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ABSTRACT
During the past 20 years, since I started as a postdoc, the world of genetics and genomics has
changed dramatically. My main research goal throughout my career has been to understand human
disease genetics, and I have developed comparative genomics and comparative genetics to generate
resources and tools for understanding human disease. Through comparative genomics I have worked
to sequence enough mammals to understand the functional potential of each base in the human gen-
ome as well as chosen vertebrates to study the evolutionary changes that have given many species
their key traits. Through comparative genetics, I have developed the dog as a model for human dis-
ease, characterising the genome itself and determining a list of germ-line loci and somatic mutations
causing complex diseases and cancer in the dog. Pulling all these findings and resources together
opens new doors for understanding genome evolution, the genetics of complex traits and cancer in
man and his best friend.
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Introduction

Human disease—early studies

Human diseases can largely be divided into infectious dis-
eases and genetic diseases. In many cases diseases arise as a
result of both genetic predisposition and environmental fac-
tors. In the early years, diseases dependent on a single gene
were analysed with laborious methods using large families to
see if simple sequence length polymorphism (SSLPs) markers
segregated with disease. These single gene diseases included
for example cystic fibrosis (CFTR) (1) and Huntington’s dis-
ease (IT15) (2), while Down’s syndrome was found to depend
on an extra chromosome (trisomy 21) (3) leading to a more
complex phenotype related to many genes. More common
complex diseases such as diabetes, schizophrenia, and
rheumatoid arthritis were far too complex to understand. On
top of this, cancer was postulated to have both inherited
mutations and mutations arising in the tumour (including
the Knudsen two-hit hypothesis) (4), making the tumour
become increasingly malignant (Figure 1).

Tools have transformed genetics

Over the past 20 years enormous changes related to genome
sequencing and gene mapping have occurred, mostly as col-
laborative efforts striving to develop new technologies,
large-scale resources, and computational approaches. As I

will discuss below, while DNA was described more than half
a century ago, the understanding of how genetic diseases
arise is still incomplete, but the field makes continuous pro-
gress every day. Many of the tools and analysis methods,
and some of the knowledge amassed, are also already being
used to understand the biology of disease. Over time, this
will allow more detailed diagnosis with better treatment
options, and—in the long-term—personalised medicine.

Comparative genomics

Sequencing the human genome

The human genome has long been a source of wonder, with
only a partial understanding of how it works, despite enor-
mous efforts to generate different types of data. After the
discovery of DNA in the 1950s, more active research on the
human genome and the genes and regulatory elements hid-
den therein took a long time to follow. In the beginning,
studies often focussed on a single gene for a single disease.
Several types of maps relying on different types of markers
(SSLPs and radiation hybrid markers) allowed the mapping of
monogenic diseases such as cystic fibrosis and Huntington’s
disease. It was recognised that the world of disease genetics
would greatly improve if the whole human genome could
be sequenced. For much of the 1990s, more than 2,800
researchers in a world-wide consortium worked on sequenc-
ing the human genome, with different regions or
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chromosomes divided between labs. This public effort, using
Sanger sequencing (5) led to the first human draft genome
(6), but also coincided with the publishing of a different
human genome (7), which used a novel approach: whole-
genome shotgun sequencing, where segments are randomly
sequenced and then put together as a giant puzzle. Both
genome assemblies covered most of the genome, but
struggled with more complex regions such as complex gene
families, difficult repeats, and centromeres and telomeres.
Thus, the human genome project continued to fill in gaps
for an additional 5 years or so. While the human genome
was declared finished in 2003 (8), there still remained gaps
that were unfilled. In the last couple of years using novel
long-read technologies, it has finally become possible to
sequence complex regions of the genome such as segmental
duplications and repeats, for example in centromeric regions
(9), thus enabling new and complete assemblies of chromo-
somes spanning also repeat regions, from telomere to telo-
mere (10).

Prior to the human genome sequence, common lore had
it that the human genome contained �100,000 protein-cod-
ing genes. When first analysed, the human genome was
found to contain �50% repetitive sequences, for many years

thought of as ‘junk DNA’ (11). In the rest of the genome, sci-
entists struggled to identify the protein-coding genes that
must be there. They used available RNA expression data and
known protein coding sequence. This allowed them to
extrapolate their findings to �40,000 protein-coding genes,
assuming that there were still genes they could not find.
Difficult regions included complex gene families (such as
olfactory receptors) or genes with an especially GC-
rich sequence.

Mouse and rat genomes

The second mammalian genome to be sequenced was the
mouse (12). The mouse is the best laboratory animal model
for human disease, as it is small and easy to manipulate in
captivity, and hence it was deemed of high importance to
generate a reference sequence for it. For the reference the
C57Bl/6J strain was used, despite the fact that multiple
strains exist and are used for different disease studies.
Intriguingly, the haplotype structure of the mouse genome
(as determined by whole-genome sequencing multiple
strains) was quite blocky (long stretches of sequences were
inherited together when looking at multiple strains), and
when multiple strains were analysed and compared to the
two founder mice, Mus musculus domesticus and Mus muscu-
lus musculus, it was seen that most laboratory strains were
hybrids between those two founder strains (13). This finding
agreed with the fact that early mice were used as pet mice
based on different phenotypes such as colouring or ‘dancing’
mice in Japan and China (M. musculus domesticus) and
Europe (M. musculus musculus) (14). In addition to studying
the genetics in different strains, mice have been used both
with knock-out mutations and transgenes. In the current era
of CRISPR editing (15), the analysis of mutations in mice has
become even easier.

Rats are similar to mice as laboratory animals, but their
larger size makes them more expensive to house, while their
physiology is more similar to humans. The Brown Norway rat
genome was sequenced and published in 2004 (16).
Following this, the rat has been widely used to map complex
traits by a combination of sequencing and mapping strat-
egies. For example, one study of outbred rats identified 355
quantitative trait loci for 122 phenotypes including anxiety,
heart disease, and multiple sclerosis (17).

Dog genome

The dog, man’s best friend, was the fifth mammal to be
sequenced. At 2.4 Gb the dog genome is somewhat smaller
than the human genome, based on a lower amount of lin-
eage-specific repeat sequences (334Mb versus 609Mb,
respectively) (18). Previously, the coding-gene count in mam-
malian genomes had not been precisely determined, but
when using conserved synteny between four mammals—
human, mouse, rat, and dog—we could revise the number
of mammalian genes to �20,000. This number varies slightly
between species, primarily based on lineage-specific gene

Figure 1. Professor Kerstin Lindblad-Toh, winner of the Medical Faculty of
Uppsala University Rudbeck Award 2019, ‘for her excellent research in compara-
tive genomics and for developing the dog as a model for biomedical research’.
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family expansions and contractions, but almost 14,000 genes
are 1:1:1 orthologs across human, mouse, and dog (18).

Much research has gone into trying to understand the
early history of dogs and wolves. Different studies propose
different times and places for the domestication. While the
answer is still out there, it would seem logical if wolves
domesticated themselves in multiple places and at different
times (10,000–40,000 years ago) (19). While studies are
ongoing to try to understand the correlation and adaptations
making dogs into dogs, one clear genetic event is the dupli-
cation of the amylase (AMY2B) gene (20), which has only one
pair of copies in the wolf, while most dogs have many,
roughly five, pairs of copies. This gene is important for the
digestion of starch and can be coupled to the changing diet
involving considerably more starch in agrarian societies. The
fact that dogs living in the Arctic do not have the additional
AMY2B copies is likely due to their living on a meat-rich
diet (21).

Monodelphis genome and vertebrate evolution

Following the sequencing of a number of useful placental
mammals, we moved outside the placental mammals and
sequenced the first marsupial — opossum (Monodelphis
domesticata) (22). The perhaps most intriguing finding when
comparing the opossum to placental mammals was that
innovations in protein-coding regions are relatively rare,
while 20% of eutherian conserved non-coding elements
(CNEs) are recent innovations. A substantial proportion of
these eutherian-specific CNEs have arisen from sequences
inserted by transposable elements (repeats), pointing to
transposons as a major creative force in the evolution of
mammalian gene regulation.

The chicken red jungle fowl (Gallus gallus), being an
important food source, was the first bird to be sequenced
and published in 2004 (23). The chicken genome is roughly
1Gb in size, roughly one-third of the human genome, which
correlates with a lower number of repeat elements and seg-
mental duplications. In addition to 6 pairs of macrochromo-
somes, and 1 pair of sex chromosomes (the female is the
heterogametic sex), chickens also have 32 pairs of intermedi-
ate or microchromosomes. Microchromosomes are small, GC-
rich and gene rich. The analysis of the chicken genome in
multiple populations has allowed the identification of both
morphological traits (24) and traits related to egg and meat
production (25)

Anolis carolinensis was the first lizard to be sequenced
(26). Lizards, like chickens, have substantial numbers of
microchromosomes, and they both rely on eggs for repro-
duction. The evolution of the amniotic egg was one of the
great evolutionary innovations in the history of life, freeing
vertebrates from an obligatory connection to water, and thus
permitting the conquest of terrestrial environments. A. caroli-
nensis microchromosomes are highly syntenic with chicken
microchromosomes, yet they do not exhibit the high GC and
low repeat content that are characteristic of avian microchro-
mosomes. Also, A. carolinensis mobile elements are very
young and diverse—more so than in any other sequenced

amniote genome — which possibly has allowed the novel
innovations underlying the rapid radiation of 400 lizard spe-
cies. These species have radiated, often convergently, into a
variety of ecological niches with attendant morphological
adaptations, providing one of the best examples of adaptive
radiation (27).

Despite the sequencing of a large number of land-living
creatures, it was still a mystery how the first creature crawled
onto land. Curiously enough, a rarely seen fish, called the
coelacanth (Latimeria chalumnae), and living in the deep
ocean, for example off the East Coast of Africa, was reported
to have four lobe-finned limbs similar to many land-living
vertebrates. Based on material from a stranded coelacanth,
we sequenced the coelacanth genome (28), together with
the transcriptome of the lung fish. The lung fish also has
four limbs, but as it has an extremely large genome (esti-
mated at 40–100Gb: http://www.genomesize.com), contain-
ing a lot of transposable elements (29), we could not afford
to sequence it at that time. Careful analysis of the genes in
coelacanth and lung fish showed that the lung fish was
more closely related to land-living animals, supporting the
primitive notion that both lungs and legs are a great advan-
tage on land.

Overall modification of gene-regulatory elements may
underlie a significant proportion of phenotypic changes on
animal lineages. To investigate the gain of regulatory ele-
ments throughout vertebrate evolution we identified a gen-
ome-wide set of putative regulatory regions for five
vertebrates, including human, and looked for signs of gains.
In early vertebrate times regulatory gains occurred frequently
near transcription factors and developmental genes, but this
trend was then replaced by innovations near extra-cellular
signalling genes, and finally, in the last 100 million years
(during the mammalian radiation), innovations near post-
translational protein modifiers (30). This suggests that the
complexity of regulation and function of protein-coding
genes have increased continuously (Figure 2).

Stickleback, cichlids, and herring—good examples of
environmental adaptations

Sticklebacks are small fish that were originally marine. They
have colonised and adapted to thousands of streams and
lakes formed since the last ice age in North America and
Europe (31). Typical changes of the freshwater adaptations
included body shape, length, depth, fin position, spine
length, eye size, and armour plate number. An early study
generating a genome sequence also involved the sequencing
of 20 individuals from locations spanning across both fresh-
water and saline environments globally (32). The study iden-
tified 90 genomic regions that consistently varied between
fresh and salt water. We also noted the re-use of globally
shared standing genetic variation, including chromosomal
inversions, to allow for repeated evolution of distinct marine
and freshwater sticklebacks.

A later study showed similar patterns of adaptation to sal-
inity for the herring, a common food source in Scandinavia,
spanning between the brackish Baltic and the salty Northern
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Atlantic Ocean (33). The genome sequence complemented
with whole-genome sequencing of many populations identi-
fied >500 regions related to adaptations to brackish water.
Further analysis also identified >100 loci that varied between
spring and fall breeding populations (34). These studies also
suggest that the adaptations can depend on both protein-
coding and regulatory adaptations, and that haplotype
blocks spanning multiple genes are selected, suggesting that
multiple variants in a region might underlie genomic
adaptations.

The tilapia, present in the Nile, again a common food
source, was used as a backbone for the analysis of the adap-
tations present in hundreds of cichlid species in the African

Lakes of Victoria, Malawi, and Tanganyika. Analysis of four
fish from the Eastern lineage showed gene duplications, an
abundance of non-coding element divergence, accelerated
coding sequence evolution, expression divergence associated
with transposable element insertions, and regulation by
novel microRNAs compared to the tilapia and other teleost
genomes (35). Later studies have also identified strong selec-
tion on colour schemes and morphology related to where in
the lakes the different species live. Deeper sequencing of
five Lake Malawi species followed by genotyping in a diverse
collection of �160 species from across Africa identified �200
genic and non-genic SNPs varying across species. We
observed segregating polymorphisms outside of the Malawi

Figure 2. Vertebrate genome sequencing projects shed light on genome evolution, domestication, and adaptation. Many of the first vertebrate whole-genome
projects represented model species (e.g. mouse and rat), but over time, additional resources representing natural model species have been added. Highlighted in
this tree are some of the studies that have been undertaken, within and across lineages, to study the processes of natural adaptation (marked A; for example,
stickleback adaptation to extreme aquatic environments), domestication (marked D; for example, genetic signatures separating domestic dogs and wolves), and
genome evolution (marked GE; for example, exaptation changes in a regulatory sequence function between human and monodelphis). As well as indicating the
genetic distances between representative vertebrate species, this tree also illustrates the time periods when novel regulatory innovations arose. In particular, regu-
latory elements near transcription factors (red box) and developmental genes (yellow box) evolved quickly in early vertebrate history, followed by cell communica-
tion (green box) and protein modification (blue box) in the more recent past. As whole-genome sequencing becomes substantially cheaper and more accessible,
the expansion of reference genomes within each clade is set to increase, with the publication of 200 mammals, 300 birds, and more than 100 fish expected by the
close of 2020. Image adapted with permission from Meadows & Lindblad-Toh, Nature Review Genetics (63).
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lineage for more than 50% of these loci, suggesting that
river cichlids have transported polymorphisms between
lakes (36).

Mammals help annotate the human genome

In 2008, sequencing was still relatively expensive, but the
whole-genome shotgun approach enabled the use of low-
coverage genome sequencing of mammalian genomes to
better understand the human genome. In 2011, we pub-
lished a paper including 2� sequencing (whole-genome
shotgun sequencing where random sequences are generated
so that each base in the genome is sequenced on average 2-
fold) of 18 mammals added to the 11 existing (Sanger
sequenced at 7�) mammals (37). This project allowed the
identification of evolutionary constraint of 12-bp elements,
resulting in the identification of >3 million constraint ele-
ments, encompassing 4.2% of the genome. The protein-cod-
ing sequence only covers �1% of the genome, thus
suggesting a flood of novel candidate regulatory elements.
The data also allowed us to look at synonymous constraint
elements where regulatory elements overlap coding
sequence, constraint patterns in promoters, and accelerated
regions in humans and primates—hallmarks of positive selec-
tion for human adaptations. Recent work has shown that
human accelerated elements encompass regulatory elements
such as well conserved enhancers for developmental
genes (38).

All is not protein-coding genes

In addition to protein-coding genes (1%) other regulatory
entities encompass at least three times as much space. These
regions include non-coding RNA transcripts, such as thou-
sands of long intergenic non-coding RNAs (lincRNAs) (39)
and microRNAs (miRNAs) (40). LincRNAs are RNA molecules
larger than 200 nucleotides and are more or less conserved
across species, presumably varying in the strength of func-
tion. Still, they have a widespread role in gene regulation
and other cellular processes including cell-cycle regulation,
apoptosis, and establishment of cell identity (41). MiRNAs are
short (20 to 24 nucleotides), non-coding RNA molecules com-
posed of a single-stranded sequence. They predominantly
act as negative regulators of gene expression (40), but are
functionally involved in virtually all physiologic processes,
including differentiation and proliferation, metabolism,
hemostasis, apoptosis, and inflammation.

To better catalogue the regulatory landscape, the
Encyclopaedia of DNA Elements (ENCODE) project (https://
www.encodeproject.org) was formed to map functional non-
coding elements. Initially, ChIP-seq was performed to detect
the location of individual transcription factor binding sites in
many tissues. Over time, this analysis has expanded to look
at differential methylation and acetylation of genomic bases
and their binding proteins. Recently, Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq) (42) has
been developed to detect open chromatin. Moreover, the 3 C
technology has been developed into HiC (43), which can

detect topologically associating domains (TADs) allowing sci-
entists to infer what portions of the genome are within spe-
cific regulatory regions in specific tissues (44). In addition,
the GTEx effort (https://www.gtexportal.org/home/) works to
couple genome variation, such as single nucleotide polymor-
phisms (SNPs), to differences in gene expression.

More than 240 mammals for single base resolution
constraint in mammalian genomes

As Illumina sequencing became affordable, we put together
a project with the goal of detecting human single base evo-
lutionary constraint using >240 mammalian genomes (45).
Of these, 131 genomes were generated by us using
DISCOVAR-de novo (46), combined with the 110 mammalian
genomes in NCBI in March 2017. As this data set is analysed
it will allow the study of: 1) the largest Eutherian nuclear
genome phylogeny; 2) the ability to perform genotype–phe-
notype correlations across many mammalian species; 3) the
evolution of genome structure; 4) reference genomes that
can be utilised for species conservation; and, finally, 5) a
detailed map of evolutionary constraint, which can be used
with human genome-wide association (GWAS) catalogues
and other species data sets to investigate patterns of con-
straint in disease-associated regions in any of the 241
genomes. The data set will also make possible the study of
accelerated regions under positive selection in any of the
sequenced mammalian genomes.

Comparative genetics

Complexity of human disease genetics

After the generation of the human genome, lots of effort
went into detecting variation in the human genome. SNPs,
indels, and larger structural variations were discovered, and
SNPs were put into genotyping panels to allow for genome-
wide association studies (GWAS) to map disease loci. The ini-
tial thoughts were that common diseases were caused by
common variants. Although tens of thousands of patients
and controls have been genotyped for many complex traits,
the loci identified have only accounted for a fraction of the
heritability of the disease. As an example, 113,075 controls
and 36,989 cases with schizophrenia have identified 108 gen-
ome-wide significantly associated loci (47). These loci are
estimated to explain 30–50% of the heritability for schizo-
phrenia. There could be multiple reasons for why only a
smaller portion of the heritability has been detected, such as
the need of larger samples sizes, environmental factors, epi-
genetics or a bigger proportion of rare variants. For some
diseases such as autism, where individuals with the disease
reproduce less frequently, the fraction of novel mutations or
rare variants of high effect may be larger (48). To detect indi-
vidual rare variants, much larger sample sizes are needed;
however, methods of Burden testing of specific gene regions
or pathways will enable the summing of multiple mutations.
While currently the gene plus a unified flanking region is
involved in the analysis, TAD domains and GTEx data should
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be helpful in performing Burden tests on regions distinctly
important to the gene.

The dog as a model for human disease

The strongest reason for sequencing the canine genome was
to harness the genetics related to the enormous diversity
among breeds (49). Pet dogs are special because they share
our environment, and also share the same diseases as
humans, including autoimmune disease, neurological disease,
cardiovascular disease, and cancer. In fact, roughly 30% of
dogs get cancer, which is similar to the frequency observed
in man (50). On top of this, there has been very strong selec-
tion for morphological traits and behaviour, suggesting that
rare variants with strong effect may have become more com-
mon in certain breeds, leading to disease. The bottlenecks at
breed creation may also have allowed drift to make some
alleles much more common in some breeds. The recent cre-
ation of breeds (in the last 200 years) also means that haplo-
type blocks are long within breed and short across breeds.
This allows for a mapping strategy where first high-risk
breeds are used to find the rough locations of disease muta-
tion (by case control GWAS), and then other breeds are
added in to fine-map the region to find the functional muta-
tion (Figure 3) (18). Based on this, monogenic traits can be

mapped with �20 cases and 20 controls, while complex
traits, such as cancers, can be mapped with a few hundred
cases and controls. In humans, many thousands of patients
and controls are needed. Many diseases such as osteosar-
coma (51), canine systemic lupus erythematosus (52), and
canine compulsive disorder (CCD) have now been identified
and, in several cases, been translated to the corresponding
human disease.

Obsessive-compulsive disorders (OCD) shares a common
aetiology between dogs and humans

CCD shows strong clinical similarities with human OCD; both
species perform certain normal behaviour in excess and
often repetitively. To investigate the genetic causes of CCD,
we first performed GWAS in 92 cases and 68 controls of the
Doberman Pinscher breed, identifying a single genome-wide
significance locus (53). This locus was near the cadherin 2
(CHD2) gene, for which the protein is located in the synapse.
Secondly, careful reanalysis of the data identified multiple
regions of suggestive association as well as regions of fix-
ation in the Doberman Pinscher breed. Thirdly, we performed
targeted resequencing of all these regions and identified a
number of genes with increased numbers of mutations in
cases versus controls (54). Many of these genes were active
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Figure 3. Genome-wide association (GWAS) is easier in dogs than in humans. Monogenic traits in dogs can be mapped with fewer SNP markers and fewer individ-
uals than in humans. GWAS in dogs will utilise the long linkage disequilibrium (LD) within dog breeds, followed by fine-mapping in multiple breeds with the same
phenotype (panel a). In humans the LD is short, requiring the use of a lot of SNP markers already in the GWAS step (panel b). The number of SNP markers required
for different types of traits in dogs is lower, as is the number of loci contributing to each trait in dogs (panel c), while in humans most traits are more complex and
require more samples (panel d).

6 K. LINDBLAD-TOH



in the synapse. Finally, we used the genes and pathways
found in dogs, combined them with known functionally
important OCD genes from humans and mice, and used the
combined gene set to perform targeted sequencing of human
OCD cases and controls (55). Altogether, we analysed 608
genes in 592 cases and 560 controls and identified four genes
as strongly associated (one genome-wide). Two of these
genes, NRXN1 and HTR2A, were enriched for protein-coding
mutations in cases, while two genes, CTTNBP2 (synapse main-
tenance) and REEP3 (vesicle trafficking), had only regulatory
mutations in this study. This might suggest that these two
proteins with regulatory mutations have such critical functions
that they cannot tolerate coding mutations. Now larger GWAS
studies are being performed in humans, and it will be interest-
ing to see if the link to CCD will be further strengthened.

Taking the next step

Sequencing technologies change the way we can
analyse most species on earth

As the cost of long-read sequencing technologies is finally
coming down for generating a high-quality genome (and the
generation of population data can be cheaply generated by
short-reads), the ability to generate genomes from many spe-
cies changes dramatically. However, one of the challenges
still remaining is access to high-quality DNA samples, which
is necessary for generating a reference genome with long-
read sequencing, and also for samples from a sufficient num-
ber of individuals to allow the generation of population data
from different regions of the world. Multiple zoos (i.e. the
San Diego Frozen Zoo) have collected samples and cell lines
which are potentially useful for generating genome sequen-
ces or studying variation, but also potentially for in vitro
reproduction for endangered species. One such example is
the Southern White Rhino which is close to extinction, with
only two individuals still alive and neither of them able to
carry a pregnancy. Attempts will now be made for a
Northern White Rhino to be a surrogate mother (56).

About a year ago the Earth Biogenome Project (https://
www.earthbiogenome.org) (57) started with the enormous aim
of generating high-quality genomes for each of 10–15 million
eukaryotic species on Earth in the next 10 years. To accomplish
this, almost every step of the procedure needs to be scaled
up: sample collection, sequencing and assembly, annotation,
and standardised analysis, as well as species-specific analysis.
On top of this comes the generation and analysis of popula-
tion data and transcriptomics for annotation of genomes.
Although this is still a moonshot, we are getting closer.
Importantly, to save diversity of life on Earth, sequencing must
be combined with more practical conservation efforts such as
protection of habitats and inhibition of poaching.

Mammalian constraint and its use for understanding
disease in many mammals

As mentioned earlier, most GWAS loci fall outside protein-
coding regions of the genome, thus requiring the use of

various ways to annotate single variants for the likelihood
that they are a causative mutation for disease. Several tech-
niques are being developed to address this crucial issue. The
200-mammals-data reaches single base constraint for all
bases in the human genome, allowing a triage of each posi-
tion’s likelihood to be functional without any relationship to
in which tissues the affected gene is located. As novel meth-
ods such as massively parallel reporter assays and genome
editing at large scale (58) become possible, it will allow the
comparison of overall evolutionary functional constraints to
that of functionality in individual tissues.

To add to this, additional annotations of all types of tran-
scripts in many healthy and disease tissues as well as many
types of functional annotations (both experimental like ChIP-
seq, Regulome and HiC, or bioinformatic Hidden Markov
Models [HMMs] (59) and machine learning methodologies)
will aid our understanding of how normal and diseased tis-
sues are affected by each gene/mutation. To more clearly
understand the tissue-specific effects, single cell sequencing
(60) has also become more frequent and can decipher cells
in, for example, the immune system and brain, where a large
number of different cell types live in close proximity and
symbiosis. Cultured organelles and spatial transcriptomics
(61) in key tissues allow further dissection of transcriptomics
and functional effects.

Utilising the canine model for clinical trials

The clinical similarity between disease in dogs and humans
has been studied for many years. Based on Multiple GWAS
data sets, tumour mutations and expression data have
shown also a molecular similarity between dogs and humans
in many diseases. Based on the shorter life-span in dogs
compared to humans, the outcome from clinical trials is
likely to be informative more quickly. Mouse models on the
other hand, may give rapid results, but are often induced
and are rarely spontaneous. Already, trials for canine ALS
(https://vhc.missouri.edu/small-animal-hospital/neurology-
neurosurgery/current-clinical-trials/) and multiple cancers are
underway (https://trials.vet.tufts.edu/clinical-trials/?fwp_spe-
cies=dog&fwp_veterinary_specialties=oncology). Also, the
analysis of cell free DNA (cfDNA) and circulating tumour DNA
(ctDNA) for monitoring disease progression in liquid biopsies
(62) in the dog should be informative.

Conclusion

During the past two decades, the understanding of verte-
brate evolution as well as of the human genome, and conse-
quently human disease, has expanded at an exceptional
pace. We have increased our understanding of evolutionary
principles and the content of the human genome. Loci asso-
ciated with a specific human disease can be in the hundreds,
detected with tens of thousands of individuals, yet explain-
ing only a fraction of the disease risk. Thus, we have still
only scraped the surface when it comes to understanding
human disease.
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The next decade is likely to generate exponentially more
data to help protect endangered species by having both a
reference genome and population data. It will also increase
the understanding of the human genome, including non-
coding mutations and rare variants. This will require both an
understanding of every base in the human genome as well
as large sample sizes to fully map human disease. Increasing
use of pet dogs for disease gene identification as well as for
clinical trials is likely to help propel the biological under-
standing into canine and human personalised medicine.
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