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Platelet-derived growth factor in glioblastoma—driver or biomarker?

BENGT WESTERMARK
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Abstract
The platelet-derived growth factor (PDGF) family of mitogens exerts vital functions during embryonal development, e.g. in the
central nervous system, where PDGF drives the proliferation of oligodendrocyte precursors. PDGF and PDGF receptors are
co-expressed in human glioblastoma (GBM). Whether an aberrant activation of the PDGF receptor pathway is a driving force
in glioma development has remained an open question. In experimental animals, overexpression of PDGF has convincingly
been shown to induce tumors, both in wild-type animals (marmoset, rat, mouse) and in mice with targeted deletions of
suppressor genes, e.g. Tp53 or Ink4A. Targeting the PDGF receptor in tumor-bearing mice leads to growth inhibition and
reversion of the transformed phenotype. Findings of PDGF receptor amplification or mutations in human GBM are strong
indicators of a causative role of the PDGF receptor pathway. However, clinical trials using PDGF receptor antagonists have
been disappointing. In conclusion, a PDGF receptor profile may be a biomarker for a subgroup of GBM originating from a
PDGF receptor-responsive cell. Although compelling experimental and clinical evidence supports the notion that the PDGF
receptor pathway is a driver in GBM, formal proof is still missing.
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Introduction

The widely cited articles by Hanahan and Weinberg
on the hallmarks of cancer (1) have highlighted
the importance of self-sufficiency in growth factor
receptor signaling, mediated by aberrant ligand-
induced activation, constitutively activated and
mutated receptors, or aberrant activation of down-
stream signals. The idea that cancer cells are growth-

stimulated by autocrine growth factors has been
around for quite a while, even before the term
‘autocrine’ was used to describe the phenomenon
(2). For instance, Howard Temin referred to it in
his pioneering work on the mechanism of RNA tumor
virus-induced cell transformation (3,4). The field was
tremendously boosted by the discovery that the trans-
forming v-sis gene of simian sarcoma virus (SSV) is a
retroviral version of the cellular platelet-derived
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growth factor (PDGF) B-chain gene (5,6) and that the
transforming activity of the gene is mediated by auto-
crine PDGF-BB (7).
In my own search for suitable sources for novel

growth factors, I was encouraged by the early studies
by Temin and others to use serum-free conditioned
culture media from human established cancer cell
lines. The human osteosarcoma cell line U-2 OS,
established by Jan Pontén (8), turned out positive
as it was found to produce growth-promoting factor
(s) which could be partially purified (9). Further
purification and structural and functional analyses
revealed a striking resemblance to PDGF (10). Sub-
sequently, the osteosarcoma cell-derived growth
factor was shown to be identical to PDGF-AA
(11). Using the recently developed PDGF receptor-
binding assay, I found that one of our clonal human
glioblastoma (GBM) cell lines, U-343 MGa Cl2,
produced large amounts of PDGF receptor-
competing activity. Through subsequent studies it
became evident that the cells produce significant
amounts of PDGF (12,13), mainly PDGF-AA (14).
This finding was the starting-point for a new research
avenue, PDGF in human and experimental brain
tumors (reviewed in (15,16)).

PDGF and PDGF receptors

The platelet-derived growth factor (PDGF) family
consists of covalently linked hetero- or homodimers
of A-, B-, C-, and D-chains (PDGF-AA, -AB, -BB,
-CC, and -DD) (for comprehensive reviews on PDGF
and PDGF receptors, see (17,18)). The ligands bind

to and activate heterodimeric a and b tyrosine kinase
receptors with ligand specificities outlined in Figure 1.
Several intracellular signaling pathways are engaged
by PDGF receptor activation among which the Ras-
MAPK, PI3K, and PLCg pathways are most studied.
Receptor activation culminates in cell cycle initiation,
DNA synthesis, and mitosis. PDGF is not only
involved in cell cycle regulation but also cell migration
and chemotaxis (19-21). PDGF and PDGF receptors
fulfill important functions in development, e.g. in
kidney, lung, intestine, and brain tissues, mainly
through paracrine receptor activation (17).

PDGF in glial development

A ground-breaking study by Richardson et al. (22)
showed that cultured oligodendrocyte precursor cells
(OPCs) from the developing rat optic nerve are
growth-stimulated by PDGF, present in astrocyte-
conditioned medium. A subsequent study showed
that the OPCs express PDGFRa (23). These findings
have been confirmed by in vivo experiments in mice,
where PDGF-AA has been shown to drive the pro-
liferation of OPCs (24-26). OPCs are likely to be
stimulated in vivo by paracrine PDGF released
from astrocytes and neurons (27). No such autocrine
stimulation by normal OPCs during development has
been demonstrated. Interestingly, PDGF-AA seems
to be a rate-determining factor for OPC proliferation
(28), but not for myelination; it is only in the total
absence of PDGF that myelination becomes nega-
tively affected (26). Continuous infusion of PDGF
into the subventricular zone of the mouse brain
induces precursor cell proliferation and hyperplastic,
glioma-like lesions. These lesions are reversible and
cannot be defined as full-blown malignancies (29). In
conclusion, in normal development PDGF drives the
expansion of undifferentiated OPCs, and an excess of
PDGF leads to an increase in OPC number beyond
the physiological need. Apparently, there is no neg-
ative feedback mechanism operating in OPCs to con-
trol their PDGF-induced proliferation. Rather OPC
proliferation seems to be controlled at the level of
PDGF available for receptor activation.

PDGF-induced gliomas in animal models

Experiments performed by Friedrich Deinhardt and
collaborators showed that SSV is tumorigenic in mar-
moset monkeys (30,31). A complete record of
Deinhardt’s experiments was unfortunately never
published, but we were lucky to obtain the original
paraffin-embedded material from Deinhardt’s experi-
ments and could publish the histology of brain tumors
induced by intracerebral SSV injections into newborn

PDGF-AA PDGF-CC PDGF-AB PDGF-BB PDGF-DD

PDGFR-ββPDGFR-αβPDGFR-αα

Figure 1. Binding specificities of PDGF ligands and receptors. The
PDGF isoforms are made up as homo- or heterodimers of anti-
parallel subunits covalently linked by two S-S bonds. The ligands
bind to and dimerize PDGF a and b receptors with specificities
depicted in the figure. The receptors have extracellular domains
with five immunoglobulin domains. Each receptor has an intracel-
lular, split tyrosine kinase domain.

Platelet-derived growth factor in glioblastoma 299



animals (32). Interestingly, the virus caused lesions
indistinguishable from human glioblastoma with all
its hallmarks: cellular pleomorphism, necroses, and
microvascular proliferations. The morphology was
mixed, with oligodendroglioma-like, astrocytic, and
anaplastic areas present. We now know that the
transforming gene v-sis of SSV is a retroviral version
of the PDGFB gene and that the transforming activity
of v-sis is exerted by an autocrine PDGF receptor
activation. Thus, an autocrine and uncontrolled
PDGF receptor activation of target cells in primate
brain in a retroviral context leads to the development
of brain tumors displaying all the hallmarks of GBM.
In this respect, SSV infection in marmosets has a
more dramatic effect than continuous infusion in
mouse brain (29).
A number of studies have shown that intracerebral

delivery of PDGF-encoding retroviral vectors in
rodents leads to the development of brain tumors
at high frequency. A recombinant Moloney murine
leukemia virus encoding PDGFB (MoMuLV/
PDGFB) injected together with replication-
competent helper virus (MoMuLV) was found to
induce glioma-like lesions in wild-type mice (33).
The tumors mostly resembled human glioblastoma
with extensive necrotic areas. Some tumors displayed
characteristics of primitive neuroectodermal tumors,
and some were phenocopies of human low-grade
oligodendrogliomas. Only a minority of the cells,
identified as infiltrating astrocytes, were glial fibrillary
acidic protein (GFAP)-positive, whereas a high pro-
portion were nestin and PDGFRa-positive. These
characteristics suggested that the tumors were derived
from a PDGFRa-positive neural progenitor trans-
formed by a persistent autocrine activation of the
PDGF receptor signaling pathway. Eric Holland
and collaborators have made important discoveries
and significantly contributed to our understanding of
PDGF-induced brain tumors in the mouse. A useful
mouse model was developed, where PDGF is
encoded by a recombinant avian RCAS virus and
delivered intracerebrally in transgenic mice with a
targeted expression of the virus receptor tv-a under
the control of GFAP (GTv-a mice) or nestin (NTv-a
mice) promoters (34). RCAS-PDGFB generated
brain tumors in both types of transgenic mice: oligo-
dendrogliomas in NTv-a mice, and oligodendroglio-
mas or oligoastrocytomas in GTv-a mice. Tumor
latency was shortened, and malignancy was enhanced
in mice with homozygous deletion of the Ink4a-Arf
locus, which is a common aberration in human
GBM. Using the 2’,3’-cyclic nucleotide 3’-phospho-
diesterase (CNPase) promoter to drive the expression
of tv-a in transgenic mice (CTv-a mice), Lene
Uhrbom’s research group was able to target PDGF

expression to cells of the oligodendrocyte lineage. In
the absence of other genetic aberrations, RCAS-
PDGFB generated low-grade oligodendrogliomas
(35), whereas high-grade oligodendrogliomas as
well as astrocytomas were induced in Cdkn2a null
(p16Ink4a-/-, p19Arf-/-) mice (36). Collectively, these
data show that a single oncogene, i.e. Pdgfb, can cause
tumors with different cellular origin (GFAP-positive
astrocytes, nestin-positive neural stem cells, and
CNPase-positive oligodendrocyte progenitors). The
impact of these findings on the identification of the
cell of origin of human glioblastoma has been dis-
cussed (37). PDGFB has also been shown to induce
GBM-like tumors when expressed as a transgene
under the control of the Gfap promoter in Tp53
null, but not wild-type, mice (38).
High expression of PDGFB, generated by deleting

the translation-inhibiting sequence in the 5� end of
PDGFB cDNA inserted into the RCAS vector, was
shown to give rise to high-grade tumors in wild-type
mice, whereas the full-length sequence mostly
induced low-grade oligodendrogliomas (39). Tumor
grade is thus dose-dependent. Low expression of
PDGF causes low-grade tumors, and high expression
yields high-grade tumors. In this context it is inter-
esting to note that the v-sis gene lacks this particular
sequence (40), which may explain why SSV causes
high-grade tumors in marmosets. The finding that an
oncogene coding for a structurally and functionally
normal growth factor can cause high-grade tumors is
difficult to understand given the widely accepted
concept that malignant tumors are caused by multiple
genetic events and display a diversity of phenotypic
aberrations (1). This question was addressed decades
ago (41) but has not yet been fully answered. There
are three main alternatives.

(1) Mitogenic stimulation and unrestricted cell pro-
liferation induced by excessive amounts of
PDGF is accompanied by secondary genetic
aberrations causing tumor progression. This
idea was adopted in a recent review (42), where
replicative stress was supposed to be the driving
force behind the mutagenic events. Direct evi-
dence for this hypothesis, e.g. whole-genome
sequence data for PDGF-induced tumors, is,
however, lacking.

(2) PDGF synthesis driven by retroviral vectors
synergizes with insertional mutagenesis of com-
plementary oncogenes or suppressor genes. Ret-
roviral long terminal repeats are strong
promoters and enhancers, which could activate
cellular genes at a distance from the insertion
sites. Further, integrated proviral DNA could
theoretically interrupt genes and give rise to
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truncation or inactivation of the gene product. In
order to probe this idea and search for genes that
synergize with PDGF in gliomagenesis,
Uhrbom et al. (33) constructed a recombinant
MoMuLV coding for a full-length PDGFB
cDNA. The recombinant virus was combined
with a replication-competent helper virus to
increase the frequency of proviral insertions in
order to render the genetic screen more effective.
The experiment generated 108 brain tumors
from which 647 insertion sites were obtained
with as many as 66 common insertion sites
(43), reviewed in (44). A number of the tagged
genes are known to be involved in oncogenesis,
e.g. Trp53, Eef1a1, Gli, Fos, and Ccnd, providing
proof of concept for the genetic screen. The vast
majority of tagged genes, however, had not pre-
viously been implicated in oncogenesis or PDGF
signaling. One of these, Sox5, was subsequently
found to be a suppressor of PDGF-induced
brain tumors and cause cellular senescence
(45). Five insertions in the Nfix locus were
found, the functional implication of which is still
unknown and worth pursuing. NFIX has been
shown to be a critical factor in development and
to induce quiescence in neural stem cells
(46,47). Insertion into the Nfix locus may inter-
fere with the differentiation program and thereby
synergize with PDGF in tumor development.
Whether insertional mutagenesis also operates
in the RCAS-PDGF-induced brain tumors is an
open question. The oncogenic potential of retro-
viruses was dramatically illustrated by the clin-
ical trials on gene therapy in X-linked severe
combined immunodeficiency (XSCID) patients
a few years ago. Three out of 11 patients devel-
oped T cell tumors, all of which caused by
proviral insertions in the LMO2 locus (48,49).

(3) The generation of high-grade gliomas by PDGF
overexpression is caused by an autocrine activa-
tion of transformed cells as well as recruitment of
non-transformed cells, which are attracted to the
tumor site by paracrine activation. In fact,
PDGF virus-induced gliomas in the rat contain
a large number of untransformed cells, which
apparently have migrated and populated the
tumor (50). According to this model, PDGF
is sufficient to drive tumor formation in the
absence of other genetic aberrations. This model
may seem unlikely and less attractive than those
described above. The model presumes that an
excessive, PDGF-induced, cell proliferation is
not controlled by any feedback regulation. Inter-
estingly, this may indeed be the case. In PDGF-
transgenic mice, the number of PDGF-

responsive oligodendrocyte precursors was pro-
portional to the supply of PDGF and seemingly
unsaturable (51). In the case of a local produc-
tion of autocrine/paracrine PDGF, the pool of
stimulated cells may increase progressively to the
point where hypoxia drives angiogenesis and
where necroses may occur in severely hypoxic
areas. Such a process may then yield tumors,
which closely resemble glioblastoma multiforme
(see Figure 2 for a schematic representation of
this model).

PDGF and PDGF receptors in human glioma

Our observation that human glioma cells in culture
produce PDGF became an incentive for studies of the
expression of PDGF and PDGF receptors in human
glioma. A rather coherent picture has emerged from
these studies, pointing to a causative role for PDGF in
gliomagenesis. PDGFA and PDGFa receptors are
co-expressed in glioblastoma (52) and oligodendro-
glioma (53). The PDGFRa gene is amplified,
mutated, or rearranged in a fraction of glioblastoma
tumors (54-60). These findings strongly suggest that
genetic aberrations and overactivity of the PDGFa
receptor signaling pathway are important events in the
development of a subset of glioblastomas. This view is
strengthened by transcriptome analysis of glioblas-
toma, which has indicated that the proneural sub-
group of GBM is characterized by aberrations in the

A
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Figure 2. Schematic model for the development of high-grade
gliomas in experimental animals following infection with PDGF-
encoding retroviruses. A. Cells are infected, produce PDGF, and
start to proliferate in an uncontrolled fashion. B. The PDGF-
transformed population expands, and neighboring cells are
attracted by paracrine stimulation. C. Cell density has increased,
and local hypoxia elicits an angiogenic response.D. The expanding
population has grown beyond the supply of nutrients, and necroses
appear. Pink areas denote PDGF released by the tumor cells.
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PDGF/PDGFR pathway (60). Indeed, overactivity of
the PDGFa receptor pathway may be an initiating
event in human glioblastoma as a result of an
increased PDGFA gene dosage generated by chromo-
somal non-disjunction by the occurrence of multiple
copies of chromosome 7, which harbors the PDGF
A-chain gene (61).

Driver or biomarker?

In the discussion on the causative role of PDGF and
PDGFR in the development of human brain tumors,
we may be guided by an analogous discussion over a
century ago regarding micro-organisms as etiologic
agents in human disease. This subject was brought up
by Henle and Koch and resulted in what became
known as Koch’s postulates (reviewed in (62)).
Although Koch’s postulates cannot be directly trans-
lated into the etiology or pathogenesis of a non-viral
cancer, such as glioblastoma multiforme, they can be
adjusted as follows:

(1) PDGF receptor signaling must be aberrantly
activated in brain tumor cells. As has been sum-
marized above, PDGF and PDGFR are
expressed at high levels in most GBM. Since
the cell of origin of human GBM is yet unknown,
we cannot make any direct comparison between
the levels of activation in the normal cell(s) of
origin versusGBMcells. However, the PDGFRa
gene is amplified in a subset of GBM, which
strongly indicates that it confers a selective growth
advantage and thus has a mechanistic role in the
pathogenesis of the tumor. The recurrent find-
ings of receptor mutations and rearrangements,
albeit rare, are strong indicators of a mechanistic
role, although we cannot formally rule out the
possibility that these changes are passengermuta-
tions and not drivers.

(2) Aberrant activation of PDGF receptors in the
cell of origin must cause GBM in vivo. As
described above, studies in marmosets, rats,
and mice have provided convincing evidence
that overexpression of PDGF, mainly PDGFB
but also PDGFA (61), causes GBM in experi-
mental animals. It needs to be said, however,
that these findings in no way prove that similar
mechanisms operate in human GBM.

(3) Blocking the PDGFR signal transduction path-
way in GBM should retard the growth of glioma
cells in vivo. There are a few examples where
PDGF antagonists have been shown to retard
cell growth in GBM cultures (63,64). However,
clinical trials on the use of PDGF receptor kinase
inhibitors have been disappointing (65,66).

These results are in striking contrast to studies
on PDGFB-induced gliomas inmice, where low-
molecular-weight PDGF receptor kinase inhibi-
tors are efficacious in reverting the transformed
phenotype and cause tumor growth retardation
in vivo (67). It is also notable that imatinib, a low-
molecular-weight PDGFR inhibitor, is an effec-
tive drug in the treatment of other PDGF-driven
tumors such as gastrointestinal stroma tumors
with PDGFRa mutations and dermatofibrosar-
coma tuberans with an activating PDGFB trans-
location (reviewed in (68,69)). In the absence of
in-depth pharmacokinetic and pharmacody-
namic studies in GBM, we cannot draw firm
conclusions regarding the potential of PDGF
receptor antagonists in the treatment of GBM.
However, the possibility remains that aberrant
activation of the PDGFR signaling pathway is an
initial event in the proneural and mesenchymal
subgroups of GBM (61) but is rendered redun-
dant during tumor progression. This would point
to a hit-and-run mechanism in contrast to the
clinically more favorable situation of oncogene
addiction (70,71) where oncogene inactivation
leads to thedeath of tumor cells but spares normal
cells. A third possibility could be that PDGFR
activation is a driver in a subset GBM in all stages
but intervention of the pathway needs to be com-
binedwith an interferencewith other aberrations,
e.g. in the PTEN, TP53, INK4A/ARF pathways.

In conclusion, a PDGF receptor profile, such as has
been demonstrated in the proneural subgroup of
GBM, is likely to be a marker of the cell of origin.
Such tumors are probably derived from PDGFRa-
positive cells. There is also considerable evidence that
a constitutively active PDGFR pathway is a driver in a
subset of GBM, although formal proof is still lacking.
Targeting the PDGFR, or other signaling path-

ways, in GBM has so far not been clinically successful.
Maybe an unprejudiced search for GBM antagonists
by high-throughput screening will be more fruitful
than the ‘intelligent design’ of targeted drugs.
A promising substance has recently been identified
(72). There is currently a vibrant activity in basic,
translational, and clinical research on GBM as well as
in cancer research in general. It is my personal belief
that these research activities will bear fruit and trans-
late into a better treatment of GBM, which until now
has remained a tumor with a dismal prognosis.
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