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Climate and land use change (CLUC) impact studies on water and groundwater resources have evolved 
in recent years. To determine whether all research gaps have been or are being addressed through the 
current intellectual structure, a bibliometric analysis, as well as a record review, was enacted to determine 
the intellectual structure of CLUC impacts on water resources, with a particular focus on the implications for 
groundwater resources research in the Breede Gouritz Water Management Area (BGWMA) in South Africa. 
Methods applied included publication-related trends and science mapping. This study found that CLUC 
impact research being published has increased by 600% between 2014 and 2021, localised research is being 
done in 95 countries, and land use change (LUC), specifically urbanisation, is being considered more often 
as a variable. However, a few gaps in the research remain, including smaller spatiotemporal scales in more 
locations, a stronger focus on LUC in all its forms, LUC versus climate change (CC) impact studies, and multi-
modal approaches to related research. CLUC impacts on water and groundwater resources research have 
made significant progress over the years, but more research is necessary to make this a robust area of research.
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INTRODUCTION

The impacts of climate and land use change (CLUC) on water resources, including groundwater 
resources, persist globally. Global reliance on groundwater resources is increasing, albeit not always 
at sustainable rates, especially in areas where surface water availability is declining (Amanambu  
et al., 2020; Taylor et al., 2013). To understand the future of our water resources from a sustainability 
point of view, it is therefore imperative that impact studies, specifically CLUC impacts on water and 
groundwater resources, be executed locally (for example, Wang et al., 2018).

The Breede Gouritz Water Management Area (BGWMA) is an important water management area 
(WMA) in South Africa (Breede Gouritz Catchment Management Agency, 2020) and is currently 
being studied more intentionally regarding its groundwater resources. Although effort has been 
made to delineate surface and groundwater quaternary catchments, and monitor water levels (DWS, 
2017; Van der Berg, 2017), no CLUC impact study has been done in the catchment to determine the 
sustainable use of surface and groundwater in the future. This review is a starting point for CLUC 
impact studies in the BGWMA. Although CLUC impact studies have been on the rise in recent 
years, a knowledge gap, where the magnitude of these perturbations is studied on a local scale, is still 
evident from the research assessed. This is the case for the BGWMA.

CLUC impact studies have been on the rise in recent years, especially since the International Panel 
on Climate Change (IPCC) fifth assessment report, which published the latest knowledge, revealed 
new results on climate change (CC) research and called for papers on studies explicitly relating to CC 
and the groundwater system (Smerdon, 2017). Amanambu et al. (2020) wrote a review summarising 
over 300 articles about CC impacts on groundwater. They reviewed global CC, assessed the present 
impact of CC on groundwater, reviewed groundwater models, climate-induced future groundwater 
changes, and groundwater feedback to the climate system, and determined vital considerations 
regarding research in this field. Regarding the sustainable use of groundwater, it is clear from the 
literature, according to Amanambu et al. (2020), that the physical and socio-economic aspects must 
be incorporated and integrated into such research endeavours. What is also apparent from their 
findings is that CLUC impacts the groundwater system and that land use change (LUC) is intricately 
linked to CC. The main focus of CLUC impacts on groundwater studies has been on the impact of 
CC. Amanambu et al. (2020) recommend that LUC be considered in future water resource-related 
studies. A few studies were found on a global scale that looked at the combined effects of CC and LUC 
on some parts of the hydrologic system (Cochand et al., 2021; Nkhoma et al., 2020; Van Huijgevoort 
et al., 2020; Olivares et al., 2019; Osei et al., 2019; Shrestha et al., 2018; Tamm et al., 2018; Zhang et al., 
2018; Ahiablame et al., 2017; and Ponpang-Nga and Techamahasaranont, 2016). A number of these 
studies focused on the groundwater system specifically.

To the authors’ knowledge, no CLUC impact studies on the groundwater system have been conducted 
in South Africa, although there are a few studies studying a particular aspect of the groundwater system. 
For instance, two indices were created; Van Rooyen et al. (2020) created a groundwater quantity and 
quality vulnerability model, which was applied to the 19 WMAs in South Africa. These authors found 
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that, in general, groundwater resources are more vulnerable in 
the west, with a few exceptions, including the Breede WMA. The 
central regions will likely experience higher vulnerability in the 
future, whereas groundwater resources in the Western Cape and 
southern coast will experience a moderate vulnerability increase. 
Groundwater vulnerability is mainly sensitive to the following 
parameters, in decreasing order: mean annual temperature, 
aquifer type, terrain slope, mean annual precipitation, tritium 
distribution in groundwater, electrical conductivity, cultivated 
land use, and population density. A decade earlier, Dennis and 
Dennis (2011) created the DART index as a regional screening 
tool to determine the impact of CC on South African aquifers. 
DART is an acronym for depth to water level change, aquifer type 
(storativity), recharge and transmissivity. Monthly DART index 
calculations revealed a robust spatiotemporal control on recharge.

Nkhonjera and Dinka (2018) conducted a literature review of 
climate change’s direct and indirect impacts on groundwater 
resources in the Olifants River basin. A significant study by 
Albhaisi et al., (2013) was done where the impacts of LUC on 
groundwater recharge in the upper parts of the Berg Catchment. 
The catchment had undergone many changes before the study; a 
dam was built, and non-native hillslope vegetation was cleared in 
the upper reaches of the Berg River. Albhaisi et al. (2013) used 
time-series land use data with the Wetspa hydrological model 
and determined whether evapotranspiration would decrease 
and recharge would increase under the aforementioned land use 
changes. They found that the distribution and location of the 
different types of land use (or classes in the study) determined the 
quantity of groundwater recharge with significant spatiotemporal 
variability of recharge. Furthermore, an 8% increase in recharge 
was observed over 21 years because of alien hillslope vegetation 
clearing. It was recommended that a similar study be repeated in 
other catchments and that the impact of LUC is included.

Other studies conducted in South Africa include the work 
by Varet et al. (2009), who studied the impact of LUC on 
groundwater resources in Lake St Lucia. These authors confirmed 
that groundwater is an essential contributor to streamflow during 
drought, especially in prolonged drought conditions, as was 
the case in this area. Manipulation of vegetation was enacted to 
increase groundwater recharge and decrease groundwater use. 
Pine plantations were replaced with grasslands; consequently, 
there was a rise in the water table and an increase in discharge. 
LUC, however, is not the only reason for changes in groundwater 
resources; sea-level rise, saltwater encroachment, and a decrease 
in rainfall also play a role. Furthermore, LUC significantly 
affects the observed water table level more than precipitation. 
The introduction of grasslands around Lake St Lucia changed 
the vegetation’s rooting depth, consequently decreasing 
evapotranspiration rates. The rate at which groundwater is lost to 
evapotranspiration is a function of rooting depth to groundwater 
depth; changes in the water-table elevation will determine how 
much the root system is in contact with the groundwater zone 
and, therefore, the actual evapotranspiration. Changes in the water 
table levels will determine how much groundwater will be lost 
through evapotranspiration, especially in shallow groundwater 
tables. The authors also reflected on removing the pine trees, 
which improved river water flow.

A bibliometric analysis is becoming increasingly robust in most 
areas of research (Donthu et al., 2021; Meija et al., 2021; Zhao 
et al., 2019). A bibliometric analysis is a general term (Meija  
et al., 2021) for an objective study that includes a spatiotemporal 
analysis of large volumes of scientific data (hundreds to 
thousands) in a specific field (Donthu et al., 2021). Other terms 
like scientometrics and informetrics are used interchangeably  
with that of bibliometric analysis (Meija et al., 2021).  

A bibliometric analysis, however, enables the author to do a 
quantitative literature study and explore the intellectual structure 
of a chosen field by investigating the emerging trends, article 
and journal performance, collaboration patterns and research 
constituents in this specific field (Donthu et al., 2021a; Verma and 
Gustafsson, 2020). It allows the author to make sense of a more 
extensive data pool by evaluating and understanding collective 
scientific knowledge, exploring evolutionary trends, identifying 
knowledge gaps and making informed decisions regarding future 
research in a chosen field (Donthu et al., 2021). With more 
accurate and comprehensive results on the intellectual framework 
of this field, a more informed decision on the research priorities 
in the BGWMA can be made.

This paper is the first in a series of papers pertaining to a CLUC 
impact study on the groundwater system of the BGWMA. The 
aim is to first analyse the global intellectual and research structure 
of CLUC impact studies on water and groundwater resources by 
presenting a bibliometric analysis supported by a record review. 
From this, the current trends in the research can be determined, 
and a gap analysis can be performed. Furthermore, the key 
findings of this study will serve as an indicator of research focus 
points for CLUC in future groundwater studies in general and for 
the specific context of the BGWMA.

METHODS

The methods applied to this study consisted of, firstly, the 
bibliometric analysis, which was followed by the record review. 
Details regarding both methods will be discussed in the following 
paragraphs.

Bibliometric analysis

A bibliometric analysis is an essential step in determining the 
intellectual framework of a specific field. A bibliometric analysis 
was conducted using Mendeley as the reference database in this 
study. Software packages that were used were Excel, Bibexcel and 
VOSViewer.

The data were obtained through a few steps (see Fig. 1). References, 
including books, articles, conference proceedings, theses and 
reports, were downloaded in Mendeley in two rounds using the 
following whole expressions, respectively:

1. ‘Climate change and land use change impact analysis on 
groundwater resources.’

2. ‘Climate change and land use change impact analysis on 
water resources.’

Articles on water resources in general and groundwater resources 
specifically were sourced for two reasons: to solicit a more 
extensive dataset including surface waters, and to verify whether 
surface waters or groundwaters are currently the focus point 
in CLUC impact studies. Regarding Fig. 1, as stated above, 5 
databases were consulted for academic references, 685 articles 
were found, 193 duplicates were removed, and 2 records were 
removed by an automation tool. Next, each entry was scanned, 
and only entries with CC, LUC, or both in the title were kept. 
Furthermore, each entry was manually checked for data 
completeness and consistency (were all the individual items of 
each reference listed, i.e., authors, title, keywords and so forth?), 
and missing information was accounted for where applicable. 
Lastly, 121 records were removed because the focus was more 
specifically on either water quality or bioenergy and other aspects 
of water resources that did not match the focus of this study (refer 
to Fig. 1). A final database with 369 entries between 2001 and 
2021 was used for the analysis (Fig. 1).



241Water SA 49(3) 239–250 / Jul 2023
https://doi.org/10.17159/wsa/2023.v49.i3.3995

The following techniques were chosen (Fig. 2) to determine the 
evolution of CC and LUC impact research and which knowledge 
gaps still need to be addressed. Publication-related trends 
pertain to the spatiotemporal trends of CLUC impact studies on 
water and groundwater resources by determining the trends of 
publications over time, journals most frequently employed, most 

common authors in this field, countries where related research 
is undertaken, and keywords most frequently used (Donthu  
et al., 2021). Science mapping explores the content of publications 
to determine relationships amongst keywords and assumes that 
words that consistently appear together have a thematic connection 
to one another (Donthu et al., 2021).

Figure 1. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 flow diagram (from Page et al., 2021)

Figure 2. Proposed techniques to perform bibliometric analysis 
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Record review

An extensive literature search was conducted on various platforms. 
Search platforms included the University of the Western Cape’s 
(UWC) online library, Google Scholar, ScienceDirect, Elsevier 
and Scopus. Other sources consulted were reports by the Breede 
Gouritz Catchment Management Agency and the Water Research 
Commission. The focus and keywords first used were ‘climate 
change and groundwater’. After that, the phrase ‘land use change 
and groundwater’ was added. Articles that considered CC and 
LUC impacts on water resources were part of the filtered results of 
the two main search phrases used and stated above.

A few methods were applied to filter the substantial volume of 
material available. Firstly, a cut-off date was selected. The most 
recent articles on CC, LUC and groundwater-related research were 
mainly written after 2015; the chosen publications were published 
between 2015 and 2021. Older articles were included if deemed 
to be bringing significant findings on CC and LUC impacts that 
would contribute to this study. Secondly, abstracts were read as 
the second round of filtering. Thirdly, all articles on groundwater 
resources were selected, representing worldwide areas. The final list 
of articles was studied intently by summarising them in paragraph 
form according to the author, year, title, aims and objectives, data 
collection methods, data analysis methods, results, discussion, and 
conclusions. A summary of significant findings from these studies 
was included to support the results of the bibliometric analysis.

RESULTS

The results of the bibliometric analysis and the record review will 
be discussed separately in the following paragraphs.

Bibliometric analysis

The bibliometric analysis has been performed by first exploring 
publication-related trends to determine the contributions to 
the field of CLUC impact studies on water and groundwater 
resources. Science mapping followed, in which any relationships 
between keywords were assessed. These methods were followed to 
determine if gaps in the research field remain. More information 
can be found in the following paragraphs.

Publication-related trends

Total publications per year
The total publications per year for CLUC impact studies on water 
resources have increased substantially since 2007 (Fig. 3). Almost 
zero studies were published in this field (before 2007) to 2020 and 
2021, when 74 and 60 articles were published, respectively. A surge 
in publications was observed after 2014 (by 600% in 2021) when 

the IPCC called for more research on CC impacts on groundwater 
(Bates et al., 2008; Smerdon, 2017). It is evident that CLUC impact 
studies have been given more attention in the last couple of years.

Frequently used journals and corresponding number of 
publications
The journal that published the most related articles is Water  
(Table 1). The top 10 journals are based mainly in Europe, 
America, and the United Kingdom. Most journals that published 
articles in this field pertain to water, hydrology, or sustainability.

Total publications per frequent authors
The author with the most publications is Sangam Shrestha  
(Table 2) from Thailand’s Asian Institute of Technology. Shrestha 
has been focusing on the integrated impacts of CC and LUC on 
water resources since 2016 (Shrestha et al., 2018). He has published 
152 documents, been cited 3 579 times and has an h-index of 32 
(Scopus, 2022h; ORCID: 0000-0002-4972-3969). He is followed 
by Bernd Diekkrüger from Bönn University in Germany, who 
published 157 documents and co-authored many articles regarding 
case studies worldwide, including in East Africa and Thailand, for 
example (Gabiri et al., 2020). He has been cited 3 462 times, and 
his h-index is 33 (Scopus, 2022a; ORCID: 0000-0001-9234-7850). 
Four of the top 10 authors are from Germany, but the countries in 
which most of the research has been done are China and Uganda 
(Table 2). The topics or subject areas most commonly contributed 
are streamflow and non-point source pollution, river basins and 
agriculture (Scopus, 2022a–j). According to Table 2, 4 authors also 
focused on climate change or climate models, whereas land cover 
is a contribution topic for two of the listed authors.

Figure 3. Total publications per year regarding CLUC impacts on water resources

Table 1. Journals that are most frequently used to publish CLUC impact-
related articles and their corresponding quantity of publications

Journals No. of publications

Water (Switzerland) 38

Journal of Hydrology 22

Science of the Total Environment 20

Hydrology and Earth System Sciences 14

Journal of Water and Climate Change 14

Water Resources Research 14

Sustainability 13

Journal of Hydrology: Regional Studies 12

Hydrological Sciences Journal 7

Water Resources Management 7

https://www.scopus.com/redirect.uri?url=https://orcid.org/0000-0001-9234-7850&authorId=6603781218&origin=AuthorProfile&orcId=0000-0001-9234-7850&category=orcidLink%22
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Table 2. Frequently occurring authors, their countries of origin, the corresponding number of publications, focus countries or regions for their 
respective research and focus areas of research or common research topics per author (Scopus, 2022 a–j). 

Authors Country 
originating from

No. of 
publications

Country(s)/region(s) 
 of research focus

Most contributed topics  
2016–2020

Shrestha, Sangam Thailand 7 Thailand
China

Cambodia
Bhutan

India
Nepal

Pakistan
Myanmar

River basins
Non-point source pollution

Streamflow
Climate change

Regional climate
Climate change adaptation

Urban climate 
Resilience

Diekkrüger, Bernd Germany 6 Burkina Faso
Uganda

East Africa
West Africa

Tanzania
Togo

Climate models
Regional climate

River basins
Non-point source pollution

Streamflow
Agriculture

Näschen, Kristian Germany 4 Burkina Faso
Tanzania
Uganda

Rice production
Seasonal wetlands

Agriculture
River basins

Non-point source pollution
Streamflow

Döll, Petra Germany 4 Global scale Gravity Recovery and Climate Experiment (GRACE)
Groundwater 
Water storage

Water–energy nexus

Kløve, Bjørn Finland 4 Iran
Afghanistan

Usable area
Instream flow

Ecosystems
Peatlands

Soil

Zhang, Lu China 3 China
Australia

Streamflow
Sediment yield

Hydrologic models
Runoff

Nistor, Mărgărit Mircea United Kingdom 3 China
Singapore

United Kingdom
France

Climate change
Aridity

Evapotranspiration
Glacial lakes

Ice cover
Penman-Monteith Equation

Gabiri, Geofrey Uganda 3 Uganda
East Africa

Rice production
Seasonal wetlands

Agriculture
Landsat

Land cover
Remote sensing

River basins
Non-point source pollution

Streamflow

Leemhuis, Constanze Germany 3 Uganda
Tanzania

East Africa

Rice production
Seasonal wetlands

Agriculture
River basins

Non-point source pollution
Streamflow

Landsat
Land cover

Remote sensing

Sun, Ge America 3 China
America

Eddy covariance
Net ecosystem exchange

Ecosystems
Remote sensing
Latent heat flux
Crop coefficient

Streamflow
Sediment yield
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CLUC research by country
CLUC impact studies on water and groundwater resources have 
been underway in many countries. However, CLUC research in 
China supersedes research in other countries or regions (Table 3). 
According to the countries mentioned in the references’ titles or 
abstracts in the final database, 95 countries are mentioned. Thus, 
CLUC impact studies on water and groundwater resources are 
ongoing in 95 countries. After China, articles with a ‘global’ focus 
follow, including articles with a general focus where no specific 
country was mentioned, articles with general observations, or 
where the findings are intended to be used as a general tool. 
In Africa, a few ‘general’ articles and West and East Africa are 
often mentioned in titles and abstracts, including countries like 
Ethiopia, Uganda and Kenya (Table 3). Several references were 
pooled in a continent group since a mountain range or a river that 
cut across multiple countries was studied, for example, in Asia or 
Europe. The most studied regions in China included the Loess 
Plateau in the Yellow River basin (Yan et al., 2018). The results 
from Tables 2 and 3 are consistent because China and East Africa 
(Uganda) are highlighted.

Popular keywords used
The most common keyword used is climate change (Table 4). 
Groundwater recharge follows, on par with the SWAT model, 
consistent with the record review results (Osei et al., 2019). 
Emerging keywords are land use and LUC and irrigation and 
urbanisation. These results confirm that more studies are starting 
to focus on the impact of land use and land use change. However, 
the focus is still predominantly on CC. Studies have shown that 
it is crucial to incorporate the impacts of land use change in 
conjunction with CC; therefore, this finding demonstrated the 
prevailing research gap on land use change as a variable in water 
resource perturbations (Adhikari et al., 2020).

Science mapping

The co-word analysis confirms that CC is the most commonly 
used keyword (Fig. 4). It further illustrates how often the term 
CC is used with other co-words such as groundwater and 
groundwater recharge, SWAT, land use change, and hydrological 
modelling. Undoubtedly, CC has been the most studied variable 
regarding water and groundwater resources.

Record review

Extensive research has been undertaken regarding CC and 
groundwater, and many knowledge gaps have been addressed. 
Clearly, from the literature, CC, in a general sense, will exacerbate 
the hydrologic cycle; typically cold places will become colder, 
humid and wet places will become more humid and wet, and 
so forth (for example, Hegerl et al., 2019). These findings will 
consequently impact variables related to water resources, such 
as streamflow and recharge. CC generalisations or large-scale 
climate models are often too broad and sometimes irrelevant 
(Trzaska and Schnarr, 2014); the magnitude of the impact needs 
to be assessed on regional scales regarding CC (McGregor, 2018; 
Kundu et al., 2017). Furthermore, CC impacts are rarely linked 
to LUC impacts, and the combined impact of CLUC is not often 
evaluated for groundwater resources (Amanambu et al., 2020).

Across the board, according to reviewed papers, the recommen-
dation is to include LUC in groundwater impact studies and localise 
groundwater studies to a catchment level (Amanambu et al., 2020; 
Van Huijgevoort et al., 2020). Land use and land cover changes 
influence evapotranspiration rates and the interception of water, 
which will influence runoff and recharge in the case of groundwater 
(Tamm et al., 2018). Another good example is afforestation and 
deforestation, which affects streamflow, discharge, and runoff 
by decreasing (afforestation) and increasing (deforestation), 
respectively (Nkhoma et al., 2020). This information is site-specific, 
and it is not easy to ascertain whether these findings would have 
similar or different outcomes elsewhere.

In the context of groundwater research, groundwater recharge is 
the most widely understood variable and most studied (Adhikari 
et al., 2020). Recharge is generally directly associated with precip-
itation but can also be influenced by local geological formations, 
topography and land use (Fu et al., 2019; Mote et al., 2013; Zhou  
et al., 2010; Dragoni and Sukhija, 2008); however, the rising tem-
perature will increase evapotranspiration which could offset the 
role of precipitation in recharge (Bellot and Chirino, 2013; Touhami 
et al., 2013; Scanlon et al., 2005). Groundwater recharge is expected 
to decrease up to 19.6%, depending on the area. It is still poorly 
understood as a groundwater variable (Moeck et al., 2020).

Table 4. Most popular keywords and their corresponding number of 
occurrences 

Keywords Frequency

Climate change 30

Groundwater recharge + recharge 12

SWAT + SWAT model 12

Land use + land use change 8

Hydrological modelling 5

Groundwater 5

Water resources 3

MODFLOW 3

Irrigation 2

Urbanisation 2

Table 3. Countries where CLUC research is being enacted and their 
number of occurrences in the database used for this study1

Countries Count

China 70

Global* 39

America 36

India 23

Ethiopia 17

Africa* 15

Italy 9

Spain 7

Canada 7

Vietnam 7

Iran 7

South Africa 6

Europe* 6

Pakistan 5

United Kingdom 4

Kenya 4

Uganda 4

Bangladesh 4

Taiwan 4

Thailand 4
1Global pertains to general research. Continents (*) refer to general 
research on the specific continent or to regions such as mountain ranges 
or rivers that cut across multiple countries in the specific region.
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Other sub-focus areas in groundwater research, such as discharge, 
groundwater flow and storage, groundwater quality, and 
groundwater-surface water interaction, are still poorly understood. 
What is known is that discharge is influenced by precipitation 
and temperature (Kurylyk et al., 2013, 2015; Gunawardhana and 
Kazam, 2012). Groundwater flow and storage are less vulnerable to 
the effects of CC (Pohkrel et al., 2013; Taylor et al., 2013); however, 
groundwater availability is expected to decrease, especially in arid 
and semi-arid environments (Amanambu et al., 2020). Moreover, 
shallow aquifers can be replenished, whereas deep-seated aquifers 
cannot (Van Rooyen et al., 2020). Alluvial aquifers, for example, 
are influenced by the effects of surface vegetation cover (Le Maitre 
et al., 1999). Both CC, LUC and anthropogenic factors influence 
groundwater quality; anthropogenic influences include over-
abstraction of groundwater (Tamm et al., 2018; Bighash and 
Murgulet, 2015; Klove et al., 2014; Schmidt and Garland, 2012; 
Earman and Dettinger, 2011; Gurdak et al., 2011; Dragoni and 
Sukhija, 2008; Gurdak et al., 2007), but it is an area that is still 
poorly understood (Amanambu et al., 2020). The groundwater-
surface water interaction is influenced by CC and landform, 
geology, and other living biological factors (Sophocleous, 2002); 
however, more information and research are needed.

In conducting the record review, some other research gaps have 
been identified:

•	 The scale of the study in terms of space should ideally be 
at the plot scale when it comes to assessing groundwater 
recharge (Moeck et al., 2020) as opposed to catchment scale 
in the case of streamflow response (Guzha et al., 2018). 
CC impact studies are best applied on a regional scale 
(McGregor, H., 2018). LUC studies should be done on a 
catchment to local/plot scale (Wang et al., 2018).

•	 The study’s time scale needs to be considered; short- to 
medium-term forecasts will best limit uncertainties 
(Amanambu et al., 2020; Moeck et al., 2020).

•	 Combining CC and LUC effects on the groundwater system 
(Adhikari et al., 2020).

•	 Variations below the surface also need to be included (Ama-
nambu et al., 2020), such as aquifer features, definition and 
quantification of boundary conditions, and a better under-
standing of the dynamics of an aquifer (Viaroli et al., 2019).

•	 Feedbacks from the groundwater system to CC also need to 
be incorporated in future studies (Amanambu et al., 2020), 
for example, vegetation feedback on the water balance.

•	 Using more field data (Guzha et al., 2018), such as abstraction 
data and river flow information, is to be encouraged 
(Touhidul-Mustafa et al., 2019).

•	 Groundwater modelling also requires integrating 
surface-groundwater interaction in the unsaturated zone 
(Amanambu et al., 2020).

•	 A multi-model approach is strongly recommended when it 
comes to hydrological modelling (Touhidul-Mustafa et al., 
2019).

•	 Future studies should use different calibration and 
validation techniques and perform a sensitivity analysis. The 
last step is necessary to identify and discriminate between 
the influential and non-influential parameters, which can 
help reduce uncertainty and simplify the modelling process 
(Nkhoma et al., 2020; Touhidul-Mustafa et al., 2019).

•	 Multiple CC, regional climate models (RCMs), and LUC 
scenarios should be considered in the hydrological modelling 
phase (Touhidul-Mustafa et al., 2019). Moreover, multiple 
emissions scenarios should also be considered (Guzha et al., 
2018). These methods are needed to make the best possible 
predictions for future water use under realistic scenarios.

Figure 4. A visually depicted co-word analysis. CC is the most common keyword in studies relating to CLUC impacts on water and groundwater 
resources.
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DISCUSSION

This review shows a positive development in CLUC impact 
studies on water resources, focusing on groundwater specifically. 
The record review revealed a gap in the research where, amongst 
other gaps, more localised studies should be done, and fewer 
generalisations and extrapolations in terms of CC and LUC  
should be made (Moeck et al., 2020; Guzha et al., 2018; McGregor, 
2018). Therefore, a 600% increase in related publications from 
2014 (to 2021) (Fig. 3) and ongoing research in 95 countries is 
significant.

The journals publishing the most CLUC impact articles are 
primarily based in Europe, America and the United Kingdom 
(Table 1). However, authors from countries like Thailand, 
Germany, Finland and America are publishing CLUC impact 
articles (Table 2) that have been enacted all over the globe (Tables 
2 and 3). From the database used for this review, 95 countries were 
mentioned as sites for research. China has been doing the most 
local research, followed by India and Ethiopia. Furthermore, many 
CLUC impact articles have a general or global focus. Regional 
research in America, Africa and, to a lesser degree, Europe is also 
evident. East Africa is a hotspot in Africa, specifically Uganda, 
Ethiopia, Kenya, and Tanzania (Table 3). The results from the 
authors’ details in Table 2 and the listed countries in Table 3 
are consistent since China and East Africa are popular areas for 
research evident from both searches. More attention is paid to 
local site-specific examples worldwide, which was identified as 
a literature gap. The localised experiments are now addressing 
the gap – moving away from very generalised discourse about 
CC and LUC to more specific applications of CC and LUC. 
However, localised research to plot scale for groundwater (Moeck 
et al., 2020) and land use change studies (Wang et al., 2018), 
catchment scale for streamflow (Guzha et al., 2018) and regional 
scale for CC (McGregor et al., 2018) still needs to be addressed in 
other places around the globe, predominantly arid to semi-arid  
environments.

According to the authors’ most contributed research topics, 
streamflow, non-point-source pollution, river basins, and agricul-
ture are the most researched (Table 2). CC is a research topic for 4 
of the top 10 authors listed, followed by LUC, a topic of contribu-
tion for 2 listed authors (Table 2). LUC studies are becoming more 
important as a variable in water impact studies.

Hydrological modelling is frequently used to characterise  
hydrological processes, whether surface or underground, through 
physical models, mathematics, and computer technology (Allaby 
and Allaby, 1999). These developed models can subsequently 
determine future scenarios wherever they are implemented (Osei et 
al., 2019; Guzha et al., 2018) and inform mitigation and adaptation 
measures to prioritise groundwater recharge, for example (Mamo 
et al., 2021). Various existing models have already been developed 
and refined; for example, the most common SWAT model (Osei et 
al., 2019). According to the record review, a multi-model approach 
is advised, which also considers variations below the surface, such 
as groundwater flow and storage (Taylor et al., 2013; Amanambu et 
al., 2020). As evident from the most popular keywords, SWAT and 
MODFLOW are two models frequently utilised for hydrological 
modelling. These models have been applied separately in different 
scenarios or coupled, in which surface and underground water 
processes were considered. Multiple hydrological models are 
highly recommended for the most accurate simulation and 
results (Touhidul-Mustafa et al., 2019). This finding is therefore 
encouraging. However, surface hydrological models like SWAT 
cannot always account for groundwater processes and are mainly 
used for surface hydrological responses to land use and land cover 
changes (Yan et al., 2018), land degradation (da Silva et al., 2018) 
and water balance (Osei et al., 2018).

In the context of modelling, there is a research gap regarding 
groundwater modelling, which is apparent from the lack 
of keywords in the literature revealed through this study. 
Groundwater modelling is becoming more common, including 
variations below the surface and defining aquifer features, as 
mentioned in the record review results as a knowledge gap. 
Aquifer features include defining and quantifying boundary 
conditions and understanding an aquifer’s dynamics (Viaroli  
et al., 2019). The most common model, listed in the most popular 
keywords, is MODFLOW, created by the United States Geological 
Survey (USGS) and can illustrate groundwater elements such as 
flow and storage (Mamo et al., 2021; Amanambu et al., 2020). 
Other groundwater models include GSFLOW, PRMS (Hunt et al., 
2008; Markstrom et al., 2008), and HydroGeoSphere (Maxwell 
et al., 2015; Brunner and Simmons, 2012). A newer version of 
SWAT, called SWAT+, is available for use. It is advantageous due 
to enhanced model performance (Bailey et al., 2020). Physically 
realistic groundwater flow gradients, fluxes and interactions with 
stream models (water supply and conservation applications) can 
be obtained through SWAT+ (Bailey et al., 2020). Additionally, a 
new groundwater flow model that can be coupled with SWAT+ 
was also recently developed, called gwflow (Bailey et al., 2020). 
Gwflow has many advantages, including not needing other 
groundwater modelling codes like MODFLOW; for example, 
it does not increase the simulation run time in SWAT+ and is 
computationally not as complicated and compatible with SWAT+. 
It is used to understand groundwater flow in watershed hydrologic 
processes better. Gwflow has been developed very recently, and 
although it has worked successfully in a case study in the U.S., it 
has not been calibrated yet (Bailey et al., 2020).

Land use change modelling has been developed over the years but 
not readily incorporated into research endeavours, according to 
the lack of keywords. Models such as Dyna-CLUE (Adhikari et 
al., 2020; Shrestha et al., 2018), Azure (Van Huijgevoort., et al., 
2020) and FORE-SCE (Ahiablame et al., 2017) can be used to 
generate relatively realistic future land use scenarios. Depending 
on the research, they can also consider land use scenarios such 
as deforestation, afforestation or urbanisation. Furthermore, 
land use change detection can be done with time-series satellite 
imagery that generates ‘change’ versus ‘no change’ maps (Albhaisi 
et al., 2013). These maps are generated with historical data. The 
best data to use when it comes to collecting land use data is satellite 
remote sensing data (Gautam et al., 2003), as it provides more 
layers of information and is a low-cost and time-saving manner 
to assess LUC on a regional scale (Albhaisi et al., 2013; Rogan 
and Chen, 2004; Kachhwala, 1985). Geographically weighted 
regression (GWR) models have been used in one study coupled 
with a hydrological model (Wang et al., 2018), which made it 
possible to measure the hydrological response of a catchment to 
CC and/or LUC down to each pre-defined hydrological response 
unit. This method takes local hydrological variations such as 
discharge (Rennermalm et al., 2012), mean annual precipitation 
(Yue et al., 2013), annual runoff (Chang et al., 2014) and, lastly, 
surface water quality (Chen et al., 2014; Tu and Xia, 2008) into 
account. However, no such study for groundwater has been found.

As reflected in the bibliometric analysis, more recent studies 
show that CC and LUC are now more explicitly linked with a 
focus on water (Table 1). Furthermore, a greater focus on LUC 
linked with CC is evident (Table 4 and Fig. 4) from the keywords 
most frequently used, particularly land use and land use change, 
irrigation, urbanisation, and human activities. It seems that 
LUC and urbanisation are most frequently linked, which is 
unsurprising given the rate at which built-up impervious surfaces 
are increasing around the globe. The urbanisation percentage is 
currently at 56% in December of 2021, which denotes the number 
of people living in urbanised areas, i.e. cities (Szmigiera, 2021). 
This percentage is on the rise.
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There is still a prevailing gap in the research since urbanisation 
seems to be the main focus of LUC, and other significant aspects 
of land change are being overlooked. For example, irrigation, or in 
other words ‘artificial discharge’, is considered to be field data, and 
was mentioned in the list of most popular keywords, and was also 
recommended to be incorporated into CLUC impact studies on 
groundwater (Guzha et al., 2018; Touhidul-Mustafa et al., 2019). 
Even though this is a positive finding in light of emerging research 
trends, only two occurrences were mentioned, which is insufficient. 
A few implications for overexploitation of groundwater are that it 
affects recharge and groundwater levels negatively (Berhail, 2019; 
Touhidul-Mustafa et al., 2019; Mamo et al., 2021), can cause land 
subsidence in arid/semi-arid environments (Andaryani et al., 
2019), and a decline in the observed water table will render shallow 
boreholes, hand-dug wells and springs drying up, and increase 
the cost of abstraction (Mamo et al., 2021). Lastly, increasing 
abstraction rates causes seasonal fluctuations in the water table, 
which could also influence pumping costs, biodiversity of aquatic 
ecosystems and water quality (Cochand et al., 2021). Groundwater 
abstractions exhibit spatiotemporal controls that follow cropping 
seasons and precipitation signatures and are also more prevalent  
in farmlands and industrial areas than forests (Touhidul-Mustafa  
et al., 2019). Local research incorporating irrigation and ground-
water abstraction rates is crucial, which would also be the case of 
the BGWMA due to the extent of irrigated agricultural activity in 
the WMA (Van der Berg, 2017).

Other research gaps, particularly in the case of the BGWMA, 
are afforestation and deforestation, which are critical aspects of 
LUC. These forms of LUC are critically important in many parts 
of the globe. We have seen, for instance, that removing invasive 
species could increase groundwater recharge (Albhaisi et al., 2013; 
Le Maitre et al., 1999) and removing pine plantations can cause 
the water table to rise and increase discharge (Varet et al., 2009). 
The deeper the rooting depths of trees, the more water will be 
extracted from the related groundwater stores (Le Maitre et al., 
1999). Furthermore, changes in vegetation can affect groundwater 
recharge rates and water-table depths (Le Maitre et al., 1999). More 
research on LUC and aspects of afforestation and deforestation is 
needed. Furthermore, even though LUC is now being considered as 
a variable more frequently than CC, CC is still the main focus, and 
this is despite some of the latest research that has found there are 
cases where LUC has a more significant impact on water resources 
than CC, especially around groundwater concerns (Viaroli et al., 
2019). The significance of LUC cannot be underestimated.

The results of a few studies focusing on both CC and LUC 
impact on groundwater resources proved that both variables 
are important to consider when analysing the impact since their 
respective impacts have distinct implications. Cochand et al. 
(2021) found that groundwater dynamics on the Swiss Plateau, 
East of Lake Biel, were more sensitive to LUC than CC due to 
increased irrigation, and concluded that both CC and LUC should 
be considered when it comes to water resource studies. The impacts 
of CC were outweighed by LUC and abstraction impacts in the 
groundwater system of the Veluwe, a large strategic groundwater 
reservoir in the Netherlands (Van Huijgevoort et al., 2020). They 
also found that before the early 19th century, LUC was the most 
significant contributor to a decline in groundwater recharge over 
the entire period, after which groundwater abstraction played 
a more significant role in the decline of the observed recharge. 
Groundwater depletion due to CC, LUC and population growth 
in the Central Valleys of Oaxaca in Mexico was studied by 
Olivares et al. (2019). The authors found that climatic conditions 
mainly influenced groundwater recharge in the area and claimed 
that despite a projected increase in annual precipitation, a rise 
in temperature and evapotranspiration would cause a decline in 
recharge. Furthermore, population growth leads to an increase in 

groundwater abstraction. Groundwater is, therefore, a high-risk 
resource due to fluctuating recharge and human activities. These 
results are site-specific.

In South Africa and the BGWMA, no CC and LUC impact study 
on groundwater has been done. All the knowledge gaps need to be 
addressed, which include smaller scale studies in terms of time and 
space, and combining the effects of CC and LUC. Variations below 
surface and aquifer features need to be assessed and incorporated, 
more field data need to be incorporated, such as abstraction rates, 
multiple models need to be applied, and multiple CC, LUC and 
emissions scenarios need to be accounted for. These steps are 
all essential for water planning and management for the future, 
especially since South Africa is deemed a water-scarce country 
(Population Action International, 2012).

CONCLUSIONS

The results of this study were beneficial in determining the 
bibliometric structure of the impact of CC and LUC on water 
and groundwater resources and highlighting the current research 
gaps and recommendations for future research in this regard. 
Publications are on the rise, and more recent literature has shown 
that LUC is also being considered alongside or in place of CC. The 
literature also shows that more local research cases are evident since 
research is being enacted in more and more countries. However, 
despite more localised research, most of the research enacted is 
in China or a general context. More research is needed, keeping 
in mind more minor spatiotemporal scales. Multiple hydrological 
models are also being incorporated into CLUC impact studies, 
but groundwater and land use change models could be used more 
often. Furthermore, the need for a stronger focus on LUC has been 
identified; the diverse and multiple forms of land use are not yet 
adequately addressed. When LUC is addressed, it is usually in the 
urban context, and the urban implications can vary significantly 
from that of afforestation or deforestation and irrigation demands. 
The impact of CC versus LUC is relatively new, but it has been 
recommended to include both areas in water and water-related 
research. This bibliometric analysis picks up on the trend that CC 
and LUC studies are becoming more common, but there is still a 
way to go before CC and LUC become an established and robust 
area of research, especially in South Africa and in the BGWMA. All 
of the knowledge gaps identified in this study must be addressed in 
the BGWMA and many other WMAs in South Africa.
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