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The status of diabetic embryopathy
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ABSTRACT
Diabetic embryopathy is a theoretical enigma and a clinical challenge. Both type 1 and type 2 diabetic
pregnancy carry a significant risk for fetal maldevelopment, and the precise reasons for the diabetes-
induced teratogenicity are not clearly identified. The experimental work in this field has revealed a par-
tial, however complex, answer to the teratological question, and we will review some of the latest
suggestions.
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Introduction

Claes Hellerstr€om (1), the senior and mentor of the authors of
this text, strongly inspired the early work in the field of
embryonic development (2–4) and maldevelopment (5), par-
ticularly in a diabetic environment (6–9).

Despite increased clinical efforts to improve glycemic con-
trol during diabetic pregnancy, the rate of congenital malfor-
mations remains increased in studies of diabetic gestation of
type 1 (10–21) and type 2 diabetes (16–25). In two recent
large meta-studies it was found that the malformation rate in
type 1 diabetic pregnancy did not differ from that of type 2
diabetic pregnancy (26,27), and both rates were estimated to
be around 5%–6%. The similar rates of malformation may
relate to the higher age and concomitant adiposity in type 2
diabetic women, both of which may increase the malforma-
tion incidence in this group (28–30).

The cell biological reason for the teratogenic effect of the
diabetic state is not known. However, both environmental
factors (maternal diabetic state and intrauterine conditions)
and genetic predisposition seem to be of importance in dia-
betic embryopathy, i.e. this is a case of environment–gene
interaction. The congenital malformations are likely to be
induced in early gestation (31–33), and the risk for giving
birth to a child with a malformation is enhanced by increased
maternal metabolic dysregulation (34–37).

Alterations of maternal metabolism

Several teratological factors in maternal serum have been
suggested, often from clinical experience, and subsequently
characterized in various experimental systems. The maternal

teratogenic factors most often indicated are hyperglycemia
and hyperketonemia.

Glucose

Increased glucose levels are the hallmark of the diabetic state,
and there is ample clinical evidence that increased glucose/
HbA1c levels correlate with increased risk for congenital mal-
formation in the offspring (32–35,37–40). In experimental
studies the analogous correlation between increased serum
glucose levels and increased risk for fetal malformations has
been demonstrated in diabetic rodents (8,41–76). In addition,
injections of glucose to pregnant non-diabetic animals have
also yielded teratological effects (77,78). Furthermore, in vitro
culture of rodent embryos in increased glucose concentra-
tions (48,57,64,79–95) as well as in diabetic serum (83,96–105)
yields disturbed development (Figure 1).

The alleged teratological effect of hyperglycemia is likely
to be correlated to the metabolism of glucose, since exposure
to L-glucose in vitro has no negative developmental effect
(79). Increased embryonic uptake of glucose by existing (106),
often up-regulated (107,108), glucose transporters also seems
to be necessary for the teratogenic effect. The increased
influx of glucose would yield increased glycolytic flux, as well
as increased mitochondrial activity of the citric acid cycle and
enhanced oxidative phosphorylation. Several consequences of
increased glucose metabolism have been suggested (109)
where increased mitochondrial production of superoxide
may possess the most pronounced teratogenic potential.
However, also increased hexose monophosphate shunt activ-
ity, reactive oxygen species (ROS)-mediated inhibition of
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glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and
increased formation of reactive alpha-oxoaldehydes may play
roles in the diabetes-induced embryonic dysmorphogenesis.
In addition, increased formation of advanced glycosylation
end-products (AGEs) and decreased intracellular availability of
arachidonic acid (and its products, the prostaglandins) are
suspected players in the teratogenic drama of diabetic preg-
nancy (Figure 2).

Of note, the pre-implantation embryo follows another
route toward maldevelopment, since a diabetes-induced
decrease of the inner cell mass (55,110) is likely to be
induced by hypoglycemia, due to down-regulation of glucose
transporters in the blastocyst, leading to decreased

intraembryonic glucose levels (111–113) and enhanced apop-
tosis (110,114).

Ketone bodies

The ketone bodies are synthesized in increased amounts in
the (maternal) liver in response to the diabetic state. The two
major compounds, beta-hydroxybutyrate and acetoacetate,
traverse the placenta (115) and are utilized as substrate (ace-
toacetyl-CoA) in the embryonic mitochondria. There is experi-
mental evidence for a teratogenic role for diabetes-associated
metabolites other than glucose. Thus, serum from diabetic
rats with normalized glucose levels is still teratogenic in in
vitro cultures (103,104), and the direct exposure to increased
ketone body levels in vitro yields disturbed development in
cultured rodent embryos (116–123). The mechanism for
ketone body teratogenesis should also include metabolism of
the compounds (124).

Combination effect

Culture of rat embryos in a combination of sub-teratogenic
levels of glucose and beta-hydroxybutyrate yields disturbed in
vitro embryonic development, thereby supporting the notion
of a synergistic relationship between diabetes-associated
metabolites (90). Both of these putative teratogens serve as
metabolic substrates in the embryo (and mother), and the
most prominent teratogen, glucose, has the most complex
metabolism involving glycolysis. Furthermore, the metabolic
pathways of the teratogens converge at the citric acid cycle
and oxidative phosphorylation in the mitochondrion, which
has led to the speculation that an overactivity of the
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Figure 2. Schematic outline of the development of diabetic embryopathy. Blue color marks increased activity/amount, and red color decreased or disturbed activity/
amount of compounds or processes. Note that more interactions between the items are likely to be present than those denoted here, and that the putative import-
ance of genetic predisposition is not included.

Figure 1. Two day-9 rat embryos from a normal (left embryo) and a diabetic
(right embryo) pregnancy. The latter embryo is growth-retarded (reduced crown-
rump length and somite number) and malformed (rotational defect, open neural
tube).
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oxidative phosphorylation pathway may be at the core of the
diabetic teratogenicity.

Alterations of fetal metabolism

Major teratogenic processes in embryonic tissues so far iden-
tified include alterations of signaling systems such as metab-
olism of arachidonic acid/prostaglandins (73,86,94,125–129).

Arachidonic acid/prostaglandins

Arachidonic acid is a polyunsaturated fatty acid present in
the phospholipids of membranes of the cells. The metabolism
of arachidonic acid and its products, the prostaglandins, is
crucial for cellular life. In particular, arachidonic acid is
involved in cellular signaling as a lipid second messenger.
Disturbed metabolism of arachidonic acid and prostaglandins
has been found in previous studies of experimental diabetic
pregnancy. Intraperitoneal injections of arachidonic acid to
pregnant diabetic rats diminished the rate of neural tube
damage (NTD) (48) as did enriching the diet of pregnant dia-
betic rats with arachidonic acid (130–132). Addition of arachi-
donic acid to the culture medium was shown to block the
embryonic dysmorphogenesis elicited by high glucose con-
centration (48,82,94). Addition of PGE2 to the culture medium
also blocked glucose-induced teratogenicity in vitro (86,94) as
well as maldevelopment of embryos cultured in diabetic
serum (101). Measurements of PGE2 have indicated that this
prostaglandin is decreased in embryos of diabetic rodents
during neural tube closure (128,133) in high-glucose-cultured
embryos (128) as well as in the yolk sac of embryos of dia-
betic women (134).

Previous studies have shown that the uptake of arachi-
donic acid by embryonic yolk sacs is increased in a hypergly-
cemic environment (126). This finding would preclude an
uptake deficiency of arachidonic acid in the conceptus of dia-
betic pregnancy, a result supported by the demonstration of
unchanged concentration of arachidonic acid in membranes
of high-glucose-cultured embryos in vitro (135).
Measurements in day-12 embryos, however, indicated a
decreased arachidonic acid concentration in the offspring of
diabetic rats (136). Disturbances in the availability or metabol-
ism of arachidonic acid affect the synthesis of prostaglandins.
Alterations in the activity of the rate-limiting enzyme cyclo-
oxygenase (COX), which converts arachidonic acid to prosta-
glandin H2, may be of major importance. There are two
isoforms of cyclo-oxygenase, COX-1 (constitutive) and COX-2
(inducible). A glucose-induced down-regulation of the gene
expression of COX-2, as well as a GSH-dependent decrease of
the conversion of the precursor PGH2 to PGE2 (PGE synthase),
has been demonstrated (128). Thus, the PGE2 concentration
of day-10 embryos and membranes was decreased after
exposure to high glucose in vitro or diabetes in vivo. In vitro
addition of N-acetylcysteine (NAC) to high-glucose cultures
restored the PGE2 concentration (128). Hyperglycemia/
diabetes-induced down-regulation of embryonic COX-2 gene
expression may be an early event in diabetic embryopathy,
leading to lowered PGE2 levels and dysmorphogenesis,

presumably because this pathway plays an important role in
neural tube development. Antioxidant treatment does not
prevent the decrease in COX-2 mRNA levels but restores PGE2

concentrations, suggesting that diabetes-induced oxidative
stress aggravates the loss of COX-2 activity. From these data,
it may be concluded that decreased availability of arachidonic
acid and the resulting decrease in several prostaglandins, in
particular PGE2, is likely to be involved in the teratogenicity
of diabetic pregnancy (cf. Figure 2) (132).

Other studies have shown that a diabetes-like environment
decreases embryonic PGE2 concentration (127,128,133) in
embryonic tissues. Thus, affected arachidonic acid metabolism
disturbs prostaglandins and embryogenesis (137) in several
ways, which emphasizes the teratological importance of pros-
taglandin and prostaglandin-associated pathways.

Diabetes-induced teratological processes

Several studies have suggested that diabetic embryopathy is
associated with alterations of various signaling systems, which
results in disturbed intracellular conditions, such as oxidative
stress (62,88,90,138), nitrosative stress (139,140), endoplasmic
reticulum (ER) stress (140–142), and hexosamine stress
(143,144). In addition, enhanced embryonic apoptosis
(77,78,93,114,145–149) has been regarded as a component of
diabetic embryopathy (Figure 2).

Oxidative stress

Oxidative stress reflects an imbalance between production of
reactive oxygen species (ROS) and an ability to detoxify the
reactive intermediates or to repair the resulting damage. ROS
can damage all components of the cell, including proteins,
lipids, and DNA. Some ROS act as cellular messengers in
redox signaling, and a state of oxidative stress can therefore
disturb normal cellular signaling. ROS are produced through
multiple mechanisms, e.g. by NADPH oxidase (NOX) enzymes,
and in mitochondria, where about 1%–2% of electrons pass-
ing through the electron transport chain are incompletely
reduced and give rise to the superoxide radical (�O�2 ). The
ROS with the highest capacity to cause cellular damage is the
hydroxyl radical, which, once formed, will alter DNA, RNA,
proteins, lipids, or carbohydrates without being removed by
any scavenging enzyme system.

The notion that diabetes is associated with oxidative stress
has been suggested by several authors (150–154). For
instance, increased lipid peroxidation and ROS generation
were found in diabetic rats, measured as increased serum 8-
epi-PGF2a levels (155) and increased electron spin clearance
rate (156). Cyclic voltammetric studies have also indicated
increased levels of lipid peroxidation in diabetic rats (157),
and the isoprostane 8-epi-PGF2a is increased in embryos
exposed to high glucose levels in vitro (128) and diabetes in
vivo (158). Examination of litters of diabetic rats demonstrated
lowered a-tocopherol (vitamin E) concentration in day-11
embryos and in the liver of day-20 fetuses (69).

The first evidence of an involvement of oxidative stress in
the pathogenesis of diabetic embryopathy was the
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demonstration that treatment of rodent embryos with antioxi-
dative agents largely normalizes increased glucose-induced
malformation rates in vitro (88, 90), observations that were
repeated (91,123,159,160) and extended to in vivo studies
(62,65,66,69,70,94,105,131,161–163). Furthermore, antioxida-
tive treatment was found to normalize several markers of oxi-
dative stress, such as serum 8-epi-PGF2a levels (155), electron
spin clearance rate (156), and the concentration of embryonic
isoprostanes in vitro (128) and in vivo (158). Evidence for dia-
betes-induced oxidative stress has subsequently been found
in several rat models of diabetic pregnancy (164).

Several different compounds with antioxidative properties
have been shown to diminish embryonic maldevelopment
resulting from exposure to high glucose levels in vitro or to a
diabetic intrauterine environment in vivo. Thus, adding scav-
enging enzymes, e.g. superoxide dismutase (SOD) (88), cata-
lase (88), or glutathione peroxidase (88), to the culture
medium protects rat embryos from dysmorphogenesis
induced by high glucose concentration in vitro. The antioxi-
dant NAC blocks dysmorphogenesis in high-glucose-cultured
rodent embryos (94,105,128,165–167) and neural crest cells
(168,169), and addition of glutathione ester to high-glucose
medium diminishes embryonic maldevelopment (91).
Actually, teratogenic concentrations of beta-hydroxybutyrate
or the branched chain amino-acid analog alpha-ketoisocap-
roic acid (KIC) can also be blocked by addition of SOD to the
culture medium (90).

Analogously, dietary supplementations with antioxidative
compounds have been shown to diminish diabetic embryop-
athy in vivo. Thus, administration of butylated hydroxytoulene
(BHT) (62), vitamin E (66,69,163), vitamin C (70,163), and folic
acid (170) decreases the malformation rate in the offspring of
diabetic rats and largely improves embryonic and fetal
growth in vivo. Alpha-lipoid acid supplementation has been
found to reduce the diabetes-induced high incidence of
resorptions and malformations in offspring of diabetic rodents
(171–173). Embryos exposed to a diabetic intrauterine milieu
have demonstrated diminished malformation rates after
maternal supplementation of NAC (174). Combined supple-
mentation of antioxidative compounds, e.g. vitamin E and C
(162), or folic acid and vitamin E (147), to pregnant diabetic
rats also diminished diabetes-induced dysmorphogenesis. In a
study of glucose-induced cardiac malformations in a mouse
model, the administered antioxidants decreased all negative
effects of hyperglycemia/oxidative stress, such as hampered
migration and increased apoptosis of neural crest cells, and
prevented outflow tract defects (175). In addition, pregnant
diabetic mice, transgenic for the CuZnSOD gene (SOD1) have
fewer malformed offspring than the diabetic wild-type mice
(138,139,142,176), illustrating the anti-teratogenic capacity of
increased ROS scavenging activity.

Embryonic neural tissue subjected to high glucose concen-
trations shows increased superoxide production, as measured
in a Cartesian diver system (177). One effect of increased
intracellular ROS production would be inhibition of the rate-
limiting enzyme of glycolysis, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), since this enzyme has displayed
sensitivity to ROS in several different conditions of oxidative
stress (178). This sensitivity resides in the thiol group of

cysteine residue 149 in the active site of the enzyme
(179,180). Oxidation of the thiol group by NO or ROS leads to
decreased enzyme activity (181), and blocking of this process
by antioxidants protects the activity of the enzyme (182).
Another mechanism for GAPDH inhibition also results from
mitochondrial production of ROS, activating poly-(ADP-ribose)
polymerase 1 (PARP 1) by damaging DNA. PARP 1, in turn,
induces ADP-ribosylation of GAPDH, leading to its inactivation
and an accumulation of metabolites earlier in the metabolism
pathway. In line with these considerations, decreased GAPDH
activity was found in rat embryos subjected to a diabetic
environment both in vivo and in vitro (183). Furthermore, add-
ition of the antioxidant NAC prevented the decrease in activ-
ity (183). In addition, fetuses and embryos of diabetic rodents
display increased rates of DNA damage (60,75,184), another
indication of enhanced ROS activity and damage in embry-
onic tissues. High-amplitude mitochondrial swelling was dem-
onstrated in embryonic neuroectoderm of embryos exposed
to a diabetic environment (185,186). This swelling decreased
after antioxidative treatment of the mother (74), implicating
an embryonic ROS imbalance, with conceivable consequences
for the rate of apoptosis in susceptible cell lineages in the
embryo (167,187). The mitochondrion plays an important role
in the apoptotic machinery, and previous studies have sug-
gested that an altered apoptotic rate may affect the mal-
development of embryos subjected to a diabetic milieu
(93,145).

Furthermore, diabetic transgenic mice, overexpressing thio-
redoxin-1, have a lower incidence of malformations and
decreased oxidative stress markers than diabetic wild-type
mice (188), demonstrating a parallel relationship between
dysmorphogenesis and degree of oxidative stress. Also, it has
been suggested that diabetes-induced oxidative stress in
embryos may cause maldevelopment via altered TNF-alpha
levels (189).

In a recent study of the activity of AMP-activated kinase
(AMPK) in embryos of hyperglycemic mice, it was demon-
strated that maternal hyperglycemia stimulated AMPK activity
and that stimulation of AMPK with 5-aminoimidazole-4-car-
boxamide-1-beta-4-ribofuranoside (AICAR) increased the rate
of NTD in the embryos (190). In addition, stimulation of AMPK
by hyperglycemia, hypoxia, or antimycin A could be inhibited
by antioxidants. The AMPK inhibitor compound C blocked the
effects of hyperglycemia or antimycin A on NTD occurrence,
suggesting that diabetes/glucose-induced stimulation of
embryonic AMPK activity is a teratogenic consequence of oxi-
dative stress in diabetic embryopathy (190). In support of that
notion, it was reported in a subsequent study that sole stimu-
lation of AMPK disrupts embryonic gene expression and
causes neural tube defects (191)

The bulk of data implicates oxidative stress and ROS
excess as an important component in the etiology of diabetic
embryopathy. The data also suggest that long-term exposure
to high glucose creates embryonic ROS excess either from
increased ROS production (177) or from diminished antioxi-
dant defense capacity (91,159,192). The ROS excess may be
small, restricted to particular cell populations (193,194), and
likely to vary with gestational time and nutritional status,
making direct ROS determinations difficult.
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Increasing ROS levels in embryos lead to malformations
(195,196), suggesting that ROS excess may also play a role in
the teratogenic process(es) of phenytoin medication
(197,198), ethanol abuse (193,194,199), and, possibly, thalido-
mide administration (200). Therefore, ROS excess may consti-
tute a common element in a number of teratogenic
situations, including diabetic pregnancy (cf. Figure 2) (201).

Hypoxic stress

In early organogenesis, oxygen levels are likely to be very low
in the embryonic environment, and excess glucose metabol-
ism could accelerate the rate of O2 consumption, thereby
exacerbating the hypoxic state. Since hypoxia can increase
mitochondrial superoxide production, excessive hypoxia may
contribute to oxidative stress. In a study of O2 availability in
embryos of glucose-injected hyperglycemic mice, it was
found that O2 availability was reduced by 30% in embryos of
hyperglycemic mice (202). When pregnant hyperglycemic
mice were housed in 12% O2, the NTD rate increased 8-fold
in the offspring. Conversely, housing pregnant hyperglycemic
mice in 30% O2 significantly suppressed the effect of mater-
nal diabetes to increase NTD (202). These observations sug-
gest that maternal hyperglycemia depletes O2 in the embryo
and that this contributes to oxidative stress and the adverse
effects of maternal hyperglycemia on embryo development
(Figure 2).

Isoprostane formation

Isoprostanes, e.g. 8-epi-PGF2a, are prostaglandin-like com-
pounds formed in situ from peroxidation of arachidonic acid
by non-enzymatic, free radical-catalyzed reactions, and they
therefore serve as indicators of lipid peroxidation (203–205).
These non-classical eicosanoids possess potent biological
activity as inflammatory mediators. Also, the formation of iso-
prostanes may, in itself, consume arachidonic acid, and there-
fore diminish the available pool of arachidonic acid in the
embryo (see above). It has been shown that a diabetes-like
environment increases the isoprostane levels in embryonic tis-
sues (128). In addition, supplementation of 8-epi-PGF2a to the
culture medium caused malformations in whole-embryo cul-
ture, thereby illustrating the independent teratogenic activity
of isoprostanes (206). Furthermore, adding SOD or NAC to the
culture medium with isoprostane excess normalized almost
all morphological and biochemical parameters, including the
elevated tissue concentration of 8-epi-PGF2a, thereby illustrat-
ing the teratogenic potential of diabetes/glucose-induced oxi-
dative stress (cf. Figure 2) (206).

AGE formation and RAGE activation

The biochemical process of advanced glycosylation end-prod-
uct (AGE) formation, which is accelerated in diabetes as a
result of chronic hyperglycemia and increased oxidative
stress, has been postulated to play a central role in the devel-
opment of diabetic complications (207). AGEs are known to
accelerate oxidative damage to cells in a diabetic

environment. Examples of AGE-modified sites are carboxyme-
thyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine.
Under oxidative stress due to hyperglycemia in patients with
diabetes, AGE formation is increased beyond normal levels.

RAGE, the receptor for AGE, is a transmembrane pattern
recognition receptor. Except for AGEs, RAGE has also other
agonistic ligands: high mobility group protein B1 (HMGB1),
S100/calgranulins, amyloid-beta, and MAC-1. The interaction
between RAGE and its ligands is thought to result in pro-
inflammatory gene activation. Ligand stimulation of RAGE ini-
tiates a signaling cascade resulting in activation of NFjB and
activation of NADPH-oxidase, thereby yielding increased intra-
cellular oxidative stress. An increased accumulation of AGE
has been found in the pathogenesis of several diabetic com-
plications, such as cataract, retinopathy, atherosclerosis, neur-
opathy, and nephropathy. Inhibition or knockout of RAGE
attenuates the detrimental effects of hyperglycemia in neur-
opathy and nephropathy (208).

It has also been suggested that AGE–RAGE activation is
involved in diabetic embryopathy. Thus, the embryonic for-
mation of glycated proteins (85,209,210) has been suggested
to influence the teratological events in diabetic pregnancy. It
has been shown in rodent embryos cultured in high glucose
that the levels of the AGE precursor 3-DG increase in embry-
onic tissues, and the addition of 3-DG to the culture medium
with physiologic concentrations of glucose induces malforma-
tions, an effect that is reversible with the addition of
SOD (85).

In a recent study of diabetic embryopathy with RAGE
knockout mice, it was found that maternal diabetes induced
more fetal resorptions, malformations (facial skeleton, neural
tube), and weight retardation in the wild-type fetuses than in
the RAGE�/� fetuses, despite similar maternal hyperglycemia.
In wild-type offspring, maternal diabetes increased fetal hep-
atic levels of 8-iso-PGF2a and activated NFjB in the embryos,
in contrast to unchanged 8-iso-PGF2a levels and NFjB activity
in diabetes-exposed RAGE�/� offspring. These findings sug-
gest that RAGE activation and oxidative stress are associated
phenomena in diabetic embryopathy (Figure 2).

Nitrosative stress

Nitrosamine overproduction, or ‘stress’, has been implicated
in diabetic embryopathy, as a concomitant—and, in some
studies, a ‘downstream’—event to oxidative stress. Thus, in a
study of yolk sacs of CuZnSOD-(SOD1)-overexpressing
embryos from normal and diabetic mice, it was found that
the SOD1-transgenic embryos were largely protected from
several of the negative effects of diabetes (139). Thus,
diabetes-induced elevated markers of oxidative stress (4-
hydroxynonenal and malondialdehyde reductions) were
diminished in the SOD1-transgenic embryos compared to the
wild-type embryos. Furthermore, hyperglycemia-increased
iNOS expression and nitrosylated protein were also dimin-
ished, and caspase-3 and caspase-8 cleavages were blocked,
in the SOD1-transgenic embryos. This finding suggests that
oxidative stress induces iNOS expression, nitrosative stress,
and apoptosis in diabetic embryopathy (139). In another
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study, diabetic pregnant mice were fed via gavage an inhibi-
tor of nitric oxide (NO) synthase (NOS) 2,L-N6-(1-iminoethyl)-
lysine (L-NIL; 80 mg/kg), once a day from embryonic (E) day
7.5 to 9.5 during early stages of neurulation. The treatment
significantly reduced the NTD rate in the embryos, compared
with that in vehicle (normal saline)-treated diabetic animals
(140). In addition to alleviation of nitrosative stress, ER stress
was also ameliorated, as assessed by quantification of associ-
ated factors. Apoptosis was reduced, indicated by caspase-8
activation. These results show that nitrosative stress is import-
ant in diabetes-induced NTDs via exacerbating ER stress, lead-
ing to increased apoptosis (140). The combined observations
support a role for nitrosative stress in diabetic embryopathy,
and suggest a ‘cross-talk’ between oxidative stress, nitrosa-
mine stress, and ER stress (see below and Figure 2).

ER stress

ER stress, also named unfolded protein response (UPR), is a
cellular stress response related to the ER, which is induced by
an accumulation of misfolded proteins in the ER lumen. The
ER stress/UPR diminishes protein translation, degrades mis-
folded proteins, and produces chaperones involved in protein
folding in order to restore normal ER function. If this is not
achieved, or the disruption is prolonged, the ER stress/UPR
shifts towards promoting apoptosis.

In a study of the effects of maternal diabetes on the devel-
opment of oocytes and early embryos by using time-lapse
live cell imaging confocal microscopy, the ER displayed an
increased percentage of homogeneous distribution patterns
throughout the entire ooplasm during oocyte maturation and
early embryo development. In addition, a higher frequency of
large ER aggregations was detected in oocytes and two-cell
embryos from diabetic mice. These results suggest that the
diabetic condition adversely affects the ER distribution pattern
during mouse oocyte maturation and early embryo develop-
ment (211).

In a study of oxidative and ER stress in SOD1-overexpress-
ing mice, it was found that maternal diabetes causes
increased levels of ER stress markers, e.g. C/EBP-homologous
protein (CHOP), calnexin, phosphorylated (p)-eIF2alpha, p-
PERK, and p-IRE1alpha; triggered XBP1 mRNA splicing; and
enhanced ER chaperone gene expression in wild-type
embryos, whereas all these changes were blocked in the
embryos of diabetic transgenic mice. This supports the notion
that diminishing diabetes-induced oxidative stress, e.g. by
SOD1 overexpression, blocks ER stress in embryos (142)

A downstream effect of the ER stress would be an activa-
tion of C-Jun N-terminal kinase (JNK). The possible relation-
ship between JNK1/2 activation and ER stress in diabetic
embryopathy was investigated in mice. Maternal diabetes
increased ER stress markers and induced swollen/enlarged ER
lumens in embryonic neuroepithelial cells during neurulation.
Deletion of both jnk1 or jnk2 genes diminished hypergly-
cemia-increased ER stress markers and ER chaperone gene
expression. In high-glucose cultured embryos, the addition of
the ER chaperone 4-phenylbutyric acid (4-PBA) diminished ER
stress markers and abolished the activation of JNK1/2 and its

downstream transcription factors, caspase-3 and caspase-8, as
well as Sox1 neural progenitor apoptosis. Consequently,
4-PBA blocked high-glucose-induced NTD in vivo. It was
concluded, therefore, that hyperglycemia induces ER stress,
which yields activation of the proapoptotic JNK1/2 pathway,
which yields induced neural tube apoptosis, and thereby
NTD (212).

Autophagy is an intracellular process to degrade dysfunc-
tional proteins and damaged cellular organelles, which, in
addition, regulates embryonic cell proliferation, differentiation,
and apoptosis. Furthermore, blockage of this process in
embryos causes NTDs reminiscent of those observed in dia-
betic pregnancies. In a study of NTD induction in diabetic
mice with or without 2%–5% trehalose water, the role of
autophagy was investigated. Maternal diabetes suppressed
autophagy in neuroepithelial cells and altered autophagy-
related gene expression. Trehalose treatment reversed
autophagy impairment and prevented NTDs in the embryos
of diabetic pregnancies. The study demonstrates that mater-
nal diabetes suppresses autophagy in neuroepithelial cells of
the developing neural tube, leading to NTD formation (213).

In a recent study of diabetes-induced cardiac malforma-
tions, it was found that the rate of atrio-ventricular septal
defects (AVSDs) was increased concomitant with enhanced ER
stress in embryonic hearts. Blocking of glucose-induced ER
stress with 4-PBA in an endocardial cushion explants culture
restored endocardial cell migration. The findings suggest that
development of the endocardial cushions is susceptible to
the insult of maternal hyperglycemia, and that diabetes-
induced ER stress in the developing heart mediates the nega-
tive effect on endocardial cell migration (214). The studies
suggest that ER stress is involved in the teratogenesis of
neural and cardiac malformations in embryos exposed to dia-
betes or hyperglycemia, and that ER stress, nitrosative stress,
and oxidative stress enhance each other (Figure 2).

Hexosamine stress

Increased ambient glucose concentrations yield increased
uptake, phosphorylation, and metabolism of glucose, primarily
by enhanced flux in the glycolytic pathway and, also, in the
hexosamine biosynthetic pathway (109). This is a pathway
that converts glucose to uridine diphosphate N-acetylglucos-
amine (UDP-GlcNAc).

Under normoglycemic conditions, approximately 1%–3%
of total glucose consumed by somatic cells are directed
down the hexosamine pathway (215). UDP-GlcNAc is the
substrate for the majority of glycosylation in the cell,
producing mucopolysaccharides (216). In this process UDP-
GlcNAc is attached to serine or threonine residues of pro-
teins, thus becoming a post-translational modification (beta-
O-linked glycosylation), which regulates protein function in
an analogous manner to phosphorylation (217). Altered
beta-O-linked glycosylation has been associated with a num-
ber of disease states, including cancer, inflammatory condi-
tions, and neurodegenerative diseases (218). Notably, it is
also implicated as a primary mechanism behind the
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development of insulin resistance and pancreatic beta-cell
destruction in type-2 diabetes (215,218)

It has been suggested that hexosamine stress may play a
role in diabetic teratogenesis (143,144,219). Indeed, defect
development has been demonstrated in pre-implantation
mouse embryos, treated with glucose (27 mM) or glucosamine
(0.2 mM), which was added to embryo culture media. Both
treatments disturbed embryo development, increased apop-
tosis, and decreased cell number in the resulting blastocysts
(219). Addition of benzyl-2-acetamido-2-deoxy-a-D-galactopyr-
anoside (BADGP), an inhibitor of O-linked beta-N-acetylgluco-
saminyltransferase (OGT), the enzyme which adds O-GlcNAc
to proteins, rescued all these phenotypes in the hypergly-
cemia treatment group, although only mild improvement
was seen in the glucosamine group (219). This may reflect
the relative potencies of each hexose in their capacity to
stimulate the UDP-GlcNAc production (215). In another study,
pregnant mice were injected with glucose to induce hyper-
glycemia, or glucosamine, to activate the hexosamine path-
way directly. Both treatments increased the NTD rate in the
embryos, decreased GSH levels, and increased oxidative
stress, as indicated by increased 2,7-dichloro-dihydrofluores-
cein fluorescence. Glucose and glucosamine also inhibited
expression of Pax-3; however, all these effects were prevented
by GSH ethyl ester administration (143). These findings sug-
gest a role for hexosamine stress in diabetic embryopathy
(Figure 2).

Apoptosis

The notion that apoptosis may be a component of the terato-
genic process of diabetic pregnancy has been studied thor-
oughly. Thus, there are several reports of increased rates of
apoptosis in embryos exposed to a diabetic environment
(77,78,146–149,167,187,220–222). In particular, there are
findings indicating increased apoptotic rates already in pre-
implantation embryos (93,114,145).

In a study of early post-implantation embryos, the
expression of Bcl-2 mRNA was decreased and the number of
deoxynucleotidyl transferase-mediated nick end labeling
(TUNEL)-positive cells increased in embryos of diabetic rats
compared to control embryos. These results suggest that a
Bax-regulated mitochondrial cytochrome c-mediated caspase-
3 activation pathway might be involved in the diabetic
embryopathy (146). In another early study, it was reported
that combined supplementation of folic acid and vitamin E to
pregnant diabetic rats diminished diabetes-induced dysmor-
phogenesis and normalized apoptotic-associated protein lev-
els (147). In another study of rodent embryos subjected to
high glucose in vitro or diabetes in vivo, disturbed develop-
ment was found, concomitant with increased activation of
caspase-3 and other markers of apoptosis. Supplementation
of NAC or an apoptosis inhibitor diminished both the dysmor-
phogenesis and apoptosis (167). Exposure to a diabetic milieu
during organogenesis thus increases dysmorphogenesis and
apoptosis in embryos.

In mice transgenic for the thioredoxin-1 gene with over-
production of the antioxidant thioredoxin-1, the incidence of

diabetes-induced malformation is markedly lower in diabetic
transgenic mice compared with diabetic wild-type mice.
Furthermore, the diabetes-induced increased markers for oxi-
dative stress, apoptosis-promoting proteins, and cleaved cas-
pase-3 production are all diminished in the offspring of
diabetic transgenic mice compared with the offspring of dia-
betic wild-type mice (188).

A new apoptotic pathway was recently suggested to be
activated by a diabetic/hyperglycemic environment, involving
the gene products of the ASK1-FoxO3a-TRADD-caspase-8
gene (149). Blocking components of this pathway diminished
the NTD rate in diabetic mice. Thus, hyperglycemia-induced
apoptosis and the development of NTD was reduced with
genetic blockage of either FoxO3a or Casp8, or by inhibition
of ASK1 by thioredoxin. In addition, examination of human
neural tissues affected by neural tube defects revealed
increased activation or abundance of the genes in the
cascade. The conclusion was that activation of the ASK1-
FoxO3a-TRADD-caspase-8 pathway participates in the devel-
opment of NTDs, which could be prevented by inhibiting
intermediates in this cascade (149). There is, clearly, strong
experimental evidence for a role of apoptosis in diabetic
embryopathy (Figure 2).

Genetics and epigenetics of diabetic
dysmorphogenesis

Several lines of evidence support the notion that the meta-
bolic alterations in the embryonic tissues are followed by
changes in genetics (gene expression) and epigenetics (regu-
lation of gene expression). Also there should exist permissive
conditions in the mother and offspring that pave the way for
the diabetes-induced genetic/epigenetic changes that ultim-
ately lead to embryonic maldevelopment, i.e. genetic predis-
position in mother and child.

Genetic predisposition

Despite similar teratological exposure, the effect of any ter-
atogen, including maternal diabetes/hyperglycemia, varies
between individuals. In addition to stochastic conditions, gen-
etic predisposition determines the effect of each teratogen
on a particular individual (223,224). Although predisposing
genetic conditions for diabetes are clearly present in offspring
of diabetic parents (225,226), as the offspring of a diabetic
father has higher risk of developing the disease than the off-
spring of a diabetic mother (227–231), it has been established
that diabetic men do not have an increased risk of fathering
malformed offspring (232,233). This indicates that the genes
predisposing for diabetes do not induce congenital malforma-
tions. In contrast, maternal diabetes has been suggested to
be associated with Down’s syndrome (234–236) and has also
been suggested to predispose for optic nerve hypoplasia in
female offspring (237). A genetic element may be present
in the etiology of diabetic embryopathy (238), a notion
supported by experimental data (58,84,138,239–242).

The contribution of the fetal genome and maternal (dia-
betic) environment was evaluated in a rat model where the
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outcome of diabetic pregnancy in two outbred substrains of
Sprague-Dawley rats (with low incidence, H, and high inci-
dence, U, of skeletal malformations in the offspring), and F1
hybrids between them was studied (84). The fetuses of dia-
betic H mothers had no skeletal malformations, regardless of
embryo type (H/H or H/U). When the diabetic mother was U
or from the hybrid strain (H/U) and the offspring of the mixed
H/U type, increased skeletal malformation (3%–5%) rates
resulted. When the embryos contained a major U genome,
either U/U or U/(H/U), further increased skeletal malforma-
tions (17%–19%) were found. These findings indicate that
both the maternal and fetal genomes are involved in the eti-
ology of diabetes-induced (skeletal) malformations in rodent
diabetic pregnancy (84). When pre-implantation embryos
were transferred from diabetic NOD mice to non-diabetic ICR
mice and allowed to develop until gestation day 13, as were
embryos from the reverse transfers, as well as from ICR-to-ICR
transfers, we found 8/58 (14%), 18/45 (40%), and 0/73 (0%)
malformed embryos in the NOD–ICR, ICR–NOD, and ICR–ICR
transfers, respectively. The result thus suggests that both the
embryo genotype and the maternal environment are of
importance for diabetic embryopathy (58). Moreover, in a
recent study one-cell mouse zygotes and blastocysts were
transferred from diabetic or control mice into non-diabetic
pseudopregnant female recipients, and were evaluated at
embryonic day 14 (243). The offspring from the diabetic rats
had higher rates of malformations than the controls, and the
conclusion was that exposure to maternal diabetes during
oogenesis, fertilization, and the first 24 hours is enough to
program permanently the fetus to develop significant mor-
phological changes (243). In order to characterize the relative
importance of the maternal and paternal genome in relation
to the teratogenicity of the maternal (intrauterine) milieu, rats
from two different strains were cross-mated. Thus, male rats
from a malformation-prone (L) and a malformation-resistant
(W) strain were mated with diabetic females from the other
strain to produce F1 offspring: LW (L male�W female) and
WL (W male� L female), which would be genetically identical
with exception of imprinted genes and mitochondrial types.
However, the malformation rate was 0% in the LW and 9% in
the WL offspring (244), demonstrating both a teratologic ‘dilu-
tion’ effect, as well as the importance of the maternal envir-
onment. Based on metabolic data from the two types of
pregnancy (indicating a more disturbed metabolic state in
the diabetic L rats), the study suggested that the fetal gen-
ome controls the embryonic dysmorphogenesis in diabetic
pregnancy by instigating a threshold level for the terato-
logical insult and that the maternal genome controls the
teratogenic insult by (dys)regulating the maternal metabolism
(244). Furthermore, when the F1 crosses were mated in a sub-
sequent study, the malformation rate of the F2 combinations
WL�WLdiabetic and LW� LWdiabetic was around 5% (245), a
further dilution of the teratogenic induction; however, the
malformed WL�WL offspring had only agnathia/microgna-
thia, whereas the malformed LW� LW offspring had 60%
agnathia/micrognathia and 40% cleft lip and palate. Thus,
despite identical autosomal genotypes, the diabetic WL and
LW female rats gave birth to offspring with markedly different
malformation patterns. This study suggested a teratological

mechanism in diabetic pregnancy influenced by maternal
metabolism and parental strain epigenetics (245).

In a previous study, it could be demonstrated that a spe-
cific variant of the catalase enzyme is present in rats that are
malformation-prone (Cs-1a), whereas another variant of the
catalase protein was present in rats that do not develop mal-
formations in response to maternal diabetes (Cs-1b) (241).
Thus, embryonic catalase activity was lower in embryos from
normal U rats than in embryos from normal H rats, and
maternal diabetes augments this difference (242). The cata-
lase cDNA and the promotor region of the catalase gene in
the U and H rat were sequenced (246) and yielded one
nucleotide mutation in the 5’-UTR region of the U rat cDNA
and a heterozygocity in the U rat gene promoter. Therefore,
the decreased catalase mRNA levels may result from different
regulation of transcription (promotor), and the difference in
the electrophoretic mobility in zymograms (241) may be a
result of post-translational modifications of the catalase
protein.

Using an inbred Sprague-Dawley strain (L) with about 20%
skeletal malformations when the mother is diabetic, and
inbred Wistar Furth rats (no diabetes-inducible skeletal
malformations), a global gene linkage analysis of the skeletal
malformations was performed with micro-satellites, a study
which yielded strong coupling of the malformations to seven
regions on chromosomes 4, 10, 14, 18, and 19, and a weaker
coupling to 14 other loci in the genome. Altogether we found
loci on 16 chromosomes. Searching for candidate genes
within a distance of 10 cM from each micro-satellite yielded
18 genes that had been implicated in previous studies of dia-
betic embryopathy. These genes were involved in embryonic
development/morphogenesis (Map1b, Shh, Tgfb3, Vegfa, Dvl2,
Nf1, Gsk3b, Gap43, Tgfbr3, Gdf1, Csf1r) (247–253), regulation
of DNA/RNA metabolism (En2, Brcc3, Tp53) (166,247,254–256),
regulation of apoptosis (Nol3, Bak1) (247), and cellular metab-
olism (Folr1, Akr1b1) (170,254,257).

Gene expression

Altered gene expression in the offspring has been demon-
strated in several studies (247,250,252–254,258–262) and
appears to be an integral component of the diabetic embry-
opathy (263). Pax3 gene expression was found to be
reduced in embryos of diabetic mice (77,78), and this tran-
scription factor may regulate the gene expression of the
licensing factor cdc-46 (264) and a gene, Dep-1 (265), as
well as p53 (255), all of which may be of importance for a
correct neural tube closure. Null mutation of the Pax3 gene
yields the Splotch mouse displaying neural tube defects
(77,266). It has also been shown that the decreased Pax3
expression in embryos of diabetic mice could be normalized
by treatment of the mother with antioxidants (202), thereby
demonstrating a coupling between ROS excess and a terato-
logically important change in gene expression. In a later
study, neural crest cells (NCCs) of Pax3-deficient embryos
displayed impaired migration and increased apoptosis.
Suppression of p53, either by null mutation of the p53
gene, or administration of a p53 inhibitor, pifithrin-alpha,
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prevented the defective NCC migration and apoptosis in
Pax3-deficient embryos, and also restored proper develop-
ment of cardiac outflow tracts. Pax3 thus appears required
for cardiac outflow tract septation because it blocks p53
expression during NCC migration (256).

The embryonic expression of genes controlling the defense
against oxidative stress is sensitive to maternal diabetes.
Thus, in a study of pregnant diabetic rats, the embryos dem-
onstrated decreased expression of CuZnSOD and MnSOD
(267). In addition, the expression of Gpx-1 and Gpx-2 was
decreased compared with embryos from normal rats,
enzymes that function in the detoxification of hydrogen per-
oxide, an important antioxidant system. The decrease in gene
expression of Gpx-1 was further enhanced in the malformed
embryos. The immunostaining of Gpx-1 displayed a general
accumulation of positive cells in the cardiac tissue of all
embryos. However, the non-malformed embryos had less
staining than embryos from normal rats, and malformed
embryos from diabetic rats had almost no staining at all
(267).

In a study of cardiac malformations in diabetic mouse
pregnancy demonstrating dilated heart tube, smaller ven-
tricles, conotruncal stenosis, and abnormal heart looping,
ventricular septal defects were observed and actors in the
TGF-b signaling that regulate heart development were
down-regulated by maternal diabetes. It was concluded that
the TGF-b signaling is involved in cardiac malformations in
diabetic embryopathy (250). Also, in a study of global gene
expression in a transgenic mouse model of caudal dysgene-
sis, and in a pharmacological model using in situ hybridiza-
tion and quantitative real-time PCR, altered expression of
several molecules that control developmental processes and
embryonic growth was observed. The most pronounced
finding was that of altered Wnt signaling, which suggests
that impaired signaling in this pathway may be involved in
diabetic embryopathy (252). A genome-wide investigation of
gene expression in embryos from normal and diabetic mice
followed by quantitative RT-PCR yielded several genes with
altered expression. Sequence motifs in the promoters of dia-
betes-affected genes suggest potential binding of transcrip-
tion factors that are involved in responses to oxidative
stress and/or to hypoxia, and, furthermore, around 30% of
the diabetes-affected genes encoded transcription factors
and chromatin-modifying proteins or components of signal-
ing pathways that affect transcription (258). In a genome-
wide expression profiling in the developing heart of
embryos from diabetic and control mice it was found that a
total of 878 genes exhibited more than 1.5-fold changes in
expression level in the hearts of experimental embryos com-
pared with their respective controls. Several genes involved
in a number of molecular signaling pathways such as apop-
tosis, proliferation, migration, and differentiation in the
developing heart were differentially expressed in embryos of
diabetic pregnancy (262).

Several different genes and pathways have been demon-
strated to be affected in diabetic pregnancy; however, there
is not, as yet, any universal gene identified to be responsible
for enhanced (or decreased) susceptibility to diabetic embry-
opathy (Figure 2).

Epigenetics

There are considerable indications that epigenetic processes
play a role in diabetic embryopathy (259,268–274). In a sem-
inal study, it was found that transient hyperglycemia induced
long-lasting activating epigenetic changes in the promoter of
the NFjB subunit p65 in aortic endothelial cells both in vitro
and in non-diabetic mice, resulting in increased p65 gene
expression. Both the epigenetic changes and the gene
expression changes persisted for at least 6 days of subse-
quent normoglycemia. Furthermore, the hyperglycemia-
induced epigenetic changes and increased p65 expression
were prevented by reducing mitochondrial superoxide pro-
duction or superoxide-induced alpha-oxaldehydes (268).

Analysis of gene expression data from two sets of embryos
of diabetic mice suggested that maternal diabetes may
increase the overall variability of gene expression levels in
embryos. The suggestion was that altered gene expression
and increased variability of gene expression together consti-
tute the molecular correlates for the incomplete phenotype
penetrance in diabetic pregnancy. Based on this model, it
was suggested that maternal diabetes reduces the precision
of gene regulation in exposed individuals. Loss of precision in
embryonic gene regulation may include changes to the epi-
genome via deregulated expression of chromatin-modifying
factors (259,269).

In a study of maternal diabetes effect on DNA methylation
of imprinted genes in oocytes, it was found in SZ-diabetic
and NOD mice that the methylation pattern of Peg3 differen-
tial methylation regions (DMR) was altered, and in the SZ
mice demethylation was observed on day 35 after SZ injec-
tion. The expression level of DNA methyltransferases (DNMTs)
was also decreased in diabetic oocytes. These results indicate
that maternal diabetes has adverse effects on DNA methyla-
tion of the maternally imprinted gene Peg3 in oocytes, but
also that methylation in the oocytes of the offspring is normal
(271). Also, the expression was increased and the methylation
level of H19 was decreased, whereas the expression and
methylation levels of Peg3 were completely opposite in pla-
centas of diabetic mice. When embryos of normal females
were transferred to normal/diabetic pseudopregnant females,
the methylation and expression of Peg3 in placentas were
also clearly altered in the normal-to-diabetic group compared
to the normal-to-normal group. However, when the embryos
of diabetic females were transferred to normal pesudopreg-
nant female mice, the methylation and expression of Peg3
and H19 in placentas were similar in the two groups. The
data suggest that the effects of maternal diabetes on
imprinted genes may primarily be caused by the adverse ute-
rus environment (272).

In a study neural stem cells (NSCs) were exposed to high
glucose/hyperglycemia, and alterations were found in chro-
matin reorganization, global histone H3 status, and global
DNA methylation, as well as increased expression of Dcx and
Pafah1b1 and decreased expression of four microRNAs target-
ing these genes. This study suggested that hyperglycemia
alters the epigenetic mechanisms in NSCs, resulting in altered
expression of developmental genes (273). In a genome-wide
survey of histone acetylation in neurulation stage embryos
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from diabetic mouse pregnancies, it was found that exposure
to maternal diabetes and, independently, exposure to high-fat
diet were associated with increases and decreases of H3 and
H4 histone acetylation, respectively, in the embryo. These
data suggest that epigenetic changes in response to diet and
metabolic conditions may contribute to increased risk for
NTD in diabetic and obese pregnancies (270).

In a study of embryos of pregnant hyperglycemic mice
and mouse embryonic stem cells (ESC), the methylation of a
Pax3 CpG island was decreased in embryos and ESC. Use of
shRNA in ESC demonstrated that DNA methyltransferase 3b
(Dnmt3b) was responsible for methylation and silencing of
Pax3 prior to differentiation and by oxidative stress. These
results indicate that hyperglycemia-induced oxidative stress
stimulates Dnmt3b activity, thereby inhibiting chromatin
modifications necessary for induction of Pax3 expression, and,
thus, providing a molecular mechanism for defects caused by
Pax3 insufficiency in diabetic pregnancy (274).

Epigenetic changes in the embryo caused by maternal dia-
betes are likely to be transferring the teratogenic input of the
diabetic environment. Identifying these changes is important
both for the increased knowledge generated, and also for the
possible anti-teratological treatment that may emerge from
the identified mechanisms (Figure 2).

Conclusions and future directions

Diabetic embryopathy has a complex etiology and pathogen-
esis. The studies of etiologic factors in the pathogenesis of
congenital malformations have revealed a scenario in which
the diabetic state simultaneously induces alterations in a ser-
ies of teratogenically capable pathways. These pathways are
intertwined, and several of them result in an imbalance of
the ROS metabolism, yielding ROS excess in teratogenically
sensitive cell populations, an imbalance ultimately causing
the congenital malformations. Blocking the ROS excess may
therefore be one valid way to diminish the disturbed devel-
opment caused by the diabetic environment.

Upstream and downstream of the oxidative stress, how-
ever, several conditions of cellular stress are present, such as
nitrosative, ER, hypoxic, and hexosamine stress, as well as a
possible teratogenic involvement of AGEs. In this area of
metabolites and pathways, there may be possibilities of find-
ing molecules to use for intervention therapy.

There is also a growing understanding of the diabetes-
induced alterations in genetic and epigenetic systems, which
will, again, increase our knowledge, and inspire to develop
new ways to block diabetic embryopathy in the future.
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