
Water SA 49(3) 192–198 / Jul 2023
https://doi.org/10.17159/wsa/2023.v49.i3.4058

Research paper

ISSN (online) 1816-7950 
Available on website https://www.watersa.net

192

CORRESPONDENCE
Willem A Landman

EMAIL
Willem.Landman@up.ac.za

DATES
Received: 20 February 2023
Accepted: 30 June 2023

KEYWORDS
forecast verification
forecast skill
forecast users
relative operating characteristics

COPYRIGHT
© The Author(s)
Published under a Creative 
Commons Attribution 4.0 
International Licence 
(CC BY 4.0)

Owing to probabilistic uncertainties associated with seasonal forecasts, especially over areas such as southern 
Africa where forecast skill is limited, non-climatologists and users of such forecasts frequently prefer them to be 
presented or distributed in terms of the likelihood (expressed as a probability) of certain categories occurring 
or thresholds being exceeded. Probabilistic forecast verification is needed to verify such forecasts. Whilst the 
resulting verification statistics can provide clear insights into forecast attributes, they are often difficult to 
understand, which might hinder forecast uptake and use. This problem can be addressed by issuing forecasts 
with some understandable evidence of skill, with the purpose of reflecting how similar forecasts may have 
performed in the past. In this paper, we present a range of different probabilistic forecast verification scores, 
and determine if these statistics can be readily compared to more commonly known and understood ‘ordinary’ 
correlations between forecasts and their associated observations – assuming that ordinary correlations are 
more intuitively understood and informative to seasonal forecast users. Of the range of scores considered, the 
relative operating characteristics (ROC) was found to be the most intrinsically similar to correlation.
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INTRODUCTION

There is a limit to the skill with which any forecasts are made. This statement is especially true for 
those seasonal forecasts that attempt to provide guidance regarding the chance of specific short-term 
climate changes occurring in the season ahead, owing to the inherent variability of the atmosphere 
(weather noise), as well as the inability to perfectly replicate all the earth system components in 
forecast climate models. Even with improvements in numerical models (Bauer et al., 2015), it is still 
not possible to predict the daily weather changes at a specific location months in advance, due to 
the chaotic nature of atmospheric circulation. There is, however, some skill in predicting anomalies 
(the difference between an observed value of a meteorological variable such as a mid-summer rainfall 
total for a particular year and its long-term average as calculated over many, typically 30, years) in the 
seasonal average of the weather, and there are many early documented examples that demonstrate 
this skill, also for South Africa (e.g., Bartman et al., 2003).

The evolution of operational real-time seasonal forecasting in South Africa has its origins in the 
1990s, with the development of statistical models (Jury et al., 1999; Landman et al., 1999; Mason, 
1998). Global climate models (GCMs) were subsequently introduced (Landman et al., 2001), followed 
by the combination of multiple model forecasts in the development of operational forecast systems 
(Landman and Beraki, 2012). Modelling research subsequently showed that the use of fully coupled 
ocean–atmosphere models provides the best chance of making skillful seasonal forecasts for South 
Africa, since these coupled models have particularly improved on models’ ability to discriminate 
extreme rainfall seasons from the rest of the seasons (Landman et al., 2012). Up to this point, a 
clear association with model complexity and forecast skill was demonstrated (see Fig. 6 in Landman 
2014), because a fully coupled ocean–atmosphere model produced much higher seasonal forecast 
skill levels over South Africa than that provided by a linear statistical seasonal forecast model.

Notwithstanding the modelling progress made and the testing of dynamical nesting models for 
higher horizontal resolution forecasts (Landman et al., 2009), statistical correction methods applied 
to GCM output may still be recommended for contemporary coupled climate model forecasts 
(Barnston and Tippett, 2017). This multi-tiered process is still being applied at the South African 
Weather Service (SAWS) and the University of Pretoria for operational seasonal forecasting, although 
forecast skill levels over South Africa are limited (Landman et al., 2019) and seem to have plateaued, 
with only incremental improvements in forecast performance (Landman, 2014). Notwithstanding 
the scientifically difficult and slow process of improving on the quality of the forecasts, significant 
work is being undertaken to improve the communication of forecasts and their current skill levels, 
in order to facilitate forecast uptake and subsequent gains in the value of the forecasts (the benefit 
that can be obtained based on decisions made in response to the forecasts) (Vincent et al., 2020). For 
example, selected work has focused on providing forecast users with potential financial implications 
when forecasts are used in decision-making (Landman et al., 2020a).

Whilst forecast skill levels over South Africa are limited, forecasts may still be considered useful to 
users of such forecasts over certain regions and during certain times of the year. This realization has 
driven development of application forecast systems for southern Africa, including for agriculture 
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(Landman et al., 2020a; Malherbe et al., 2014), hydrology 
(Muchuru et al., 2016) and health (Landman et al., 2020b). It 
should be noted that application forecasting is not the same as 
impact-based forecasting. The latter usually provides information 
required to act prior to an event occurrence (such as a drought) 
in order to minimize the socio-economic costs of such hazards 
(often used by those working in the humanitarian sector), while 
the former revolves around tailoring a forecast for a specific user, 
decision or management need. Application-based forecasts are 
tailored seasonal forecasts developed to supplement the usual 
rainfall and temperature forecasts for the region. However, 
distributing any type of seasonal forecast data is not sufficient, and 
attention should also be given to producing estimates of forecast 
quality (Stockdale et al., 2010).

For example, any forecast should include a statement of the past 
performances of the model with which the real-time forecasts are 
made. Seasonal forecasts are, however, most often expressed in 
terms of probabilities, and it is not possible to provide a simple 
answer to a typical question of how often in the past these forecasts 
have been found to be correct. This is because there are a number 
of attributes to consider with probability forecasts in order to 
ascertain their skill. The main attributes are: (i) discrimination (are 
the forecasts discernibly different given different outcomes?); (ii) 
reliability (is the confidence that is communicated in the forecast 
appropriate?); (iii) resolution (is there any usable information in 
the forecast?); and (iv) sharpness (what is the degree to which the 
forecasts depart from the climatology?) (Trocolli et al., 2008).

Seasonal forecast system development and subsequent verification 
work in South Africa has, traditionally, focused primarily on the 
various forecast systems’ discrimination and reliability attributes 
(Landman, 2014; Landman and Beraki, 2012; Landman et al., 
2012, 2014, 2020b). Both of these attributes are graphical 
procedures (as demonstrated for discrimination in the results 
section below and in the references listed here), and are the most 
commonly used procedures of this type for estimating forecast 
quality (Trocolli et al., 2008). There is no formally recognised 
mathematical definition of sharpness, although good probability 
forecasts will have good reliability, as well as high resolution 
and, implicitly, high sharpness (Trocolli et al., 2008). We need 
to also consider the notion that a forecast user struggles to 
distinguish between a 70% probability of a wet season and a 55% 
probability of a wet season (Salsburg, 2001). Thus sharpness as a 
forecast attribute may not be of much interest to such users and 
is subsequently not discussed further. Moreover, the attributes 
of discrimination, reliability and resolution represent the most 
essential aspects of probabilistic forecast quality (Jolliffe and 
Stephenson, 2012). For discrimination, we want to measure the 
ability of the forecasts to distinguish an event from a non-event. 
In terms of reliability and resolution calculations, we will consider 
the algebraic decomposition of the Brier score that includes 
reliability and resolution (Mason, 2004). It is important here 
to note that reliability quantifies how well forecast probabilities 
match the corresponding observed frequencies in magnitude, and 
resolution measures how different these observed frequencies are 
from the climatological probability (which is 33.3% in this case of 
equi-probable categories) (Wilks, 2019).

The range of attributes of a forecast system suggests that there are 
a variety of ways for forecasts to be good or poor. There is, thus, 
no single answer to the question of which scoring method best 
measures each attribute. However, for the sake of non-scientists, it 
may be appropriate to see if there is a correspondence among the 
various scores and ‘ordinary’ correlation, since correlation is the 
simplest measure of skill, and the simplest and traditional method 
to seek associations between variables. This seems appropriate given 
that the most commonly used metric to calculate how well forecasts 

match observed values is the correlation coefficient (Troccoli  
et al., 2008). Moreover, even data analysts, among others, almost 
automatically, albeit somewhat uncritically, calculate a correlation 
coefficient when they want to obtain a measure of the linear 
association between two variables. Further, many scientists and 
non-scientists frequently use the word correlation to describe how 
two things are linearly related, since this is quite a simple quantity 
to evaluate and understand; it has wide use and hence familiarity.

Since most people are familiar with the concept of correlation, 
linking correlations with probabilistic scores could provide 
users with a simple metric to understand whether a particular 
probabilistic score is high or low, as well as what that might 
approximately mean in terms of how well the forecast performs. 
The use of the term correlation coefficient in this paper refers 
to the Pearson product-moment coefficient of linear correlation 
between two variables. It is essential to note here that there are 
other correlation coefficients (i.e., Spearman rank correlation and 
Kendall’s tau (Wilks, 2019)), but the Pearson correlation is by far 
the most widely used. The purpose of the study is to find if there 
may be statistical links between the more easily understandable 
Pearson correlation and probabilistic scores that are more 
complicated to understand (e.g., Barnston, 1992).

DATA AND METHOD

In order to establish a link between correlation and probabilistic 
verification scores, we first need to generate hindcasts (re-forecasts) 
over a long period spanning several decades from where the 
scores can be obtained. Seasonal forecasts are not equally skillful 
everywhere, and southern Africa’s seasonal rainfall predictability 
more or less ranks in the middle third of regions globally that are 
affected by the El Niño–Southern Oscillation (ENSO) (Landman 
et al., 2019). The central Pacific Ocean is one of the areas with 
the highest levels of seasonal predictability (Latif et al., 1994). We 
therefore consider the predictability over three areas: (i) rainfall 
over the Limpopo River basin (an area strongly linked with ENSO 
and associated with relatively high seasonal forecast skill); (ii) 
rainfall over the Philippines (closer to and therefore more readily 
influenced by ENSO); and (iii) sea-surface temperatures (SSTs) 
over the central Pacific Ocean (directly influenced by ENSO). 
Of the three regions, the central Pacific Ocean has the highest 
predictability, followed by the Philippines and the Limpopo River 
basin (Landman et al., 2019). By considering forecast skill levels 
over these three regions, we are thus able to cover a large range of 
forecast skill. Our focus season is December, January and February 
(DJF), which is a season associated with high predictability over 
all three regions (Landman et al., 2019; Trocolli et al., 2008).

Data

Two types of datasets are used. The first is archived seasonal 
rainfall forecast data produced by a GCM of the North American 
Multi-Model Ensemble project (NMME; Kirtman et al., 2014), and 
the second type are observed gridded datasets. The latter includes 
monthly rainfall totals as represented by the Climatic Research 
Unit (CRU; Harris et al., 2021) dataset, as well as extended 
reconstructed SST data, version 5 (ERSST.v5; Huang et al. 2017).

The GCM data are 12-member ensemble monthly hindcast data 
of the GFDL-CM2.5-FLOR-B01, available from the early 1980s to 
2020 at a 1 × 1° latitude–longitude resolution. Only 1-month lead-
time hindcast data are considered.

Method

We consider two types of forecast models – one that includes 
the statistical post-processing of GCM output by correcting 
the systematic biases in the mean and variance of the data 
(Landman et al., 2019), and a second linear statistical model 



194Water SA 49(3) 192–198 / Jul 2023
https://doi.org/10.17159/wsa/2023.v49.i3.4058

for SST predictions (Landman and Mason, 2001). The GCM 
rainfall hindcasts are corrected with a regression-based algorithm 
from the Climate Predictability Tool (CPT; Mason et al., 2022). 
The bias adjustments are performed using a 5-year-out cross-
validation process applied to the hindcasts. The 3-month focus 
season is DJF. For the 1-month lead-time considered here in 
predicting DJF rainfall from the GCM, the model was initialized 
on 1 November. For DJF SST hindcasts, the 1-month lead-time 
forecast use observed August, September and October (ASO) SST 
fields as predictors since ASO SSTs only become available later in 
November.

As mentioned earlier, seasonal forecasts should be expressed 
probabilistically due to weather noise and the fact that forecast 
models are imperfect. Moreover, such probabilistic forecasts 
exhibit considerably higher reliability in comparison with those 
achieved by corresponding deterministic forecasts (Murphy, 
1998). Here we create 30 years of probabilistic hindcasts (1990/91 
to 2019/20) through a retro-active forecast process (Landman et 
al., 2020). For both the GCM rainfall hindcast bias corrections 
and the statistical model for SST hindcasts, the initial training 
period for the retro-active process is 10 years (1980/81 to 1989/90) 
in order to create the 30 years of probabilistic forecasts. This  
10-year period is used to predict the 1990/91 season. After this 
step, 11 years (1980/81 to 1990/91) are used to train the models 
to predict for the 1991/92 season, etc. The training period is thus 
updated by 1 year after each step and the process is continued 
until the 30 years of probabilistic hindcasts have been created. 
The number of grid-points involved with each region is 182 for 
the central Pacific Ocean, 181 for the Philippines, and 180 for 
the Limpopo River basin. The three areas are therefore of similar 
size, and the total number of grid-points considered is 543. Each 
grid-point thus has reliability, resolution and ROC values, as well 
as a Pearson correlation value. The latter is simply the ordinary 
correlation between 30 years of hindcasts and the corresponding 
observations, and thus constitutes the deterministic correlation 
score at each grid-point. The probabilistic scores are calculated 
for three equi-probable categories of above-normal, near-normal, 
and below-normal values.

RESULTS

After the calculation of the probabilistic and deterministic scores 
for each grid-point is completed, all of the 543 grid-point values 

are plotted on scatterplots between different scores, as well as a 
best-fit straight line. An example of such a scatterplot is shown in 
Fig. 1, which represents the association between two deterministic 
scores, i.e., the Pearson and Spearman rank correlation as 
determined over the 30 years. The correlation between these two 
sets of scores is 0.98. Similar plots that represent the association 
between the probabilistic (x-axis) and deterministic (Pearson 
correlation; y-axis) scores are constructed and the correlation 
between the probabilistic and deterministic scores are calculated. 
Although the scatterplots are not shown here, Table 1 is a summary 
of the correlations between each of the scores.

The correlations in Table 1 imply that the discrimination 
(ROC) and resolution attributes of the probability forecasts 
are intrinsically most similar to deterministic skill values (as 
represented by ordinary and, by extension, ranked correlation), 
while reliability appears to be fundamentally different to 
deterministic assessments of forecast quality. There may, in 
fact, not be a relationship between probabilistic reliability and 
correlation skill (Yang et al., 2018), and the correlations are seen in 
the table to be the highest for the outer two categories, i.e., above- 
and below-normal values. Near-normal is a category for which 
forecasts in general do not seem to work very well, especially 
when forecast skill is limited (Mason et al., 2021), hence the low 
association of this category’s scores and deterministic skill.

Given that discrimination and resolution seem to be very similar 
attributes for determining skilful probabilistic forecasts using 
correlations, and that it is easier to measure discrimination than 
resolution in 3-category probabilistic systems (Mason, 2018), we 
will continue our discussion by only considering discrimination.

Figure 1. Scatterplot between Pearson and Spearman rank correlations (543 values). The correlation between these two variables is 0.98.  
The best linear fit between these two variables is shown as a straight line. Also shown are density histograms of each score variable.

Table 1. Pearson correlations between the deterministic and the 
listed probability scores over the 30-year test period. All positive 
correlations are statistically significant at 95%. 

Categories ROC Reliability Resolution

Above-normal 0.88 0.15 0.82

Below-normal 0.91 −0.60 0.74

Near-normal 0.24 −0.27 0.48
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As stated above, discrimination is represented by relative operating 
characteristics (ROC values). These values are calculated from the 
ROC diagram. This diagram is a plot with the false alarm rate on 
the horizontal axis, and the hit rate on the vertical axis. A false 
alarm is when an event (such as a drier than normal period) was 
forecast to occur but did not. The false alarm rate represents the 
ratio of false alarms to the total number of times the event, such 
as a drier than normal period, did not occur. Finally, the hit rate 
is the ratio of correct forecasts to the number of times this event 
occurred. A ROC graph is constructed by plotting the hit rates 
against the false-alarm rates and is separately applied to above-
normal and below-normal probabilistic forecasts. By using this 
verification method, it can be shown that the forecast model has 
the ability to discriminate above-normal seasons from the rest of 
the seasons or below-normal seasons from the rest of the seasons 
(see Fig. 2 that represents a fictitious example). The diagonal 
dashed line on the graph divides the graph into two equal parts, 
each with an area of 0.5, and indicates the line of no-skill. If the 
forecasts are good, the ROC graph will curve towards the upper 
left. In the unlikely case of perfect discrimination, the curve will 

reach the top left corner, and the resulting area is equal to 1.  
In Fig. 2, the area underneath the ROC curve is equal to 0.73 – 
showing that the above-normal forecasts in this example have 
skill because of this high ROC value.

The real data results of least-squares regression analysis with ROC 
and correlation values at all the grid-points, as obtained from 
the 30-years of verification, are shown in Fig. 3. Here we first 
discuss both the above-normal and below-normal categories as 
the ‘explanatory’ variables, and Pearson correlations as the ‘target’ 
variable. Regression analysis can quantify the nature and strength 
of the relationship between two variables, and in this case the 
linear relationship strength is reflected in the correlation between, 
respectively, the above-normal and below-normal ROC scores, 
and the correlation scores as 0.88 and 0.91 (Table 1). Take note that 
the two least-square lines of Fig. 3 do not precisely fall on top of 
each other, but differ in slope by a small amount (not significantly 
different). This difference in slope is likely to be attributed to the 
small sample of verification cases (only 30 years) typical of seasonal 
forecasting, so that the selection of verification period potentially 
influences perceived forecast skill (Landman et al., 2020).

Figure 2. Example of a ROC diagram, a ROC curve for the category of above-normal values, and a dashed line that represents the line of no-skill

Figure 3. Least-squares regression lines representing the linear association between probabilistic (ROC) and deterministic (Pearson correlation) 
skill, for both the above-normal and below-normal categories. Open circles are for above-normal, x’s for below-normal; blue represents Nino3.4, 
green Philippines, and red Limpopo.
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In Fig. 4, the correlation value of 0.91 (also see Table 1) shows 
that the two variables are strongly related. The red line on  
Fig. 4 is a section of the ‘below-normal’ line of Fig. 3. Also shown 
on Fig. 4 are pre-selected ROC values and their corresponding 
Pearson correlation values. The latter are calculated by using the 
least-squares regression equation that represents the red line 
obtained from the analysis. So, for a ROC value greater than 0.5, 
the Pearson correlation will be higher than 0.3; for a ROC value 
of 0.7 the corresponding correlation value is about 0.5; and for a 
ROC value of 0.9 the correlation is about 0.8. Additional analysis 
involving the above-normal ROC values produced similar results 
(not shown): for a ROC value greater than 0.5, the Pearson 
correlation will be higher than 0.23; for a ROC value of 0.7 the 
corresponding correlation value is again at about 0.5; and for a 
ROC value of 0.9 the correlation is 0.85.

DISCUSSION

The uptake and application of seasonal forecasts has been the 
subject of much research attention, and often concerns the 
salience, credibility, and legitimacy of seasonal climate forecasts 
(Meinke et al., 2006). We agree that, aside from availability and 
access, comprehension and usefulness as well as trust in the 
forecast is of utmost importance. Part of the trust issue for users, 
whether they are farmers, water sector practitioners or municipal 
decision makers, is understanding probability, which reveals an 
element of uncertainty, but a further element is that of being given 
an indication of skill, which conveys the likelihood the forecast 
has of being statistically correct in its probability distributions. 
Globally there are multiple resources users can access, some of 
which can be applied at a regional scale, but in most cases, users 
rely on the regionally available forecasts that usually originate 
from the national ‘met’ services of their country. Few of these have 
any skill scores attached to them. As forecasts are often interpreted 
and disseminated by ‘boundary organisations’ or intermediaries, 
or more recently used to trigger ‘anticipatory actions’ by 
humanitarian actors, the skill implications and probabilities 
are often lost, or overlooked, and the forecast is passed on as a 
deterministic prediction. This remains a concern.

The science of seasonal forecasting has made significant advances 
in recent decades, including the development of sophisticated 
and skilful forecasting systems and the development of tailored 
forecasts. However, such advances remain insufficient for optimal 

forecast uptake and estimates of forecast quality are essential to 
build trust in the forecasts. This is challenging, given that forecasts 
are of a probabilistic nature and their quality needs to be judged 
accordingly, and there are a number of non-intuitive attributes 
that need to be considered in order to judge if probabilistic 
forecasts are useful. Our analysis considers those attributes related 
to discrimination, reliability and resolution, and how they may 
be understood in terms of a more relatable and intuitive metric. 
These three attributes represent the most essential aspects of 
probabilistic forecast quality. In order to establish to which extent 
probabilistic scores can be considered high or low, we tried to 
demonstrate how that may correspond to more easily understood 
‘ordinary’ correlation.

Our analyses show that the discrimination and resolution 
attributes of the probabilistic forecasts are similar to the 
deterministic assessment (i.e., correlations) of forecast quality. 
This similarity is mostly restricted to the outer two categories, 
namely, below- and above-normal. However, since discrimination 
is easier to measure, our focus turned to ROC scores for the 
remainder of the work. For ROC values at the lowest limit of skill 
(i.e., ROC = 0.5), correlations are typically below 0.3; for high 
ROC values of 0.9, correlations are near 0.8. Although ROC has 
thus been demonstrated here to be potentially very helpful to users 
in understanding forecast skill, the ROC graph is ignoring the 
reliability of the forecasts. Notwithstanding, the ROC graph has 
an advantage over the reliability diagram in being less sensitive to 
the small sample sizes typical of seasonal forecasting. Therefore, 
in terms of the results found here, as well as challenges faced in 
seasonal forecast verification, although ROC values might seem 
like a fairly esoteric measure of forecast skill, there is often a close 
association with the more easily understood correlation measure.

There is no single metric that can fully represent the quality of 
a set of forecasts – a notion also demonstrated in this paper, the 
result of forecast verification effectively being a multifaceted 
problem (Troccoli et al., 2008). However, especially for areas such 
as southern Africa where seasonal forecast skill is limited, such 
forecasts should be accompanied by an indication of how similar 
forecasts have performed in the past. Here we argued that some 
probabilistic verification scores can be represented by a more 
commonly known metric such as ‘ordinary’ correlation, which 
may aid users of forecasts to better assimilate verification data into 
their decision-making processes.

Figure 4. Least-squares regression between ROC values for the below-normal category and Pearson correlation. On the red line, 'X' represents 
the ROC value, and 'Y' the Pearson correlation from the analysis. The 0.91 shows the association (correlation) between the ROC and Pearson 
correlation values (see Table 1).
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