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Abstract: Wildfire has been one of the most dangerous environmental stressors nowadays. It is an 
important disturbance where ecosystem biomass is burned and where organisms are damaged or 
killed by fire. Therefore, the detecting and monitoring of this stressor are of great importance. 
During last decades, extensive forest fires have spread in Southern Europe, and they are registered 
in Serbia as well. During year 2007, several significant fires were registered in Stara Planina and 
Svrljiške Planine Mountains. The aims of this study were to detect land cover changes for the 
studied site from 2007–2017, to focus on monitoring the area affected by the wildfire, and to 
analyse the environment response to stressor. The study area is situated in East Serbia, partially 
covering the Mountains Stara Planina (western part) and Svrljiške planine (eastern part). The 
remote sensing techniques were used in the analysis and main satellite data were obtained via 
USGS Earth Explorer application. Six different classes were selected: Water, Forest, Pastures, 
Artificial area, Agriculture, and Bare soil. Results showed significant changes in two classes, 
Forest, and Pastures — the forest spread for more than 20% at the expense of pasture, which 
decreased more than 23%. 
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Introduction 

The productivity of species and ecosystem development can be constrained by 
physical, chemical and biological factors, and this perturbation is called 
environmental stress. Different types of environmental stressors can be defined 
in its origin: natural or anthropogenic (Cairns, 2013); extrinsic or abiotic 
(Lindgren & Laurila, 2005; Sørensen, Norry, Scannapieco & Loeschcke, 2005) 
or biotic. Natural abiotic stressors can be recognized as natural disasters 
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(droughts, floods, wildfires, landslides), climate impact (winter season, high 
winds, intense sunlight, extreme temperatures, intense rainfall, acid rain) and 
others. Anthropogenic abiotic stressors can be recognized as fires, wood 
harvesting, agriculture (Cairns, 2013), and many others. Biotic stressors can be 
recognized as competitors, predators, parasites, and others (Bijlsma & 
Loeschcke, 2005).  

Wildfire has been one of the most dangerous environmental stressors nowadays. 
It is a significant disturbance where much of the ecosystem biomass is 
combusted and burned, and organisms may be killed and damaged by intense 
heat and toxic exposure. Wildfires are considered to be caused by lightning or by 
human activities if their occurrence is registered near human settlements 
(Freedman, 2015). Also, some research results showed the relation between fire 
occurrence and solar activity (Radovanović & Gomes, 2009; Radovanović, 
Gomes, Yamashkin, Milenković, & Stevančević, 2017). During last decades, 
extensive forest fires have spread in Southern Europe, and they are registered in 
Serbia as well (Marković et al., 2016). Whether of natural or anthropogenic 
origin, forest fires are a potential risk both for ecosystems and human settlements 
and this risk can be decreased and managed by tracking the weather, controlling 
fires to limit available fuel and creating firebreaks (Petrasova, Harmon, Petras, & 
Mitasova, 2015). 

During the year 2007, in Serbia a total of 22,161 ha of forests were damaged by 
fire, which is significantly higher than in previous years (2004 — 202 ha, 2005 
— 52 ha, 2006 — 494 ha) (Statistical Office of the Republic of Serbia, 2010). In 
the same year, a total of five indicative fires were registered in Stara Planina 
Mountains, when forest and other wooded lands were burned in the total area of 
1,390 ha (GFMC, 2008). Also, significant fires were recorded in the areas of 
Svrljiške Planine Mountains, Niš, Aleksinac, Merošin and Doljevac. This paper 
aims to detect the land cover change for the studied site from 2007–2017. The 
focus is on monitoring the area affected by the wildfire which is an 
environmental stressor and analyzing the environment response to the 
consequences that stressor caused. The characterisation of wildfire as a stressor 
can be featured through its spatial distribution which may be local, regional or 
global (Cairns, 2013), depending on its extent. Regarding spatial distribution, the 
role of remote sensing is substantial. The remote sensing as an environmental 
monitoring tool allows us to observe the nature before, during, and after the 
wildfire occurred. Pre-fire satellite imagery provides us the fuel types (Arroyo, 
Pascual, & Manzanera, 2008; Jia, Burke, Kaufmann, Goetz, Kindel, & Pu, 
2006), occurrence of wildfire and burnt areas are also detectable (Fraser, 
Fernandes, & Latifovic, 2003; Stroppiana, Bordogna, Carrara, Boschetti & 
Brivio, 2012; Quintano, Fernández-Manso, Stein, & Bijker, 2011), and further, 
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fire management can be accomplished using remote sensing techniques (Duncan, 
Shao & Adrian, 2009). 

Data and methods 

Study area 

The location of the study area is East Serbia and includes the area of Suva 
Planina and Vlaška Planina Mountains, Belopalanačka and Pirotska Kotlina 
Basins, and the areas affected by wildfire: the western part of Stara Planina 
Mountains and the eastern part of Svrljiške Planine Mountains (Figure 1). 
Geographic coordinates of the area of interest are 42°58'48.0316" S, 
22°11'29.9744" W, 43°23'15.5617" N, 22°59'37.8267" E, and the total area 
covers 1,951.6 km2.  

The Stara Planina Mountains are part of the Balkan Mountain system 
(Milovanović, 2010) and are an extension of the Carpathian Mountains. They 
run 560 km from Eastern Serbia through central Bulgaria to the Black Sea, and 
their western part (around one fifth of the whole massif) is situated in Serbia 
(Stojanović, Tsekova, Pešić, Milanović, & Milutinović, 2013). 

 
Figure 1. The area of interest: Landsat 5 false-color composite (SWIR, NIR, and Blue band) 

presenting wildfire occurrence (Source: SRTM 1 Arc-Second Global, USGS Earth Explorer, 2017 
& Landsat 5, USGS EarthExplorer, 2017) 

The Stara Planina mountains are characterized by natural values of great 
significance; therefore, the western part was established as a Nature Park in 1997 
on the proposal of the Institute for Nature Conservation of Serbia 
(www.jpstaraplanina.rs; www.zzps.rs). The highest point in Serbia is situated at 
Midžor Peak (2,169 m) located on the Serbian-Bulgarian boundary, while the 
lowest is at the exit from the valley of Prlitski Potok Stream at 132 m 
(Milovanović, 2010). This is an area of sedimentary rocks and sediments of 
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different geological age, from the Palaeozoic to Cenozoic ages with the unique 
morpho-hydrologically disected landscape. There are 1,195 taxons of vascular 
flora established with endemic and relic species (Аmidžić; Krasulja & Belij, 
2007), such as endemite Campanula calycialata V. Ranđelović & Zlatković 
growing in a single locality on Babin Zub peak (Ranđelović & Zlatković, 1998). 
Vegetation includes 24 forest and bush, and 28 grass communities, which are 
ranged from the lowest belt of thermophilic deciduous forests to the highest zone 
of subalpine and alpine meadows and pastures. The Stara Planina Mountains 
represent one of the six biodiversity hotspots in Europe (Jakšić, 2008; Papp & 
Erzberger, 2007; Stojanović et al., 2013), and one of the centers of Arctic-Alpine 
flora in the Balkan Peninsula (Stevanović et al., 2009). 

The Svrljiške Planine Mountains are situated between the Svrljiška Kotlina 
Basin in the north, Niška Kotlina Basin in the west, and Belopalanačka Kotlina, 
Sićevačka and Gradištanska Kotlina Basins in the south (Zeremski, 2008). The 
highest point is situated at 1,334 m (Zeleni Vrh Peak). Due to complex 
geological history, climate and pedological cover, the Svrljiške Planine Mts. 
became a refugium of Tertiary flora and vegetation and are home to many 
endemic and relic species, such as Ramonda serbica Pančić, Salvia officinalis L., 
Scabiosa fumarioides Vis. & Pančić, Centaurea chrysolepis Vis., Lilium jankae 
A. Kern, Satureja kitaibelii Wierzb. ex Heuff., Crocus hybridus Petrović and 
Corylus colurna L. (Ranđelović, Đorđević, Zlatković & Avramović, 2004). 
Dominant forests are oak and beech forests, and the most widespread is the 
association Carpino orientalis-Quercetum mixtum. Forests of southern and 
western parts of the Svrljiške planine mountains are mainly destroyed and 
xerophytic pastures of submediterranean and steppe character were developed 
(Ranđelović et al., 2004).  

Methodology 

Main satellite data used in this study are obtained via USGS Earth Explorer 
application. Downloaded images were acquired on 10th July 2007 (pre-fire), 26th 
July (forest fire occurrence) and two images dating 12th and 21st July 2017. The 
data belong to Landsat Surface Reflectance Higher-Level Data Products, where 
atmospheric correction routines were applied to the Level 1 Landsat data to 
generate top of atmosphere reflectance, surface reflectance, brightness 
temperature, and masks for clouds, cloud shadows, adjacent clouds, land, and 
water (Landsat Surface Reflectance Higher-Level Data Products, 2017). 

Software used to process the images is QGIS with Remote Sensing plugins 
dzetsaka and SCP QGIS (QGIS Python Plugins Repository, 2017). Since the 
study area was partially covered with clouds for the images acquired in 2017, 
mosaicking was performed to create a clean image. The mosaic that is created 
from the images acquired in July 2017 will be marked with a label 21st July 2017 
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in paper. Further, all of the images were clipped using Area of Interest (AOI) 
vector which presents the study area to complete the pre-processing steps. Next 
step is the creation of Land Cover maps. Pixel-based classification as supervised 
learning task is performed employing the machine learning Random Forest (RF) 
(Pedregosa et al., 2011) algorithm.  

Training zones are vectorized using high-resolution Google maps imagery, Bing 
maps imagery, and Landsat 5 & 8 color composites in QGIS. Landsat 5 Land 
Cover (LC) map from 10th July 2007 (Figure 2a) is going to show the wildfire 
fuel, while the Landsat 8 LC map (Figure 2b) will present the recent condition of 
the environment. Both LC maps are going to be used to perform the change 
detection. Six different classes are classified: Water, Forest, Pastures, Artificial 
area, Agriculture, and Bare soil. 

To ensure the quality of the classification, the accuracy assessment is 
accomplished calculating the error matrix, which is presented as a table that 
compares reference data (i.e., ground truth data) with map information for a 
number of sample areas (Congalton & Green, 2009). For the completion of 
accuracy assessment, at least 17 randomly selected points for each class are 
collected. Two types of the accuracy assessment are calculated: overall accuracy, 
which is a presentation of the ratio between the number of correctly classified 
samples and the total number of sample units (Congalton & Green, 2009) and 
Kappa analysis, which is presented as a discrete multivariate technique to 
statistically determine if there are significant differences between two error 
matrixes (Bishop, Fienberg, & Holland, 1975, Congalton & Green, 2009). To 
assure the quality of the accuracy assessment points, high-resolution Google and 
Bing imagery employed with Landsat 5 & 8 color composites. 

For the wildfire detection, there are two groups of Landsat 5 Thematic Mapper 
(TM) input bands for the precise detection of burned areas: a) visible and Near 
Infra-Red (NIR), b) Visible and NIR and Short Wave Infra-Red (SWIR) 
(Bastarrika, Chuvieco & Martin, 2011). There are several different spectral 
indices and techniques available and used by authors, and Landsat TM/ETM+ 
data have been used by tradition to map burned areas and fire severity (Barbosa, 
Grégoire & Pereira, 1999; Bastarrika, Chuvieco & Martin, 2011; Chuvieco, 
Englefield, Trishchenko & Luo, 2008; Díaz-Delgado, Lloret, & Pons, 2003; 
García & Chuvieco, 2004; Howard & Lacasse, 2004; Key & Benson, 1999, 
2004; Miller & Yool, 2002; Patterson & Yool, 1998; Roy, Boschetti & Trigg, 
2006; Salvador, Valeriano, Pons, & Díaz-Delgado, 2000; Santos, Caetano, 
Barbosa & Paúl, 1999; Smith et al., 2007; White, Ryan, Key. & Running, 1996) 
where NBR (Eq. 1) and ∆NBR (Eq. 2) indices are engaged. 
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NBR = (NIR − SWIR) / (NIR + SWIR) (1) 

where: NIR = Landsat 5 Band 4 (0.76–0.90 μm) and Landsat 8 Band 5 (0.85–
0.88μm), SWIR = Landsat 5 Band 7 (2.08–2.35 μm) and Landsat 8 Band 7 
(2.11–2.29 μm); 

∆NBR = pre-fireNBR − post-fireNBR (2). 

Loópez García & Caselles (1991) developed the NBR algorithm in a mild-
warm/subtropical climate study area using Landsat 5 imagery. SWIR band 
values increase most after the fire, and the NIR band values decrease most after 
the fire as these bands correspond best with vegetation change due to fire in the 
forested ecosystem in which it was developed. The NBR index highlights the 
areas that have been burned. 

The ∆NBR, which uses the NBR pre-fire and post-fire calculated index, 
highlights the burn extents and severity ruled on the difference between these 
two index layers (Table 1). ∆NBR offers a quantitative measure of environmental 
change caused by the fire, or temporal difference (Key & Benson, 1999; Key & 
Benson, 2004) and ∆NBR symbolizes a scaled index of the extent of change 
triggered by fire (van Wagtendonk, Root & Key, 2004).  

Table 1. Burn severity categories (Key & Benson, 1999) 
ΔNBR Burn Severity 

< −0.25  High post-fire regrowth  
−0.25 to −0.1  Low post-fire regrowth 
−0.1 to +0.1  Unburned  
0.1 to 0.27  Low-severity burn  
0.27 to 0.44  Moderate-low severity burn  
0.44 to 0.66  Moderate-high severity burn  

> 0.66  High-severity burn  

Output values of NBR equation are constrained to +/−1 while ΔNBR values are 
not constrained to the range, although most output values will be between −1 and 
+1.  

NBR index is calculated for the pre-fire period (10th July) and fire period (26th 
July 2007). Since the NBR index values have some misinterpretations, mostly in 
water and artificial area LC classes, these NBR values need to be filtered. All of 
the overlapping pixels from both NBR raster’s with water and artificial area LC 
classes from 10th July 2007 were removed to create clean NBR map (Figure 3).  

In the final stage of the research, ∆NBR map area is used to mask the areas on 
the pre-fire map to extract the land cover and to examine the fire fuel. Also, the 
10-year post-fire land cover is masked with a same ∆NBR map to present the 
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recent condition of the burned area and to be able to perform change detection of 
the environment.  

Results and discussion 

Results of the full extent of study area are presented in Figure 2 and Table 2. The 
pre-fire Land Cover map, created using Landsat 5 satellite imagery acquired on 
10th July 2007 (Figure 2a), is the presentation of the environment state 
approximately ten days before the wildfire started. The current state of the 
environment is presented in the Land Cover map (Figure 2b), and it is created 
using Landsat 8 satellite imagery acquired on 21st July 2017.  

 
Figure 2. Land Cover map for the pre-fire period (a) and post-fire period (b). 

Land Cover maps statistics are presented in Table 2. Significant change is 
present in two classes, Forest, and Pastures. The forest spread for more than 20% 
at the expense of pasture, which decreased more than 23%. It should be 
considered that class of Forest contains bushes and low vegetation. The analysis 
for the other classes does not show significant oscillations, beside the 
Agriculture class which has increased over the time. 

Table 2. Classification reports for Land Cover maps for full extent of the study area 
Classification report for 10th July 2007 Classification report 21th July 2017 

Class Pixel Sum Percentage % Area [km2] Pixel Sum Percentage % Area [km2] 

Water 6,962 0.33 6.2658 6,369 0.29 5.7321 

Forest 81,0521 37.4 729.4689 1,263,319 58.26 1,136.9871 

Pastures 957,189 44.1 861.4701 441,430 20.36 397.287 

Artificial area 18,048 0.88 16.2432 21,973 1.01 19.7757 

Agriculture 261,193 12 235.0737 332,115 15.32 298.9035 

Bare soil 114,599 5.29 103.1391 103,284 4.76 92.9556 
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Reliability of the classified data is tested calculating the confusion matrix with 
final Overall accuracy and Kappa analysis (Table 3a & b). Forest, Agriculture 
and Bare soil classes acquired from the 2007 imagery have been misclassified 
compared to ground truth points for 17.65%. The most misclassified data is 
within Bare soil class (33.3%) and Pastures (30%) for the data classified from 
the imagery acquired in 2017 (Table 3b). Final Overall accuracy and Kappa 
analysis present high accuracy for the classification. 

Table 3. Accuracy assessment for the a) 10th July 2007 and b) 21st July 2017 Land Cover map 
a) 10th July 2007 Confusion matrix Accuracy statistics 

Class Water Forest Pastures Artificial 
area 

Agriculture Bare 
soil 

Overall 
Accuracy 

Kappa 

Water 19 0 0 0 0 0 89.17% 87.00% 
Forest 1 17 1 0 0 0 

Pastures 0 3 19 1 3 1 
Artificial 

area 
0 0 0 18 0 2 

Agriculture 0 0 0 1 17 0 
Bare soil 0 0 0 0 0 17 

b) 21stJuly 2017 Confusion matrix  
Class Water Forest Pastures Artificial 

area 
Agriculture Bare 

soil 
Accuracy statistics 

Water 19 0 0 0 0 0 87.50% 85.01% 
Forest 0 17 5 0 0 1 

Pastures 0 0 16 0 1 1 
Artificial 

area 
0 0 0 19 0 1 

Agriculture 1 0 0 1 20 4 
Bare soil 0 0 0 0 0 14 

Masking of the burned area is performed using NBR index. The index 
misinterpretation which occurs within the Water and Artificial area 
(disadvantage of the index) is corrected by masking the areas with the Land 
Cover maps corresponding classes and excluding it from index results. The 
difference can be seen in Figures 3a and 3b, where variant a) is filtered NBR and 
variant b) is not filtered. 

 
Figure 3. Pre-fire filtered NBR (a); Wildfire occurrence & post-fire NBR, non-filtered (b) 
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∆NBR highlights the burn extents and severity, so the area under wildfires and 
fires in agriculture fields near the human settlements are marked with red 
polygons in Figure 4. The ∆NBR value threshold used for the extraction of the 
burned areas is 0.1. All positive values greater than the threshold are marked as 
burned area, as proposed in the Table 1. 

 
Figure 4. ∆NBR wildfire polygons overlaying Landsat 5 color composite (Source: Landsat 5, 

USGS EarthExplorer, 2017) 

The aim of this paper, the change detection analysis for the burned areas is 
successfully performed by masking and extracting the land cover data from both 
years (2007 and 2017) using ∆NBR polygons (Figure 5). The burned areas 
presented with red polygons in the Figure 4 cover 41.52 km2 in total. The Figure 
5 presents the classes from the Land Cover maps affected by wildfires. Pre-fire 
and post-fire classification and change detection report for the burned area by 
class is presented in Table 4. 

 
Figure 5. Land Cover map of the fire affected area with excluded Water and Artificial area classes  
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Land Cover maps and change detection results for the areas burned in 2007 
wildfires show the domination of pastures (59% in 2007 and 51% in 2017) and 
bare soil (33% in 2007 and 2017). Depending on the climate condition, these two 
classes are very closely related, especially in 2007 dry season, when dry pastures 
are detected and classified as bare soil. The area covered by Agriculture class is 
increased due to the expansion of the agriculture production in the Nišava river 
basin. Pasture class has highest decrease percentage compared to 2007.  

Table 4. Land Cover maps classification report for burned areas and change detection analysis 
Classification report for 10th July 2007 Classification report 21th July 

2017 
Change 

detection 
% (2017–

2007) 
Class Pixel 

Sum 
Percentage 

% 
Area 
[km2] 

Pixel 
Sum 

Percent
age % 

Area [km2]   

Forest 974 2.112 0.877 1,208 2.619 1.087 0.507 

Pastures 2,7242 59.06 24.518 23,375 50.682 21.038 −8.378 

Agriculture 2,881 6.246 2.593 6,515 14.126 5.864 7.88 

Bare soil 15,029 32.582 13.526 15,023 32.573 13.521 −0.009 

The change detection analysis is not performed on two initial classes, Water and 
Artificial area due to the NBR index misinterpretation. Land cover change 
detection is performed for the detected burn areas, and it reveals that the highest 
increase in percentage (7.88%) and area (5.864 km2) is for a land cover 
Agriculture class, while the Forest class has an increase of 0.507% compared to 
2007. The other two classes record a decrease in percentage and area coverage 
(Table 4). 

Nowadays, the detection of wildfires using space borne remote sensing data is 
widespread (Dwyer, Pinnock, Grégoire, & Pereira, 2000; Giglio, Csiszar, & 
Justice, 2006; Giglio et al., 2008; Schroeder et al., 2015). Contemporary remote 
sensing methods such as machine learning algorithms used in this research are 
appropriate in predicting the land cover, which high accuracy assessment ratio 
proves that. Since the wildfire fuel types were not the main objective, machine 
learning pixel-based algorithms meet the necessary need to present the land 
cover with high accuracy, and Land Cover map properly demonstrates the 
environment state at sensing period.  

Prompt and evident way to detect fire using satellite imagery is to create a false 
color composite using SWIR, NIR and visible (blue and/or green) band (NASA, 
2017, PDX, 2001). This band combination gives us quick insight into the state of 
the environment. The assessment of burned areas employing the NBR index is 
widespread among researchers. ∆NBR uses the pre-fire and post-fire NBR index 
and highlights the burn extents and severity. The area affected by the wildfire 
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and analyzed using the ∆NBR is easily and accurately masked (Figure 5). During 
the paper workflow, the problem that arose with the NBR (and ∆NBR) is that the 
index has false detection in the urban areas and areas covered by water.   

Conclusions 

The environment response to the wildfire as a stressor is the complete 
revitalization of the burned areas, especially in the inaccessible and remote 
natural areas. The RF classifier, despite its good accuracy assessment, cannot 
make the total difference between bare soil and pastures, which is noticeable in 
the Table 4 (and in accuracy assessment Table 3) where can be seen that 32.58% 
of Bare soil have been burnt. The percent value is so high because bare soil can 
consist of a very tiny layer of vegetation which cannot be accurately detected 
using optical spaceborne sensors. 

Despite the Land Class map accuracy errors, remote sensing techniques can 
provide sufficient data for wildfires analysis and land cover classification and it 
is proven technology for more than 30 years, the on-going period for mapping 
burned areas using optical satellite systems. The remote sensing advantage is 
that it provides rapid information in natural disaster management, especially in 
inaccessible, isolated and remote areas. Further, monitoring the changes in the 
environment helps us to understand how the environment is struggling with 
stress such as wildfire. The data extracted from satellite imagery can be a good 
indicator for the environment management, so the global change detection using 
Landsat 8 satellite and other imagery is widely used (Roy et al., 2014). The 
advantages of remote sensing in the forest fire monitoring are that large areas 
can be covered, theareas under wildfire can be frequently and repetitively 
covered, the method can provide a quantitative measurement of ground features 
using radiometrically calibrated sensors, semiautomatic or automatic processing 
and analysis, and it allows to reduce the cost per unit area of coverage. 
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