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Drought is one of the most hazardous natural disasters in terms of the number of people directly affected. An 
important characteristic of drought is the prolonged absence of rainfall relative to the long-term average. The 
intrinsic persistence of drought conditions continuing from one month to the next can be utilized for drought 
monitoring and early warning systems. This study sought to better understand drought probabilities and 
baselines for two agriculturally important rainfall regions in the Western Cape, South Africa – one with a distinct 
rainfall season and one which receives year-round rainfall. The drought indices, Standardised Precipitation and 
Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI), were assessed to obtain predictive 
information and establish a set of baseline probabilities for drought. Two sets of synthetic time-series data 
were used (one where seasonality was retained and one where seasonality was removed), along with observed 
data of monthly rainfall and minimum and maximum temperature. Based on the inherent persistence 
characteristics, autocorrelation was used to obtain a probability density function of the future state of the 
various SPI start and lead times. Optimal persistence was also established. The validity of the methodology 
was then examined by application to the recent Cape Town drought (2015–2018). Results showed potential for 
this methodology to be applied in drought early warning systems and decision support tools for the province.
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INTRODUCTION

Drought is a persistent natural occurrence that affects all regions across the globe and cuts across a 
range of economic and social sectors (such as agriculture, tourism, ecosystems, and health) (Edwards 
et al., 2019). Moreover, drought is one of the most complex and hazardous natural disasters regarding 
the number of people directly and indirectly affected (Botai et al., 2017). While an exact definition 
of drought remains contested, drought is a lack of rainfall relative to what is expected (i.e., ‘normal’) 
that, when extended over a season or a longer, results in failure to meet the demands of human 
activities and the environment (Zargar et al., 2011; Lyon et al., 2012).

The Western Cape Province of South Africa experienced a severe drought between 2015 and 2018 
(Otto et al., 2018; Sousa et al., 2018). The threat of Day Zero (the day the taps in the Metropolitan 
City of Cape Town were projected to run dry) was widely publicised both locally and internationally 
(Odoulami et al., 2021). The drought also had severe consequences for the province’s agricultural 
regions (Theron et al., 2021). Recent studies have shown that between 1988 and 2018, the Western 
Cape has experienced recurrent meteorological, hydrological, and agricultural droughts (Theron  
et al., 2021). Studies by Otto et al. (2018) and Pascale et al. (2020) showed that the 2015–2018 drought 
was made more likely to occur due to anthropogenic climate change and that this trend is expected 
to continue. The intensity, frequency and wide-reaching impacts of the 2015–2018 drought, along 
with the threat of climate change, have heightened interest in drought forecasting, monitoring and 
early warnings for this region. Furthermore, a study by Theron et al. (2022) showed that farmers in 
the Western Cape rely on weather forecasts to improve resilience to drought. Their paper identified 
a need for improved drought forecasting. Thus, this study focused on two agricultural regions in the 
Western Cape in an attempt to address this need.

Meteorological drought events are characterised by their cumulative and time-integrated nature 
(Lyon et al., 2012). This results in significant continuation or persistence of drought conditions from 
one month to the next (Lyon et al., 2012). Drought events usually progress slowly over several months, 
which increases the importance of, and suitability for, real-time monitoring of drought early warning 
and prediction (Buurman et al., 2014). Lyon et al. (2012) showed that an improved understanding 
of drought persistence could support drought prediction by quantifying the likelihood of drought 
conditions at a future time, given that drought conditions have occurred in the immediate past. 
Drought indices such as the Standardised Precipitation Index (SPI) and Standardised Precipitation 
and Evaporation Index (SPEI), among others, are quantitative measures that characterise drought 
intensity by integrating data from one or more variables such as rainfall into a single numerical value 
(Zargar et al., 2011). Using this relatively simple methodology, drought indices have evolved into the 
primary tool for communicating drought intensity globally (Zargar et al., 2011).
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Archer et al. (2019) investigated the use of hindcasts from a 
coupled ocean-atmosphere model of the North American Multi-
Model Ensemble System to assess seasonal rainfall predictability 
over the south-western Cape. The study used ranked probability 
skill scores to assess the ability of hindcasts to produce probabilistic 
forecasts for the three seasons – spring, winter, and autumn – at 
a 1-month lead-time for three equiprobable categories of below-, 
near- and above-normal seasonal rainfall totals. The method was 
most accurate for the 3-month winter season rainfall forecasts. 
Results showed less skill in the season onset during the autumn 
season, and the lowest skill score was for the cessation during the 
spring season. Johnston and Wolski (2018) investigated whether 
a statistically valid predictor for winter rainfall totals could be 
developed. Their method set out to determine whether, if above-
average rainfall had been received up to the end of a particular 
month (in this case April or May) before the start of the winter 
rainfall season, there would be a greater chance that by the end 
of the rainfall season of that year the total rainfall would be above 
average. The study calculated probabilities for forecasts issued at 
the end of each month and compared them with the annual total 
until the end of October. It was found that an above-average wet 
year will be likely if the cumulative rainfall recorded by the end of 
April (30% for normal and 65% for above normal) is above mean. 
Similarly, it was found that a low accumulated rainfall by the end 
of May (60% for below normal, 35% for normal, and 5% for above 
normal) can predict with some confidence that the year is going 
to be dry.

Statistical models have been used to provide operational seasonal 
forecasts of rainfall over southern Africa since 1992 (Mason, 1998). 
Lyon et al. (2012) developed a simple, statistical methodology to 
predict the future state of the SPI, given an initial state, evaluated 
as a function of the seasonal cycle. This methodology is similar 
to that of Johnston and Wolski (2018) in that it exploits the 
persistence of the climatological variable being assessed. The 
study also set out to determine a set of baseline probabilities for 
drought monitoring. Lyon et al. (2012) used bootstrap resampling 
of observed weather data to generate two sets of synthetic datasets 
of monthly rainfall. The first set included seasonality, while in the 
second set seasonality was removed. Their results showed that 
seasonality in the variance of accumulated rainfall could enhance 
or diminish the persistence characteristics of drought indicators. 

Thus, considering seasonal cycles in forecasts can provide a 
considerable source of drought predictability (Lyon et al., 2012).

This study aimed to test the methodology set out by Lyon et al. (2012) 
for seasonal drought predictions for the winter rainfall region of 
the Western Cape (WRRWC). The methodology was tested in two 
distinct rainfall regions of the province: the winter rainfall region 
and the year-round rainfall region. The methodology was then 
applied to the case study of the 2015–2018 drought. Finally, the 
study also tested both the SPI and SPEI indices to compare the use 
of temperature (as included in SPEI) on predictive skill.

DATA AND METHODOLOGY

The method applied in this study is based on the principle that if 
an initial drought state has been identified, important predictive 
information can be derived from the persistence of drought 
indices (for both SPI and SPEI) (Lyon et al., 2012). The study also 
tested whether the predictive skill of the persistence of drought 
indices can be enhanced depending on the start time considered 
or the season. To exploit the persistence characteristics of drought, 
the analysis made use of autocorrelation (AC). AC is defined as 
the correlation of a time series with a lagged version of itself, 
and it can be used to detect recurrence or periodicity in a dataset 
(Venkatramanan et al., 2019).

Western Cape rainfall regime

The study was conducted in the Western Cape Province of South 
Africa (Fig. 1). Figure 1 was adapted from Roffe et al. (2019). The 
province has a diverse rainfall pattern, including a highly seasonal 
winter rainfall region, a more even spread of annual rainfall along 
the Cape south coast, as well as a region with predominantly 
summer rainfall in the north.

The WRRWC experiences a Mediterranean-type climate with 
 cool, wet winters and warm, dry summers (Botai et al., 2017). Rain-
fall occurs predominately in the winter months of June, July, and 
August (Odoulami et al., 2021). The region is affected by an array 
of large-scale forcing mechanisms, but the position of the westerly 
storm track over the South Atlantic upstream of the southwest of 
the region is the dominant factor (Midgley et al., 2005). Cut-off 
lows (COLs) also contribute to the region’s rainfall, particularly 
in autumn and spring (Favre  et al.,  2013; Roffe et al., 2021).  

Figure 1. The rainfall seasonality regions of the Western Cape Province and locations of the automatic weather stations (Langgewens and 
Outeniqua) used in this study. Adapted from Roffe et al. (2019).
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In addition, several other large-scale mechanisms may contribute 
to rainfall in the region. Reason and Rouault (2005) suggested 
that most dry winters are associated with the positive phase of 
the Antarctic Oscillation (AAO) or Southern Annular Mode 
(SAM). The SAM forces a pressure difference between mid-and 
low latitudes, which indirectly affects the position of the south-
westerly winds and influences the number of frontal systems 
reaching the Western Cape (Odoulami et al., 2021). Philippon  
et al. (2011) found winter rainfall (May–June–July) to be positively 
correlated with El Niño 3.4 events – however, their findings 
feature a strong decadal component that appears to be restricted 
to recent decades from 1979 (Philippon et al., 2011).

The Cape south coast experiences a temperate oceanic climate 
with warm summers and mild winters (Van Niekerk and Joubert, 
2011; Botai et al., 2017). Rainfall is more evenly distributed 
throughout the year, and there is no pronounced dry season 
(Van Niekerk and Joubert, 2011; Botai et al., 2017; Roffe et al., 
2019). Most of the Cape south coast is influenced by both mid-
latitude and, to a lesser extent, tropical weather systems (Braun 
et al., 2017). The mid-latitude systems that affect the area are 
cold fronts, ridging highs and COLs, and the tropical influence 
is generally from tropical-temperate troughs (Engelbrecht et al., 
2015). A statistically significant correlation between the El Niño 
3.4 index and monthly rainfall totals has been found in the region 
(Weldon and Reason, 2014). Most wet years correspond to the 
mature phase of La Niña years. ENSO also affects rainfall along 
the Cape south coast by increasing the number of COLs reaching 
southern South Africa (Weldon and Reason, 2014).

Methodology

Monthly rainfall and daily minimum and maximum temperature 
data for two Agricultural Research Council stations were used 
for the analysis, chosen due to their location in agriculturally 
important regions, as well as their completeness, length of records 
and representativity of the two rainfall regimes. Monthly data 
were obtained for the entire record length for each station ending 
in 2018 from the ARC–Agrometeorology Database (ARC, 2018). 
The Langgewens station has records going back to 1964, while 
Outeniqua’s records started in 1967. Thus, the datasets produced 
contain 51 or 55 years of data, respectively. In terms of quality 
checks, the ARC Agrometeorology Programme maintains an 
operational national agro-climate network of weather stations 
and a climate databank, using sensors and methods that adhere to 
the standards of the World Meteorological Organisation (WMO). 
Collected weather data goes through an automatic quality control 
check before being published, which includes a missing data check; 
a high-low range limits check; a rate of change between successive 
days’ observations check; and a consistency check as well as a 
manual quality check to identify any problems not caught during 
the automatic quality check (Henningse, 2021). SPI and SPEI 
were chosen for this study as they require simple computation 
and minimal, readily available data inputs. SPI is based on rainfall 
probability for any time scale, requiring only rainfall as an input 
parameter. It is calculated by aggregating monthly rainfall over 
various time scales (3, 6, 12 months)). For example, to calculate 
SPI 3, the rainfall accumulation from month j−2 to month j is 
summed and attributed to month j (Guenang and Kamga, 2014). 
After the rainfall has been aggregated, the resulting value is 
normalised. SPEI uses the basis of SPI but includes temperature 
as a factor allowing the index to account for the effects of 
evapotranspiration on drought development through a basic water 
balance calculation (Vicente-Serrano et al., 2010; Beguería et al., 
2014). The water balance equation is calculated as the difference 
between rainfall and reference evapotranspiration (Beguería et al.,  
2014). Next, the climatic water balance is calculated at various 
time scales (similar to that of SPI), and the resulting values are 

fitted to a PDF to transform the original values to standardised 
variates (Vicente-Serrano et al., 2010; Beguería et al., 2014).

Drought indices SPI and SPEI were computed for the entire period 
in the R-SPEI package. This study investigated accumulation 
periods of 3, 6, 9 and 12 months. The Outeniqua dataset follows 
a log-normal distribution (skewness = 2.5 and kurtosis = 16.2), 
while the Langgewens dataset follows a gamma distribution 
(skewness = 1.6 and kurtosis = 6.9). Thus, for the calculations of 
SPI and SPEI for the Outeniqua dataset the data were fitted to a 
log-normal distribution, while for Langgewens the data were fitted 
to a gamma distribution. The study made use of the Hargreaves 
equation (Hargreaves and Samani, 1985) for SPEI.

The first objective was to characterise the rainfall and drought 
regimes for each region. Observed climate data were used to 
calculate the percentage contribution of each season to the total 
annual rainfall. Seasons here were described according to Theron 
et al. (2021) as summer = December, January, February (DJF); 
autumn = March, April, May (MAM); winter = June, July, August 
(JJA); and spring = September, October, November (SON).

In the second part of the study, observed climate data were 
resampled randomly to produce two synthetic datasets of 100 years 
for each station. Removing monthly AC in the synthetic datasets 
allows for quantifying how the design of the drought indices 
influences drought persistence characteristics, thereby determining 
a baseline for predictability (Lyon et al., 2012). The first set of 
synthetic data removed the seasonality of rainfall for both stations. 
This was achieved by sequencing randomly selected monthly values 
of observed rainfall and temperature data taken from any month 
during the observed period. This effectively meant that a value in 
February could be followed by a randomly selected value for July or 
any other month. This was done 100 times to create 100 synthetic 
datasets of 55 (or 51) years without seasonality. The second synthetic 
dataset retained seasonality but removed any trends in the observed 
data. This was achieved by randomly sampling data from each month 
and sequencing by month but not by year. This was also repeated 100 
times to create 100 synthetic datasets of 55 (or 51) years.

An important aspect of seasonality is the start time considered. 
For example, in a highly seasonal rainfall region, the probability of 
rainfall occurring in subsequent months will depend on whether 
those months fall within or outside of the rainfall season. Lyon  
et al. (2012) demonstrate that this principle is also true for drought 
indices such as SPI and SPEI. They showed that the effect of start 
times on the AC of SPI was most observable at longer accumulation 
times such as SPI 12. This study set out to determine which start 
time will enhance and diminish the persistence characteristics of 
SPI 12 or SPEI 12 for each station using the 100 synthetic datasets 
with seasonality retained.

The study also set out to determine the seasonal persistence of 
drought using the seasons as defined above. Persistence was 
defined by Lyon et al. (2012) as the situation where AC exceeds 
0.6 for several consecutive months. A value of 0.6 was chosen 
because it suggests that more than one-third of the variance can 
be accounted for (Lyon et al., 2012). Lyon et al. (2012) further 
set out a methodology for establishing the optimal persistence of 
drought characteristics. They indicated that, for indices based on 
consecutive multi-month rainfall such as SPI and SPEI, the signal 
is found exclusively in the monthly rainfall values shared with the 
index at the initial and subsequent state. This is described in more 
detail by Lyon et al. (2012).

Persistence characteristics can be utilised to determine PDFs for 
various start and lead times. Thus, given any initial SPI value, the 
probability of future SPI values can be determined by creating a 
PDF. Since only the inherent persistence of drought is considered, 
creating a full PDF provides baseline probabilities (Lyon et al., 2012). 
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Using the formula (Eq. 1), PDFs were created using a standard 
deviation based on the AC of the lagged SPI index. The mean was 
calculated using the climatological mean rainfall for the forecast. 
This was achieved by concatenating the climatological mean rainfall 
for each month onto the observed rainfall dataset. Since SPI uses 
an accumulation of rainfall values over several months, at lag 2 for 
SPI 12, the SPI value will be calculated based on 11 observed values 
and 1 climatological mean value. For lag 3 the SPI value will be 
calculated on 10 observed values and 2 climatological mean values. 
This will accumulate until lag 12, where all the SPI values will be 
calculated using the climatological mean values. Importantly, since 
the predictive skill relies exclusively on the knowledge of the initial 
condition of SPI or SPEI, the signal will be lost after exceeding the lead 
times of the accumulation period of the drought index. Nonetheless, 
useful information may still be contained in the knowledge of the 
initial condition up to several months in advance, depending on the 
index and the start time considered (Lyon et al., 2012).

σfcst(l) = (1 − ρl
2)0.5                                    (1)

where: σ = standard deviation of the forecast, ρ = autocorrelation, 
l = lag

For drought concerns, the probability that the index is less than 
a specific trigger limit can be important. Such thresholds can be 
derived from a cumulative density function (CDF) which can 
give the probability of a particular value falling below a given 
threshold. A CDF for each year in 2015–2018 was produced using 
observed data and the method for creating the PDF described 
above for a drought threshold of SPI < −1. This threshold was 
chosen according to the WMO (2012).

RESULTS AND DISCUSSION

Climate in the two regions

Analysis of annual and seasonal climate variables (Table 1) 
shows that both regions have high interannual rainfall variability.  
Figure 2 highlights the distinct dry and wet seasons at Langgewens 
and the year-round rainfall at Outeniqua. At the Langgewens 
station, winter contributes almost 50% to the total annual rainfall. 
Summer contributes less than 10%, and the other ~ 45% is spread 
relatively evenly between autumn (~25%) and spring (~ 20%). 
In contrast, at Outeniqua, spring contributes the most rainfall 
with almost 30%, while rainfall in summer, autumn and winter 
contribute 22–25%.

Table 1. Average seasonal and total annual rainfall, and average seasonal and annual temperature (daily maximum and minimum) for each 
of the weather stations: Outeniqua and Langgewens. Standard deviations of means are also presented. Seasons here were described as  
summer = December, January, February (DJF); autumn = March, April, May (MAM); winter = June, July, August (JJA); and spring = September, 
October, November (SON).

Parameter MAM JJA SON DJF Annual
Outeniqua

Tmax 22.5 18.8 20.3 23.1 21.4
Std dev 0.7 0.8 0.6 0.5 2.4
Tmin 12.0 7.7 10.3 13.6 11.2
Std dev 0.5 0.5 0.6 0.6 2.9
Rain 185.4 160.0 162.3 161.7 669.4
Std dev 103.1 80.0 87.2 71.9 223.8

Langgewens
Tmax 25.2 17.6 23.8 28.7 24.2
Std dev 0.8 0.9 1.1 1.0 5.2
Tmin 13.9 8.6 11.2 15.1 12.5
Std dev 0.6 0.7 0.8 0.8 3.3
Rain 101.7 165.9 150.3 145.3 563.9
Std dev 46.8 54.5 83.3 98.9 217.0

Figure 2. The percentage contribution of each season to the annual total rainfall for the Langgewens station (black) and the Outeniqua station 
(grey). Seasons are defined as summer = December, January, February (DJF), autumn = March, April, May (MAM), winter = June, July, August (JJA) 
and spring = September, October, November (SON).
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Figure 4. Correlograms showing the median AC value for (a) the SPI 3, SPI 6, SPI 9, and SPI 12 for synthetic dataset without seasonality at the 
Outeniqua station; and (b) the AC for SPI 3, SPI 6, SPI 9, and SPI 12 for a perfect sample at Outeniqua

Analysis of drought regimes for the two stations shows slight 
differences between SPI 12 and SPEI 12, with SPEI 12 showing 
slightly more severe drought conditions, particularly with regards 
to the 2015–2018 drought (Fig. 3). Figure 3 shows that Langgewens 
experiences persistent and recurrent drought conditions, with six 
mild to severe drought events occurring over the study period. In 
terms of the 2015–2018 drought, both SPI and SPEI show that the 
drought began towards the end of 2014, peaked in 2017 and dry 
conditions extended up to the end of 2018 (end of the dataset). 
Furthermore, Fig. 3 shows that at Langgewens, drought conditions 
have only surpassed the −2 index threshold three times (for SPEI) 
and twice (for SPI 12) during the study period, of which the 2015–
2018 event was the most severe. These results are consistent with 
that of Botai et al. (2017) and Theron et al. (2021). The Outeniqua 
station also experiences recurrent and persistent drought, with 11 
mild to severe drought events occurring over the study period. 
Drought conditions surpassed the −2 index threshold once for 
SPI and twice for SPEI, including the 2015–2018 event. For the 
Outeniqua station, the 2015–2018 drought began in 2016, also 
peaking in 2017, and extended up to the end of 2018. Once again, 
these results are consistent with those of Botai et al. (2017).

Observing persistence in SPI and SPEI indices

Figure 4a shows the AC of SPI 3, SPI 6, SPI 9 and SPI 12, where 
seasonality has been purposefully ignored using the 100 synthetical 
datasets for Outeniqua. As expected, AC drops off linearly with 
lag for each index, reaching zero when the time lag surpasses the 
accumulation period of the index (i.e., after 3 months for SPI 3, 
after 6 months for SPI 6). Since seasonality has been ignored, 
the ACs shown in Fig. 4 do not depend either on the mean or 
variance of the rainfall used to calculate the drought index and 
will thus hold for any region (Lyon et al., 2012). Figure 4b shows 
an example of the AC of a dataset where the rainfall values are 
entirely independent. Thus, Fig. 4b can be used to compare the 
persistence of AC of SPI where rainfall values used to calculate 
SPI are related in some or other way. The theory behind Fig. 4b 
is further explained in Lyon et al. (2012). Only SPI is shown since 
the figure for SPEI will look identical. This is because both indices 
are based primarily on accumulated rainfall as a percentage of the 
mean (Lyon et al., 2012).

The effect of seasonality on AC is shown in Fig. 5 for a start 
time of each month of the year for each station. These results 

Figure 3. SPI 12 (left) and SPEI 12 (right) for Langgewens (top) and Outeniqua (bottom) for the period 1965–2018. The drought threshold of −1 
has been highlighted for reference. 
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were obtained from the median AC of the 100 synthetic datasets 
in which seasonality was retained. The information in Fig. 5 
allows for the selection of a suitable start time to enhance or 
diminish the persistence. In addition, Figs 5a and b allow for the 
comparison of persistence characteristics between SPI and SPEI 
for the Langgewens station. There is a noticeable difference in the 
persistence between SPI and SPEI for the Langgewens station, 

with SPEI showing diminished persistence (indicated by the 
‘tighter fit’ of the lines). This suggests that SPI can better capture 
persistence in this region and will consequently be more useful 
for persistence analysis. Outeniqua (Fig. 5c) shows lower SPI 
persistence characteristics than Langgewens, which was expected 
since Outeniqua does not have such a pronounced rainfall season 
(Fig. 2).

Figure 5. Correlograms showing the median AC value, with seasonality retained, for start times of January through to December for the synthetic 
datasets for (a) SPI 12 for Langgewens, (b) SPEI 12 for Langgewens, and (c) SPI 12 for Outeniqua



109Water SA 49(2) 103–116 / Apr 2023
https://doi.org/10.17159/wsa/2023.v49.i2.4026

While April emerged as the month with the most diminished 
persistence characteristics, for both SPI and SPEI, there was no 
clear month that showed the same for enhancement. August, 
September, October, and November emerged as months where 
AC is enhanced for several subsequent months. November had 
the highest AC, but this was only present for the first four lag 
times, after which AC dropped off relatively steeply. October and 
September showed lower AC at lag 1 than November, but the AC 
remained higher for longer and did not drop off as steeply as that 
for November. August showed lower AC than the other three 
indices at lag 1 to lag 4 but then remained higher for longer, with 
AC > 0.5 up to lag 9. In summary, choosing November as a start 
month will give an enhanced prediction of the SPI conditions in 
subsequent months (or short lead times) but will quickly lose the 
skill at longer lead times. August may retain some skill to predict 
SPI conditions at longer lead times than November, but it will be 
a weaker prediction. These results also confirm the analysis by 
Johnston and Wolski (2018), who used April/May for the start of 
the rainfall season and October for the end of the rainfall season 
for the WRRWC. For the rest of the study, September and April 
will be used as the start times. September was chosen because 
it is a good middle ground between November and August and 
corresponds to the end of the primary winter rainfall season (or 
beginning of spring).

Lyon et al. (2012) showed that the influence of seasonality on 
the persistence characteristics of the SPI or SPEI is through the 
variability of the accumulated amount of rainfall over a particular 
period. Therefore, there is no reliance on the AC of SPI nor SPEI 
on the seasonality of the mean rainfall, but rather only on its 
variance. For example, in the case of the WRRWC (Langgewens), 
April is near the start of the rainfall season; thus, the total rainfall 
received in subsequent months (May–July) is considerable when 
compared with that received in the earlier months of the year 
(January–March). Conversely, for September, which falls at the 
end of the rainfall season, the total rainfall, and the variance 
of rainfall in subsequent months (October–February) is small 
compared with that of the previous months of May–August. 
This is important because when accumulated rainfall totals are 
examined at longer timescales, the post-October period generally 
contributes little to the total variability, whereas the post-April 

months contribute the most. This is further supported by Fig. 6,  
which shows the seasonality of 5-month rainfall totals at 
Langgewens and Outeniqua. For the Outeniqua station, rainfall 
accumulated over a 5-month period does not vary markedly from 
one overlapping 5-month period to the next. At Langgewens, the 
accumulated rainfall varies substantially depending on what part 
of the calendar year is considered. As such, if an April start time 
is taken at Langgewens (Fig. 6a), the rainfall totals increase with 
increasing lag.

Figures 7 and 8 show how seasonality or start times can enhance 
or diminish the persistence of SPI (Fig. 7) and SPEI (Fig. 8) at 
Langgewens. The figures show the median value of AC computed 
from the 100 synthetic datasets where seasonality was retained 
for the start times of April and September for the various 
accumulation periods. The 95% confidence limits on the AC 
(shown by the dotted lines in Figs 7 and 8) were computed by 
ranking the AC values across the 100 synthetic datasets for a 
given lag time and using the min and max values as the upper and 
lower limit. The straight, dashed lines in Figs 7 and 8 show the 
AC of the various indices for the case of no seasonality. Taking a 
start time of April, the AC values drop off quickly at increasing 
lag times, even quicker than in the case of no seasonality. In 
contrast, when selecting a start time of September, the AC values 
remain higher for several months (or lag times). In other words, 
the ‘memory’ of the dry (non-rainfall) season was quickly lost, 
and the AC dropped off rapidly. As such, if dry conditions occur 
at the start of the rainy season, the greater variability between the 
‘dry’ and ‘wet’ months delivers an opportunity to break these dry 
conditions (Lyon et al., 2012). In contrast, if dry conditions occur 
in the dry season, there is minimal opportunity to alleviate these 
conditions due to the relatively low rainfall variability during 
the dry season. Thus, in regions with high rainfall seasonality, 
such as Langgewens, seasonality will enhance or diminish the 
predictability of SPI and SPEI, depending on the start time. This 
tendency is more pronounced at longer intervals such as SPI 9 
or SPI 12. This makes these two accumulation periods useful for 
seasonal predictions. In addition, when comparing SPEI (Fig. 8)  
with SPI (Fig. 7), SPEI shows the same trends as SPI but has 
slightly diminished AC for 6- and 9-month accumulation periods 
for a September start time.

Figure 6. The fraction of April–August (left) and October–March (right) rainfall for Outeniqua (solid red lines) and Langgewens (dashed blue lines) 
stations for subsequent, overlapping 5-month periods
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Figure 7. Correlograms showing the median AC value (bold solid line) for the synthetic Langgewens dataset, with seasonality retained, for start 
times of April (left) and September (right) for SPI 3, SPI 6, SPI 9, and SPI 12 against the case for no seasonality (dashed grey line). The 5% and 95% 
confidence intervals are shown by the fine dotted lines.
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Figure 8. Correlograms showing the median AC value for the synthetic Langgewens dataset for start times of April (left) and September (right) 
for SPEI 3, SPEI 6, SPEI 9, and SPEI 12 against the case for no seasonality (dashed grey line). The 5% and 95% confidence intervals are shown by 
the fine dashed lines.
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Variations in persistence

Seasonal changes in persistence characteristics of SPI and SPEI 
indices for both stations are shown in Table 2. The results were 
obtained from the 100 synthetic datasets where seasonality was 
retained. Results showed persistence varied, with the greatest 
persistence observed in the longer accumulation periods of SPI 
9 or SPEI 9 and SPI 12 or SPEI 12. There is a large discrepancy 
between persistence at Langgewens from 3–8 months, depending 
on the start time considered. The greatest accumulation periods 
were for spring for Langgewens, with lag times of up to 8 months. 
The lowest persistence at Langgewens was for autumn.

For the Outeniqua station, persistence characteristics are similar 
between seasons, aside from spring which shows the lowest 
persistence. Referring to Fig. 2 as well as Engelbrecht et al. (2015), 
this is explained because spring contributes the most to the total 
annual rainfall, and thus rainfall variability in spring will be the 
highest. Results from Roffe et al. (2021) show evidence of trends 
towards an increase in the degree of seasonality concentrated 
around the winter months for the Cape south coast. This suggests 
that this methodology may become more applicable in this region 
in the future. Since SPEI does not appear to have any benefits 
over SPI for Langgewens, for the rest of the analysis, the rest of 

the study will focus on the use of SPI. However, the principles 
documented will also apply to SPEI.

Baseline probabilities for the Western Cape

The previous sections illustrate that persistence of drought indices 
can provide valuable predictive information for several months of 
lead time. These persistence characteristics can also be utilised to 
determine PDFs for any given, observed, initial condition (Lyon 
et al., 2012; Behrangi et al., 2015). Because only the inherent 
persistence characteristics of drought indicators are considered, 
these PDFs provide baseline probabilities. Figure 9 shows PDFs 
for SPI 9 for a start time of April at 9 months lead time for 2015–
2018. The study chose an April start time because it gives a more 
reliable or predictable PDF at each lag time than a September start 
time. This is because SPI 9 in April captures accumulation over the 
dry season from August– April. In contrast, SPI 9 in September 
(accumulating over January–September) contains the wet season. 
Figure 9 shows that the distribution at short lead times (1–3 
months) is narrower than that at longer leads (6–9 months). This 
is due to the influence of the climatological mean at longer lead 
times. This allows for a ‘greater memory’ of the initial condition 
at shorter lead times, while at longer lead times the PDF will tend 
toward its climatological distribution (Lyon et al., 2012).

Table 2. Seasonal changes in persistence characteristics of SPI 3 and SPEI 3, SPI 6 and SPEI 6, SPI 9 and SPEI 9 and SPI 12 and SPEI 12 for Langgewens 
and Outeniqua stations, where persistence was defined as the number of months where AC exceeds 0.6

Langgewens Outeniqua

Start time SPI 3 SPI 6 SPI 9 SPI 12 Start time SPI 3 SPI 6 SPI 9 SPI 12

March (autumn) 1 2 2 3 March (autumn) 1 2 5 6

June (winter) 2 5 7 5 June (winter) 2 3 3 5

September (spring) 2 3 6 8 September (spring) 1 2 3 3

December (summer) 2 2 4 6 December (summer) 2 4 5 6

Start time SPEI 3 SPEI 6 SPEI 9 SPEI 12 Start time SPEI 3 SPEI 6 SPEI 9 SPEI 12

March (autumn) 1 2 3 3 March (autumn) 1 2 5 6

June (winter) 2 4 5 5 June (winter) 2 3 3 5

September (spring) 2 3 5 8 September (spring) 1 2 3 4

December (summer) 2 3 4 6 December (summer) 2 4 5 6

Figure 9. The probability density function of SPI 9 for the years 2015–2018 for Langgewens for an April start time. The blue line indicates the 
initial condition, and the red line indicates the maximum lead time of SPI (9 months).
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For an April start time in 2015, the initial SPI 9 value is −1.4; at 4 
months lead time (August 2016), SPI 9 value was −1.6. Relative to 
the climatological mean, the unconditional persistence ‘forecast’ 
for August 2017 indicates an enhanced probability of SPI 9 
values being <0. By February or at a 9-month lead time, the PDF 
resembles the climatological mean. For an April start time in 
2016, the initial SPI 9 value was −0.95; at 4-months lead time, SPI 
was −0.05. Relative to the climatological mean, the unconditional 
persistence ‘forecast’ for August 2016 indicates an enhanced 
probability of SPI 9 values being >0. Taking SPI 9 in 2017 for an 
April start time, the initial condition (value) was −1.05, and at 4 
months lead time (August 2017) SPI was −1.7. Similarly, for April 
2018, the initial SPI 9 was −1.2 while at 4 months lead time, SPI 
9 was −1.4. Once again, the PDFs for April 2017 and 2018 show 
an enhanced probability of SPI 9 values being >0 for August 2017 
and 2018.

Optimal persistence

After applying the formula set out by Lyon et al. (2012) to optimise 
the persistence of SPI 6, the difference between optimised AC and 
the original AC is shown in Fig. 10 for the case of no seasonality 
at Outeniqua (Fig. 10c), and the case of inclusion of seasonality at 
Langgewens (Figs 10a and b). SPI 6 was chosen for this process 
because, from Fig. 7, SPI 6 and SPI 3 showed lower persistence 
than SPI 9 and SPI 12, so optimising for these accumulation 
periods is likely to bring the most benefits. Figure 10 shows that 
when considering only values which are shared between two 
accumulation periods, the persistence is higher, even in the case 
of no seasonality (Fig. 10c). For a September start time at both 
stations (Figs 10 a and c), the greatest optimisation occurs at longer 
lag times. For an April start time (Fig. 10b), the optimisation is 

greatest at shorter lags. When drought index predictions are based 
exclusively on persistence characteristics, the optimal persistence 
method is the more appropriate technique for both regions.

Behrangi et al. (2015) suggested that this methodology may be 
further improved by combining seasonal drought persistence 
characteristics with other large-scale forcing mechanisms. Results 
of Archer et al. (2019) and Odoulami et al. (2021) suggest that 
AAO/SAM may influence seasonal rainfall in the WRRWC and 
will thus likely enhance the predictive skill of persistence.

Cumulative distribution functions (CDF)

Figure 11 shows the CDF for SPI 9 for an April start time for the 
drought years 2015–2018 and the probability that SPI < −1 in 
October for the observed Langgewens and Outeniqua datasets. 
First, it should be noted that all 4 years at Langgewens show a 
high probability of SPI < −1. For SPI 9 in 2015, the probability of 
drought occurring in October was ~75%. In 2016, the probability 
was ~25%, 2017 showed a ~48% probability, and 2018 showed a 
~30% probability. The probabilities reflect the evolution of the 
drought over the 4 years. According to Theron et al. (2021), the 
drought was most severe in 2015 and 2017 in the WRRWC.

For Outeniqua, only 2017 showed a high probability (~68%) of 
SPI < −1. In 2015 at Outeniqua, there was a ~22% probability 
of drought occurring. 2016 (~18%) and 2018 (~8%) showed the 
lowest probability of SPI < −1. This was expected as the Outeniqua 
area did not experience drought conditions in 2015 as severe as 
Langgewens. Both showed high drought probability in 2017 when 
the drought reached its maximum regional extent (Theron et al., 
2021). However, Outeniqua showed a lower drought probability 
than Langgewens for 2018.

Figure 10. (a) Lagged correlations of SPI 6 for the case where seasonality is retained using the standard approach (solid blue line) vs the optimal 
persistence method (solid red line) for a September start time for Langgewens. The dotted line shows the difference between the optimal and 
standard approach; (b) as for (a) but for an April start time; (c) as for (a) but for the Outeniqua station.
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CONCLUSIONS AND RECOMMENDATIONS

The work presented here sought to apply the methodology set out 
by Lyon et al. (2012) to quantify the persistence characteristics of 
two drought indices and to establish a set of baseline probabilities 
for seasonal drought prediction in the WRRWC. Cumulative 
density functions for the 2015–2018 drought period were 
developed to give an indication of the methodology’s potential 
for predicting drought. The study also aimed to determine if 
there was any benefit of using SPEI over SPI for this analysis. The 
study found that, at least for the Langgewens region, SPI showed 
greater persistence than SPEI. Thus, using SPI over SPEI for this 
application in this region may provide some predictive benefits. 
In addition, seasonality was able to enhance and diminish the 
predictability of drought at Langgewens. Selecting September 
(spring) as a start month for such calculations at the Langgewens 
station improved persistence characteristics by up to 5 months 
of lead time when compared with a March (autumn) start time. 

However, no distinct start month improved persistence at the 
Outeniqua station.

The results show potential for the use of drought indices for 
seasonal drought prediction in the WRRWC. It is recommended 
that further studies be undertaken which incorporate a more 
extensive set of weather stations or use gridded rainfall data. 
Furthermore, follow-up studies should test the predictive skill and 
skill scores outside the case study period using cross-validation 
with large datasets. Finally, additional research is needed to 
explore how coupling drought indices with other factors such as 
the presence of AAO/SAM (Archer et al., 2019), El Niño 3.4, and 
sea-surface temperature (Behrangi et al., 2015) could improve 
predictive skill. The results may aid interpretation and highlight 
areas where this methodology can be applied within an early 
warning context or decision support tool for the Western Cape 
and highly seasonal regions in South Africa. The methodology and 
results also show that drought prediction can be enhanced using a 

Figure 11. Cumulative distribution plots of SPI 9 for an April start time for Langgewens (top) and Outeniqua (bottom) for each of the drought 
years 2015–2018. The solid black line indicates the SPI < −1 drought threshold.
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simple computation and minimal data inputs. This is particularly 
relevant to drought-prone regions where data for more advanced 
computations may be scarce, such as sub-Saharan Africa.
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