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Abstract 

Prostate cancer is among the most central sources of cancer-related mortalities. In order to find 

novel candidates for therapeutic strategies in this kind of cancer, we developed an in-silico method 

for identification of competing endogenous RNA network. According to the microarray data 

analyses between prostate tumor and normal specimens, we attained 1312 differentially expressed 

(DE)mRNAs, including 778 down-regulated DEmRNAs (such as CXCL13 and BMP5) and 584 

up-regulated DEmRNAs (such as OR51E2 and LUZP2), 39 DElncRNAs, including 10 down-

regulated DElncRNAs (such as UBXN10-AS1 and FENDRR) and 29 up-regulated DElncRNAs 

(such as PCA3 and LINC00992) and 10 DEmiRNAs, including 2 down-regulated DEmiRNAs 

(such as MIR675 and MIR1908) and 8 up-regulated DEmiRNAs (such as MIR6773 and 

MIR4683). We constructed the ceRNA network between these transcripts. We also evaluated the 

related signaling pathways and the significance of these RNAs in prediction of survival of patients 

with prostate cancer. This study provides novel candidates for construction of specific treatment 

routes for prostate cancer. 
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Introduction 

Long non-coding RNAs (lncRNAs) are a group of transcripts with sizes more than 200 nt. They 

have diverse regulatory roles on expression of genes. This kind of epigenetic regulators influence 

epigenetic marks mainly in the nucleus, thus affecting gene transcription (1). In addition, they can 

serve as molecular sponges for microRNAs (miRNAs) (2), thus regulating expression of miRNA 

targets. This mode of action leads to establishment of lncRNA/miRNA/mRNA axes that contribute 

in the several physiological processes. Dysregulation of lncRNAs can lead to several disorders 

through induction of imbalances in these molecular axes. LncRNAs that act as molecular sponges 

are called competitive endogenous RNAs (ceRNAs). Evaluation of the activity of ceRNA 

networks has practical significance, particularly in unraveling the mechanism of carcinogenesis. 

Prostate cancer as one of the most important sources of cancer-related mortalities (3), is one of the 

hot topics in the field of cancer-related ceRNA networks. For instance, Li et al. have constructed 

a prostate cancer-specific ceRNA network by incorporating lncRNA/miRNA/mRNA interactions 

based on experimental and in silico methods. Their method has led to identification of 42 

significant prostate cancer-survival-associated triplets which make a condensed subnetwork 

consisted of only 25 nodes. The latter finding shows the involvement of some nodes in many 

triplets. MIR22HG/hsa-mir-21/TGFBR2 and MIR22HG/hsa-mir-21/BCL2 triplets have been 

recognized as two significantly survival associated triplets with the greatest average degree in the 

detected subnetwork (4). Similarly, Guo et al. have constructed a prostate cancer-specific core 

ceRNA network with the capability to be applied as diagnostic and prognostic marker in this type 

of cancer (5).   



 

 

The current study aimed at identification of the ceRNA network in prostate cancer using an in-

silico approach. The related signaling pathways and the significance of these RNAs in prediction 

of survival of prostate cancer patients have also been evaluated. 

Methods 

Microarray Data Assessment 

The human expression profile of GSE69223, GSE46602, and GSE55945, all with [HG-U133 Plus 

2] Affymetrix Human Genome U133 Plus 2.0 Array, which contained 30, 50, and 21 specimens, 

respectively, were obtained using the Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih.gov/geo/). We chose 15 prostate tumor and 15 normal tissue specimens 

from GSE69223, 36 prostate tumor samples from GSE46602 and 13 prostate tumor samples from 

GSE55945 for additional analyses. This data contained lncRNAs, miRNAs and mRNAs 

expression profile. 

Data processing, meta-analysis and evaluation of data quality  

The statistical programming language R was used to analyse and combine all of the microarray 

data. Data from Affymetrix and Agilent was initially normalized individually for pre-processing 

using the preprocessCore package's normalizeQuantiles function (version 1.58.0). 

(https://bioconductor.org/packages/release/bioc/html/preprocessCore.html). With the purpose of 

exclusion of batch effects (non-biological differences), we used the ComBat function from the R 

Package Surrogate Variable Analysis (SVA) (version 3.44.0) (6). Batch effect removal was then 

evaluated. We showed the result of the meta-analysis in a unit expression matrix. 

Assessment of differentially expressed transcripts 



 

 

We used the Limma package (version 3.52.3) (7) in R language to find differentially expressed 

mRNAs (DEmRNAs), lncRNAs (DElncRNAs) and miRNAs (DEmiRNAs) between prostate 

tumor and normal specimens. DEmRNAs, DElncRNAs and DEmiRNAs were appraised with the 

cut-off criteria of false discovery rate (FDR; adjusted p value) < 0.05 and |log2 fold Change (FC)| 

> 0.5. Subsequently, we identified DElncRNAs and DEmiRNAs using HUGO gene nomenclature. 

Two-Way Clustering of DEGs 

Expression levels of significant DEmRNAs, DElncRNAs, and DEmiRNAs were obtained and 

used in the pheatmap package (version 1.0.12) (8) in R language to conduct the two-way clustering 

based on the Euclidean distance. 

Gene Ontology (GO) Enrichment  

ClusterProfiler R package (version 4.4.4) (9) was applied to conduct gene ontology (GO) 

enrichment and investigation of the functions of the significantly up-regulated and down-regulated 

DEGs. The functional category criteria were established at an adjusted p-value<0.05. 

KEGG Pathway Analysis 

KEGG pathway analysis of considerably DEGs was performed using the KEGG database (10). 

PPI Network Construction  

PPI network for DEGs was identified using the STRING database (11). Highest level of confidence 

was utilized to create the interactions parameter (confidence score >0.9). Protein interactions were 

visualized using the Cytoscape software v3.9 (12). The top 20 DEGs related to hub genes were 

lastly detected using the Cytohubba plugin (13) of Cytoscape using the betweenness method. 

ceRNA Network and Hub Genes  



 

 

A ceRNA network was constructed through these steps: 1) Searching the miR2Disease database 

(http://watson.compbio.iupui.edu:8080/miR2Disease/index.jsp) (14) utilizing the term "prostate 

cancer" for the prostate cancer (PC)-related miRNAs.  2) measuring the interactions between 

lncRNAs and miRNAs based on the PC-related miRNAs using miRcode (http://www.mircode. 

org/); 2) Application of miRDB (http://www.mirdb. org/) (15), miRTarBase 

(https://mirtarbase.cuhk.edu.cn/) (16), TargetScan (http://www.targetscan.org/) (17) and 

miRWalk (http://129.206.7.150/)  (18) for predicting miRNAs-targeted mRNAs; 3) Discovery of 

the intersections of the DElncRNAs and DEmRNAs, and formation of lncRNA/mRNA/miRNA 

ceRNA network using Cytoscape v3.9 and 4) predicting hub genes using cytohubba plugin based 

on degree approach. 

Confirmation of hub genes via expression values 

Expression value of hub genes was evaluated using the ualcan database (19). 

Survival analysis 

Survival package (version 3.5.0) (https://CRAN.R-project.org/package=survival) in R was utilized 

to find survival curves. The clinical data for patients with prostate cancer was obtained from TCGA 

(PRAD-TCGA). Univariate survival analysis was performed using Kaplan-Meier curves. Statistics 

were considered significant for P-value<0.05. The start time to the end time in this analysis is from 

0 to 5000 days. 

Results 

Microarray Data Processing  

http://watson.compbio.iupui.edu:8080/miR2Disease/index.jsp
https://mirtarbase.cuhk.edu.cn/
http://www.targetscan.org/
http://129.206.7.150/
https://cran.r-project.org/package=survival


 

 

Figure 1 depicts the boxplots of raw data, normalized data after batch effect removal and quantile 

normalization. These plots show the reliability of the quality of the expression data. Moreover, the 

boxplot of the preprocessed data had good normalization. Figure 2 shows the Euclidean distances 

between the samples after batch effect removal. In the PCA plot (Figure 3), 101 specimens are 

shown in the 2D plane traversed by their first two principal components (PC1 and PC2) According 

to this plot, the samples had a good dispersion following removal of batch effect. 

 

 

 

 

 

A 

 

 

 

 

 

B 

Figure 1. Boxplots after combining datasets. A) First box plot shows the combination of datasets 

B) The second boxplot shows the merged datasets after removing the batch effect removal. 



 

 

 

Figure 2. The Euclidean distances between samples. Based on the Euclidean distance, hierarchical 

clustering between the samples has been established; Legend shows the distance value between samples. 



 

 

 

 

Figure 3. PCA plot. The Batch implies that the data includes three platforms. Also, healthy benign and 

tumor samples were divided into three groups. 

DEGs Analysis 

Based on the microarray data analysis between prostate tumor and normal samples by Limma, we 

analyzed differentially expressed mRNA, lncRNA and miRNAs and obtained 1312 DEmRNAs, 

including 778 downregulated DEmRNAs (such as CXCL13 and BMP5) and 584 upregulated 

DEmRNAs (such as OR51E2 and LUZP2), 39 DElncRNAs, including 10 downregulated 

DElncRNAs (such as UBXN10-AS1 and FENDRR) and 29 upregulated DElncRNAs (such as 

PCA3 and LINC00992) and 10 DEmiRNAs, including 2 downregulated DEmiRNAs (such as 

MIR675 and MIR1908) and 8 upregulated DEmiRNAs (such as MIR6773 and MIR4683). The 

most significantly upregulated and downregulated DEmRNAs, DElncRNAs, and DEmiRNAs are 

shown in Tables 1-3, respectively. 



 

 

Table 1. The top 10 up- and downregulated DEmRNAs between prostate tumor and normal 

samples. 

Down-regulated 

  

Up-regulated 

DEmRNA Log FC Adjusted P value DEmRNA Log FC Adjusted P value 

CXCL13 

BMP5 

WIF1 

NELL2 

SLC14A1 

DAPL1 

KRT23 

LGR6 

CFD 

PTGS1 

-2.914284 

-2.549856 

-2.453527 

-2.383551 

-2.214827 

-2.038041 

-2.011459 

-1.843800 

-1.792887 

-1.750086 

0.0001 

0.0002 

0.0001 

0.00003 

0.00004 

0.002 

0.00004 

0.00001 

0.00002 

0.00001 

OR51E2 

LUZP2 

HOXC6 

HPN 

C15orf48 

TRPM4 

B3GAT1 

PRCAT47 

THBS4 

DLX1 

2.410149 

2.205251 

2.178773 

2.004699 

1.984213 

1.971099 

1.834909 

1.807160 

1.804980 

1.804387 

0.002 

0.0005 

0.0001 

0.000000002 

0.01 

0.0000005 

0.0002 

0.01 

0.0001 

0.0001 

 

Table 2. The up- and downregulated DElncRNAs between prostate tumor and normal samples. 

Down-regulated 

  

Up-regulated 

DElncRNA Log FC Adjusted P value DElncRNA Log FC Adjusted P value 

UBXN10-AS1 

FENDRR 

MAGI2-AS3 

MAGI2-IT1 

BOLA3-AS1 

ADAMTS9-AS2 

HCG11 

TBX5-AS1 

RBMS3-AS3 

MEG3 

-1.085041069 

-1.001246896 

-0.951283196 

-0.877464251 

-0.818242331 

-0.79674974 

-0.765278673 

-0.74698408 

-0.714422829 

-0.707122105 

0.0002 

0.0002 

0.00003 

0.0002 

0.00004 

0.00003 

0.0001 

0.00001 

0.0001 

0.0002 

PCA3 

LINC00992 

C1QTNF3-AMACR 

PCAT18 

ERVH48-1 

DRAIC 

FOXP4-AS1 

LINC00842 

LINC00920 

DANCR 

PRRT3-AS1 

SNHG19 

PCAT7 

C8orf34-AS1 

CRNDE 

SNHG9 

LINC01351 

ENO1-AS1 

ZNF793-AS1 

MCF2L-AS1 

PRKAG2-AS1 

PCAT6 

POU6F2-AS2 

LINC00862 

RPARP-AS1 

LEF1-AS1 

LINC00665 

LINC00973 

2.194085974 

2.131068688 

2.129359564 

1.444563038 

1.384998066 

1.351053821 

1.343377023 

1.213140476 

1.030649901 

1.026630806 

0.916404009 

0.900564908 

0.827071849 

0.824415749 

0.733537617 

0.711240397 

0.708756468 

0.689974397 

0.68123815 

0.645850215 

0.640111087 

0.622871409 

0.618162182 

0.596493068 

0.595574259 

0.592353189 

0.538956003 

0.520799038 

0.001 

0.00008 

0.0001 

0.03 

0.02 

0.006 

0.0009 

0.004 

0.04 

0.0005 

0.03 

0.0001 

0.02 

0.01 

0.01 

0.04 

0.03 

0.01 

0.009 

0.007 

0.02 

0.02 

0.03 

0.02 

0.004 

0.02 

0.002 

0.02 



 

 

LINC01128 0.507755709 0.005 

 

Table 3. The significantly up- and downregulated DEmiRNAs between prostate tumor and normal 

samples. 

Down-regulated 

  

Up-regulated 

DEmiRNA Log FC Adjusted P value DEmiRNA Log FC Adjusted P value 

MIR675 

MIR1908 

-1.461212788 

-0.809060479 

0.003 

0.005 

MIR6773 

MIR4683 

MIR7110 

MIR3658 

MIR3185 

MIR6824 

MIR4647 

MIR4784 

1.110887917 

0.903634366 

0.875949754 

0.746514424 

0.670389146 

0.617549387 

0.599044810 

0.549181183 

0.0000363 

0.0003 

0.001 

0.0001 

0.01 

0.02 

0.004 

0.01 

 

Volcano plot was depicted with the EnhancedVolcano package (version 1.14.0) (20) in R to 

compare the variation in miRNA, lncRNA, and mRNA expression between prostate tumor and 

normal samples (Figure 4). Moreover, the two-way clustering showed 20 clearly distinct 

DEmRNA expression patterns between prostate tumor and normal samples (Figure 5a). The 

expression of DElncRNAs and DEmiRNAs is demonstrated in two heatmaps (Figure 5b). 



 

 

 

Figure 4. The volcano plot of differentially expressed genes (DEGs); horizontal axis, log2(FC); 

vertical axis, -log10(adjusted P value).  
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Figure 5. A. The two-way clustering of DEmRNAs between prostate tumor samples and normal 

samples; horizontal axis, the samples; vertical axis, DEmRNAs. B. Two heatmaps depicting 

expression of DElncRNAs and DEmiRNAs. 

GO Enrichment Analysis of DEGs 

The substantially DEGs were enriched in 497 GO terms. Clusterprofiler package was used for 

analysis. For performing this analysis, the all genes listed in the database in clusterProfiler pack-

age have been used as background. In GO functional enrichment analysis, 497 GO entries fulfil 

Adjusted P value<0.05, the majority of which are biological processes, followed by cellular 

component and molecular function. The first 30 entries are collagen-containing extracellular 



 

 

matrix (CC), extracellular matrix structural constituent (MF), extracellular matrix organization 

(BP), extracellular structure organization (BP), cell-cell junction (CC), basement membrane (CC), 

cell junction assembly (BP), cell-substrate adhesion (BP), collagen trimer (CC), sarcolemma (CC), 

muscle contraction (BP), muscle system process (BP), urogenital system development (BP), 

morphogenesis of a branching structure (BP), I band (CC), endoplasmic reticulum lumen (CC), 

extracellular matrix structural constituent conferring tensile strength (MF), contractile fiber (CC), 

regulation of cell-substrate adhesion (BP), Z disc (CC), mesenchyme development (BP), 

mesenchymal cell differentiation (BP), respiratory tube development (BP), myofibril (CC), 

membrane raft (CC), membrane microdomain (CC), gland morphogenesis (BP), renal system 

development (BP), glycosaminoglycan binding (MF) and sarcomere (CC). Figure 6 shows the 

barplots of top 10 enriched functions. 



 

 

 

Figure 6. The barplots of top 10 enriched functions. BP (biological process), CC (cellular 

component) and MF (molecular function). X axis displays the count of geneset; Y axis displays 

the geneset function; Bar color signifies the adjusted P.value, ranging from red (most significant) 

to blue (least significant). 

Figures 7 and 8 (supplementary file) show the dotplots of top 10 enriched functions and enriched 

GO induced graph, respectively. 



 

 

 

Figure 7. The dotplots of top 10 enriched functions. X axis displays the count of geneset; Y axis 

displays the geneset function; Dot color represents the adjusted P.value, ranging from dark blue 

(most significant) to red (least significant). Dot size represents the GeneRatio and The larger the 

size of the dot, the higher the value of the gene ratio. 

 



 

 

Figure 9 indicates the gene-concept network of top 5 GO terms (Cell-substrate adhesion, cell 

junction assembly, extracellular matrix organization, extracellular structure organization and 

muscle contraction). 

 

Figure 9. Network plot of top 5 GO terms. GO terms are linked with genes. There are more genes 

for a specific GO term if the dot relating to it is bigger. 

In figure 10, the UpSet plot visualized the intersection between top 10 GO terms. It highlights the 

gene overlap between several gene sets. 



 

 

 

Figure 10. UpsetPlot of 10 GO terms. 

Pathway Analysis 

Using Pathview (version 1.36.1) (21) and gage (version 2.46.1) (22) packages in R, KEGG 

pathway analyses of 177 down-regulated and 177 up-regulated DEGs were performed to identify 

the potential functional genes (Table 4 and Figure 11). Figure 10 shows the schematic visualization 

of 3 pathways (1 up-regulated and 2 down-regulated pathways). 

Table 4. Down-regulated and Up-regulated Pathways 

Down-regulated 

   

Up-regulated 

Pathway P value Pathway P value 

Focal adhesion 

Protein digestion and absorption 

Vascular smooth muscle contraction 

ECM-receptor interaction 

0.007574712 

0.014154194 

0.023808509 

0.031880880 

Purine metabolism 0.04602828 



 

 

Complement and coagulation cascades 0.049110016 

 

 



 

 

 



 

 

 



 

 

 



 

 

 

 



 

 

Figure 11. Visualization of pathways. Green boxes are downregulated genes and red boxes are 

upregulated genes. 

PPI network construction and selection of hub genes 

In order to find the hub genes, a PPI network of DEGs (supplementary file) with 411 nodes and 

555 edges that was acquired from STRING was loaded into the Cytohubba plugin of Cytoscape 

3.9. The 20 hub genes with the highest betweenness of connectivity were EGF, PRKCA, FLNA, 

CAV1, RGS9, RGS2, CD3EAP, RRM2, ITGA1, PPP1R12B, SDC2, MLC1, PRKG1, BIRC5, 

P4HB, FGFR2, POLR2H, VCL, PIK3R1 and RGS17. 

 

Figure 12. 20 hub genes with the highest betweenness of connectivity. 

ceRNA network construction in prostate cancer 



 

 

LncRNAs can act as an endogenous "sponge" to regulate the expression of mRNA by adsorbing 

miRNA, according to the ceRNA theory (23). The lncRNA-miRNA-mRNA ceRNA network was 

built using upregulated or down-regulated miRNAs, as well as lncRNAs or mRNAs (24). 

DElncRNAs and DEmiRNAs networks did not interact in our research. We utilized the 

miR2Disease database as a result. In miR2disease, we chose miRNAs that changed in prostate 

tumor tissues compared to adjacent normal tissue samples, both up- and down-regulating. We 

discovered 14 PC-related miRNAs using the miR2Disease database. The relationship between 

lncRNAs and miRNAs was then evaluated using miRcode. This step showed that 13 of 14 PC-

specific miRNAs may target to the 13 of 39 DElncRNAs (Table 5). Then we used miRDB, 

miRTarBase, TargetScan and miRWalk to predict targeted mRNAs by these 13 miRNAs to 

discover the relationship between miRNAs and mRNAs. We found that 10 miRNAs might target 

24 out of the 1312 mRNAs (Table 6). If miRNA-targeted mRNAs were not found in DEmRNAs, 

they were eliminated. Using this information (Table 5 and 6), we used Cytoscape 3.9 to construct 

the lncRNA-miRNA-mRNA ceRNA network. Once the targeted DEmRNAs and DElncRNAs' 

expression patterns were reversed, DElncRNAs, targeted DEmRNAs, and the interacting miRNAs 

were all eliminated from the ceRNA network. A total of 8 lncRNAs, 4 mRNAs, and 3 miRNAs 

were in-cluded in the ceRNA network (Figure 13). At last, we computed nodes degrees and 

displayed the top 7 nodes with the highest degree in the network using cytohubba app (Figure 14). 

We found ENO1-AS1, hsa-miR-182, hsa-miR-125b-5p, hsa-miR-145, MEG3, FOXF2 and MYO6 

as 7 hub genes in ceRNA network. 

Table 5. The MiRcode database demonstrated interactions between 13 DElncRNAs and 13 

DEmiRNAs. 

lncRNA miRNA 



 

 

PCA3, ERVH48-1, ADAMTS9-AS2, RBMS3-AS3, MEG3 miR-96 

PCA3, ERVH48-1, ADAMTS9-AS2, BOLA3-AS1, RBMS3-AS3, MEG3 miR-182 

PCA3, CRNDE, ADAMTS9-AS2, MEG3 miR-221 

PCA3, CRNDE, ADAMTS9-AS2, MEG3 miR-222 

MCF2L-AS1, CRNDE, ADAMTS9-AS2, HCG11, MEG3 miR-205 

ENO1-AS1, CRNDE, ERVH48-1, MAGI2-AS3, ADAMTS9-AS2, MEG3 miR-145 

CRNDE, SNHG9, MAGI2-AS3, ADAMTS9-AS2, HCG11, MEG3 miR-31 

CRNDE, ERVH48-1, MAGI2-AS3, ADAMTS9-AS2, HCG11, MEG3 miR-181b 

CRNDE, ADAMTS9-AS2 miR-183 

ERVH48-1, SNHG9, ADAMTS9-AS2, BOLA3-AS1, MEG3 miR-184 

POU6F2-AS2, ADAMTS9-AS2,  miR-375 

POU6F2-AS2, MEG3 miR-125b-5p 

MAGI2-AS3, MEG3 miR-16 

 

Table 6. miRWalk, miRDB and TargetScan databases revealed interactions between 10 

DEmiRNAs and 24 DEmRNAs. 

miRNA mRNA 

miR-96 TP53INP1, NIPA1 

miR-182 FOXF2 

miR-221 TRPS1, KIT 

miR-222 STOX2, TRPS1 

miR-205 LRRK2 

miR-145 ADD3, TGFB2, MYO6 

miR-31 SPRED1 

miR-181b KLHL15, PLPP3, PLAG1 

miR-16 RAB9B, GALNT7, PSAT1, TGFBR3, PDLIM5, SLC9A6 

miR-125b-5p MFSD9, STOX2, HK2 

 



 

 

 

Figure 13. CeRNA network in prostate cancer. Red nodes mean a strong expression level, while 

blue nodes signify a low level of expression. Ellipses show protein-coding genes; rectangles show 

miRNAs; Triangles show lncRNAs; gray edges designate lncRNA-miRNA-mRNA interaction.  



 

 

 

Figure 14. Top 7 genes with highest degree in ceRNA network. 

We performed gene ontology enrichment analysis of the target genes in the PPI and ceRNA net-

works. The final result of this analysis is shown in the form of bar plot and dot plot in Figure 15. 

 

Figure 15. Gene ontology enrichment analysis of the target genes in the networks. Barplot and 

dotplot indicate top functional terms related to hub genes. 



 

 

Confirmation of hub genes via expression value 

The expression value of hub genes was evaluated using the ualcan database. As a result, all hub 

genes in PPI network and MIR182 in ceRNA network indicated good statistical significance 

(Figure 16 and Table 7). 

Table 7. Statistical significance of hub genes based on sample types in prostate cancer. 

Hub genes Statistical significance of expression value 

POLR2H <1E-12 

CAV1 2.23E-08 

ITGA1 4.22E-05 

PIK3R1 3.79E-10 

RGS9 5.79E-05 

SDC2 1.25E-04 

P4HB <1E-12 

PPP1R12B 1.13E-06 

RRM2 2.32E-07 

PRKCA 2.07E-06 

VCL 7.55E-07 

BIRC5 7.23E-11 

CD3EAP 4.68E-08 

PRKG1 4.22E-06 

FLNA 3.27E-07 

MLC1 1.03E-04 

RGS2 3.40E-04 

EGF 4.02E-13 

RGS17 9.88E-05 

FGFR2 <1E-12 

MIR182 <1E-12 

 

 



 

 

  

  

  

  

 



 

 

  

  

 

 Figure 16. Box plots of gene expression of hub genes in prostate tumor and healthy samples based 

on TCGA. Red and green boxes show gene expression of hub genes in prostate tumor and healthy 

samples, respectively. 

Survival analysis 

For survival analysis, we downloaded and analyzed transcriptome profiling of prostate cancer 

samples (TCGA-PRAD) using TCGAbiolinks (version 2.24.3) (25) and edgeR (version 3.38.4) 

(26) packages. Survival was analyzed based on Kaplan-Meier curves using survival package in R. 

We performed survival analysis based on hub genes in PPI and ceRNA networks. The difference 

was statistically significant with log-rank P < 0.05. RRM2 and MYO6 showed a strong correlation 

with a reduced overall survival time in individuals with prostate cancer (Figure 17). 



 

 

 



 

 

 

Figure 17. RRM2 and MYO6 Kaplan-Meier survival curves is related to patients with prostate 

cancer's overall survival. 

Discussion 

ceRNA networks have been found to participate in the pathoetiology of several cancers, including 

prostate cancer. Unraveling the interactions between constituents of these networks can facilitate 

identification of the most relevant cancer-specific pathogenic events. The current study aimed at 

construction of ceRNA network in prostate cancer. 



 

 

We obtained 1312 DEmRNAs, including 778 downregulated DEmRNAs (such as CXCL13 and 

BMP5) and 584 upregulated DEmRNAs (such as OR51E2 and LUZP2). BMP5 has been 

previously shown to be an important regulator of basal prostate stem cell homeostasis being 

involved in the initiation of prostate cancer (27). In addition, CXCL13 is an androgen-responsive 

gene participating in the androgen-regulated migration and invasion of prostate cancer cells (28). 

On the other hand, OR51E2 has been shown to inhibit proliferation and induce prostate cancer cell 

death (29). LUZP2 has been previously reported to be over-expressed in hormone-naive prostate 

cancer but its expression has been decreased in the course of evolution of hormone-naive prostate 

cancer to castration-resistant ones (30). 

Moreover, we found 39 DElncRNAs, including 10 down-regulated DElncRNAs (such as 

UBXN10-AS1 and FENDRR) and 29 up-regulated DElncRNAs (such as PCA3 and LINC00992) 

and 10 DEmiRNAs, including 2 down-regulated DEmiRNAs (such as MIR675 and MIR1908) and 

8 up-regulated DEmiRNAs (such as MIR6773 and MIR4683). PCA3 has been shown to regulate 

important pathways and targets and contribute in the development of prostate cancer (31).  

We constructed the ceRNA network between these transcripts. A total of 13 lncRNAs, 24 mRNAs, 

and 13 miRNAs were included in the ceRNA network. Dysregulated pathways included focal 

adhesion, protein digestion and absorption, vascular smooth muscle contraction, ECM-receptor 

interaction, complement and coagulation cascades and purine metabolism. Dysregulation of focal 

adhesion is an important step in tumorigenesis leading to metastasis. In line with this, the smooth 

muscle contraction with myosin is known to regulate the redistribution of actin-controlled factors 

during call migration. Also, extracellular matrix (ECM) and ECM-receptor plays an important role 

in the cell-cell contact. Changes and plasticity of ECM is suggested to control progression and 

invasion potential of prostate cancer cells (Luthold et al., 2022). Moreover, oncogenic activity of 



 

 

the complement cascade has been suggested to play a role in facilitating cancer cell proliferation 

and dysregulation of mitogenic pathways (Rutkowski et al., 2010). The biosynthesis of purines, as 

a basic component of nucleic acids, is linked to prostate cancer progression by providing the 

increased need accompanied with increased growth rate and proliferation of cancer cells 

(Khalafalla et al., 2022, BBA review). The purine metabolism by purinosome is a multi-enzyme 

complex located around mitochondria and microtubules. Purinosome has been emphasized for its 

therapeutic potential in cancers (Yin et al., 2018; Frontiers Immunology). These analyses point 

towards a novel identified ceRNA network of metastatic potential in prostate cancer. 

Thus, several important cancer-related pathways linked to each other are modulated by the 

identified ceRNA networks in the current study.  

We also evaluated the significance of these RNAs in the determination of survival of patients with 

prostate cancer. Among the dysregulated genes, RRM2 showed a strong correlation with a reduced 

overall survival time in individuals with prostate cancer. RRM2 codes one of two subunits of 

ribonucleotide reductase. This enzyme facilitates conversion of ribonucleotides to 

deoxyribonucleotides. Expression of the encoded protein by this gene is controlled during the 

progression of cell-cycle. This protein is up-regulated in several cancers and is involved in the 

gemcitabine metabolism. Thus, RRM2 has been suggested as a marker for chemotherapy response 

and prognosis. It’s up-regulation can facilitate DNA damage repair and affect activity of signaling 

cascades(32). Future studies are needed to find the underlying mechanism of participation of this 

gene in the course of prostate cancer. 

This study provides novel candidates for design of specific treatment modalities for prostate cancer 

and broadens the current insight about the role of non-coding RNAs in the pathogenesis of prostate 

cancer. 
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