\-B) _ sin A cos 5+ cos ^ sin B sin \A — B) sin A coh B — ooa A sin B. Dividing nnm. nnd den. by cos A cos £ or sin A sin jR, and re- ducing k%. tan il 4 tan B tan A — tan B ,312) cot B + oot A cot B — cot A l313) Also dividing num. and den. by sin A cos B, or cos A din B -h. 1 + tan J5 cot A 1 — tan B cot A (SUi tan A cot Jg -f 1 tan A cot B — 1 (315) r # _74_ • •• ...,^ , cos CCI8 — B\ i!08 A COH li — Bin A sin // + siu it 8in B coa A CON B J)ividi ng iiuiii. and dim. hy (;o« A HJn «, or 1 8in A COH B, and reducing: cot yi — tiiQ A cot /y + tau A (316) .,... cot A — tau B cot i4 + tan yy (317) Also dividing num. and don. by cos A cos B, or Hin A sin B, and reducing: 1 — tan yl tan B i + tAnA~t&n~B (3181 cot i4 cot B — 1 cot >1 cot jB + 1 By following a similar process, wo obtain ciwily tan {A 4- B ] _ sin A cos B-^ cos A sin B cos {A-\-B\, C08 A cos .ft — sin X oin .S - .^ ~f- cot A tan yi cot A — tan B _ tanyl cot y y-f 1 cot5— t.nn^ (319) (320) (321) ^inA Bin {A — I siu.^ c .).} — si tan i4 + t'U J I 1 — tan yl tan B cot J} -\- cot A cot A cot li — 1 (32'J (323) 1^ sin {A — B\ _ 1 — co\^A tiin H COR (i4 — B) cot i4 -f t)in7/ _ tan i4 cot J9 — 1 cot B -}- tan A tin i4— tan /? 1 -4- tan A tan i3 cot B — cot i4 cot A cot B -\- 1 (321 1 (3251 1 320, (327) [ Bin [A + B\ _ I + cot ^ tan 5 cos [A — B) cot A + tan B _ tan A cot /i + 1 ~~ cot i? + tan ^ __ i&n A-\-\an B ~ 1 + tan AtanZJ __ cot 5 + cot il cot A cot B-\- 1 Bin (i4 -}- -fl) _ sin ^ cos B-^-aoa A sin B sin A toiB~ em A cos iP = 1 + cot il tan £ , sin [A — B) sin il cos ^ — cos A sin B (328) (329) (330i (331) (332) sin A cos B sin ^ cos B -76- • I = 1 — cot i4 tan B cos {A-{- B) __ cos A cos B — sin i4 (333) sin B sin A sin B sin i4 sin B = cot 4 cot B — 1 cos (A — B] __ cos A cos ZJ-4- sin A sin B sin A aiu B ~ sin i4 sin B = cot i4 cot 5 -+• ^ cos {A -{*B) _ cos A cos ^ — sin il sin fi cos i4 cos B~' cos i4 cos B = 1 — tan i4 tan ^ cos (A — B) _ cos A COS B-\-ti\n A sin J9 cos i4 cos £> ~ cos i4 cos J9 = 1 4- tan i4 tan ^ See also (234), (236), (238), (240), (242), and (244). BinA + sin B __ 2 sin ^(A + B) cobHA—B \ BiaA — amB~ 2 cos J iA+B) sin ^[A —B) = tan J (il + 5) «ot J (il — fl) - tani(it-f ffl I ~tani(il — •*) coaA+coaB __ 2 cos j^ {A + glcos ^ (it — B) coaA—coaB ~ -2fm^^i4 7f) Mn J iA— JS) (334) C0« i< -f (!0( sin A — sin cos A -I- cos (33S) sin A + sin cos A — COH 8in.i4 — sin COH A — cos (336) sin {A + B siii {A + ZT cos (.4 4-^1 (337) cos (i4 + //, sin (-4 -f /ii oo»{A-}-B) sin (i4 -f 5) <»a(A-^B) (338) siiHA-^B) «w (i4 4- 5) (389) = — coti(i4-f £)coti(i4 — £) (340) \ — < I- _ cot J (/I -f /?) tan i (/< — /y «in A fain /i _ (228) _ cofli4 -\- COS B sin A — ain B COB A + cos B siDil-f Bin B coa il — COH n tin. A — sin B (230) (22fl) (230) - tun i i/l -}- //) = t«u i (.4--//) _ (2281 _ (2311 (2291 cofi^ —cos/? ~ (231) cot i 1/1 -, ^) — cot J :/l -f. JJ) ain {A + B -^- ain l^ — //) (352) sill i/i + zy,- sin ;i4 • -B~ cos (^ + ^1 + cosiilrf jOi cos [A + Bf- COS 1^ - -B) sin {A-]-B) + sin tA ■ — B\ 00* M + fi) + COS f4- -B) sin 1^ + 5)4- ■in (^ ■ -B) OM {A+B)- cifa^il- -B) sill U+B)^ sin (i4 - -B) ^^ = ion. A cot B <2_M) (255) = — ' cot /I cot // _ |262) __ tan A (262) (2£9) . ^ (263) cos (k 4- J?) — cos (^ -, B) (250 = cot B »«nty4 Deductions. By (183) and (184), ire have 2cofl*4s;i4.eD8 2/&l 2 sin* ii = 1 — cos 2 il (841) (342) (343) (344) '345) (34C) (347) (348) (349) (sno) (381) 1352) !■' ■ ff^ - 7t<- Hence sin' A coa* A = 1 — cos 2 A 1 4- COS 2 i4 l353i (354; Also Whence .^n4=7(i-T^-^) (3551 co.X=V('±^^4) (3561 2smH^ = l-.cos4 (357) 2 cos* J ^ = 1 + cos ii . (358) sin* i il = cos* ^ A = 1 — cos il 1 + cos >1 2 Bin cos i-7(^^) 2 sin il = ^^[2 — 2 cos 2 ^4] 2 cos 4 = V[2 + 2 COB il] 2 sin J il = ^[2~ t cos 4] 2 cos ^ A = <^[2 4- 2 cos A'] tan' i4 = 1 — cos 2 i4 1 + oot 2 i4 (359i (360) (361) M = 7(i±|?l-^-) 1362. (363) (3641 • (365) (366) (367) la (179)8.1 Henco '•vnenco sm sin % (196) %(179tnn f.c. ■7'3— cot* A = l±^l± 1 — cos 2 /I tan 4= /(i-°°«2^V cot- A= ML±^2^_v, V \1— cos 2,4 j tan* * ^ = i--co8 ^ 1 + cos A 1 COM A In (179) subititutmg ^ A for A gives sin ^ = 2 sin ^ ^, ..qs ^ ^ Henco sin (^ + ^, = 2 sin ^ ,X + ^, cos 4 ;^ + //, vvnenco sin ^jin5^ _ cos i {A ~-B) ain (A -f li] cos i (^ 4- ^1 (368) (369) (370i (371 1 (372, (373, (37 ii (375i ** y 1 1 I i J l!y (179) nnd equation [alpaffe 13, t\-n have sin 2 i4 = - ^ ^'° 4 ""^ -^ co&» ^ ^-sin* ^ I>ividingn„m.aml.,Io„. byco,«^ . '■:■■' -VK:>:.:^i^ir^x^'ai -j'i —80- ! t whence 2tanil 1+tanM - (376) ■ cos(/4-f2? . . 2 tan * ^ sin A = -= 1 f tan* J A (3771 1 Dividing num. and den. hjtasxi A 1 tiinf^-f-j5. 2 lOTOx 1 cot J i4 -}- tan ^ il tan* >1 — tan* B = (tan il + tan B) (tan i4 — tan B) = (234) X (236) _ sin {A 4- B) ein (.4 — B] cos* ^ COS* /y cot' .4 — cot? J? = (cot A+ cot B] (cot .4 — cot B) = (238) X (240) _ sin M 4-5) sin (^ — .41 ~ sin* A sin* B — sin (.4 4- B) sin 1.4 — B]\ (3791 (3801 (381) sin* A ain' 5 Functions involving three Amjlea. Let il be any 'hree angles; then sin (A-\- B-\-C) and cos [A-^B-\- C\ may easily bo expanded by making use of the formula (156) and(167) thus, sin [A-\-B-\-C) = sin [A + Jf?) cos C+ cos [A +B) sin B =8in A cos 5 cos 6' -f sin j9 ooa .4 cos C -\- sin C cos i4 cos i? — sin .4 sin B sin C i382l eot(^ -f n It 18 manifl tions of any i tions of the We have a| sin (A ■\. B + sin yA = sin {{B + j + 8in[.4 = 2 sin (B JS* — «1- |376) 1377) (3791 0\ and ing use of tlie JfB) sin B A cos C n/JsinC «382i cos ( A 4- iJ + C) = cos [A -f- i*) cos G— sin (A+ 5) flin C = cos -4 cos B cos C — cos A sin i? sin C — cos B ein ^ sin C — cos C sin A sin 5 (383 tan(yH-5 + C') = sin (A -\-B-^C) cos 1^1 4- i? + C) eot(yl + i.' C' Expanding num. and den. and dividing both by cos A cos B cos (7, tan A + tan i; + tan C — tan ^ lan i5 '.^an C7 1 — tim ^ tan 5 - - tan A tan C — tan ii tan C (384) cos [A + B + 0^ sin lyl + y3 + C Expanding and dividing by sin il sin B sin f?, or by cos A cos Zf cos C : cot ^ cot 5 cot C — cnt A — cot ii — cot G or = - cot B cot C + 1 — tan 5 tan C cot A cot V + cot .4 cot B — 1 (385) — tan il tan G — tan A tan B tan /I + tan i* + tan < ' tan .4 tan fi tan G (386) It 18 manifest that in the same way, expressions for the Func- tions of any compound Angle may bo found in terms of the func- tions of tlie component angles. We have also, by applying successively (262) and (155): sin (4 + 5 + C) -(- sin [B -f a—A\ ''"n (A ^^ G — B) + axD.^A + B — C) = 8in[(B + C) -f .4] -I- sin l(B + G] —.4] -f sin \_A — {B—C)] -♦-8in[il -f (5— Cl] = Ssin [B + C] cos A ■{■ 2 sifi A cos [B—G) '4\ —82- = 2 sin A 'in /> sin ('4-2 sin A cos B cos C -f- 2 tiiu /; cos A (;os C'+ 2 sin (' cos 4 cos i? (387) I5y ajvplyinp; successively |25-li (157): COS {A 4- B-\- G) + cos [B-\- G—A)-\- cos (-4 + C~ B] + cos {A 4- 2? — r-i = cos [|/J+'';i + yl]+co9[iiy+ G'l— ^] +cos[^ — 'i;~C'i + cos[^ + i/? — Ci] — 2 cos iB 4- G\ cos yl -(- 2 cos (7? — (h cos .4 = 2 cos ^1 2 cos B cos C C08 i4 cos B =z 4 cos A cos /^ cos C 1 388 1 [A 4- Zyi sin (2^4- '*' = «in i^ 4" -/^' «iii -^ f'os C 4- sini/l + /y) cos B sin C = sin [A 4- ^1 sin B cos C 4- cos A sin Z? cos /? sin C'4- sin A sin C cos' H Suhstituting for cos' /iin the liist torni its eciuijl 1 — siu'' B, and factoring: = sin B [sin {A-\- B\ cos C+sin C X (cos A cos ^ — sin A sin i?l] 4- sin A sin C sin A + sin /J cos A 4- cos i = sin i4 sin C4- sin B [sin {A 4- 77) X cos C-\- sin Ccos (yl +/il] = sin A sin C4- sin B sm i A -\- B -\- C) (389) The student will have no difficulty in deducing the followiDg : tA^i^ -83- sin A+Ji f C'j cos A cos B COS 6' sin |yl + i^ + C'l = tan ^ + tan i^ + tan C— tan 4 tan 5 tan C {3901 mn /l"S7ry7^f ' " '-'''^ '■ '■'^^ ^ + «>t /f cot C7 + cot 4 cot ;?_ 1 (391) cos {A + B + C\ ^A^B^^ = *'°* ^ '^^^ ^ '='>* ^- «>* ^ -cot /? -cot C cos {A-\- B + Ci cos ^ cos B CO 5 C' — 1 — tan /; tan C— tau A tan C — tan A (392, t-anJ9 1393) sin A sin (/>'— C'l + sin B sin |C— yt' + sin ( sin U _ ^j =_ (394) COB A sin IB— C) + cos 5 sin tC—A] + cos Cain iA--B) = (395) sin A + sinB + sin C = 4 sin ^ ii4 + ^) sin ^ (A + C] cos sm cos sin i (i? + C) + sin (^ -f J? -f C)(396) A+ cos5-f cos C=4co8 J(A + ^ico8j(^ + C, cosi(/i-fC)_co8M + j5-f-C) (397) {A — B) + sin{B—C,-i-ein(C—A) = — 4 s.n^ (.< — ^) sin he followina : i(B~C}Bmi{C—A) ^398) 2 ^ 4- cos 2 ^ -f cos 2 C-f cos 2 (.4 -f i?-f C, = 4 cos (^ + B) cos (^-f C; cos 1/1 -f C) (399) { _84_ Particular Case of A -{-11+0= 180° Let A + B -\- C = IS0° OT he the angles of any triangle, then 8inU + ^+C) = 8iul80° = cos (A + B+C) = 180" = — I (400) (401) Kin ^4- sin 7? 4- sin Cr= 2 sin i (A + B) cos ^ {A - 5) + sin C But sin C = 2 sin i C cos ^ ^, sin * C = cos ^[A-\- B), by (8i) co3icr^8in*(^+£),by(83i Therefore sm + 8inZJ+.sin C = 2am ^^A+B) [cos^U — /?) -I- cos (^ + ^] = 2 cos * a [2 cos i ^00? i B = 4 cos ^ ^ cos A B cos i C 1 402! CO? /I -f COB ^ 4- COS C t= 2 COS J U + 5) COS i (4 — 5) + COB G = 2 8ini CcoB^iA — B) + 1— 2sin»iC = 1 +. 2 sin \ C[cos \ lA—B) — sin i 0] — I + 2 sin ^ C [cos hyA — B — cos [A + 7^ = 1 + 4 sin ^ il sin i 5 sin ^ 6' i403) «m 'I A -\- >iin 2 i^ + sin 2 r- =r 2 sin (-44- B) cos (^ — B\ 4- 2 sin C COB C = 2 sin C COS (4 — J5) — 2 sin Ccos (A+B) = 2 sin C [cos (^ — .B) — cos (^44- J?)] -85— = i Bin A Bin B sin C 1404) sin (A +B) Bin (fi+ C)= «» (180° — O ein (180° — A = sin A sin C (405) l\ PI Bin (A-\-B+ C)4-8in M + 5— C)-f sin \A + 6'— Z?) 4- sill (^+ C—A) = sin ISO"" + sin (180° — 2 Cl -f sin (180° 2i;)8in + (180°— 2i4) = sin 2 ^ -+- sin 2 ^ -f sin 2 C = 4 sin ^ sin B sin C (406) Since sin' i A-{- sin* i -B + sin i C+ 2 sin J ^ sin i J9 sin i (7 = 1 — (cos* iA— sin* J B) + sin* J C -fsin ^ C (cos i {A+B) —cos (/I — ^) =.-. 1 — cos i (^ + B] cm ^{A — B) + sin* i C-f sin ^ C [cos J (A — fi) — sin I ] = 1 — sin J C cos ^ (^ - /?) + sin* ^ C — sin J C'-f- sill J 6' cos A (i4 — /ii = 1 'i'herofore Bin" ^A -f sin*^ B + sin' K' = 1 — 2 sin U sin I B sin ^0(407) '4\ Since cos' A -f cos' Z? 4- cos' C + 2 eos /I cos B coa ^ ' = 1 + (COS* A — sin' B) + cos' + cos C [cos ( 4 + i^) + coa [A — Bi} = 1 4- cos (i4 4- B\ cos [A — B) -i- eob' C + cos C [— oos (7 4- cos [A — jB] = 1 — coa a cos (4 —if) 4- cob' C — cos* C+ cos (T cos 1/1 — Bj - iSd — rr. 1 Tlun'ffoio cos' A -f cos' Ji -f- cos' C -- 1 — 2 cos A cos B cos C(408) Since tiui lyl + /i-f 6', = tnn ISO" = 0, tlion by (384) we obtain tan A -f tan JU + tin C — t&rx A t&n B tan O =■. Vrhence tan i4 + tan ^-f tan C= tan il tnn /i tan ^(409) Thp student will easily deduce the following: cos ^ i4 -f COS ^ 54 cos i 6'= 4 cos ^ {A + B] cos J iZJ+ C) coa \[A-\- a, (410) tan ^ i4 t«n i JB + tan i J? tan J C+ tan ^ ^ tan i C = 1 (411) cot ^ + cot ii + cot 6' = cot A cot iJ cot C -{-cosec^ cosoc B cosec C (412) cot Jil + cotJ 5 4- cot ^ C- cot ^^ cot 4 Z; cot ^C 1413) tan il + tan 5 + tan C _ tan J /I tan J i? <.an h C (sin A sin B sin 6V 2 cos ^ cos yy cos V. (414) tan /I , tan i? tan 2? tan C tan A tan + \. 4. + J. tan B tan yl tan C tan B tiin C tan A = sec ^ sec B sec (7 — 2 (415 ) Pariicnhir casi' of A + B + C n tan C |409) ;oscc C (412) —87- siu (yl + /i 4- C) = Hin 90° = 1 COS [A + B-\-C] = C03 90° = (116) (417) sin 2A-\- sm-\-B + sin 2 (7 = 2 sin U4 + B) cos iA — B +sin 2 = 2 cosC [cos A — />') + cos \A+B)'\ = 2 cos C [2 cos A cos ZJ] = 4 cos^ cos // cos C (418) Since tan |/1 -f Z? + C) = tan 90'' = oo, tliun by (384) wo obtain tan A tan B + tan 5 tan C+ tan A tan C — 1 = Whence tan A tan B -f tan 7? tan C + tan A tan C = 1 (419) Since cot {A -\- B -{- C, = cot 90° = O.thon by i385l cot A cot jB cot C — cot A — cot B — cot C = Wlience cot /I + cot y? 4- cot a = cot A cot B cot C (420, Since sin {A-\- B-\- C) = 1, the formula, i382i ))ocomes, after trans- posing the last term: sin A cos B cos C+ sin b cos A cos C + sin C cos A cos 7J = sin A sin ii sin V + 1 Dividing botli num. and don. by cos A cos B cos gives tan A + tan B -{- tan C = tan A tim B tan C 4- sec A sec Zi sec C (421) ,i*^ I '-< 1 1' r -an— A/ijilicalion of the precediinj Furmulv to the Jledu'tion of Trigonuinetrical Expremona, Hih-'ito wn h;iv(), {i^ttablisliod tho fnu(l!imontnl f'ormnln' of Ana- lytical Trigonometry, and disrived from thtiu n largo niimlicr of hc- condary ones which may bo of frequent \\m of tho reduction of Trig- onometric exproHsions from a complex form to a more simple one, or to any such one as ia required to fulfil certain conditions. Tho number of these foimultc could bo increased beyond limit; but the student is now sufficiently prepared or tho elementary ajjplication of Trigonometrical values to the othor blanches of scienc to which tliey are connected. Wo shall close tlie present Chapter in giving a few examples of reduction, indicating the methods to be used in order to olloct tho proposed reduction in tlie first, and leaving the others to the sagacity of the student, sin A -j- sin iA -f sin 6A 1. Reduce Ihe expression -^-^_ -_^-___^--__- to a single function? ■ The proposed expression may be written sin 3i4 + '«•" ^-^ -|- sin i4i cos 3j4 -|- icoH .^A -\- cos A\ ■ sin 3/14-2 sin 6A cos 2A cos 3i4 + - <^os 3i4 cos 2/1 ,by .28; (fe ,233l Factoring: _ sin ZA (1 -f 2 cos 'lA] cos iA (1 -|-coa 2A) sin iA ^ , . —^-r = tan oA. Ann. cos oA 2. Reduce cos^il — em* A to a single function ? = cohM — nifi* A = iios 2A. Ann. ^. llt'duco Iff! A 4- '"" ■^ ^" " Mn^U' ruuution. . 1 -f- "in 'I sec A + tttu A — ~ — - coH A _ l_rus |<)()° + /1, ■~ Hill i!»(P 4-/1 i = tan (45° 4-^ .-li. Auk. tnn I A-^ cot A A i. TiimIuco singlp function. to IV 2 ~ - Vos i/1 "^ .sin \ Af mi' \ 4" *-*"•■*' i ■' 2 .sin A .1 cm .'. /t . »l I t '^ 1 = coHdc A. Ans. sin i4 .">. U(i(lucc 1 4- tau ''I tun \ A ;o n ain;,'li' riuiotion sin A 1 — co.s A I -f- tan A tf»n i ^1 - 1 + = 1 + COS A sin i4 1 — (io.s A cos /I IMAGE EVALUATION TEST TARGET (MT-3) # /. % & % 1.0 I.I I2i& 12.5 1^ 12.2 !lf 140 12.0 1.8 1.25 1 1.4 lA .4 ■ 6" : ^ V] <^ /] /: ^ .N>" ^^"V .^' .-^ JV" y ^ /^ Photographic Sdences Corporation \ Wi q ^ \ \ >. '•«> ^., o \ 4s. 23 WfST MAIN STRHT WEBSTER, N.Y. 14S80 (716) •72-4503 4^0 — yo— ' \C0S /I 1) \ , - 1 4- iSL'C A — l\ ■— SPfi A. Ali.i:. G. Et'duot' «in i.30= -\- A]-\- sin liiO" _/l i to a single function. ^/is. cos A 7. Reduce siu (46"^ -f- ^ i siii i45'^ — .4 1 to a single function. Anf> i COH 2j4 8. Rcduco 4 sin A sin (GO°-f-^) sin 60° — Ai to a singlo func- tion. Ans. .sin 3^4 9. Reduce sin A cos i/4 + III — cos A sin lA — Ji\ to an expres- sion wliich can be submitted to loj^arithuiic eomiiutation. Ans. cos 2A sin Z?. , , ,. , sin ^ A + sin tA . , . 10. heduce ., , i -; - to ii sni'de funolioTi. cos ^ A -^ cos J i4 Ann. tan yl. 1 1 . Reduce cos' ^ A {\ * >ec \ A ■}- tan ^ yl 1 1 1 — sec ^A+ tan i ^4 1 to a ein''le function. Aus. sin A. ,, , "Jsui A — sin 2i4 . . ,. 12. Reduce - to suiL'le luuctiou 2sin \ -f- sin 2.4 Aii.i. taa' ^ A. 13. Reduce 'cos .4 -f cos /<'' + .sin .4 -f- sin Ih' to a sinp;l(j func- tion- yl ".s- 4 cos* -^ 1 ,4 — Ji I 1 — iau* 4.5^— yli . , ,. ,. 14. Kuduce •, -■ ,,, - to a smj^'le lunrtion. 1 +tan- 1 45" — A) An,'<. sin 2^1 frlc function, cos A function, i cos 1A ) ii single fiinc- 8in 3i4 fl to an exprps- ition. . coH 2i4 sin B. 311. tfin A. Q,hA + tan I i4 ) sin A. 3 a 8inj,'](! fiiuc- , 4 cos* A \A — B\ sin 'lA -Oi- ls. Rudues sin %A cosoc yt — co.s 3.4 eec A to a numerical va!;n. Am. 2. « 1 .' -u 1 COS j4 — cos 3^ 16. Ecduce ^.^^ .^^^ _ ^.^ ^ to a .single function. 17. fieduce cos lA — C0.S 4^ Am. tan 'lA. '^n'W-^I^n-lA "-""-"'"gl'' function. An». tan 3.,4. 18. Jieduce cos' U - /fi -f co8» /i— 2cos i^ _ J5) jos ^ cos li to * «ngle function. ^^ g,^. ^ 19. Keduce sin' (^ _i?) -f- sin' ^4- 28in ^A~B\ sin i? cos A to single function. ^,,,,. ,j„. ^ 20. Ruhice iicos" A sin SWi + ^.^n* ^ cos 3^. to a iingle func ''""■ ^na. ;j- sin 4yl. 21. Iteduce^".i*±i^":'^ + «''"'2«i-ll^ ' ' «os/l-|-cos«..4-f cos~,2;«_l] ^"^ " '^'"^''^ ^""'^- tion, ^ . ^ . .<4w*. tan mA. .>.) D 1 cot \ A — tan i /I ... ^-^^-^Uj^^I^ to a single function. Am. cos y|. to a fin-'le func- 23, Keduce lion. tan |45°4.A^l-f cot 145" + {, A Ann. coH /I. -'4. Hcluee 2co,,45°-f A .^, cos a6' — A ^) to a singl.' function. 2o. deduce ^"i^!.+ di - ^'"^<'" "A'. .4?«i). cos ,.4. to a single funetiou. A/IS. sill ,4. i ii »4 « . 2G. i;..li;n' ^f-iir :-l">° 4 ^ ^1 — 1 to II sir<;lf nmcticii. An/), siu i-l. 27. Keducu 1 — 2 Aii' (46" — ^ ^i to u sinj,'lc lunction. Ann. sin .4 IV I. 1 tiin ,45° +A.4) — tnni4r.° — ^^1 . _'fe. Jieduce -to- -",-;; /_, T -, to sin''le function tan A5'' + I A) + 11^145-" —-h A) ° Ans. sin A. ("HAriER V. IWKSK ANOI LAR I'LNCTIONS. An inverse function is one in wliicli the indepMulent variahlc ' f>e.e patjv 22i is regarded as a function of tlie variable which would he dependent in the coi responding direct function; so that if, taking the general functional symbol fvx\ wo have U =fw where // is a function o'i j-, the corresponding inverse function is one in which .c is taken as a function of //. This is expressed •^--=f '■.'/' and is read ./■ = a (juantity whuse function is //. Honco inverse angular functions are thosi; in which the sine, co sine, etc,... are taken as tlic independent variable, the angles be- ing considered as their functions. They are written accoiding to the general notation id)o»e given. Thus, if « denote the sine of an nn- gh', sin a expresses the angle of which a i the sine; that is if sin A = ((, we liave A = sin " cos A = II, " A — cos " tan A = <(, " A = tan And so on. They are read -I = the a"gle whose sine is a: 1 422 1 .1 = .1 = And ., ,352), ,367), (351), we cos-'„ = sin ' vXl — rr'] (428) li [ 'm ^ m —94— I . = sec -..-.V[iz:f:i = tan _ nnf.~' — cot = cosec 1 = :jcob 2 tan' ■V(^) (429) (4301 (431) H32) (43S) (434) (4251 Making tan = c '(/ — sin '' It = cut 'V["'-'--l] I'y (159l we hive 1 — tan A tan i? Making tan .1 - ui and tan ]i = n. wu obtain i44fi| (441) (442) (443) (444) (44S) (440 ■•447) ;448) ■\ i 11 1 I' i ^ fill) 'hi -t- tun '/( •• . till t , 1 — /;i/( .Siiiiiliiily liy (ICOi: I'.v IGli fi*- Hy (IMi tiin ' m — tan ' « = tail uot ' ;;( -|- (!ot ' /t — eoi ' :^taii ' (( — tan iii—n 1 + mn lilH — 1 in 4" M , mn -f 1 n — >(i ■2n I _ /i :tr.i ■2a t4r)'j a — 4(ri [:):<'> )NS AMI rilK tioiis which liold hn IS of ilH AiigU's. Thi^ ! o1' ri'iiclieiil Trigoiiu. . tlicy will bo iipplii'il A, B, C, and tho sid.' Inai'ight-unghidTvi- lUid tlu'iot'orc '/ will —97— 4and i'ov the hypotenuse; h and c will reprpsnnt tlio sidos, incliid- in;; the liglit angle. According to the method followed in ihis book, wo shall first demonstratu a fundamental proposition from which we shall next dnri. analytically all the relations that may be conceivetl between the sides and the angles of any triangle. Fundamental Proportion. The radius, or unity, is to tlio sine of either acute angle of a right-angled triangle, in the ratio of the hypotenuse to the sii' •• oppo.^ito to tliat angle. At JJ as centre, with a I'adiuH liO of an ar- bitrary length, des- cribe the arc OP. Let fall on A lithe p(^rpendicular PL. Then PL is the anie of the arc OP, or, (the radius being tak- en as unity,! of thn angle 5 measured }»y ih" arc OP. By the simil ir tii;;n,';VfM PRL and Aiy\ we hivp rr-.PL:: liO-.Ar or 1 .• sin/? : : a '. h ;454) which is the fundamentftl jnoportion above enunciated. Similarly we have 1 : sin 6' : : a : c Rinh* angled Trinngle. From (464i we deduce; sin B = — , or sin fj = — (455) a a 'n ! i ''M (I \J U /^. [IK- wluiW liy "Sl>, -iiici' // .mil f tw 'vjiujilciiu iii;irv: I'JS // = , Ut ■ IJ-i ' ' — (1 It rlOGl I ■ I Diviiliiij,' ylbi \>y »•">•» : /' c UU Jl := ■', or tan (,':= , i\r,l Divitliug \456) by i455j: I < cot Ji = -r> or cot C = - h c Taking tho reciprocal of (456, u a soc i> = , or see C = -- c b Taking th3 rociproc.il of (455': cosec D = — , orcosuc C= -- i; (45*1, |409i i4GJi that ia; in a rujM-anyleU tri iijle the Hiiie o/euch acute umjle is <:■ qaal to the oppunitu side divided by the h'/jiottttune. 'J'he Cosine of tack acute anyle in vi/ual to the adjacent aide di- vided by the hi/putenuse. The i angent of each acute amjle ts equal to the opposite iide dicided bi the adjai'eni "m:. The CUamjenl of each mute angle in eijaal to the adjacent aide diuided by the ojiponite one. The Secant of each acute anjle is ejua/ to the hypotenuse divid- ed by the adjacevt side. The Cosecant of each acute angle it equal to the hypotenuse di- vided by the opposite tide. Converting tiie above rosiilts into profiortion givis, the riiuius be- ing unity, 1 : mx li \ : II : h, or 1 : sin C : : a : c 1 : CQn B : : '( : c, or 1 : cos C : : a : b 1 : tun B :■.'■: b, or I : Uu : : b : c '( acute umjle is c- se. adjacent aide di- tke opposite iidv the adjacent sidi: /I'/potenuse divid- he hypotenuse di- vs, the riiuius be- — »0— 1 : cot B : : b : c, 1 : Bee fi : : e : a, 1 : coseo B : : b : a, or 1 : cot C : : c : 6 or 1 : sea C : : b : a or 1 : C0800 C : i e i a From the same results we derive successively h = 'X sin B — a cos U = cian B = c cot _ a sec C a or c = a sin C z= a cos B = bUnC = bcotB a cosec B aeoB a cosoc C (46J) (462) (463) (464) (466) (466) that is, in a right-angled triangle, either side equala: 1. the product of the hypotenuse into the sine of the opposite angle; 2. the product of the hypotenuse into the cosine of the adjarent acu. te angle; 3. the product of the tangent of the opposite angle into the other side't 4. the firuduct of the cotangent of the adjacent acute angle into the other side; 5. tl^. hypotenuse (Unided by the secant of the adjacent acute angle; G. the hypotenune dioiaed by the cosecant of the opposite angle] Frgin i455i, (466), 459), (460) we derive also: sin B sin C c cos B cos C // SCO C = (• HOC B b cosec B = c cosoc C (467) (468) (469) (4701 %- 1 *» I . I '"< «♦»•' — Imi. t . 1, eiffiff ni'l' i/ii'iiliil III/ 1 1 I Kitir if II. r ilhi/li Of'/ioniti' to that 'iJi . •J. eillnr xiili' iliiiiilitl I'll tlif mshif (if tlif mute unylenljarfiU to tlint Miilf, ',\. iitliff niitv multiplied Inj tin' ivntnt at' tlw acute unfile ailjacftit til till it niile; 4. eitlur sidr inuUiplii'd hij the cosecant of the umjlc oppotite to that xiitr. Suljstitutiinj i.'JSTi in i387i givuM 2 Hiu' i /y = 1 (■ a — (• wlieiic Siiiiiliivly nil! i li Hin i (J -':\^ j i471. iiUu Similarly /( — ,■ - 2a sin' \ b I I — /- = -in sill' h V i i47J) Substituting (466i in (371 1 gives whence tan i /y ="-=--^ ] tan i C ,-«-<> i c ) i473» Substituting (456) in llS'J) gives fiinln: ^itl^ to that «/'/'; !(//»; itljiii'intt to (tnf/le ailjivriit tjlf opposite til (471 i472) (473) ~U)\ co« 2/i = <-*~h* whcnen, Hinco 2B = 90*— (C— /?|, sm iC — i?) = a* and by il79l 2hr cos iC — li = • ,- and bv l475i and i476i tail, C— //I •--- U'-f 61 l(! — h\ (4741 (478) (47CI Ohllipii' lUlijIiil Ti lilii'ilf. In tho triangli! AliC, lit fall tho poriuiihliciilar t7'on Ali, then thu two right angled triauglo8 AVt and Jit'J' Qiva by (40 1) Henco Whence Similarly Ci> = 6 sin A CP = ^' gin B u ain B =: b sin A a ih = sin i4 ; sin B^ a : c — ainA : Bin C ^ b : c = sin 5 : sin Cj (477, ri M r I _l(i2— t . that i>»; in <>ny trinnfilr, the sidps are proportional to the sirie^ of the opponitc aiKjIes. Thcso thvce prorovtions being written in one, give a : h •.<- = sin A : sin // : sin C (4781 which Kives sin A _ sin A h = a. in B sin B sin sin A sin C sin C sin B sin 6' , sm C r = ti. -. = J (4791 l!y Con Coiuparin{{ and conversely ' a . a .sin A =9in B - = sin (7 -- sin B = sin yl- = sin C - v c c sin 6' = sin i4 - = sin 5 ~- a b i478 may, also, be written thus: It. sin A ain/y sin (7 (4801 (481) Tliore relations hold true when the perpendicular CP falls with- out tVe triangle as in ABC, because by Lho supplemental relutiuii b(!t.woi'n the angle ABC mv\ the angle PBC^ we have ..in A IJC - .in PBC. S'lnilnrly <^nveitint It II c - t'lat is; in u ''«'-■(', in thi imite to t/ii whence the to the sinen of ve 14781 (479* (4801 (4811 c licukrCP falls wHli- iupiilemeiital relutiui) wo liiivc -li/J . r.y Comiiosilion and division, tho first equation cf (477: yivt-s a -\- li ; fi — h — sill .1 -f «iu Ji sia A — nin Ji n -J- h sin ^4 + sin Z a — /' HJu A — .sin B Comparing with (339t: a + b _ ton ^{A + Ii)^ Similarly a — b tan J iA — Ii\ a + c _ tanijj_ -fgi^ a — <: tan i ( ^ _ r4-h _ tan ^ it' -j-fi\ *!—b ~ tilll i ( J~/T (48J) <'onverting into proportion ;,'iv es '/ f /. : .,■ - h r. tan J. A -f A'l fin I^A — H) 'I I /• : f,' — ,. - tiin A 1.4 ~ C'l tan I tA — O] c + /; : <; _ ft r^ tan i (/1 4-^1 tan i{A—B\ 438 that mat 18; in a,n, friun;//,; the mm of any two skhg i, to their differ- ma; in th- ratio of thr tawjent of h,df tlw suw of th,' amjlea op- imite to thexe svlcs to f/w tangent ,.f half their d iff. rmoe. whence thci pmctical formula': IrP \ %i 4* I 101 — ,, — /, .- .( -\- h .- t;ui 1 .1 - n ^ ll II — (' = ((« -f ''■• tilU js A -; li tan f 1-4 4- i^l tau-i ^G -^i)^ anil convi'ioely Uiu J 1-4 — 11 - tan I A-\ U l,\ -\-c'- a^ |487) C08^=: cosZ? = •Ibr. 'lac cos C = a''4-i'_«2 (4i'8i 2nb which express eAe C-nme of each angle in terms of the sides. Adding both members of the first equation of (488) to, and sub- tracting them frjni unity: I + cos ^ = 1 -f- 6' + c»— «» 'Ibc _ 2fe + y -|-o'. Jb + cf—a' m k^ m i I '^ Hi — ion— and 1 — cos /I — 1 — [II -\- 1) -f-c) \li -}- (' — ll\ '"'Ihi- 26c 26r a' — [I I — 1-\* 2hc - [a — 1?^ — «)] [«4-l^--^l3 ~ ibe _[a — h-\-c] \a-^b — c\ ["] ["] But by[a] (pa<7^13),8in' yl = 1 — cos .4 = (l+coaA)(l — coaA Thoroforo sin A = 4oV making .j -}- /; -f c = •!.•<, it beci>nu's sin' il = , 4s (s — a) (,s- — h\ is — c) ,,. ., , . „ n 4s (» — rtl (s — h\[s — i;\ Similarly am- 3= 1- - i 1" f .' — ain' C = ab' t489i Hence Similiiry whence whence ["] ) — cS\ c\ [^•] 8 AHl — COS 4: - 61 (rt -f /> — '•! (481) I -107- t'hencB sin A be V[»{s — n){s-b){s — c)]) '^'^ ^ ^ "^'^1"***"'" (*— ^) (*-- <^'] ^ 8in ^ ~ ■^'*/'^* '*~^'* '«-*>'«- c)] (490) which nxpress thn sine of each an'jle in terms of the aides. fiy (3571, 2 sin' J /I = 1 —cos ^ _ {a-t-c — b){a-^b — c) •2bc ' making a-^ b-{- n = 2s by [y] = ' ^^'-b)2 ^s — c)_ 2is-.b)(s^.) 2bc b,: Hence sin' ^A tiA - I" — *) (s — c) 6c 1 Similury sin* ^B = -i*-ZL«!illz!i «c whence sin* ^C r= ( ^ = « > («— 6) ab («1) whence sin Jyl = // -^ - 6Ug - d V sin ii? = //!iZI^.Il^) (493) M • ^ /y^ I . whicli LfjinsK till' .o'lf "/ lidlf of ciic/i mujlr in fcrm-i of thr sidcH. 2 cos'' ^A = \-\- cos A (/(-f-t + ct (64-c — a) ibc -, by [«] making a -\- b -{- c = 2s be Hence cos* hA — Similarly cos' ^B = coa'iC = ■lo is— a) _ 2.S [h — (.i) 8 {8 — a) be s \s — b] uc s (» — c) (lb Whence cos cos cos (493i (4941 wiiioh exprcfis the cosine of half of each anrfle in tn-ms of the sides. Dividing (492i Ly (41)41 gives which ,'.,-} ■•<'(/es. Wvidin which exp) Allien. The reci of th I' sidi'x. [a] (493) (4941 lormsof the aides. tun }iA = —109— l,<) h)(!i — (\ \ V\ s{a—a) ) V \ s (« — h) f (49.') I (496) which ,v/»;vy.s the. tanrnf «f half of ea,-h artgle in terms of the Hides. Dividing (494i by 1 492, gives cotA»= /L^/'J''-^^ V\us — « (,s — «, / V\ [a — a, [>i~h\) ^ ^vhich e.pres. th. cotangent of h^af of each angle in tern, ofth The reciprocals of (494) and (492) give Vv is — , of (497) SIC |C : V(x,.?— ,.y) J \ 1 1 StSSimSSfSHSi^i Mi -110 Vfv :^i ."H . '1 ;(! Ml which vxpri'-^s tho sflr^mt i>/li(t'/ii'cii,-/i niX'jh in 'it ,is <,f f!,, .<;,ii\s An.l COSOC COdOC V \ I" — /', l.s —c, f ifl = // ii'^ \ V \ «— al \s — CI / \/\[S — a} {« — /,) ) l49», cosec ^C = which express theconitmnt «f hnlf ,if mcj, anjh In Ivrmsofthcmdi^. From (481) we have a-\-b _«[n A-\- sin li e sin C sin ^0 COM tjU observing the supplemental relation of (A + JJ) and C; and, therefore, the comple- inimtal relation of ^{A + U) and ^C. _ cos ^ C cos i(i4 — li] cos f 1^" -f li) cos ^ q4-^^ _ cos ^{A — yii ■ c COS ^1^4 -fVj'' <' + c _cos^u4 — r'l /' ~cos ^iA +~a) i" (499i 7^ + c _ cos J,/? — Ci that is iSimliarly Addiuo first oijuut H 01' __Jl and — - I* u-4- or ■ — ' also 1 -f -Ill- ii„ in '''>• ,is of ijic Aiilfi in ffli'maoft/ie silica. lomontal relation of horefore, the comple- -f- JJ) and ^C. By ibllowing a snn.bv procoMs, wo obti « — /^ _ ain l[A — li) c ~ sinXAH^ ^ — c _ sin ^lA — C) illU h~, sin 4 yl 4- //) _8in |(^-~C) sin il^+'c'i" (500) Adding unity to, oi; subtract lirst oi •ng it from both inonilwrs of the luation of ^499, and the Hrst of ,600), wo havo 1 + a-{-/j aoH^tA~B) I + -:^- COM ^\A -f Bi or and or also or +_'' + '■ _ 1°^ hA -hB)-^ cos A(/l — (■ COS )^[A t; — 1 = cos COS \\A — ii\ .:. — c = cos l\A~IJj — cos i{A 1+"- -h ^ 1-t sin|U_j! /?! + JJl COS ^(^ -f- 2?) ain ^(^ -f ^, 'i±J' -/* = i!^i:i4 + //l-f sin ^' '■' sill ^(ii-f iy.i /t — /yi 4» '^ and r-— 6 1 = !i5.ii^ ■- -fi) sin |u -jTsr - 1 '■ sin i(.l + ;»! ^ "Wry t-i'-lii-maSIESBCS! «'*^^ -lU' - • , uiakiug I = i(« 4"'' "f* '') '" '^"' "'"* mt'iiilins of tlif iivcnciliiif; i! i|iiations; and tiiinflfonnin;^' tlin luiiiu'i'iitoiH ol' lln' wccuud nu'iiihurs liy t2fi4l or |r>59i, and t\w dononiinntorH by (81) uud |8Ji, woobluin n cos ^A lios A/y c ~ sin y ' It — (-• _ siu ^A sin ^JJ I' ~ siu ^(.' ti — b _ sin ii4 cos ^JJ (? COH \< ' *M — u COS ^A siu ^Ji i; ~ cos |C' iflOli ,502) (503) (5041 Performing tiie the same operation on the otlier e(juiitions of(499i and (450), wo obtain s _ cos ^A cos ^( ' h sin hJi s — h — sin ^A siu ^C II sin iJJ s — a = sin ^A cos iC b cos iJi S—C = 008^4 sin iC b cos i^ s = cos ^B cos ^C II sin iA H — a sin -J/i sin ^C (5051 (506) (507) (608 1 i5oyi i510| f \ p lin-noflinR "' cuuil iiu'iiiltur.s (8il, woobtaiu 1 501 1 ,50'.') (503) — li:}- .s — h _ Miu \H con \(J o COS ^A s — (■ _ COS f,n sin JC u CUM hA CIIAl'TKR VII. *' ir.ni (512i t 5041 jviationsofi499i (5051 ,6061 (SOT) (508 1 (5oyi ,510) Tbiuonometiik! Tables. liofore pi'ociioding to ai)]ily thn foriiiiiliL' doduced in tlui lust clmp- ter to tiic nuuKU'ical conipi.tatiou of tri;inglnx, wo shall uxpliiin how to tlnd tho niimnrii-til vulue of Angular Functions. In fact, thn vari- ous Trigouoniftric (,,)iiantitieH, thi; sine, tlic coaino, &o., ar« hut ab- stract nuniher.s r'-proscnting tlm coinparativc Icn^^tli of certain lines. Wc have already siscn, in Chapti-r 111, how to obtain the niinieric- ul value of Angular Functions in paiticular casc.-t i^/c /;'(;/»'.s 14 , 45, and 46. i Wc shall sluu-, in this chiiptcr, how the iiunilicrs re- presenting the angles of ail li ■.ijics oi' magnitude, from 1' up to 90°, can be ascertained. When the radius i laiien im tiie unit of measure, it is manifest thattho trigonoiuetrie (.UiUililies are simply the nuuihers exjiressing the ratios of tho angular functions to unity, [nvt pwjc. 12.1 And as the sine and tlui cosine of any arc never exceed tho radius, but, on the contrary, sin 90° and cos 0° excepted, are all less than tho radius, it follows that the Sine and ( 'owiiU! of all arcs or angles in- chuhid between .° and 90° are leas than unity, and, therefore, are expressed by decimal fractions. Tangents and Cotangents which vary from to infinity, may have any value greiitor or less than unity. k '■*\ ^% — IM — t , Hocauts fllHl ('o«0<'nIlt^ lllivr tlli'if \alllf \\>\ ;ill.\ illxli' "t^i lillilr iinigiiilmli', ^{rcnlci ihiUi unil\. Till' iiuiii'hm'm coni'H|ii)iiiliii;; lu tli".siiic, comiii', »Vl'., ci nil iiii;ilis IVoiii r to W, wlifti iirrim{{i'il .nui-oiilinj^ to tln' iwci'inling onlf. ul til"' iiii^lrH, I'oriii the Trii/iiiunirtrii' Tnhli's. 'I'lii'ii' nil' two iiriiini|ml ti'i>;oni>iiii'lii<' tililrn. 'I'lii- lirst contniii- tlii' iiiiiiicriciil viilui's of Hiuc, iVn., iih ti.'I'oii' stiili'il, uiiit in imiHi'iI tin* 'lohlv iif Nnfiinil Sims, lyr. Tln' .tcroiul coiitiiiiiH t'li' I,o;,m iitlini« of the DUinbursi in thr tiist tiiMi'. niul is ohIIimI tin- Tahl,i,( LiDjitrifhiiiir Siiif", ij-c. Wu HiippoHo hnre thiU tlin Mtiiil«nt ImiiIiimuIv liCiiuaiiitiMl witlillu- ntituri! and tlio uso of thw coiiiinon fiiMi' ol lonaiitliniM of iiuiiiImms. Tlio tlvRt opi'i'iition to be |n'ifoiiiii(l in coiii)iutiiij^ a tiiMn of na tuval eiui'H anil cosini'4 of all till- aii|;li!H ditl'i'viii^' li.v I' iniii(iiiiil rant, in to ascertain the valni' of tin* sini' of tin- lowi-st iiiij,'li', ov 1'. liy niHan« of this valuo and nouw fonimlif Ix-foin cHtalilishml, lln' valutui of siueH and cosint's of all tlm otlmr anf,'lt''<, ain oasily ealcii laU^d. Tht' radius being unity, I In- si'iiiioirciiiufi'roiice is kaown wc gcoiiM'tiV' to he tH|uul to '' = .■» .1 H.'i'.t^tir);;... Theiidort', dividing " by tln' iiuuibi-r of niiniitcs containiMl in tlir ieniiciroiind'erencc, gives thi' valu*' of one niinuto of arc, tliat in; 180 X 60 which is the hmgth of one uiinutti of arc, and i« denoted by K fof brevity. Wo shall now prove that no ditfurencn lu'twoeu the sinoof onr minute of arc and the arc itself, exists within the ninth place of de- cimals, in the alwve result. It is manifest, by the insi)ei;tion of tlie tigure, page 12, that i4 A' is greater than /IP, and that ^/' is greater than JWI; that is, llie sine ol an arc not exceeding !)()°, thi^ arc itself, and its tangent are in ascending order of magnitude. The limiting value of the ratio of an arc to its sine, wh(*n the arc is indefinitely diminished, is unity. For, in the first phice, we whence -n:.-. i\ iiii^'li' III' II tiiiitii , vVc, rinli Mii;^ltH wc'i'Udiiit? onlc. Ill 'I'llC lilMt fOlltllill'* ilcil, aiiiJ if< iMilli'il (■DIltlUllM t'll' I,o;,M callca.sily ciilcii- »)iiee i.i kaown wc itis coiitainctl intli'' itu of luc, thatiw; 0807... = A' ia lU'Uoted by K for ,vt)nu tlici sine of oni' lie ninth [tliiei) of df- I'fi, page 12, that it A' m I'M, that in, the self, and itts tangent its nine, when tlu' in the first place, we have III the Hejoud jdujo ''in A A — - — li'\i //tun - — A A ■in A Hill A — ~ — ijrrii/rr tllilii A 1,111 A since tan A is },'ivator tlian A, an Henn befon. „Hin A rheiolbre tlie value of — - Ileci.ssaiily lien belweeli A sin A -—-and - — - or coh A. .v*/- i8,. A tan A lint the liiuitiu;,' value of the firHt ratio, is evidently I; and tliat of the second, also, i.s 1, siuce cos U = 1. Therefore, the limiting , -siui4 value of -^ iijuHt, also, be unity, that is; when A is made less than ;>ny a.si;,Miable i|iiantity, ure.|iial to 0, we have sin A _ A whenct! •sin A ur the sine of an are having no assignable value, is efjual to the arc itself. By assigning any finite value to A, aniall though it bo, the rr tio becomes less than 1, since sin A is loss than A. And the greater is the value assigned to A, tlie greater will lie the difference between sin A and A; and the lesser the valutf a.ssigned to A, the lesser the tliiference betweeq sin A and A. i *«< J ita Mg -1 IC— It iii.iy ivjW K- sliov.ii (li;i! till' sine oi'iui arc is ;,'icati'i' tli^iii llic .IVL- iiiiiiiuisli"(l ]>y L'lii' t'uiirlli of tin' (Uilii' oi' lli:il arc. F'.'i !lu' laai;\):! oT all air. li 'iuL;' gri'aU r tlini tli" iivc. we liavc litii .'..l -^ ■■ ijrrdfor tliii'f \A (•us .',,4 • wllCll'.'i' ill ;',.! iii-ratir thini }.A cos A.4 J5ut liy i^.^T^. sin A = 2 sin !.l cos Ll SiikstiiiUiny; hA cos LI for sin hA in tliis ('(niatiuii, it liccoinos .sill A ijrftitcr fli,ni 2L-1 cos' ■! A or sill ,1 ijriiit.T ill. Ill A cos" lA or sill A i,riiilrr iliiiii A A — >iu-' },A^ ])iit siii''c ;iii ar" is ..iPHtcr lli in its .sine, wc li iv.', hy .'iubstitutiu"' l-L'lr i'ur sill' \A ill tli;' last ini'iiuality, a fortmri .sill A rr.'in'.r tlnni A[\ —lA ''] or A —\A wliicli was to lie ipi'ovcil. Now niakiiij,' A -- 1', v.c liavc con.sc(}ii<'ntly, s,;i 1 ,,'n;ifrr l,',uii 1' — ^ IV' Ami tiikiiiH- the iii.^t six dcciiiials of A', tli" iiuiiiciiciil value of one luiniUu, increasing ilic sixtli decimal liy unity, we have k fur- tiuri sin r greater than [0.()()>)-_>1)08SSJ08 ... — ^^ .OOOJS)!,']; that is, iierlbiiiiiiii; the arilliiin'tii^Ml opetatioiis: sin ]' orratri- t/i ri .00()i>!)i)S87922r)... = //, 'J'hus we have iouiid two decimal fractions, A' and Jf, between M'liich i.lie V ilu ■ ol' siu r must lie, since .sin 1' is less tlian the lirst ( 'onstaiitl' in i'>\:',t .■ill r- .■•;ii i2' -I sill .••)'-|- siu I -f- aiid so on. COS I r -j.- cos i2'4- oos ( ;r-f cos (.f-j- aiid so 01). vc. ■ !ivc. wi' have 11, ithoL'oiiiPs I', liy ! • , . , , , ■= ' ' '.-,.>, J , iVc, successively III i.il.-.i a,:d .■>! I , w(! obtiiin ■■'■' _'^'+ I'^ -■' -"' 2' z^ 2 Cos I'sai r— sin 0= .000r)8I776... .-^.11 \-l -I- r, - .sill 3' ~ 2 cos r sin 2' - sin 1'= .0008726G sni ;:/-!- 1 , _- ,si„ 4' ^, eos 1' sin 3' —sin 2'= .001163r)i32" mi 1 -f- r, = «in ,y _. -2 cos I' sin t' — sin 3'= .001454440..." and so on. eos,l'-|. ri = cos 2'= 2 cos 1' cos 1' — cos = .999999830... cos ,2'4- I'l =: cos 3' = 2 CO-, r eos 2' — cos 1'= .999999619.".". cos I 3'+ I'l = cos 4' — 2 cos 1' cos 3' — cos 2'= .999999323... cos i4' + I'l = co-i .V = 2 cos r 008 I ■ -cos 3'= .999998942..'. and so on. 1 M. .118- I'.y till' same procnsscontiimcd, we slnlloliUiu the vulurs of llii' .-siiK^s mill cosines of all iiughs differing l)y 1' from (P to OO''. The tangents, cotangents, secants ami cosecants may next be cal- culated H'spectivcily, 1)y the formiilie ill', d") , r2"i, (23). It must he remarked that an error committed in calculating the sine or cosine of an inferior angle will entail errors in the same functions of succeeding angles. Therefore, the comjuitist must have means of iletecting and correcting errois. The mo.'5t simple means consists in calculating the sines and co- .sines of certain angles, by an independent process based on some established property, and comparing the results thus obtained, with those obtained by the general method. Thus, for exami)Ies, we have seen how we can find the values of the functions of 45°, 30°, and GU°. It is not necessary to continue the jjrocess beyond 30°, because by the formula' (283) and (286i, we have sin (30° + 5| = cos i^ — sin |3 — loga-f 1^ '■'''■^l) r.y Geoiuotry, c = V[«'— ''*] = -v/[(« + ^l !« — ^'t] whence log c = ■J[log la + h\ -f- log \n — 6)] (522) Exaiiii)!.'. (Jiven a ~ 053!) .76, and b = 2!)36 .91, to find B, C,<: By (521 1 and i.')22i we have 4- log 2i);iG .01 3 .407890 — log 0539 .70 3 .815502 4- 10 10. = log sin /? = log ens C 9 .0,52328, giving i? = 26M1' G",aud C= 03° 19' M" And aince a -{-h— 9470 .07, and a — b= 3002 .85 + log 9470 .07 3 .970650 + log 30O2 .85 3- .556646 2)7 .533302 = lot,"' 2 .76605], giving .^ = 6843 .49 €• i^ '! i .^. orntc by tho formuln) Case 4. Given the two sides /; ,inil By (457| ami (i58i, tan B = col C= - whence log tan B = log cot O = log h — log c -f- 10 (523) l!y Geonuary. . t'J lill.'. li, C, il. I'.y TiL';! ami '.")•_' I, Wf liiivK -f log 76.1 -J f7" and r^ fl' 8' 3" <^= v['7fi-'5'-' 1 •.'?.] = v[5«J-->+ 1''>1-'!)J - .^ [fiona.vjj -771 .s:^ The str.deut iniy see i'rom llie aliovi! imiilts, that in any on-; of the fo I reason" of tiight-aii'.;l(Ml Triangii;.*, each of the three unknown elements uanbe determined by a pioiier ehoije of the fonnula from its direct relation to tin given eliiiK nis. 'Jhereloie, when only one part is rc(Hiired to be known, it cin bi^ in every in.stance, de- termined ind(4)end''ntly of the rem lining unknown parts. 'Since the wines of angles whieh are nearly •.♦0-' and, also, the co- sines of very small angles, dilfer very little from each other, as may be seen by the inspection of the tables, it follows that a small angh? cannot be found with great acciii'acy from its cosine, and should, thvU'efore, be determined from its sine; and conversely, an angle wliieh is nearly 90° should be comjiuted from ils cosine In either case, the angle is always computed with great accuracy from its tangent or cotangent. Thus when the hypotenuse a and one of the sides (■ arc nearly equal, in which case the angle JJ is very small iiud llie angle Cnearly 90°, the forniuhn-lTl or (473i should be used inite:ul of l.')6i for computing li. The formula '472' maybe usi'd with advantage to compute a — r when B is very small, or a — '» when C is very 'niiall. By the formula 47.51 or 176', ('■- IJ may he fouml v;ith great ", Ij, % whi also ;viu. -V. R. h 'hiru iii.g (I <4. b nic computation. - i,y ^\"u' tluil in ;iny on-; of till! lliiu*! unknown li th'> i'onnulu Ivoni VL'loie, when only (•very instivnce, di- own [iiuts. )' ami, ivlso, Ih.' co- 1 each other, us may iTs that a small angli- cosine, auil should, onversely, an angle loni its cosine In great accuracy fi'oni luseuamloneofthc gle n is very small °473i should he UM'<1 ft,> to eomiiuti' (I — '• ■iuiall. W' found with gveat — ''2r.— accumcy wlicn c and h are nearly equal. Obliijue Angled Triangles. All ca8(>s that may occur in practice, are reduced to the four fol" lowing. 1. When two angles and one side are given. 2. When two sides and the angle opposite to one of them are given 3. When two sides and their included angle are given. 4. When the three sides are given. In the tiamgle AnC\ let the an- gles be denoted by A, li, V, and the sides respectively opposite to them by the correspond- ing small letters - - A -^ _______ ._j \B (I, b, r. Case 1. Given two angles, A, />', and one side //. P.y Geometry; C = 180° — i / -\- li\ . By i47yi wlienco also, ■.vhence , sin A It - h- — — sm li log a = log h -f log .sin A — log sin B , sin C Sin £ lof, c = log i -f log sin C — log sin B (62C) (526) (527) N'. B. If the pivon sMe he li.cliicleil hotwoen the two given angles , then the IMnx 'ii.ge neeesKar'.iy requires to be determined, first, tt.s In (526). i 'M .|:.'r.- r,\:l,l|.ll tiivcll .1 - !'•'■ It - •;;; i."*'. '- -•■ ■-'''"'• '"j i'""' c, .i, r,v i">-'.")i. i"'-20i .111. I .•'•J7i w' liiiVk' J.. k---'... -Ho^;siu-ir 2.. r Z.T I so' - !'.)■ ■-'."> -f .1 5' lS':r:::GC' W lu- sill (i:5' !.>< =- Ic , <.l .ll.'fJillS L' .:'>(Ui!>lin,j^iviii;,' <( = -iiVJ .77 + lo- 1275 .4:\!)3:$;i + lo-siii(iO^ 17' 9.iMi;«:ii> 1:2 JO-Jiif)."* - lo- sn. 03' 4S' J.uriiiillS , I I'.ithi. ^iiviii;. Cii.^i. -2. = 2f in (.',1V- 1 — loo = loff / 1 I'it. lo I'll"* ; = CO" A"' .t I t<' ,r)2!t' ,. is r;vily i'oUll'I — 1-.'7— It nmst h« remarkod that in tlio prosout cnso, two dillu- rcnt triftnglcM may be form- ed, each of wliich will satisfy the conditions of the prob- lem; and then the solution is ambiguous. Tlio roason of this ambiguity is that two ililfiMcsnt and unciiuiil triangles may lie constructed, having two sides and tin angle oppj-iito to one of these sides respectively equal in both triangles, as seen in the annexed tiguro,whore ISC' and li'C are made equal to eiicli other. And since the angles D andZi, are sup- plementary, and the sines of two supplementary arcs are equal; there fore, the sine found for li, may bo the sine of either the acute an- gle A no, or of its snpiilement, the obtuse anghi AB'C. Hence, in all cases where it is not possible to a,sceitain whether the requireT 38" ,ri J ff 4 If wi! take tlid liHi't value C = 84° 47' 38", ami the trianglo k AUG. It' wi- take the lucoud vitluo V =■ 12° 82' 2i", und iho tiianglo in AB'C lu huth uuHUH, tho third nidc /■ iaditteriuiiiod •» in caHo 1, by (627 1. CiiHe 3. (iivon two 8idi*8, , Example. Given a = 535, //— 420, C= 53' 8', to find A, B, ,■ we have ^(A -f B) = ^(180°— 53° 8'l = 03' 20 also, (!-{■!) = 535 -j- 420 = 056 iind a — h = 535 - 420 = 115 (;i 'I'll,. liH' Jliuh 'liu form •I'Mij ain or And ■VJU - and by (530i, + log luu C2'' 2fl' 10 ,30090!) -flog Il» 2 .OGor)i)8 12 .:Jtil(i((7 — log OOri 2 .1180003 = loKii/l--/y 'J.38!f!!i|,"-'ivin;{ \:\° .32' 2rt" wli-nuc // = 03' -.O' 4- 1.3' 32' -.'5" = 70° ns'i/I" and C = 03' 2C' - 13" 32' 25" = 49° 53' 35" To find the Hide c proceed m in the example of ciwe 1. Wo may however determine c by the fomnila ,499) from which wo deduce <'vjden*!y »' i '^\ (r)3-2 1 log tiiii -^ r • _ K ) -I- log /• _ log (jy _ ) , ,-)33 1 Exaiiiiilo. t;ivi'U a = VA), I, - 140, c = 130, to find A, B, C. a = l,-)0 -flog 60= 1 .778151 b - 140 -j- log 70 = 1 ,845098 '-■ - i^ + '"o 80 = 1 .903090 2 ) 420 5 .5-^6339 .V = -210 — log -210 = 2 .322219 '^^'•'i^^i't:'' f — a= 60 2)3 .204120 a - /> ^ 70 = log /,• = 1 .6020GO s~<'= 80 whcnci! by i'i31l, i532), uud (533) lU-f log /, 11 .602060 — log6() 1 .778151 - lo- taiUyl 9 .823909, giving i/1 = 33° 41' 24" 10-f-log /■ 11 .602060 — log 70 1 .845098 = log tan y; 9 .756962, giving yy= 29° 44' 41 10+ log /, 11 .602060 — lcg«0 1 .903090 — log tiiii IC 9 .698970, giving hU= 26° 33' 57 .5" ■ i;,i - Whoucc, Ity taking the doublo ol' tliesi' results A = 67' 22' 48" h = 5^ 29' 23" C=53° 7' 49" (53 1 1 (53-21 (r)33) ai\A,n,C. !151 i098 K)90 )339 >-219 11^ !0G0 U = 33° 41' 24" ;yy=29'"44'41 Vmjication A-^n-{-V=mP Use of iSuOiiiliary Anjii:s, When in the solution of a problem, there is met with an expies- sion not suitable for logarithniie cuniputtition, such un expression may be made an by introdnciuy into it an angle, which Is then called a iubaididry angle. A subsidiary angle is, therofore^ an angle which, although not immediately connected with a problem, is introduced in it by the computist to facilitate his compulation. Thus, if in Case 3, of oblique angled triangles, the side c only is re- quired, it is desirable to have some Method of computing it, inde- pendently of the two angles A and B. And as by (487) we have c' = a'' + 6' — 2«6co8 C this formula could be used advantageously for computing c, were it not excluding the use of logarithms. To resolve it into factors, we have by equation [a] I'tKjc 13 and by (182). c» = (,,* 4- b^\ ico.s* IC -f- .sin' i^i — iob (cos' i^C— sin" jCi = (rt -f- /»' sin'^ AC -f i« — b)'' cos'' ^C = (a + h\' sin' iC [1 + (^jT^cot ^c)'j Assume tan a; = . . cot \C, i a + 6 (534) 20° 33' 07 .;")' ■■:a(f-.-;*'t:vi.-.'^!. then c' =: (rt -\- bf sin* ^c {1 -f tan* x) Hence <• = (a -f- 6) sin Jc sec « or c != (u + i)— *- (535) cos X whence log c = log (rt + <>)-)- log gin ^C — log cos a; (536) Example. Uiven a = 535, b - 420, C = 63° 8", to find c By (534) we have log tan a; = log « — b\-\- log cot \C — log (a -f b) that is -flog 115 6.060698 + log cot 26" 34' 10 .300999 12 .361697 — log 955 2 .980003 = log tan X 9 .3t;l694, giving X = 13° 32' 26' 2»row by (536), we have + log 055 2.980003 + log sin 26° 34' 9 .650539 12 .630642 — log cos 13° 32' 26" ... 9 .987758 = log c 2 -642784, giving c = 439 .34 Area of a Plane Triangle. We shall close the preeent chapter by giving an expression for <;oniputing the area of a plane triangle, corresponding to the four -1:53— )8 X to find c (535) (536) -log(« + M 98 197 i03 fl694, giving = 13° 32' 26' 80003 50639 30642 87758_ 42784, giving 439 .34 g an expression for ponding to the four cases of oblique angled triangls. Casel. Having giv- en one side c, and two angles A, B, Let S = area /. = CP, tho height. Then by Geometry we have but by (461) Also, Multiplying S = icA (1) h = b Bin A h = a sin B h* = ab sin A sin B (2; a = e b = By (479) Also, Multiplying ab = c Substituting in (2), h* = sin A sin C sin B sin C sin A sin B = c' sin A sin B sii'G ' Bin*(A + B) c* sin* A sin* 5 or A = Substituting in (1) 8= c BinUA + B) c ain A sin £ sin(il + -B) sin A sin £ 2 sin (A -t- -6) (587) M i * ^ i \ — 1;{4— whence lot? 2»S' - i' log '• + log ■•^iu A + log siu H --hgsin yl4-i?i i5;58i Case 2. Having given two sidca b, r, and liieii included iingle A and by ^461) -S' - idi sin .4 *53'J) wl euce log 2 .S' = log r + log/i -f log sin A — ]{) ^540) Case 3. Having given two sides b, c, and the angle U opposite to one of them. In this case, it is necessary Hrd to determine the angle included between h and c; and then proceed as before. Case 4. Having given the three sides a, b, c. By (539) S = ifh ^in A and substituting the value !490) of sin A, we obtain iS = ^[s [» — «) {S — 6) (* — o] (541) whence log (S' = ^[lo- 6--|- log (*• — «) -|-log(a — ^t + log is— el] (542i Ex. 1. Given e = 250, A = 30° 42' i? = 43^ to find S By (538) 2 log 250 4.795880 log sin 30° 42' 9.708032 log sin 43° 9.833783 24.337695 — log si'. 73° 42'... 9.982183 — 10 10. = log 2»S' 4. 355512,* giving 2,S': Ex.3. ■]' lof,' sin H n A + D) i5;}8) ucluded iiuglu A ^531)) jin^l— 10 ^540) auyle L opposite ,e anulc included obtain }} [H — 0] 1541) -a) log iS- f)] (5421 = 43^ to find S 80 32 83 95 83 l-j; giving — 130— 2^' = 22G73.2 S' 3.269301, giving 2^=1859.09 S= 929.54 Ex. 3. Given a = 605.3, b = 330.7, c = 402.5, to ffnd ;i'. s = 619.25 ■"' * — a =113.95 « — S'= 66432.45 Applications to the Measurement of Distances. By the rules given in the present chapter on the solution of tri angles, we are enabled to calculate the distances of inaccessibi ot je ts^ A hne connecting two points lying i„ , j.^j,,,,,, ^^f" called honzontul distance, or simply, ,tii^tanrc. IK 4 t < i ■■, '■■» 'i 'it .!:',(; A iiiir I'Oiuiriliiij; h\i) ! o Ills ill ;■ vertical ])laui' is callf'd liri'ilil. Hut as tlit'siiiiii' i)iinciiili's rule the caloiilatioii in liotli cases, tlicic l)i'iu^' no (litl'cicucc Ik l\v(\'n tlu'iii except ih it tlic. aiijrk's to bo uifiis- u red live lioi'i/oiilnl in tin fii.-t iind vcilicnl in llie second, we shall take tlie iiir.ttev in a ^'eueiiil re i-ecl, and loduce tlie uidinurv cases that ocijur in practice to tlie tliree loilowin;^', in I'acli of which tlie pvoces is cLiiductnl wholiy hy ilu- na : sdienui.t (ji' iinj^'les and of one line, called lli' li.ise. 1. AVlu'n one of tlie I'oiuis io;i!i 'cleil ly a re(|n;i' d line is accessi- ble. 2. Wlcn iiie two jiuiiius a: iuacce-.s.lr ■. lnit one o'.' iheiu is in line with tha iiase. 3. "When the two I'uiul-aiv iii::Ci e-i.siMe i:i,''. ni i'.hi I in line with the base. Case 1. iHACho the line to be cnlcnlated, A being accossililc. If tlie distance .M/> and llu' angle/) be niea.-iureii. AC is easily c*li'll . ovliiiiU'V casi's , 1, of wliidi Uii" ; !j1' iiii^'U'!-- iiini ,1 lino is iici'i'ssi- ly; ;hiMn is in line IM r in lini' witli ;,C(M'Ssil)k. It'tlio ,4r is easily cy Ciisc 1 ol' 01)11(11113 anglud Triangles, and detorniinc the angle BJ^C by subtracting tlie angle KLC froniHho angle KLIi; and tic reii'iired elements to calculate JJC are known, TIuih the dis- tance ot two objects in a horizontal plane, which are inaccts- giblo is easily found. If, however, JiC be a lieiyht, a.» lur an instance, a tower situated on a hill, it in then more siniiilf to calculate the elevation of C above the plane KA from llic triangle CKL, as in Case 2, and the elevation of the bottom Ji above the same plane, I'roui the triangle BJiL, and then taking the dill'erenco of the two height* thus found. N. B. Ills iiefcssiu}- to observe tlmt In eaUiiliitliig llie li«iglil olun oliject !i. bove tt liorl/.ontiil plane, w*; mii.sl add to the result found im heibie wtated, ili;ii partoftlie lieiglit lyliiB Itelow the lioiizontiil nno from the eye of the obseivci when nieiiMiriiiK t'>e nngiilai elevation r Piacticxl i'rubkms. 1. A person standing at 12 > feet from tlu base of a tower, finds its angidar elevation to bo 52 ' 34'; and the horizontal line from tlic eye when observing the last anj,le, intersects the tower at h^ I'eit above the ground. Calculate the height of the tower. Am. lG8.ti 2. Being on the bank of a river, I measured 463 yards by the bank I found that a line at right angle at one extremity of the measured distance met a line on the oppcsite side of the river, and measur- ing the angle at the other extremity with the same line, 1 found 16° 21'. Kequired the width of the river. Am. 13r).8 3. Two observiMs 8tnnding 8Hf> feet apart, in a horizontal ground, measured at the .same time, the angular elevations of a lial- loon whilst pasfsing in a line witli I)oth of them, and found .3.v 1;: l:i' Luowu. Thus the (lis- o, which arc inaccLS- be n heiijM, at* lur an HtheuiuorcbiuiliUlu plane KA li'om lli.- evationol'thebutloiu ngle BKL, ami Uu'ii ta thus I'ounil. the lielglUol'uni)l>)i'0 olJsoivci biusu of a tower, fiinl^ loiizontal line from tln' Its the tower at o^ IVoi |e tower. Am. 10f<.^ |463 yards by the bank; jniity of the measured Ihc river, and measuv Iho same line, 1 found and 64". Required Lho height of tho balloojx abovo tlie ground of the observation. A71S. 935. IQfcei ^.Wanting to know tho perpoiidicular height of ahill,I found its angular elevation, ut the bottom to bo 47'' 15', and 150 feet farther on a level with the bottom of the hill, I found that its angular el- evation was reduced to 30^ 4J'. What was the required height? Aug 5. Being on the bank of a river, and wishing to know tho dis- tance between a house and a tree on the opposite side, I took two stations on tho bank at 260 feet apart; at one of them I me^ou^ca the angles included between the hue connecting them and the vis- ual lines to the house and tho tree, and found them to bu respect- ively tiO' and '1\)"' 56'; at the other station, 1 found tlie angles with the house and the tree, to be 32° and 70° 14'. What was the requir- ed distance) 6. Wishing to know the height of a tower situated on a hill, I measured, from a certain puiut at tho bottom of the hill, tho angu- lar elevations of the top of the hill and the top of tho tower and found 40° and 56°; going 200 feet farther in a direct line with the tower, 1 found tho twu above angles reduced respectively to 35^ Aiid 42". What whm the heighl uf the tower) CHAPIEH IX. Devblopement of Anoular Functio >i8 into Series. i Ans. 135.B It, in a horizon till lilav elovations of a bal- tlicui, and found :\'y As the investigation of Trigonometric Series.is more easily carried on with the aid of Differential Calculus than by a mere algebraic method, we^shall give such of its elementary principles as will be M I'l-nuiii'd ill till' lyllowiiiH iKigcs. O'linnil Prhiiijilf of Diffcrcnfiiitinii. Whou i\ variable involved in any i'uuctiou is uyauined to pass to another value, the amount of change, oi the (ii^envice between the primitive and the new value, in called the Increment or Difference of the variable, And the amount of cliango wliich the function it- self is caused to undergo by the change of the variable upon which it depends is called the Iw remeiit or Difference of the function- Thus, if in the general functional expression we give the increment li to the variable .i;, the function/u) receivcH a corresponding increment which is denoted by D /{x), and is ev- idently obtained by subtracting the primitive value of the function from the value to which it is caused to pass by the increase of the variable, that is D/U-] =/(.,• + //I - /■ .n (543i Thus, we have D sin j- = sin ix -\- h) — sin x D cos X — cos x-\-/n — cos .«• D tun X = tan '.x -\-Ji,] — tan x and If we assume h, the increment of the variable in any function, to decreasa till it become less than any assignable quantity, or infinitely diminished, it is then called the differential of the variable, and is symbolized by dx, if the variable is x. And the value which the increment of the function is caused to receive in this case, is called the differential of the function, and is symbolized by d/(x}. It is shown in the theory of Calculus (see my Iiitroaui,tion to Differential and Integral Calculus, page 8) that the dilferential of any function is always the product of the dilferential of the varia- ble into a certain (pumtity dejiwiding upon the value of the fimctioii — Ul- aud culled thp DifferrntUtl Coefficient; that is, denoting that quan- tity byP, dj [X) — Pdx, the doiTerontial amed to pass to ,ice between the »*/ or Difference the function it- nble upon which of the function. tion/lJ;) receives O/ix), andisev- ij of the function \\ increase of the whence df{x) dx = P, the difTerontial coefficient. (643i The Differential Coofflcient, for any fanction, is obtained by divid- ing the increment of the function by the increment of the variable, and ascertaining the value of the quotient when the increment of the variable is made leas than any assignable quantity. Multiplying the Differential Coefficient by dx gives the Differen- tial of the function. But the latter may also be found directly by as- certaining the value of the increment oi the function, when that of the variable is made less than any assignable quantity, without mak- ing the division above mentioned. When, for an easier notation, we make .'/ =- / 1^') we have dy = d/ [x) , the differential I •M X (' J' n any function, to ntity, or infinitely he variable, and is ! value which the this case, is called d by d/ (X). tiy Jntroaui-tion to t the differential of ontial of the varia- ilue of the function and dj/ _ d/{xj ~j^ — ~~7~'-^^^^ differential coefficient The expansion of tlie binomial term/tsc-f h\ in |543; iiesames generally the following form: /(«-f A) =f[x)-\-Ph-{-Qli'-^Iih'-ir ■ (»«l, where the first term isithr primitive function; and the other termsin^olvetheascendingp. wersof /i,the coefficients P Q R being independent of A, but depending upon / ix^. By inspecting the nature of this last expression, we see evidently, fii-st, that the hrat term of the expansion will disappear by the actual subtrac- tion o{f[x) indicated in (643): that is " i ' ^w i^^ rf . - '•r. Ji^£tm " -142— / (.-• + /.)—; u\ = rh+ Qv + ///,' + , iini Tlnuofoio, rtuy coustunt tiuuntitj connoctod by tho Hi;nci! and 'hj = MUx If, don,nin- the Naperian logarithms hy /, we h.vvo we obtain, since tho moduhiM in this system is „„tiy, '^■L - i dx X and dij = dx X (54«; (54 »i (648) (549| If// - «>^ in which « i, a constant qnantity and the exponent a' a variable, we liave, Kikiug the Naperian logarithm of both members li/ = x.la Did'orentiutiug gives --= dx la y whence and dy = ydxla — la.a'.dx ~r~ = la.a-' dx (550| (031) If denoting by . the buoof the Jfaporiau system of logarithms we have ° . I i '4 ~Z7j^...jsaBiBSiSsia :#t -144— we obtain, since the logaiithni of th« base in any system it* unity and (Iff = e^ dx Differentlittion of Angular Functions. 1 552 1 (553) The differentiaU of Angular li'unctiions will be most easily found Jf we consider, 1. that whan h is assumed to be dsr, we have •in dx = tan 4^.1' ~ dsr that is the sine and the tangent an arc infinitely diminished, are actual to each other aad to are itself. For 4(t; being, when compared to finite quantity, equal to 0,wj h ivtj sin Jx Undx = cos 0=1 Wiieitce sin dx = tan dx Therefor* {seepage 115) sin dx = tan dx ■- dx 3. that ax when connected with fitiite quttutity by the signs -f <»' — mwit be rejected, aa being then considered equal to ; and there- fore X muat be •ubstitut«d for x-{-dx,x-\- 2dx, x + ^x. Hence, if y = sin x, we have, increasing x by h, Dy = sin [x + h) — Bin x = 2 cos (a; 4- \h] sin \h, by (229i n)«king h = dx\ or and 'If dy = '2cQ»m X ^dx dy = cos xdx dy — - = cos X dx y = cos .1' (»54) (055) —14.1 8yHtem is unity (652) (553) we have whence iind If w(- havH, oat easily fouud we have iiiiiniahed, are wher trhen comp»fed und If the signs -j- o>' ; and there- ^x. \ X n \h, by (229) wlionco («54) (055) and Di/- cos [X -f- A) — cos a; = —-i sin (X 4- \h) 8iu ^h, by (230) ,lx ~ — sin .fifx — sin^ (557) // - tan .1- Dii ~ tan ,.(• 4- /, I — tan a; sin h ~coH~u^lk,~c^-^ V (2361 = spc (.r + A) sec a; sin h dij = sec J,- X sec x x dx = sec" xdx di/ Tit = soc- X (558) (559) y = cot a; ^>Z/ = cot (.r-f-/,|__cota; — sin h "■'=>■>' u-+/.iliir;^'*'^ '240) — cos(.c(,r-f/,,eos,ca;sin/, <'.'/ coscc X X cosec .r x dx = — cosec'' av/j* (SfiO) (501) 1% • if ^11 *^ '■^•^-v.'T'jr "' ;iirimiiiiiiiiffir MiuniiiiwHwuiij^ijii^i .■*/■■ — 14C- If whence // = sec ./' D;/ = 803 {x-{- k) — .sec ,(■ _ sin ! J' + i'*) sin M cos IX -f- A) co» X 1)V I -'49 3 sin .fl'erpntial cooffici d*y _ -^^— the second " < ent. dS, _ -^ - the third !M l| I' ' .1 '-■ J '1 I .'.' \ -jr.d— '''// "7/? — Ihc touvtli diliereutial coefficient. .md ._ 1_ &c. ''•*' ^-2.3 Substituting these values of PO/? ,,, , . ^'V,/^... in (^j gives ^f'ich is Taylor's theorem. (578) I- A (• '■ ■^-»,*,-,-.fts-'J.-'lt s -l.jl'— ii '.-i^ Make .*• — '• iu ,'i7f<', mul 1ft X denote wlmt // ln'i'uincs. imilerthis liypotho^is A, Y II II anil so on; we olitain ,l.r 'I'll A.-, and substituting ^ for /. in the last expression- h" 1/ = fU'l J ,+x*+^,-;;;,+x-^;,+ wliicU is Maclaurin's theorem. Erpamion of An^fular Funrfion^ iu fmnx of thf arc. Makin" a. = 0, in 7 = «i>i ^. then // = sin = 0; and the suc- cessive drfferontial cocffici.int of sin x, »s found in page 150hccoiuo 'III ~ cos 0= 1 - • - nr SlU = " ftl 'I'll = — cos = sin / - , , = siu = d*y - , ; cos = 1 I %# 11 i>. r+- •2.3 .•2.3 ^ = 0; aud the sue - page ISObocoiuo !i«> t nin,> thereforo iis.snnif i —]:,[— Eqimting thcsfooinl momljcrs oftho liist iwori|u;il,ions, iind clonr- iut,' the I'nictiou, = ..-\-A (21 1 ' 4- 4) IH-- |4) Anil equating the coefficients oi' like ti^rnis, woolitnin, after rod ac- tion A,= •■5) Ai= ^-. and so on. (5)' 2j^' 94 Thereibre, tan .-• = .. + ^-^ f ^^ -^- _^_ ^ + ... i582i Dividing (5bl) by |580,| wo aoo that tlie result will bo a series commencing by - containing oniy odd powers of ./•, and cacli toriu a; having the ngative sign, excepting the first' And proceeding in a similar way as before, we obtain '•..', 1 tv 2V cota.- = ^ -ro-^-ro 1. ± 3 1.2. .3. 4. f) (593 1 ■i:.5. .( ons, iiml clenr- h...l tain, after rod uo- i582i will be a series , and each term 1 proceeding in a l593i K.rpuiiiii.on tif ar<'i in frmi-i n/t/n' sine, rustnc, anil, tangmf. li ij — sin ./■, then ,'• = hih '^ ... Ami a.saunio sin-'// ^A-\- //.v4- (y+ /)//'+/';//• + ... (n\ ihirmvntiatiuy both ni> iiibov.s Kximndirf,' tlio liist nicinbov of [h\ hy tha Hinomial thoorcm: ~^li _^y - 1 +^/''+ o:i ^ 4 27476^' + - <"' E(iu:itiii;,' llie coi'tiio(;iits of like jiowcrs in \b) and u-\, wo liavo /y=l, C':=() ^^^i:t3:4.o'""^- and making ij — = in !(?', we have A —0. Subbtituting these valiu^'i in kd, we obfciin .(■ = nm^ (584) Since, by the conqilcnicntal relation of sine and cosine, cos-' // = 00'' — sin^"'//, we have I'vidtsntly cos- '// .— I- — i.")8ti If ;/ = tan :••, then ,c -- tan' ' ;;. And r.'^nunn (5851 i ■,^ ■iip-* •(tl .. '.i:\ lin HOCOUil llli'lll nicnt is ttuo f'ov iug tho.si) valuL's iito toriu3 Viiniah- inHGi mialit. ^pcriiin system of ■ i-u — IwlK't', iiiakin^; .>■ <•, wn olitain liy Ml»clalu•iu'■^ tli(ioriiiii = 1 + . + x" 1 1.x> 1.2.3 .SiitiMtimtinK j\/ — i for j- in |ft87) giviM + ... (587l ,.'1 -' ^ If ,«v/— 1- 1 •^---^^ /_14- 1' L '2 1. 2. S"^ 1. L'. 3. 4 ^ ■ ' or, by |581) and AHOi: f-*t -' = cos X' 4- V — ' ""' ■'' .Substituting — r for a- in the last equation «- >:►' -' = cos j; — ^ — 1 sin x whi'nc(t cos X = Ju''' -' -|-c *r-') X' 1.2.3 )v-. 8m u: = 1 2V-1 which arc Enlor's forniuhi". (c*>'-'_ (.-*>'-') Multplying (590) by 2, nnd |.')91) by 2 ^— 1 wo obtain 2 cos a; = e^t^-' + c-^t'-i 2^— 1 sin J! = e^t -' — c-r-f-' Dividing (593) by (592) giyea e*!'-'— e-*!'-' e^V-i — i ^— 1 tan a; = —— = 1 1 Substituting in (588) and (589) ma; for x, we obtain i.J88) (589) (590) (59r (592) (693) (594) I '1 •^ •;,!■ .iiul —lOa — ,,-„t,/_i _. ,.^,j, ,„^. .^ ^^ — I ^j.j II,, ■ (, ' '"■'■ ' = cos iit.i — ^/ — 1 *;ii '/'■'■ lint till' tirat in'!i)ib(M's ol th« two last L-quit-iaai are rcspectivoly equal to :r-''i'- 'i'", and - ''' 'r'", tlicicforr thi' siinii- traiisforiiiii- tioii iiiav Ij'' iii^i'K' on till' SIM . mil innnbu-s: tluit i.< 'H.*'. iiiiil <;o'7 //(J' — -y/ -- 1 ^111 '"•'■ = ''iOf^ ■•'- \/ —"I siiii ..:;■"' whicii writtini in oiu; i'i|uatiuii, bi'i'uiiii' cos iiij:-\- ^/ — 1 .sill /«.i: -■ icos-j- ^^ — 1 sin .f '" loO'i ,,i'..', which is !>(' Moivvc's t'onimi/.. ainl i^ tvw I'of nil iiilctiral values of IH. To obtain a cdiniilctc fomi oi l>i' Moiviv'- iuviiiula, «;■ havn urM j)ly to suhstitntc .v-f •_*(/•:, for .c, Avliiiiv k dciiott'sany inieyral uuiii- bur, lioiicc ICOS ./■-!- ^ — 1 sill .'• '" ■-■- COS /.'U'-j Jil'/z/rl -j- ^— 1 sill \iiij--\- 2aii>--\ (.")i)G' which i.; true tuv ail vaiuos of //-, iiitc;.;ial or fractional. ]jy tho ins])cctioii of L'c iMoivrc'.s formula, wti .sw' that llie uxiiic, sioii co.'s .<; -f- ^/ — 1 .sill ./■ is raised ;o any ]'owor by tho Ti;ultiis ,ndep.n ent of,, in ,597.. If on the contrary „ i, .,,„ ^ in 1 ' ' T',*^^'"' ""'-^^ '" ^ -i'ld^'" t-mindc,H.ndcn 01 z in the seru.s ,.., wliich will he of the form I 1.2.3.. ~{hi —•m« "'^^iima. ^■J''. — 100— iiiid tliciijforc ii twill in ir)!)7| must lie fouiul iiidcin-'iulont of .<•. Kxuiiii)lc 1. cus' .'• = - , icus ;">,/• -|- 5 CUM ,V + lit cos .<■ 2. cos^ r = -- .cos 4.C + 4 cos Ic + Gi ill ;i similar way, raisiiiii' k/i Io llir cth jiuwi'i. we uLtaiu O?! "sin".' = i,v— -:-' " Hin — h . 4- l.-I -01-1) + ;, I ,,.| '»— .) 15981 (399) (600) when n is even. 15981 hccoiiios ^n^^ — [(» sin".''= I.:" + z""'-- 11 '2"'~"' H- «"*""*' + whpii n is odd , (o98l Iwoiiies •2», ^ — li" sin ".'• = I.;" — .•.■-"! — niz"-"- + z^!»-'h 4- • "NVhonco we soc tliiit in (lu' liiat case, the hiiioniiiil iz+ 21 liav- ing the sign +, the series will involve only the cosines of multi- ides of.'' :md in the second case the binomial having the sign — the series will involve only the sines of multiples of ./;; see la) and I//1, i.a.jc 158. In hoth cases, dividing hy 2^\^ — l\n^i\\■"«"«.,„„,„„„,,,_, sill /(.'• — icos,/ ~^/i sin a;)" ^''''^""""-'"^'^^'^'■i.s.wcol.tain cos /,.,• — COS",' "'"— ll + '""l-lM«- ,„__. / 1^ 1 2. . 4. cos »-4,x. sin4. ■^•Wk.!. r-'iriiriiir 1 1 iiiiwiiiiiiiiiifB— ■ [■f' \ — l&Jt— nn- — 2 m — 3i 1)' —+) i/»— r>i 1 1 i/( — i! \n 1. 2. ;5. i. •'■'. .. eo8 " '' .'• sill "n n{>i — \} (!»■— 2i -f ... filJli gin n* = »• cos" '-r sin .»• — ^ .^, .^ X cos" J- siu- ■ :',ti 4 I ■■ I ' ii;nj— 1) Ut — -21 I" — 3) !» — 4) < Ros " •'•.»■ •fill X run— h [71 — 2l \n — 3) (n — 4i i« —5. /( -«■ i. I', 3. 4. ii. 6. 7 . pos" V sin ./■"4- ••• ^0- Reinlutioii (//sin J' '(»r/ oos .c hit(>f-^^j. ..=(.-,:=) ■-.^(>„:l) ... But if wo niako -■ = (», tlie tlvst iiu'mbfv - 1. thi-tct'on.' ihc svc ond member mast also be unity iind wr li:>v.^ iir- Jr ■ .ir -.. . — I Hence ainr = j, i 1 — ^, | y i).. .fiuS .Similarly, tin' viiliies of ^r:. Ir. \-r. mukf cosy - n. lli^iuu OOfl r = /([/•! — . ^- -J ■: [■'•^ — ' i- '] [■'■- - i" " ] • ■ X^ -Hi3 - 4l \n— r>) r.siii"n-|- ... 6<'l. — ' ■2\ :t. O." ' ' siu''- . ;' ■ 4i w.< " ■>. 1; siu X ■5.1 i/( -C ■ sill .1' + ... 602 /<" 7-y/V <:. II: tllP I'oforo 1 by the '-' _ -,;',; .r]... a'.; ^'lW. K frtctoi ■ill tlif ir- ■(' ,)■■■ (' - .:;.)■ I lint if wp luiiKo.r = 0, thoucoH.'- = hand thoroforo the second iiu'iiihcr must who he (-((ual to unity, and \vc have Tlici'ot'ofe co.s .(• -(-?^)('-£)(>-^9... 604) CompHtatiun of -. The numerical value of r. tliu ratio of the circumference of a cir- cle to its diameter, is most easily comiaited by means of Gregory's series 1 ;"i8fi 1, \Ve know that tan 4.-)° = tan }r ,= 1. Therefore making x = 1 in I ")8() I we oliiain ■ , .i^=l-i\4-l-! + i-... (005, l!ui thus series converges too .slowly tu be of any use. S ■! i- ■■ more rai)idly converging aiv obtained by resolving i" into two (.1- more ar.;.s whose tmrgents are known, and developing each uf tlies,- ares li.v (Iiegory's series and taking the algebraic sum of IIh' I'esiilts. T .us if we assume 1. tiii-refore the swc we have JT = tan '//( -f tau-'w (606) If I :'|... ■ Cos II. llt^iee whelic or tan JT.- 1 _ (/( -f" // 1 — nil/ 1—7/. Ill — ,«) l-i->l 1 — I + wi — IGl- Tlierefore giving any value to/;', ilic cunvsjioiuling viiluo oi n is efisily found; or couvi'isi-ly. If we take rii = ^, we tiuil liy h .k = Ij; whence by tii'ii we havt ^- = Uin '{, -i- tiii-^ But by I J regory's series =z I), 0(1(101(11(10 -4 o.ooo:.''ii!ii'! --- i>.("iO„'l7ol , 4-0.0 :oo(H);j'.i , -I-- O.OdlOOOU . -j- 0.000001 (0_' . — 0.. ")()(; tjiiso . -- 0.4(J3(i,76i; . 1 I il --().04l(;(i(i(;6 ... — 0.(1(1111(11)7... — 0.0(1' M)M.;j,s ... — 0,000002(1.". .. — o.Ooooooio ... — (I.O(UIOOOO() ... — o.()4-28:i02t .. '--'>i-io+io- ;o+- -p '. .OO''-".:;!! ! -f O-ooooo^iM -f 0.1(101100(14 = 0.334 1620."), — O.lllL'.U .71 ... . — O.0oo;i(;ri;i'-' ... — o,00('ooO"i! ... — o.ooooooou ... — O.Ol24llo7 ... tharefore = o.:);M7.5ol,-i ... ^T = 4U;i(il:7(L' ... + o.3J17,")(i4,'S ... - 0.7S.".;i'.)Slo... ^hfnce r = 3, [1 1.VJ2.40 lacun.tely to .si.x places It may be lakcu as a general iiilc ili.n. in computing an approxim- ate value by means of intinite scii.s. wf must e.xteml each term of the series lo twojilaee.-? olMeeinials uljic- than the n(oulir; of deci- mals intended in' the linai ic-uh, and laki tiie t.inis met with be -ir.;-)- V 11'' v:ilui' of w O(H') wt^Uiivi ltif)(;fin. iiu;ii7. imonli) . 4HI(II)(I0 . •>82'J2-t , for<' n'lch'n" siicli a njic us hiixii!" lor its first lU'CumiLs as many ci- jilu'i's as tlit'ii' AW. piaciift ul ili'ciiual.s in imjIi tciiu. TIr'U tlie last two ilccinials of lliu result liciug llir only oiifs wiiicli an.', in uU cases possibly liable to bo all'octt'd by tln' '.'jiui' icriuf neglected in the series, are rejected, and the utlur-i assumed as accurate. The loUowiuL' is a more ranidlv coinn'i'inL;' series. \V e rave tan tan- Ian tun 1 — tan tan ■41) - tan - 'an tai - tan .-.^ tail tan :;S ... tan 1 1 ;V .) '(:)+!(:)";(;)+ to six places an ajiproxim- ll each term of liiubr; of deci- luLl with be -■= U.L'OdllOOdll 4- i).()0(i(in4()O — - (t.UI Mil III! )().-) . = it.20(Miri-t().-i , n.ll)739."i.3i o.o()2(;(!f)r)r) . . (I.(i0i)(ini82 (».noi)( 1110(10 , ■O.0o-2()'j,><-18 , '-.^-..Kt^,^^Z.:^iu'J)N^^>m m 'i ,1 _-ir,f.— wlienrr -Itim" 1 AU \M\ ' '(-V+- Thovefori' 1, _ (i.;s'.ir)8-Jl8, .'.sn = 0.(:('41S-Hn...-0 0()nOOOO: = 0.0(U1S403... _, (i.(i(illftt"H i iiiteniloil. Thustolinacosin\Nv.'li^'v.. Suhstitutiu,tlusv.lm ior.in,:^sl -obt.in l(r = 1 OOOO(KHH) _(l.(>l.V.':.ll>... = ().()84Sii77('> ... . .■ „ , l.,.i two .UnnuKilH .s iM'ins.- linMc ta !»• altero-l Lv and reu-ctiug t^'^ -'J'^ ' ' ,^,^^..., ,,,,„„,,,.,, ,., six place. thrlifthtevn.m^tho^on..^w.^. Anothov n.Ll .oun-l l.y ^-uLv, H.^ inv->tov of iW two s.u. ,,X.ntiun.l...onsis,sotn.Uin,,,n.lu..,s.n,.s. •'•= '"•^" i. 1-1.1 „.t-mt coi'tlicionts 1)V nicansoi wliicli Ww ■ind then of comimtuig I'on.lant .ouncRiu > ,\na men calculated. 111 i;^»t'! anu '■>- ^ < 10 ■iix lilUf^i'-* /,',. i v ;'.,. ■■(•rii - .".811 ;\ni ^ then suiuuini;- v u ■ ill' ■ilUill lace Km- lo},' rtill IliAr: - loy \k -f li;j,' Hi -f log 1 1 - - "'^ i D-'vlopiiiy i.lu.sr lu^'iirithiiKs Mil tnkiiig the .wnition aystoni, when luodulu.- is .IfuotM.! l,y M, w." Imvrt, arr'i.-inf; iK'conlin;,' to the powtMs ot ;/' lo;,' sill m.^T = 1li'_' .Ir -f- loy ?/'. — m ■"(i+7+^+.) w -^(i-xL + i , \ •J -' II \' f I ' W IC"' COS ((/.J A.:..U/(l+-+.^.4-...) ■ .t . amiiimi tm ^1 \ **■•'.': 'IS I'llicli. ;it't.|' tlics:iliilH!iti(.iIl III' lli(' coil-lMnt III iiiiM'iii'al s(U'i('s, II ml til. sulistitiiliMii mI I'll' V'lliv s ul' .'/ iiiiil }.-, ii'wi' siM'iiN proj,'!' i;ovtlinu im iiu' asrriiilii OS.iiU'' 110- ix vvwt'V'- oi III. ric'i icuii coiiriiiniiiL: '•VU- stiiiil lai ri)V llll - tlir Ml')' ( -^ III' 1 ,11' liniiiivical larl; mi" slowly ooii\('ig'iiL.'. -.lii'V lie ni:iil'' iiii'H' iiiiiilly cuini'r;.'!'!!;.' Iiy kt'<'i>iii>,' sonii'ol' tlic tii>t ti'riii> ill till' |ii'i iTi'ding roriiiuhi It is rVillrlll tllMl lllf i^VlMtl'V I llC limilliCl' ot' tcrills VI'tailKMl, lllc •null' raniilly cuii cr^iii.i;' will Ih' the serio-i tbv the other Icfiius- '(,u iiiu:f i'irti'-ului~ wr ivl'i'r I lie >ln(lciit to tiic [)ivi'ac'c to (.'alll■t'^ Tal.li-. ti « " PVKT II. SPHEKH'AL TKK^ONOMF.Tin'. OlUEf'T OK SpIIKKIi'AI. TMOO.NOMIiTUY 8PHBHI0AL Tbigonomkthy tivatji oi'lhi' niwlhods ol determining the several pwts of ii spherical tiianglo_^lroiii iiiiving coit^iin pnrts given. A Spherical Triati'jle is that jioilion oflhi/ siiiikue of tlie sphere bounded by arcs of lliroe gi-eat ciioli^s; that is, of thiee circles whoso phnes pass thiough ihe coiitro of the sphere. We here suppose ilie student to be ac4Uiiinti.'d with spherical Ge- omotiy, at least, of so much of it as is fouud in Loomis' Geometry, Book IX. In the following i>age8, we confine our attention to such Irianj^los only as iire treated of in Geometry; that is, the mialler of the two parts into which thi- surface of a sphere is divided by the three smaller arcs joining, by pairs, thre points on that surface, and which are not in the same great circle. It is evident that those triangles have every one of thfiiv parts le.ss than 180'. The chief reason is this limitation is that, while simplifying the theory, it excludes "no arc or angle which is over nrcessaiy to consider in the practical ap- plication of Spherical Trigonometry. ■I r ) I iiAnii; I. Ui.;i.ATioN> iiKiwiKs rni: Sim ^ vm. iiik An,utinut,i i-ru:lu>-( „f the ro.iine of tin nitpusite nngle and the tine ui t/ir nthr ^kI'", tu,i>th r irifh thf jiioilwJ of the eo!*inr.i •/' these titles. rhJM piopo^'iliuu in itiilU'il iuudiuueutul Iwcavwe it serves tw a kny to ill! ilif ivM. \Vf ^hull lii«i estiiblish if fiorn thu imspwction uf llic iinu.xK'l li ,'uiv, l>.v inraiii of tk' pnacii)le8 ef I'lane Trigo- uoiuetiy, an.l, lu^xt, wf shall i.iocoed in JoduciuK (tnulyticaily th» ijiiwt iiupoiimi n^liitions oxishnjjc Jietwi'en Angular lunotiona in a vSphurii'al TriiUi^lu. L,.i .4//r lie a Siiht-r'uMl Tiiiii- ti'ii of thi> SjiliiMi . Ml'IlOtt' tk MU-^ll'S l.y A. li. '■: iiinl the wiilt's op|iositi to thfin rcs|ir(t iv«ly l)y '(,/'.'•. At the poiut A ilnw ^rtangeut to the arc AB, au'l AT tangent to thf luv AC. Thf.n hy Gooimlry (Loon.is. Book IX, Vr. VI li the angU- A of the Spherical Triiuiiil.' is measured by the plane angle TA T. — Join OB and OC. I'loduce OB to uK^et T, and OC? to meet T; then I — Hi* f,l I OK Sl'UUUCAt, gk and the line eoainrn »f ^Ae** iiue il selves am a )m thii inspMiion M b1' riane Trigo- >i; analytically the zulttr I'unotions in Jtiticc thr radiuH of the S|i|i(vc is ulso llin liulius ol' the eircleH to whicli liuiou'^ llu' arcs .1/.' uiui AC, oj' in tli« Mi'CiUit ot Ali; and 1)/' tht) Hccuiii {ji AC; llmt i.s, mukiiii; ilm radius iKiual to unity: t)/ ■- .sec A( = H((' /. JT - xec Alt — Mu: r A J = tan At' = tan /, AT - tan .1/; . tan - Joinini; '/'/'.wc Im^*. Iiuiii (ilaui' ttiatigk's TO J', and TA'I', by i4S7i ri. Trig. yy =^ OJ •■-; or— L'or x wi x coa Jor' = .scu /' H sec'e — -J »ec /- si'c i- cos ti [a] /"/• ^Ar+A'/'—'2A'r .AT < cos TAT' ~ tan // -( t;in' >■ — 2 tiin /* tan r cos A [b] Uyil'Ji Pl.Trig. ihc iMiuation [a] becomes T'l -T 2 -j- tan- /. -• tan' c — « sec i sec c uos o [c] Kqurttiui,' ( b] and [-■]. ii'jcctin;,' tin- common quantities, transpos- ing, und tlividin;^' Ity 2. sec b nee c cos siu c '.\' ■ i cos II cos l/' 4- (■) sill // sin c ■2 mi I w,-f /, -f r] sin j> (b-^c — ii\ sin /) sin (■ iiiiiking^ii -•:= A Kj -- /) -f ,'i: _ 2 siu wlsiu !«-- »{ sin /y siu c By a similar process we obt^iiu 1 — cos A = Multiplying [d] by [c] ■J sin i.v — h\ sin ls — US' — C) siu /; sin c It^l w "' ifi. -173- #11 ¥4 II the nines (in<( linjj it to, unity cos- A = Bin ,v sin i,v sin i,<( — ^. whence, hy [■ sin ,«_„ I ^n ,^,_j, gj^^ _^ (* — c) ■'in c< sill which sldeg. sin 6' = f'a7.rftv.y //„. .,//,,, ,,, __ - \ L'"*"'--sin(.s — "sin;,^-/, eijjis— c) «in ^- sin I, i:ii< li am ''■ '"'erw, ofth.,;ne,o/ the From [,1] wo obt un hy ;38Si I'l. T rig. cos A ^ ::; cos -.'> Ji Ji Mil .s- sin .,v - a \ Ji *'" ^ si ,,v _ /, «in (V sin »,• ) cos ^V( 14) ^ ' sin ./ sin h f I which ej-^^rew /-/,<■ ,.,;,;,,„ /• ; . "^ From [ej we obtain hy ,357, PI. Tri,.. sin } A =^ ll ^'° '•"' - ^i sjn is -. ,., \ ^ ^ sin h sirx:- ) sin A h = //si" '« — • — a\ sin 's — hi i Uni '■ =J\- — : . I V \ sill .V sr.i i,s — CI / which ej:pre!iS the tangtut vt half of gash amjle in terms of the Sineg of the sidi'.i. Dividing ^i iiy i5i gives. |7) coti^:= Ji-^^'^i.^'^i^-^LJ V \nh\ i,v — //I sin IS — CI ' cotiiy= /(-^^^'"^'•^M''--^'. \ V ' sill i.s — ai sin [s — c ' v\sin'».' — a I sin us- — bi f which expffn.^ th>- Votanijcnt . I" -^ im' — r, ,/ - 180' ■ .< ,;v' = 180" -- a 'riuii'oforo __ ._ eos(liSO=' — .4:- -c(w ac't'^.-iyi 008(180" — C COS . ( 11 -= - ^^ ri80"-'"-"/;i siuTl80'^'^CJ which, by 8.5) and i^fJl PI. Ti-i{^., becomes, changing signs ia both members, .SiiiKl;n!y ('OS (^ -- in /)' -JJH (' CDA It -^ I'U.S A CO* ' ' .si» A sin <' ifo-t (■'-'- '^o.s .4 ci's /»' sin .4 sin A' i8) //» termx of the which exj^fPiix ilir I'lmm nf cwh si'lr >'n <*'/•.,,','> "/ ihr yini'J< nuU ro' ^inei iif Hi': ,iiitj/''f. \\\t Hc.o by llie iibovc ilciliiciiou lh;i', i.ny tVinmla oi'a spherical Iriiinj^lo )iiay be, by nitMiis of liie pohtc triangle, tninsformed into an- other, in which angh^s l;ike the j)liu;(' of sides, or conversely. Thus till! f'ormiilif (I:, (3|, (4i, '» . i(> ^'ivc vt'siicctively the following, wiit'ii ,s -- i A 4- yy-f- r': 008 A = COS a sin 5 sin C — cos B co« C cos a = COS b sin A sin C - cos A cos cos (' = COS c sin ^ sin B — cob A oos Ji) which lupress the cotine of each angle in terms of ih« opporiio sida und the other angle*. 176- siu a — •J ^/[_ COM S cos •>' — A cos S--JMco» >S ■-( 'i ^ sin /i sin '' \ siu /' i;^[ — cos 6' COS S A C09 uS— B cos •'»' Tl^ '. sin .4 in C '■ , lOl SIU '• = v/ [--CO»*'(!OS .S „.| ,;us iS— /i cos ..S' -Ol I : 111 ,1 siu /)' lit' fill' iiii.iilr^. COS \ H -- yjy •OS .>! 11) COS N- -C sill /)' sin (' ) COB _ ./COS i.s ^1 cos I ^ — rv - ' ' \'\ wn^s.-n'- / //(:08 N .(' COS ..S- /)' \ ^ '■ '''' v' sill A sin /; / (lit which M/irvif fill' ■•iisiiii> nf' Jinh' of i^u -ji siili' in fi'riiia d/ flii' siiifn mill coxitii'y "f thi> nu //r.i. 1 1 cos S cos .>' A \ sin i, II -- Jl .,,■,• I \ ^ sin /i sin ' ' .nlli = Ji-'^''-', ") V ' Sill A sill (' 8111 J, ' I _ /, -COS Xcos >' • C)i \ V\ sill A sin A ' J which i'/-/ires.i I he ninr of lni'.i af nir.li sidi> in terma "f tin' aims and cosim'ii of fill' nni/lns. X ^ T**" 'WP -fei^ ir itiic..- ,(ii'l I'DK'ine^ fiTiim of fiti' si Ufa rms '/ till' tii)irs find tan J „ = // - -Zri^^J? cos i,S|^~ ^ i v V \cos ( ,S'~ /ij cqbTs ~ rj Ian A h = li _r~^f^ '^' <^osjS~Jl V I V Voo. I .V _: A, cos W^'ci) )■ Inn (13) J '"'''>'' nlmli'iif cfh.ilf t "•■ne. ,/•//.,.,,/,,_ • ""■''""f"f '""■!' -^I'h In t,nns of fke co- 't iiiiist be reitu-Jr J tl t : ;;; o ^^f -> -^ -'"^1. denJ,; V7:1m "f ^' '-'^ ^-« than '"'•"• ^""l".-V(.nt,.ach-)ro=. ,h.it i, M t^' "'ill always ov- ^7''^- -^'--..Mho.:.o; f :^"^•^^r''^'■^"^^''■^'-- ■+"^ — ^ /6's» than \m' Wlliillcc J'Jiei'Hbr. the. formnl.TlOi ,,.7 , '■" '—■" -■C;"J:lc:'Sr*' ■'"'^ thethinl bvMn',.eobt ntin "" "' "^« «-°«*^ ^3" sine * »:« "I^''^'" ''^'''^^' '''l"^t,ng the first members. ■ V -178- sin A _ sin B sin (J sin « ni.n b ~ sjn c lU) n I whence or sin a sin yy = sin /' sin ^4 n in h sin C — sin «• sin /i ' sin <• sin A — sia a sin ^' ) sin «: sin /': sin r = sin ^4: sin H: sin (7 (151. 116) :,i that is; /Ae .sZ/ics nf Hir gii/rs arf /irn/Kirtiniin/ /<< tfr .fiin's of the oppositi! mu/lrs: T,, ^ . , siiwl . nu^ ^ Ihen'tore sin a — sin f> -. — - - sin r sin /> sin (' . , sin B sin Zy sin /' :■- SlUd — - =: sin '■ 8IU .4 sin C sin C . , sin C sin '" — sin " ---■ — sin '< sm A sin « J (17) . , sin (( Oonvi'i'sdv sin A — sin /) — sin v sin '' sin < sin ./ 1 ,. . . sin A sin A >, wc obtuin cos « sin /i — cos .1 sin <; -f- cos C sin n cos /' Dividing oach tflims by sin a, ami substitutinj? tor sin (• . , sin '',.., ,. , . -7 Its einml . 16i, it bccom''s utter ri'diiction sin a -^m A cot a sin /' = cot A sin 6'-|- cos C cos h Since thb last formula is i^cucral, wo may iutcrehanije the letters ", li, c, and, thfirefore, A, B, t\ ami wi- obtain the following jom- plote system; cot '/ sin li = cot A sin C+ cos Ccos /» (19) cot <( sill (• = cot .1 sin li-^ cos H cos •• i20) cot li sin (I — cot li sin C'+ t^os C cos a cJl) cot /> sin c = cot 7j sin A -f- cos ^ cos c i22) cat c pin n = cot C sin 7/+ cos Ji cos « (33( cot c sii /; = cot C S'.n .1 -|- cos A cos i (24) And by the polar triangle, we obtiiu also the toUowing system: cot A sin B = cot a siu c — cos c cos B i26i cot .4 sin '' = cot rt siu /' — cos b cos (' (»J(J , cot Ji sin .-1 --- cot b siu r — cos c cos .1 (27i cot B sin 6' = cot b sin c — cos « cos '"' i'j8' cot C siu .4 = cot c sin 6 — cos b cos A i29' cot Csin Ji ~ cot r sin a — cos a cos />' (301 Niiftit'r's Aiitdoijit's. **■ *l ting the second :er transposinu; Dividing and multiplying tlu> lirst equation o\: 6i by the second give iiwpectively tan hA tan yi sin (^■— /;. sin (s — n\ [t^. or ami or — ISO — tan ^A : tun ^li . : .sin it-- /;) : win i.s " [/'J sin I.s -- ('I tan A/1 tan ^i - .sin i 1 : tan ^/l tan ^B : : sin is — ci; sin s [_v] By composition and division [f] and [g] buconie, when writtt^u in the form of an equation. tan ^A + tan i.fl _ sin i« — ii + Bin i» — i or sin ^\A -\- lit : »iu \ < A — Ii\ ; : tau ^c : tiiu jia — t) (31) and cos hA -4- /i) : cos hA — li : ■ tau ^t" : tan ^\a -\- b) (32i which are known ns the tivHt and second Analogies of Napier. By the polar triauglo tlu' two preceding formula; are transformed into sin h\a ~\- III _ eot ^C sin A;rt — // cos }>\(t 4- ^1 tan A..4 — B\ cot ^0 or cos ^,a —b) tan i /I -+" h, An ^ \ ■ In : sin ^[a — //i ; : cot hC : tan i^iA B\ (33, cos ^i« -} h\ : CC3 ^[a — !•) ; ; cot iC : tan hA + li) i34) which ixw known as the third and fourth Analogies of Napier. Particular Case of liiijht- Angled Uphericjl Trianyle. Inibers of [h] and[(] The formula' which have been established id the foregoing pages, assume, when applied to the liight- Angled Spherical Tiiangle, sim- pler forms, some of the terms vanishing in consequence of contain- ing the cojiiie 01 cotiiugtnt oJ the iingle. Thus if A be a right angle we have cos ^4 = 0, cot j1 = U, and sin .1 — 1. In this cuse, the first and third of (ir)) become ' \ I* -laa— .J . ' 'V [•29) and i'27l become yheucf sin /' = «iii " "i" ^* sin '• = ^iu a sin C cot 6' = crt /) sin /> col B - cot '' «iu '• sin /' — tun c cot C sin (• — Inn '' cot li Tho first of a Ihf comes cos (( = COS /' cos (• |3r»t |3S) (37) (38) i39i The first of i9i nfti'v tiic Ivansi-ositiou of the last term ami th- division by sin li sin (', brconius (•us '( - cot li cot < ' 40i Tho second and third of ("Jl In-co Uf COS />' = cos h cos />' = cos li sin (' . cos (' = cos '■ sin />' (•20 being ilivided by cos c, .md 19i by cos b, become cos li = cot a tan r cos r -- col '( tan /' (41> 1 4-2' (43 i44' If wo consider the ten equation.s above established, we sec 1st, that the first members ad contain - tan c- tun < " ■■*iii '■ =: tan /, tun h sin u = eus ,, ^.^J|J ^ siu « = tun i/ tan V sin/r'_ cos ^ cos c" sill C -^ cos C COB i^' sm/i = tan « tan t- sin ( ■= tan « tan 'i'iie rigiu aiiyi^, |„.,y„ " '••^■""ms iu the t..anf;;e tivrj'u.s ""''""''"'' ""' "' '^""^idemtion '"•"« -"'-' lu. iinmed.at , """/'^"-"'^-•""d '^^n the two ^"•« called u^ijuceuc ,urt. 1 ' i " '''" "«^^ ""^ ^"^ "' it ,. ^' "-V we oonsuLu ; ::':"• ':- '"■•• -'^-^ <^PPo.ite,.ru: "-^"'■c. obser ,ng that „ ^ ^ .. " ? '"^'"^'"^'-^ vvith the last '^'" ^-^-' ot two uthe. Z V:; '^ 7'"^^ '^ ^'^ P-duct oi' H"'*' tothe ,.,.u.iuc., ui ,1.,,.. :■ ^ ^;^''^' ■ ^^'^' '^^"-^ 01- any part ise- -;'-.^ '^..... :; ■ ™:: ^^7 -"•■■• P-. the. lastparta "'vomo,., and which is snml^ '"'"' "■'^"' '^''^ "'^'"'^ of tho ,1 4 IMAGE EVALUATION TEST TARGET (MT-3) m 1.0 I.I 1^ 1^ Vi 112.2 US us U8 III I 4C L25 IIH 1.4 2.0 m V] 7 > .^^ v '/ M Photographic Sdences Corporation 23 WIST MAIN STREET WEBSTER, N.Y. 14SS0 (716) 172-4503 ^ .V4^, sr ^^ 4k A i [/. NJ \\ 5^ 1^ .V"C>'^ m — I.S4- N(ii>iir\<. liiih'. The nine of any paif '» d riglil-ainjli'il S/ihcrical Triiuvj' ■ in »•- qual to the product i\f the tuinieiit^ of (he tiro ailjarenl jiartii, irnf the roitmeK of the two npjio>>if'- j.iirtn , Olilif/tip Aniilf(.l Trliiidile (tiiil Pfi'iicndi'-u'.iir. ■!-■ '^■.■*;;s ' Vl If a perpeufliciilar bo drawn from any augle in an Oblique An- gled .Sjihcrioal Triiingle, sonii' other uaeiul formula' may be obtained Thus lot Cf be pei])endicular on AB, in the annexed figure. De- note tlie segment --1 1' by v and the angle ^46'/* by I', then the otlittr segment HP- Ali—AP=e ~ r, the angle li<:P = t'— V. liy (43 wi! have in the right- angled 'rrian,le AVI' cos A = eot h tnn /■ fl'lience, .-jinco tangent and coting^nt are mutually re eipvooal, tan /•= tan /- (xk A \ Similarly tan \c-- r ~ tiin c eos /; \ i45, that is: the tamjeiit of either .-v/wr'/d' nf th la^e is rqiinJ to the pn- duct.of the tangeni of the adinreiit sid e int- the cosine of the adia- cent atif/le. By (40i, cot '/ = cot I! cut I ' jfrhence cot V = cot (/ eot5 whe —185^ 'icrical Triaivj' ■ in c- oifjfiiriiij'drfs, ai'iif '(■ndi'-uliir. it! in an Oblique Au- iiulii' may be obtained annexed figure. De- i45. e is cqvnl to the i,r(- ' com)!' nf tie mlid- Taking the reciprocal, tan r=:^°i£ cot « Similarly tan , C— V, ~ ^'^^ -^ cos i I46i By (39/, ^ ^^ tt^acent side. cos ft = cos w cos CP cosa = co8(c-.,;eo,CP '=°' « "~ WT^:^ ,47, ^^'''^ ^^' the cosines of th^ .. ''' . «i°^ = cot^ta,6>/> whence ^^^J ^ cot^ ^ ^^^ ^ ^•■^'^^""^t-:^ that is; ^^^ 5,- J^y(4i), whence cos ^=„-„ j^^^^^^ ^?^ ^ sin r (49, *hatis; the sines of tho f> II Ill ■■ ; •,.■ '.K —186— M :»^ lij i44i, cos V= cot b tiin CP cos (C— 7) = cot c tan CP cos V cot /> whence cot a tun a tan ^ |50i cos (C— F) that is, the cosines oftheiiurtial umjles made Inj the perpcndiciihr are directly propwtiona Ito the cotc.iujents, or inversely proporilGu- al to the adjacent sidns. By following a similar piocos;;, wo dcdiicc, comparing tlit^ two partial triangles, tan ?• _ tan V tan (c — n " tan (C — V) that is, the tangents of the tegmenta of the base are proportional to th» tangents of the partial angles. CHAPTER II. ■U- ,. Solution of Spherical Triangles. If any three of vhe partaof a Spherical Triangle he giren, the other may he determined, and it is not necessary that one of the given parts he a side, as in Plane Trigonometry. Riiiht-Angled Spherical Triangle, Vrhen the lule of Napier is made use of in solving a right-angled Spherical Triangle, all the cases that may occur in practice, are found included in the following one where the right angle is not taken into consideration, as heirg always known: Being given any tieo parts, to determine the three other parts For the two given parts are either adjacent to each other, or sep. amted by another part. And in every case, they must he either ad- jacent oi' opposite to, at least, one cf the unknown parts v/hich be- ing determined may serve to determine the othoi-s. It must be ol)served that when the 'Quantity sought is determine .-as7- •' "I I 1 (50) c perpcndiculir rsely proportton- iipatm: ft the* two re proportional to b* giyen, tlio ry that one of the le. nng a right-angled ,T in practice, are right angle is not i: three other parts each other, or sep. must be either ad- wn parts y.'hlch be- ire. sought is det«rmine cd by itj sinu as is always the case in the use of Xapier's rule, it will be ambiguc-'s wiiethor the quaulity is loss or greater than 90°, since th i sines are positive in both the first and second quadrants. The ambiguity nuy liowever generally be removed by the following priaciples. I. Jii II Jiii/ht-Anijlid Spherical Triangle, an obliqve amjh and its opim&ite side are always of the same species, that is, are either hoih lesser or botu i/reater than 90°. II. When the two sides including the right angle are of the same species, the lujpvtennse is less than l'()°; and irhen they a re of dif- ferent species, the hypotenuse is greater tlian 90°. The first of these principles follows from (37), where, since siu h jS positive, tan c and cot U mu.st have the same sign, and, there- fore, c and C must be in the same quadrant. The second i)rinciple follows from (39), where, if h and c are in the same quadrant, their cosines have the same sign, and therefore cos a is positive, that is, a is less than 90°: if on the contrary, b and c are in different quadrants, their cofines have different signs, and therefore cos a h negative: that is, a is greater than 90°. Morei>ver, another form may be given to the rule of Napier, so that it leaves no ambiguity. For this puipose, instead of taking in the group on page 183, the sines for cosines in the first members o^ the equations, tlie tangents and the cosines for cotangents and sines in tlie second members, take the cosines for sines in the first mem- ''"rr-, and the cotangents and sines for tangents and cosines in the aecoufl uiembers. Thus the five part-i, instead of being, the two sides includiuu; the right autjle and the complements of the other three parts, are, conversely, the complements of the two sides inclu- ding the r'ght angle, and the three other parts in their primitive ■ondition. In this case the rule may be enunciated as follows: Napicfs rule modifii'd. The cosine of any jiort in a Right-Anghd Spherical Triangle is equal to the praditrt (f the cotiiuyciifs of the adjacent partsorofthe ^•ines if till' ni'i'iisi/t' /"irfs. The (juautity .ought being, by the last rulo, determmd from its -lljS^ ' !'■ -1 1 'h ■ I 'M cosine there id no ambiguity whetlier it belong to the ilrat or tliesec- uiul qunnilriint. • 'J'ho chief ailvimtaije of Kiipiers rule is the great lielp it gives to memory, lini in empi Dying it, sonje inconvenience arista in so far as a reijiiired itsit may not always be determined independently of tlie other unknown parts, which then must be lii-st determined, by employing independently of l^Iapier's rule the ten equations pre- viously established wecaneasily determine, in eveiy case, any one uf the three unknown parts independently of th) two others. Then the solution of a Kight-Augled Spherical Tiiangle presents the six fallowing cases: I. Then the hypotenuse and one oblique angle tae giVen. II. When tiie hypotenuse ami oi.e side are given. III. When one oblique angle and iti opposite side are given. IV. When one oblique angle and its adjacent sid« are given. V. When the two sides are given. VI. When the two obliqu.^ anglen are given. W^e shall proceed to show how each of these cases may be solved by liapior's rule, or Napier's rule modified, and by independent i'ormulie.. Let the student be very particular to take tlie complement of the hypotenuse and of the two oblique angles, instead of these parts themselves, when employing Napier's rule; or the complement of tliR two sides including the right-angle, when using Xapier'M rule modified. An accent annexed to the symbol of any part denotes, sis previous- ly stated, the Ci'mplenieut of that part. '':■■ I —lio- loliMtovthesec- • , help it givea to c arisfcs in so i'av ndependently of xnt determined, len eiiuations pre- eiy case, any one wo others. iTiinngle present* l«i av«i giVen. 'en. ide are given. id« are given. ases may be solved H l)y independent Icomplementofthe ^.otid of these parts the coinpleinent of |ising Xiipicr's rule fjnotes, as previous- Case I. Given the hypothenuse «,and tlie anjjle B, to find h, c, C. 1. Solution hy Napier's rule. sin /> = co8«' COS />"■ (f)]) »iu « - Un fj tan Ji' if);') sinC = tan«' tiin A (fl3) 2. Solution, hi) Napier's rule utodijietJ. cos // = sin a sin li cos c' = cot // cot Ji cos C - cot a col 1/ (54 1 |56) 3. Solution by indeneinkui turmulo; By (3fi) sin /; = sin a sin B iiy i43i, tan r .= tan o cos ii By (40 i, cot C = cos a tan B (57) (58) (59 1 pi' ' ' ■* I —190— Caae 2. IM (liven the hypoteniusp /. and one sidn <,'. 1. , Solutioti hy Noj)ier^a rule. sin W = tan li ton <■ sin 6'' = C08 c C08 2^' sin b = cos a' coH 6" 2. Solution hy Najiier's rule iiuxlijii'd. coH /i = cot a cot c' coa C= sin r' MJn B cos // = sin a sin 6' 1 00 i61l 1 6-2 1 |G3| 611 1 65) 3. SolufioH % liulepcntlcu t form, uln: By A3) „ tivu r. cos /J = tiin a By (36i sin C; = . Hin « By (391 cos 11 cos /< = - — |6G) |67) i68) cos '; •f 1 (!ase 3. Given one oblifiuc unglo B and its opposite side h, 1. Solution hy JVapier'a rule sin (• = tan L tan B sin a' :-• cos h cos c aiia C = tan « ' tan b (69) (70) (71) iflO i6l) i62) —191- 2. Solution b>, Napier's nile. modi fied. cor, ,•' = cot b' cot B co.s a = 8Jn b' sin c' cos C = cot rt cot b' 3. Solntlou hji 'iif/e/xndent /omulcc. Rv (3«i -:- tan b sin « = tun li (72) (73) 174) (75) (68) (65) % (35) By (41) sin a = sin C = ain b sin J? cos ^ cos 6 (76) IM' |6G) (67) (68) iide h. «an,e i„ bo^h, but of which ik^^emZ^^,, ZlT "'^^ *'^ angle of tho one are tho supplements of fhn , remaini.ig remaining angle of the otho^ C flit I ""'^° '''^'' ""'^ ^^- ca«e, the given parts a,, on id Id t^f ^"' "'^ the preceding iem admits of two solutions .mdfhf '"^ ^^'^ ^rig]e, t).e prob- ItnuistnotbeinferrlrLttet^Zet^u le.« th:in 90° in on.3 trianr,i„ , required parts are l-MUe, given on U« pa!; /jr'' "'*' •°'''°" ''^ ""^ »' "■« 16O) (70) (Tl) Case 4. ^--T°^^^(»' Given /;= lie ,• :.- Hi (iivfu Ji = (5!)^ 20' c. -• iir>° 4r)' :i4" Axx'irr r'=Gr.° 4i)' 63" (« =: G3^ 10' 4" h:=W° .VJ' 11" AiiHirir n = 111° :,.-)' 20' /; - i)i' 'vy -.'4' (;- 17° 41' 4(1' Aiisirn- 'I — 7li' .1(»' ;»7" // ^- (55"' -JS' r,H" r - U:y° 47 4n a Then by Napiev's Analoj,', (31 1 tuu , sin ^ ^ ^- Ii\ (lOol (106) Iriciil Triangli' im-bent I one of them are given, to ont^ of them arc /; could be determined also by any one of the thi«e other Ana- logies. ,. sin C— tin A 81U c sin a (107) Therfi are generally, in the preceding case, two solutions each of which will satisfy the conditions, when the required part is detor- ntined by its sine. t 1 i' 'I ■ 196- TIio aiiihiguity m\y be roino ml hy tlio i'ollowiujj itviiioipluji; 1. Tlio greator shlc. inusl lio oniosile tlic gieateinnglo, ami C(»n- vo"sjly. 2 When the buiii of the given sitlea is* losfl than 180^, the an- gle cppjnito to thi li« ditl) U iiC'it!. 3. When the sum of the two given sidoa exceeds 1 80°, the an- gle opposite to the greater side is obtuse. 4. WheJ the sum of those sides is 180'*, the i>um of the oppo- site angles is the same. . 5 When the given side not opposite to the given angle diflers from 90° more than the g'.ven side opposite to it, the angle opp*. site to the lust side must be in the same quadrant as that side. When thise principles, which are based on Spherica'. Geomeliy, fail in determining the species of tiie angle, it lemaius doubtful. When C only is ruquiied to bo known, it can be determined from (45) and |47', which giv,) . _ Ian V — tan l> cos A cos a cos (' — r\ — — cos I cos h 1108/ llOi)* 3. c will be the sum or difference of v and (c — v\ acconling m A and B should be of the name or of different species. If li is doubt- ful, c will he also doubtftil, and, therefore either the sum or differ- ence may be taken. » When C only is refjuired to be known, it may determined from (40) ami iflOi whi;h give tan F = cot A COi aioi .^197- j»lo, and con- ,«0'', the an- 180°, tho an- il of iVie oi>po- 1 angle differs tie augli opi)«- i as that side. ica'. Goonicliy, iu8 doubtful, iteriniued from (I08i laccoiiUng ai A If li is doubt- lie sum or differ- L-termined from aioi r< I 'I *"" ^ ir COS iC — I I = — COM I tan a (HI) ('■ is tho svini or the difference of V and i^^ — V) according as A and li are of the i^ame species ov not. \\ U is doubtful, C'is al- so doubtful, and either of the two values may ho taken Case 2. Given the two an'.;h'S A, B, and the side a op, osite to one of them 1 11 'J, r, 1 ^ • I 81" ^ By (17i sin ft = sin a —. Tlien c and Care found as in 10+) and (lO.'ii This case also admits of two solutions, except when tiu^ ambigui- ty is removed by tlie following i)rinciples; 1 . When tho sum oi the given angles is hvss than 180°, the side opposite to the less is le.ss than !)0°. 'i Ifth .■^11111 of those angles exceeds IWP, the side opposite to the gi-eater is greatt-r than ll(»°. 3. If the suTi of those angles is 180 ', tho sum of the opposite sides is the same.. If c or C only bo requiiwl to bo determined, operate with the for- niulie 4") (the first) and '48) for the former, and with (48) and iflO) for the latver, in the same manner as before. Tho arcs v and \r, — V] are of the same species or not according as A and li must he; 0, will be equal to the snm ordifference of « and [c. — v\ aceoiding as A and li should be of the same species; T'and iC — V] are of the same species or not according as a and h should be; and the sum ordifference will be taken for the value of c according us A and B are of the same or of different species. I ! ) 1 1.. I. ri" ^ Case 3. Given two sides <*, b, and the included angle C. By Napier's Analogiej' |31) and i32) ^{A+Iif and ^(^4 — Ji> are determined. The sum of tliese I'esnlks is the angle opposite the greatc.1 of the given angles; their differcnee in the other angU. Then ^c may be determined by either of the same Analogies. I{ e only be required to bo determined, proceed with (45 1 and (47) as before. Case 4, Given two angles A, B, and thj included side i\ By Napier's Analogies (33) and (34) i(a-|-'') and ^ia — b] are determined, whence a and h are easily known. Then ^C is found by either (33) or (34). If (7 only be required to be determined, proceed with (46i and ^50) as before. ^ Onse 5. Given the three sides, a, b, r. Any one of the angles may be found by one of the formulse \2|, (4), (5), (6i, (7l. Ci^s^; 6. Given the three Angles A, Jl, O. Any one of the three angles may be found by one of the for- ^ulai (8 , (10), (111, il2l, (131. \ gle C. f B) and ^[A — B) i« angle opposite i& is the other angl*. anie Analogies. )ceed with (45 1 and aide <■. '/) and \\a — b\ are Then \C is found eed with ^46i and jf the formulie v2i, bv one of the for- 7. 8. ■lay— Exei'oidus f'iven (I ^ 124° tii' /y = 3]° 10' A-=:-[{\° ^»,5' Given o. = i],-)'^ oj^' h = 6()» 29' Aiitwer li V A - 06= 17' ('ivcn ^ - 116° 3G 45" n — 80° 19' 12" /,;.-. 84' -21' 56" '•ivcn /I - 61° .37' 53" //^-- 139\';4'34' I' --= 1. 5(^17' ;.'fi" ■ '■:'- i2fr' (•ivcn A = 104° r/ yy^s-j' 18' (•ivcll rt ~ 7P ]r,' /' = 39^ 10' '•• = 40° 3;V (Jiven A = 109° 55' B=: 116^38' C- 120' 43' Aiifirrr U ~ or li=i Amiipra = V = Aimintr a = C or It c C A iixwnr A : B f ; AII.SICIT a ; /' C Athiwi'r A n a Aiisivi-r a ■ 10' 19' 34" ■ 171° 48' -22' l.')5=' 35^ 22' 59° 39' 172° 43' 172° 23' : 120° 21' ^ 72" 52' 8S° 53' n4°26'o0" 82° 33 31" 79^ 10' 30" = 42° 37' 18" = 12!)° 41' 5" = S'9°54' 19" = 137" -J-^' 4->" =- 19° 58' 35" = 20° 21' 18" = 62° 3r40" = !8° 57' -29" = 107" 7' 25 ' = 102° ]?■ ~- 86° 41' = 70° 31' --^ l.'^()°36'55' = oO° 25' 34" = 31° 26' 32" = 98° 21' 20" = 109° 50' 10" = 116° )3'7" I End. V/>y. vn ^>.' X