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ABSTRACT
Background: Diabetic kidney disease (DKD) is a leading risk factor for end-stage renal disease and is
one of the most important risk factors for cardiovascular disease in patients with diabetes. It is pos-
sible that novel markers portraying the pathophysiological underpinning processes may be useful.
Aim: To investigate the associations between 80 circulating proteins, measured by a proximity exten-
sion assay, and prevalent DKD and major adverse cardiovascular events (MACE) in type 2 diabetes.
Methods: We randomly divided individuals with type 2 diabetes from three cohorts into a two-thirds
discovery and one-third replication set (total n¼ 813, of whom 231 had DKD defined by estimated
glomerular filtration rate <60mg/mL/1.73m2 and/or urinary albumin-creatinine ratio �3 g/mol).
Proteins associated with DKD were also assessed as predictors for incident major adverse cardiovascu-
lar events (MACE) in persons with DKD at baseline.
Results: Four proteins were positively associated with DKD in models adjusted for age, sex, cardiovas-
cular risk factors, glucose control, and diabetes medication: kidney injury molecule-1 (KIM-1, odds ratio
[OR] per standard deviation increment, 1.65, 95% confidence interval [CI] 1.27–2.14); growth differenti-
ation factor 15 (GDF-15, OR 1.40, 95% CI 1.16–1.69); myoglobin (OR 1.57, 95% CI 1.30–1.91), and matrix
metalloproteinase 10 (MMP-10, OR 1.43, 95% CI 1.17–1.74). In patients with DKD, GDF-15 was signifi-
cantly associated with increased risk of MACE after adjustments for baseline age, sex, microalbuminu-
ria, and kidney function and (59 MACE events during 7 years follow-up, hazard ratio per standard
deviation increase 1.43 [95% CI 1.03–1.98]) but not after further adjustments for cardiovascular risk
factors.
Conclusion: Our proteomics approach confirms and extends previous associations of higher circulating
levels of GDF-15 with both micro- and macrovascular disease in patients with type 2 diabetes. Our
data encourage additional studies evaluating the clinical utility of our findings.
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Introduction

Diabetic kidney disease (DKD) contributes to up to half of all
cases of end-stage renal disease in the world and is one of
the most important risk factors for cardiovascular disease in
patients with diabetes (1). The definition of DKD relies on
assessment of both kidney function and kidney damage and
is defined as an estimated glomerular filtration rate (eGFR) of
less than 60mg/mL/1.73m2 and/or micro- or macroalbumi-
nuria in patients with diabetes (1).

Recent technological advances have made it possible to
simultaneously measure a large number of proteins in bio-
logical samples (2,3). These ‘proteomics’ assays could offer

new ways to discover pathophysiologic pathways and identi-
fication of novel disease biomarkers in DKD. Yet, despite the
substantial clinical relevance of DKD as one of the most com-
mon complications of both types of diabetes, only a few
prior proteomics studies have focussed on DKD (4,5), and in
most of these prior studies, the definition of DKD did not
include albuminuria assessments (4). We believe that proteo-
mics analyses can provide novel insights into underlying
mechanisms leading to DKD but also to mechanisms that
mediate the risk of future cardiovascular disease. Estimated
GFR and albuminuria are well-established biomarkers of kid-
ney disease progression. However, much is still unknown
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about the pathophysiology of cardiovascular disease-specific
to DKD. We reasoned that associations between circulating
proteins previously linked to cardiovascular disease (CVD)
and inflammation could provide new insights into cardio-
vascular disease pathways involved in DKD. The kidney is
one of the best-perfused organs in the body and shares
many biomarkers that are also of interest for cardiovascular
pathology.

Therefore, we aimed to explore and validate the associa-
tions between 80 circulating proteins involved in cardiovas-
cular pathology or inflammation with DKD in persons with
type 2 diabetes enrolled in three separate cohort studies.
We also aimed to study if the identified proteins were asso-
ciated with the incidence of major adverse cardiovascular
events beyond established risk factors in those with preva-
lent DKD.

Methods

Study cohorts

Data were used from individuals with type 2 diabetes
enrolled in three cohorts where eGFR and microalbuminuria
were measured on at least one occasion, and a biobank with
samples available for proteomic analysis: the Cardiovascular
Risk Factors in Patients with Diabetes: a Prospective Study in
Primary Care (CARDIPP) (6), the Prospective Investigation of
the Vasculature in Uppsala Seniors (PIVUS) (7), and Uppsala
Longitudinal Study of Adult Men (ULSAM) (8).

The CARDIPP study was launched in 2005, and the base-
line data collection was completed in November 2008.
Patients with type 2 diabetes aged 55–65 were consecutively
recruited during their usual annual follow-up assessments at
22 primary healthcare diabetes clinics in the Swedish coun-
ties of €Osterg€otland and J€onk€oping (9). The centres varied in
size and were located in different sociodemographic areas,
but all followed the national guidelines for diabetes care.
Out of 761 consecutively enrolled patients, 621 with available
data on proteomics, cardiovascular risk factors, DKD status,
and outcome data on cardiovascular events were included in
the present analyses.

All 70-year-old men and women living in Uppsala,
Sweden, between 2001 and 2004 were invited to participate
in the PIVUS study (http://www.medsci.uu.se/pivus/pivus.
htm) (6) and were re-investigated with blood samples and
urine biochemistry at the age of 75 years. At the re-investiga-
tion, 77 participants had diabetes and were thus included in
this study.

The ULSAM study was initiated in 1970 (7). All 50-year-old
male residents of Uppsala, Sweden, who had been born in
1920–24 were invited to participate in a health survey of car-
diovascular risk factors (described in detail here: http://www.
pubcare.uu.se/ULSAM) (8). At the fourth examination cycle,
when participants were approximately 77 years old, 1398
were invited and 838 (60%) participated, of which 115 per-
sons had diabetes and could be included in the present
study.

Outcome definitions, inclusion criteria, and number of
eligible participants

We defined type 2 diabetes as fulfilling at least one of the
following criteria: (i) self-reported type 2 diabetes; (ii) phys-
ician-diagnosed type 2 diabetes according to hospital
records; (iii) fasting glucose �7.0mmol/L (126mg/dL); or iv)
HbA1c >6.5% (48mmol/mol). Participants without available
frozen plasma or serum samples or with missing data on
proteomics, eGFR, or microalbuminuria were excluded. DKD
was defined as an eGFR below 60mg/mL/1.73m2 and/or
urinary albumin-creatinine ratio (ACR) �3 g/mol. Single meas-
urements of eGFR and ACR were assessed.

Major adverse cardiovascular events (MACE) were defined
as fatal or non-fatal myocardial infarction (International
Classification of Diseases, 10th ed., I21) or stroke (I60–I63),
whichever occurred first after baseline assessment. These
were obtained from follow-up in national Swedish registers
that started after the baseline investigation in each
individual.

By combining data from the three cohorts, the total study
population was 813, of whom 231 had prevalent DKD. There
were 59 MACE recorded after baseline in those with DKD.

Ethical permission

Participants provided written informed consent, and the
study was conducted according to the Declaration of
Helsinki. Ethical permission was granted by the ethics com-
mittees of Link€oping University and Uppsala University.

Multiplex protein assay

The Olink Proseek Multiplex Cardiovascular I 96 x 96 kit was
used to measure proteins in plasma (CARDIPP, PIVUS) and
serum (ULSAM) by real-time polymerase chain reaction (PCR)
using the Fluidigm BioMark HD real-time PCR platform. The
assay attempts to quantify the abundance of 92 proteins and
uses the standard 96-wells plate format. Of the 96-wells, one
serves as negative control, whilst three wells contain positive
controls. The resulting relative values obtained were log2-
transformed for subsequent analysis. Twelve proteins with
<85% valid measurements were removed, leaving 80 pro-
teins for the present analysis. If values were below the lower
limit of detection (LOD), they were imputed by LOD/2. Each
protein was normalized by plate (by setting the mean ¼ 0,
and standard deviation ¼ 1 within each plate) and by
storage time (correction based on the observed values and
predicted values from a spline model). In a previous valid-
ation study of the proteomics assay, the mean intra-assay
coefficient of variation was found to be 8%, and the mean
inter-assay coefficient of variation was 12% (10). Detailed
information about the methods used in the assay and on the
coefficients of variation of specific proteins can be found on
the Olink website (www.Olink.com).
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Statistical analysis

We used mixed-effects logistic regression to assess associa-
tions between protein abundance (standardized to a mean
of 0 and a standard deviation of 1) and DKD, with adjust-
ments for age, sex (fixed effects), and cohort (random
effect). Data were divided into a discovery data set and a
replication data set. Samples were combined at the individ-
ual person-level and randomly split into a two-thirds
training and one-third hold-out test set using the
‘createDataPartition’ function in the ‘caret’ package in R. The
function balances the DKD case proportion across both sam-
ples. Proteins associated at a 5% false discovery rate (FDR)
in the discovery sample were tested in the replication sam-
ple and were considered successfully replicated at the nom-
inal significance level of 0.05 (11). Missing covariate values
were imputed by multivariate imputation by chained equa-
tions (MICE) by predictive mean matching based on all
other covariates and averaged across five iterations (12).
Imputed values were compared against complete values to
assess accuracy.

As a second step, we used the whole cohort to perform
additional multivariable modelling adjusted for cohort (ran-
dom effects), age, sex, glucose control/diabetes factors
(HbA1c, oral antidiabetic drug use, and insulin treatment),
and cardiovascular risk factors (cardiovascular disease at
baseline, low-and high-density lipoprotein cholesterol, trigly-
cerides, BMI, cardiovascular disease at baseline, systolic and
diastolic blood pressure, antihypertensive therapy, statins,
and smoking status).

Finally, we used Cox regression with frailty effect for
cohort adjusted for age, sex, GFR, and microalbuminuria to
study if any of the proteins associated with DKD were asso-
ciated with risk of MACE beyond baseline ACR and eGFR
in individuals with DKD (13). We also adjusted a model
additionally for cardiovascular risk factors (prevalent cardio-
vascular disease at baseline, systolic blood pressure, low-
density lipoprotein cholesterol, and smoking). All statistical
analyses were performed with R version 3.3.2, 2016–10-
31 (14).

Results

Baseline characteristics

A total of 813 subjects were included in the present study,
of whom 231 had prevalent DKD. The sample was divided
into discovery 542 (two-thirds) and replication 271 (one-
third). Baseline characteristics are shown in Table 1 for
the whole cohort and also stratified by DKD status.
Microalbuminuria was more common than an eGFR <60mg/
mL/1.73m2 among those with DKD, 71% versus 39%. Systolic
blood pressure was higher in those with DKD (147mmHg)
versus those without DKD (139mmHg), and previous cardio-
vascular disease was also more common, 44% versus 25%.

Associations between proteins and prevalent DKD

A total of 14 proteins were positively associated with DKD in
the discovery sample at <5% FDR in age-, sex-, and cohort-
adjusted models. Four of these 14 proteins were associated
with DKD in the replication sample: kidney injury molecule-1
(KIM-1), growth differentiation factor 15 (GDF-15), myoglobin,
and matrix metalloproteinase 10 (MMP-10) (Figure 1). Higher
levels of all four proteins remained significantly associated
with prevalent DKD in additional multivariable models that
were adjusted for cardiovascular risk factors, glucose control,
and treatment for type 2 diabetes (Table 2).

Associations of proteins and MACE incidence in
individuals with prevalent DKD

Over a median of 7.9 ± 1.5 years of follow-up, 59 persons out
of the 231 with DKD at baseline experienced a MACE event.
In these, higher levels of GDF-15 at baseline were associated
with a higher risk of incident MACE after additional adjust-
ment for eGFR and ACR, while neither KIM-1, myoglobin, nor
MMP-10 was associated with future MACE (Table 3). When
we adjusted for cardiovascular risk factors the results were
attenuated and not statistically significant.

Table 1. Baseline characteristics.

Variables
All

(n¼ 813)
DKD

(n¼ 231)
No DKD
(n¼ 582)

Age, y 64 ± 7 68 ± 8 63 ± 6
Women 234 (29%) 62 (27%) 174 (30%)
Glomerular filtration rate (eGFR, mL/min) 77 ± 14 70 ± 17 80 ± 12
Glomerular filtration rate (eGFR, mL/min) <60 90 (11%) 90 (39%) 0
Microalbuminuria (albumin-creatinine ratio �3 g/mol) 164 (20%) 164 (71%) 0
Body mass index (BMI, kg/m2) 30 ± 4.6 30 ± 4.5 30 ± 4.6
Systolic blood pressure (mmHg) 142 ± 20 147 ± 19 139 ± 20
Diastolic blood pressure (mmHg) 81 ± 11 82 ± 10 81 ± 11
Fasting glucose (mmol/L) 8.7 ± 2.6 8.9 ± 3.0 8.6 ± 2.4
Triglycerides (mmol/L) 1.8 ± 1.1 1.9 ± 1.1 1.8 ± 1.1
Low-density lipoprotein cholesterol (mmol/L) 2.7 ± 0.8 2.7 ± 0.8 2.8 ± 0.8
High-density lipoprotein cholesterol (mmol/L) 1.3 ± 0.3 1.2 ± 0.3 1.3 ± 0.3
Glycated haemoglobin (HbA1c, mmol/L) 51 ± 12 53 ± 13 51 ± 12
Treatment with insulin 209 (26%) 66 (29%) 143 (25%)
Oral antidiabetic drug treatment 480 (59%) 152 (66%) 328 (56%)
Previous cardiovascular disease 247 (30%) 101 (44%) 146 (25%)
Statin treatment 415 (51%) 125 (54%) 290 (50%)
Smoking 123 (15%) 28 (12%) 95 (16%)

Data are shown as mean ± SD, or as n (%).
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Discussion

Main findings

In our cross-sectional analysis of individuals with type 2 dia-
betes from three different cohorts, a multiplex proteomics
assay identified four circulating proteins associated with
DKD: KIM-1, GDF-15, myoglobin, and MMP-10. The essentially
unchanged associations of these biomarkers with DKD after
adjustment for glycemic control, diabetes medication, and
cardiovascular risk factors point to a possible independent
prediction of these biomarkers beyond factors that are gen-
erally assessed in clinical practice. Moreover, in prospective
analyses in participants with prevalent DKD in the present
study, higher levels of GDF-15 were associated with a higher
risk of incident MACE after adjustments for baseline eGFR
and ACR. Additional adjustments for established cardiovascu-
lar risk factors attenuated this association slightly so that it
was no longer statistically significant.

Comparison with previous studies

Although the prevalence of DKD parallels the type 2 diabetes
and obesity epidemic (15), there has been little advancement
in the discovery of clinically relevant biomarkers for DKD.
There are several examples of previous studies investigating
individual proteins as biomarkers of DKD (4,5,16–18).
However, we are aware of only few previous studies that
have simultaneously evaluated multiple proteins as bio-
markers of DKD progression in serum or plasma. In a recent
report in patients with type 2 diabetes in Scotland, 205 circu-
lating proteins were evaluated, of which 30 proteins (includ-
ing GDF-15) were associated with rapid progression of eGFR
decline (19). In another study in 82 patients with type 2 dia-
betes, a panel of 13 biomarkers representing fibrosis, angio-
genesis, inflammation, mineral metabolism, and endothelial
function was found to improve the prediction of eGFR
decline (20). Few of the proteins evaluated in these two prior
studies overlapped with the proteins evaluated in the pre-
sent study. It should also be noted that, in these studies,
albuminuria was not included as a kidney disease outcome.
Moreover, none of these studies evaluated whether DKD-
associated biomarkers predicted incident cardiovascular dis-
ease in those with prevalent DKD.

GDF-15

GDF-15 is a cytokine-induced as a stress response in inflam-
matory states, after tissue injury and as a response to oxida-
tive stress (21). A comprehensive research effort into GDF-15
(22), and its cardiometabolic associations, is currently
ongoing by several research groups worldwide. GDF-15 is of
interest in individuals with diabetes and has been shown to
be a marker of elevated glucose during an oral glucose toler-
ance test and to be a marker of impaired fasting glucose, as
well as a marker of metformin treatment (23–25). However,
metformin treatment did not seem to affect the associations
of GDF-15 with DKD in the present study, since diabetic
treatment was adjusted for in our full model and as

Figure 1. Discovery and replication of the association between 80 circulating
proteins measured by a proximity extension assay, and prevalent diabetic kid-
ney disease. Proteins associated at a 5% false discovery rate in the discovery
sample were tested in the replication sample, and considered successfully repli-
cated at the nominal significance level of 0.05. Two-thirds of the subjects
(n¼ 542) were analyzed in the discovery sample, and one-third of the subjects
(n¼ 271) were analyzed in the replication sample.

Table 2. Multivariable logistic regression models for the association between
discovered and replicated proteins and diabetic kidney disease in the whole
sample.

Protein Model A Model B Model C

KIM-1
OR (95% CI) 1.67 (1.31–2.13) 1.59 (1.25–2.03) 1.61 (1.24–2.09)
p value 3.23� 10�5 1.6� 10�4 3.18� 10�4

GDF-15
OR (95% CI) 1.47 (1.22–1.77) 1.43 (1.20–1.70) 1.38 (1.14–1.67)
p value 3.66� 10�5 5.6� 10�5 7.34� 10�4

MB
OR (95% CI) 1.51 (1.25–1.83) 1.56 (1.30–1.88) 1.55 (1.28–1.89)
p value 1.83� 10�5 2.9� 10�6 8.29� 10�6

MMP-10
OR (95% CI) 1.46 (1.20–1.78) 1.42 (1.19–1.70) 1.42 (1.67–1.73)
p value 1.32� 10�4 1.2� 10�4 4.82� 10�4

The following was adjusted for in the logistic regression models: Model A:
age, sex, cardiovascular risk factors and cohort; Model B: age, sex, glucose
control/diabetes factors, and cohort; Model C: all relevant factors in model C
([A and B combined], HbA1c, oral antidiabetic drug use and insulin treatment,
low- and high-density lipoprotein, triglycerides, body mass index, cardiovascu-
lar disease at baseline, systolic and diastolic blood pressure, antihypertensive
therapy, statins, and smoking status).
GDF-15: growth differentiation factor 15; KIM-1: kidney injury molecule 1; MB:
myoglobin; MMP-10: matrix metalloproteinase 10.

Table 3. Cox regression models for the association between discovered and
replicated circulating proteins and time to major adverse cardiovascular events.

Protein
Model A:

Hazard ratio (95% CI) p value
Model B:

Hazard ratio (95% CI) p value

KIM-1 1.15 (0.88–1.50) 0.31 1.07 (0.79–1.45) 0.66
GDF-15 1.43 (1.03–1.98) 0.03 1.34 (0.96–1.88) 0.09
MB 1.17 (0.88–1.55) 0.30 1.12 (0.83–1.51) 0.45
MMP-10 1.21 (0.89–1.65) 0.23 1.27 (0.93–1.75) 0.13

Model A was adjusted for age, sex, frailty effect for cohort, microalbuminuria,
and kidney function; Model B for all variables in Model A and cardiovascular dis-
ease at baseline, smoking, low-density lipoprotein, and systolic blood pressure.
CI: confidence interval; KIM-1: kidney injury molecule 1; GDF-15: growth differ-
entiation factor 15; MB: myoglobin; MMP-10: matrix metalloproteinase 10.
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metformin is the most common oral antidiabetic drug in
Sweden. Furthermore, reference intervals for GDF-15 have
been suggested in DKD (26).

Higher levels of circulating GDF-15 have been linked to
an increased risk for several adverse outcomes, including a
recent study showing an association with incident type 2 dia-
betes (27), deteriorating microalbuminuria (28), progression
of albuminuria in persons with type 2 diabetes (28), kidney
function decline and cardiovascular risk in persons with type
1 diabetes (29), early death in patients undergoing haemodi-
alysis (30), as well as incident heart failure and cardiovascular
events in the general population (31). The fact that GDF-15
was the only biomarker that was associated with incident
cardiovascular events is interesting and also supported by
several studies showing associations between GDF-15 levels
and both cardiovascular morbidity and mortality (32–35).

KIM-1

KIM-1 is expressed in the proximal tubule and excreted in
the urine, and urinary KIM-1 is used as a clinical marker of
acute kidney damage (36–38). Less is known about plasma
levels of KIM-1, but, out of 80 tested proteins, circulating
KIM-1 was the biomarker that had the strongest association
with ACR in the general population (3). Apart from the
mechanisms of KIM-1 in acute kidney damage, experimental
studies have shown that KIM-1 is active in the regulation of
immune responses activated by the T helper cell (39).
Circulating KIM-1 has been associated with the number of
carotid arteries affected by atherosclerotic plaques in the
general population (40), as well as coronary artery athero-
sclerosis, and the risk of cardiovascular death in dialysis
patients (41). Whether circulating levels of KIM-1 reflect ath-
erosclerosis in the kidney in these diabetes patients remains
to be established.

Myoglobin

Rhabdomyolysis is well known to be associated with acute
kidney injury, and one of the proteins that are used as
markers of rhabdomyolysis and its associated acute kidney
injury is myoglobin (42). Although myoglobin has not been
put forward as a DKD biomarker, plasma levels of myoglobin
have been associated with chronic kidney disease, and
higher levels of myoglobin with higher stages of chronic kid-
ney disease (43). Our findings of an association between
myoglobin and DKD suggest that myoglobin, in addition to
its use in acute kidney injury, maybe a marker of slowly dete-
riorating kidney function in diabetes patients.

MMP-10

Matrix metalloproteinases have been suggested to be caus-
ally involved in many processes leading to kidney disease
progression and cardiovascular disease (44). Elevated levels
of MMP-10 were independently associated with the severity
of atherosclerosis in patients with chronic kidney disease
(CKD) (45), and also associated with nephropathy in patients

with type 1 diabetes (46). Interestingly, MMP-10 was not
associated with eGFR-decline or ACR in previous community-
based studies using the same assay (2,3) and may thus be
DKD-specific. Matrix remodelling properties of MMP-10 and
its degradation products favour expansion of a thin mem-
brane supporting the capillary loops in renal glomeruli called
the mesangium, which may explain some of its effects in the
development of DKD (47). In fact, glucose-induced mesangial
matrix remodelling has been suggested as a mechanism
leading to nephropathy, and thus MMP-10 has been sug-
gested as a potential drug target to slow down diabetic
nephropathy and retinopathy (46).

Strengths and limitations

Strengths of our investigation include the discovery/replica-
tion approach in multiple study samples, which add to the
validity and generalizability of our findings. We cannot infer
causality in the present study as it is of observational design.
Limitations include a possible selection bias for persons par-
ticipating in cohort studies that in general often are healthier
than the average patient population. Another limitation is
the fact that our study was based on single assessments of
the proteins and kidney phenotypes. Limitations of the pro-
teomics assay include that only relative levels of the proteins
are obtained, which makes defining relevant cut-off limits
impossible. Furthermore, the selection of the specific pro-
teins on the Olink CVD-I assay was not based on potential
relevance for DKD. Neither can we determine if it is the pro-
tein that has an effect on the kidney nor if it is the reduced
clearance as an effect of reduced kidney function that
explains our findings. Since we did not perform kidney biop-
sies in our study participants, we were not able to rule out
the misclassification of DKD due to other causes. Finally, the
limited sample size in our longitudinal analyses precluded
stratified analyses in participants with versus without preva-
lent cardiovascular disease at baseline.

Conclusions

We discovered and replicated four blood proteins associated
with prevalent DKD. Circulating levels of GDF-15 were associ-
ated with incident cardiovascular events in models adjusted
for age, sex, kidney function, and microalbuminuria; however,
the association was attenuated when adjusted for estab-
lished cardiovascular risk factors. Our study encourages more
studies evaluating large-scale proteomics in order to discover
new pathways leading to DKD and pinpoint prognostic
markers of cardiovascular risk.
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