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The eastern highlands of Zimbabwe, particularly Chimanimani District, are endowed with natural water 
bodies such as springs, pools, wetlands, puddles and river systems, which are potential sources of water 
for irrigated farming. Despite this, water challenges continue to exist due to rainfall seasonality and lack of 
suitable water harvesting sites. This calls for solutions to harness water in long-lasting sources to support the 
piped micro-irrigation schemes. These schemes are pillars in agricultural interventions such as horticulture, 
livestock farming, fish farming and beekeeping. This study therefore, determined potential rainwater 
harvesting (RWH) sites in Chimanimani District using geospatial techniques. Water pixels from Landsat 8 
images were extracted using the normalised difference moisture index (NDMI) and normalized difference 
vegetation index (NDVI). Potential RWH sites were classified into land-based zones, wetlands and natural 
water bodies. Findings show that land-based zones cover 27.53%, wetlands cover 24.65% and water bodies 
cover 6.11% of the district. The study also indicates that integrating geographic information systems with 
remote-sensing tools is a useful approach in identifying RWH sites. Thus, this study provided a spatially 
explicit approach and presents a suitability map for RWH in Chimanimani District.
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INTRODUCTION

In arid and semi-arid regions, availability of water is one of the main limiting factor towards achieving 
food security and socio-economic development and thus meeting the Sustainable Development 
Goals (SDGs). These water-stressed regions cover 35% of the Earth and contain more than 40% of 
the world’s population who are predominantly practising rainfed agriculture (Kahinda et al., 2008; 
Adham et al., 2016). Rainfed agriculture is increasingly vulnerable to frequent water scarcities due 
to errratic rainfall, aridity, droughts, seasonality of rainfall, climate change and variability. Thus, 
rainwater harvesting (RWH) is largely employed to mitigate the spatial and temporal variability of 
rainfall by providing alternative sources of water for domestic needs, crop and livestock production 
(Adham et al., 2016). RWH captures, conserves and stores rainfall and surface runoff in repositories 
such as reservoirs, bunds, pans, terraces and ponds. Harvested rainwater extends the duration of the 
growing season by supplementing water during times of dry spells and supplying water for irrigation 
(Berhanu and Bisat. 2018). Nevertheless, the success of RWH systems depends heavily on identifying 
suitable sites for their location (Adham et al., 2016).

Methods and tools that have been used for identifying suitable sites for RWH include field surveys, 
and GIS-based multi-criteria evaluations (Nyirenda et al., 2021). Field surveys are appropriate for 
selecting suitable RWH sites for small and accessible areas. However, field surveys are less effective 
for selection of appropriate RWH sites for larger areas. In addition, fieldwork is costly in terms of 
time and financial resources (Bisrat and Berhanu, 2018). Field surveys require experienced personnel 
to locate reliable sites for RWH, which are not always available in low-income countries. Thus, given 
the challenges and difficulties of conducting field surveys, novel methods which integrate GIS and 
remote sensing offer relatively cheap, simple and quick ways to identify suitable sites for RWH 
even in inaccessible areas. For example, the use of remote-sensing based spectral indices such as 
the topographic wetness index (TWI), normalized difference vegetation index (NDVI) and the 
normalised difference moisture index (NDMI) aid in understanding the soil moisture regimes in 
an area (Kahinda et al., 2008; Nyirenda et al., 2021). TWI requires very high-resolution input data 
which, however, are not readily available in arid and semi-arid regions such as Zimbabwe. This 
challenge inherent in using the TWI can be addressed by using NDMI and NDVI. The two indices 
complement each other to characterise water and moisture stress by extracting surface water from 
other ground surface features (Grabs et al., 2009; Sahu, 2014). However, little attention has been paid 
to the performance of these indices in selecting suitable RWH sites especially in dryland regions. 
Against this backdrop, the purpose of this study was to identify RWH sites using NDMI and NDVI 
in Chimanimani, Zimbabwe.

MATERIALS AND METHODS

Study area

Chimanimani District lies on the eastern boundary of Zimbabwe with Mozambique (Fig. 1). It covers 
an area of 30 283.36 km2. The district has a population of 153 620 (Chimanimani Rural District 
Council, 2017; ZimStat, 2022). The geology of Chimanimani is dominated by limestone, shale, 
quartzite, dolerite and metasediments. Soils are primarily determined by the underlying geology. 
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Four main soil types are: red soils or ferralsols derived from schist, 
white sandy soils or leptosols derived from quartzite, alluvial soils 
or luvisols fringing larger streams and small rivers, and forest 
soils or lixisols which are humus-rich (Ghiurghi et al., 2010). The 
relief varies from 2 436 m amsl on the east to 600 m amsl in the 
west. It comprises a mountain plateau of folded quartzite and 
metamorphosed sandstones to the east and a low-lying valley in 
the west. Of significance is the Chimanimani mountain range that 
stretches from west to east with altitudes ranging between 1 000 m 
amsl and 2 436 m amsl. The mountain range intercepts moisture 
air from the Indian Ocean resulting in relief rainfall on windward 
slopes to the east (Timberlake et al., 2016).

The climate of Chimanimani varies from humid tropical in the 
eastern highlands to semi-arid in the north and west lowlands. 
The mean annual temperature varies from 22°C in the lowlands 
to 18°C in the mountains. The rainy season extends from 
November to April. On average, about 1 074 mm of rainfall is 
received annually with significant variation from the highland 
to the lowland. Low-lying semi-arid areas receive on average 
484 mm/yr of rainfall while the neighbouring highlands receive 
1 300 mm/yr. The average pan evaporation rate is 2 000 mm/yr 
(Timberlake et al., 2016). Chimanimani District experiences an 
average annual temperature of 16°C. Rainfall in the district varies 
from the eastern highlands to the low-lying western regions. The 
eastern highlands receive 1 400 mm of rainfall per year whilst 
the western areas receive between 300 mm and 800 mm annually 
(Chimanimani Rural District Council, 2017). The eastern plateau 
of Chimanimani is a watershed of transboundary rivers flowing 
from Zimbabwe to Mozambique.

Subsistence farming is the major source of food and family 
incomes in the district (Chimanimani Rural District Council, 
2017). Farmers grow cereals, small grains, vegetables, fruits, 
tea, coffee and macadamia nuts. Due to insufficient rains, most 
people rely on springs, rivers, wetlands and pools for watering 
animals, domestic water needs and supplementary irrigation. 
Low-cost piped micro-irrigation schemes along reliable natural 
repositories have been adopted to extend the farming season and 
improve productivity after the main rain season which spans from 
November to March (Chimanimani Rural District Council, 2017).

Data collection

Cloud-free Landsat 8 Operational Land Imager (OLI) and Thermal 
Infrared Sensor (TIRS) images for the years 2013 to 2019 were 
acquired from the Remote Pixel website (https://remotepixel.ca). 
The images were used in calculating the normalised difference 
vegetation index (NDVI) and the normalised difference moisture 
index (NDMI) and the resultant RWH site map of Chimanimani 
district. Figure 2 shows the method used used in determing 
suitable RWH sites.

Two cloud-free images were retrieved in each year, one for the 
rainy season and the other for the dry season, to capture seasonal 
variations in identifying RWH sites. For the rainy season, images 
were retrieved for the months of March and April whilst images 
for August and September represented the dry season. The images 
were downloaded and pre-processed in ArcMap GIS to remove 
noise and enhance precision and interpretability of an image 
(Beebe et al., 1998). Changes in land cover and land surface 

Figure 1. Location and land uses of Chimanimani district, Zimbabwe
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conditions were monitored by mapping NDVI and NDMI for 
the same dates in the rainy season and in the dry season from 
the year 2013 up to 2019. This approach increased the accuracy 
in determining dependable RWH sites. Effects of cloud cover on 
NDMI and NDVI calculations were eliminated through collection 
of cloud-free imagery from the month of March and April in the 
rainy season with August and September for the dry season.

After pre-processing the images, NDVI and NDMI were then 
computed to extract for water and moisture stress features, 
respectively. NDVI is estimated as the difference between 
reflectance in near-infrared (NIR) and red (R) wavelengths using 
the formula (Haboudane et al., 2004):

 NDVI NIR
NIR

= �
�

R
R

                                      (1)

The raster calculator in ArcGIS was used to compute NDVI 
from Landsat 8 images, with Band 5 and Band 4 representing 
reflectance in the NIR and red regions, respectively. According 
to Haboudane et al. (2004), NDVI values range from +1.0 to −1.0 
with areas of barren rock, sand having very low NDVI values 
of 0.1 or less; sparse vegetation (shrubs and grasslands) have 
moderate NDVI values (approximately 0.2 to 0.5). High NDVI 
values (approximately 0.6 to 0.9) correspond to dense vegetation 
(Zarco-Tejada et al., 2005; Boegh et al., 2002; Elvidge and Chen, 
1995; Gao et al., 2000). For this study, the calculated NDVI maps 
were classified according to the USGS classification scheme 
adapted from Berhanu and Bisat (2018). From the classification 
(shown in Table 1), wetlands and water bodies were identified as 
ideal sites for RWH.

Water bodies and wetlands or swampy areas were identified as 
ideal sites for RWH. Dense green vegetation and bare soils were 

considered not to be ideal sites for RWH. Wetlands are shallow 
waterlogged areas or seasonally flooded marshes that act as land 
surface sponges by retaining a significant amount of water for 
long periods (Bullock and Acreman, 2003). NDMI was also used 
to extract water features from Band 5 (near infrared) and Band 6 
(short-wave infrared) of the Landsat 8 imagery using Eq. 2:

NDMI NIR SWIR
NIR SWIR

= �
�

                                  (2)

where SWIR represents the short-wave infrared and NIR 
represents the near infrared wavelength.

The SWIR is essential in differentiating wet conditions from dry 
conditions on land surfaces (Boschetti et al., 2014). NDMI values 
range from −1 to 1 depending on levels of moisture stress on land 
surfaces and vegetation. NDMI values ranging from 0.50 to 0.95 
represents deep and extended water masses. Table 2 highlights 
the guidelines used in classifying the NDMI map as adapted from 
Agricolus (2017).

For the final classification to obtain areas suitable for RWH, 
values of NDVI representing wetlands and water bodies, as well 
as values of NDMI representing very high canopy cover and very 
high moisture content or waterlogging conditions, were selected as 
suitable sites for locating RWH sites. Thus, the suitable RWH sites 
were waterlogged areas, moisture-saturated areas and high canopy 
cover areas without water stress. Moisture stressed and canopy-
covered areas were deemed undesirable RWH (Acharya et al., 
2018). Therefore, streams, water bodies, land-based zones, wetlands 
and natural springs were regarded as the most suitable RWH sites.

Table 1. Classification for NDVI values. (Adapted from Berhanu and 
Bisat, 2018)

NDVI range Land cover type

−1.0 to 0.046 Water bodies

−0.046 to 0.025 Wetlands 

0.025 to 0.090 Bare soil

0.090 to 0.140 Light green leafy vegetation

0.140 to 0.500 Medium green leafy vegetation

0.500 to 1.000 Dense green leafy vegetation

Table 2. Classification for NDMI values. (Adapted from Agricolus, 2017)  

NDMI range Interpretation

−1.0 to −0.8 Bare soil

−0.8 to −0.6 Almost absent canopy cover

−0.6 to −0.4 Very low canopy cover

−0.4 to −0.2 Low canopy cover 

−0.2 to 0.0 Mid-low canopy cover 

0.0 to 0.2 Average canopy cover 

0.2 to 0.4 Mid-high canopy cover

0.4 to 0.6 High canopy cover

0.6 to 0.8 Very high canopy cover

0.8 to 1.0 Very high moisture content or waterlogging

Figure 2. Flow chart of the procedures carried out to identify RWH sites
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Accuracy assessment of the classified RWH map

A confusion matrix was used for assessing the accuracy of the 
classified maps using the accuracy assessment plugin in QGIS. 
Ground reference data were selected randomly for each land 
cover class. The following accuracy assessment metrics were 
obtained: user’s accuracy, producer’s accuracy, overall accuracy 
and the Kappa statistic. The overall accuracy gives the proportion 
of area that is correctly classified. The user’s accuracy specifies the 
odds of other classes in the map representing the same class. The 
producer’s accuracy specifies the chances of a land cover class j in 
the reference data being classified as j in the map (Morisette and 
Khorram, 2000). The Kappa coefficient was used to determine 
levels of agreement between classified and referenced data for the 

different land cover classes (Tang et al., 2015). Table 3 shows the 
interpretation of Kappa coefficient values.

RESULTS AND DISCUSSION

Spatio-temporal variations of NDVI and NDMI

Figure 3 shows the spatial and temporal variations of NDVI and 
NDMI during the rainy and dry seasons in Chimanimani District 
from 2013 to 2019. There was an east–west variation in NDVI, 
with the eastern areas having higher NDVI values than the western 
areas. On the other hand, for NDMI, the western areas had higher 
values as compared to the eastern areas. These noted patterns were 
prevalent for both the wet and dry seasons in all the years.

Table 3. Kappa coefficient guidelines

Range <.01 0.00–0.20 0.21–0.40 0.41–0.60 0.61–0.75 0.76–0.80 0.81–1.00

Accuracy of classification Poor Slight Fair Moderate Substantial Excellent Almost perfect

Figure 3. Seasonal variations of NDVI and NDMI from 2013 to 2019
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Figure 3 continued. Seasonal variations of NDVI and NDMI from 2013 to 2019
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Figure 3 continued. Seasonal variations of NDVI and NDMI from 2013 to 2019

Spatial variations of the classified NDVI and NDMI

Amongst the NDVI, of the 6 land cover classes, areas occupied by 
light green vegetation, swampy areas or wetlands and water bodies 
were considered suitable for RWH, whereas areas comprising bare 
soils, medium green and dense green land cover were considered 
unsuitable sites for RWH. For the six NDMI feature classes, the 
most suitable sites for RWH were water, waterlogged areas and 
low-water-stressed areas. The other three classes were considered 
not suitable for RWHS. These were areas with very high water 
stress (Fig. 4).

Figure 5 shows the potential RWH map that was obtained after 
overlaying NDVI and NDMI thematic maps. Three RWH sites 

which were identified included the primary sources comprising 
known water bodies, secondary sources occupied by wetlands 
and the tertiary sources or land-based zones. Water bodies occupy 
6.11% (220.9761 km2), wetlands occupy 24.65% (896.3847 km2) 
while land-based RWH sites occupy 27.53% (995.823 km2) of  
the district.

The accuracy of the classified RWH map was assessed using the 
confusion matrix (Table 4). The overall accuracy of 78% explained a 
good agreement between the classified data and groundtruthed land 
cover reference data. Also, the Kappa coefficient was 0.63 which 
shows significant agreement between the classified data and the 
referenced data. Therefore, the classification was deemed accurate.
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Table 4. Confusion matrix

Classifed
Water Wetlands Bare soil Light green 

vegetation
Medium green

vegetation
Dense green 
vegetation

Total User’s accuracy

G
ro

un
dt

ru
th

ed

Water bodies 31 2 0 0 0 0 33 93
Wetlands 4 26 1 1 0 0 32 81
Bare soil 0 0 27 2 0 0 29 93
Light green vegetation 0 1 0 12 4 1 18 67
Medium green vegetation 0 0 4 6 20 3 33 60
Dense green vegetation 0 0 1 0 5 19 25 76
Total 35 29 33 21 29 23 170 Overall accuracy = 78%
Producer’s accuracy % 88 89 81 57 74 82 Kappa coefficient = 0.63

Figure 4. Classified NDVI (left) and NDMI (right) feature classes

Figure 5. Suitable RWH sites overlaid with locations of known micro-irrigation schemes
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DISCUSSION

This research was aimed at identifying RWH sites using remote 
sensing–derived NDMI and NDVI in Chimanimani District 
in Zimbabwe. Results indicated that 58.29% of Chimanimani 
District is suitable for RWH. Suitable RWH sites comprised water 
bodies (6.11%), wetlands (24.65%) and land-based zones (27.53%) 
consisting of light green vegetation. Areas comprising bare soils, 
medium green and dense green vegetation are unsuitable for 
RWH. Such areas occupied 41.71% of the district. These findings 
concur with observations by Archarya et al. (2018) which showed 
that light green vegetation, swampy areas and water bodies are 
ideal for RWH as opposed to dense vegetation and bare soils.

In addition, the findings in this study are in agreement with those 
of Berhanu and Bisat (2018) and Alwan et al. (2020), who observed 
that NDVI was an essential multi-spectral index in identifying 
water-harvesting sites in Ethiopia and Iraq, respectively. Studies 
in the city of Tianjin in China also show good performance of 
NDVI and NDMI calculated from Landsat 8 and Landsat TM in 
detecting surface water bodies which are potential RWH sites. 
There was high precision in identifying sites which could retain 
water throughout the year (Zhai et al., 2015).

CONCLUSION

This study presents an objective approach of identifying suitable 
RWH sites in Chimanimani District in eastern Zimbabwe using 
satellite products. The results provide important evidence that 
NDVI and NDMI are valuable in extracting potential RWH sites. 
Thus, integrating GIS and remotely sensed spectral indices is a 
relatively simple, cheap and quick way of identifying suitable 
RWH sites for micro-irrigation projects, not only in Chimanimani 
District but in other geographically similar regions.

The approach adopted in this study enables water managers 
to assess the suitability of RWH for any given area in a similar 
environmental setting. This can empower farmers to apply low-
cost irrigation technologies for micro-irrigation as they need to 
explore reliable water sources that support long-term farming 
projects. Nevertheless, there is still lack of information on the 
suitability of sites in harvesting rain-water for irrigation farming. 
Against this backdrop, this study successfully employed GIS and 
remote sensing–based technologies to determine RWH sites to 
supply water for small-scale irrigation projects.
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