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1. INTRODUCTION

An individual is distinguished from another through the distinct 
identities that he possesses. Such identities may be physical or 
behavioral and they can be employed to identify individuals in 
a scientific field called biometrics. Biometrics plays a key role in 

researches dedicated to forensic science, where forensic experts 
make use of  physical or behavioral biometrics to recognize 
and identify individuals. Physical biometrics includes DNA as 
illustrated in the study by Holland and Parsons [1], fingerprints 
as presented by Abu-Faraj et al. [2], ear prints [3], [4], irises [5], 
and soft and hard tissues as illustrated in the study by Zewail 
et al. [6]. Examples of  behavioral biometrics are speech [7], [8] 
and gait [9], [10]. This also includes keystroke intervals as in 
Delac and Grgic [11], and signatures, and handwriting. In this 
thesis, the researcher focuses and examines handwriting.

Whether handwriting is alphabetical or pictographic based, 
it has been employed as a significant communication means 
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from the beginning of  time and has made certain evolutions. 
According to Huber and Headrick [12], writing styles are 
developed based on local culture, geographical location, 
historical background, and temporal situations. The earlier 
handwriting record keeping came from China, dated around 
2000 years ago, following the invention of  the first inks and 
papers. During that time, early handwritings and the following 
handwriting were written in some standard writing models. In 
general, writers have a tendency not to follow standard writing 
models, and thus, handwritings show deviation. Individual 
writer characteristics are invaluable in distinguishing one 
writer from another.

2. LITERATURE REVIEW

This section presents a comprehensive review of  the 
techniques developed for writer identification on offline 
writing samples, and this is one of  the main topics addressed 
in the research. The section presents an extensive review of  
offline handwritten datasets, outlines the existing methods 
on text-dependent writer identification methods while the 
subsection discusses the significant contributions to the 
text-independent writer recognition domain which is also 
the primary focus of  this research. Finally, the last part of  this 
section conducts a comparative analysis among the methods 
with detailed presentations of  their performances.

A recent study [13] uses a simplified and rapid methodology 
by avoiding character appearances and making a distinction 
from approaches similar to those in traditional codebook-
based methods. Here, researchers present new descriptors 
that are derived from different scales of  geometrical interest 
points. This is achieved by documenting the geometric 
associations between parts of  the script, such as strokes, 
loops, endings, and junctions. These descriptors are easier 
to use, more effective, provide better results on unseen 
datasets, and reduce processing time dramatically over 
existing methods. In addition to these benefits, this method 
has a drawback in terms of  the amount of  data needed to 
build a model with consistent results.

Some researchers in Al-Maadeed et al. [14] showed the 
identification of  various writers using their proposed 
collection of  curvature, direction, and tortuosity-based 
geometrical features. They also suggested improvement 
of  edge-based directional features using a filled moving 
window instead of  an edge moving window alongside 
chain code-based features using a fourth-order chain code 
list for enhancing its recognizing ability. This method was 

tested in the handwriting databases of  IAM and QUWI. In 
addition, the authors [15] proposed a new method called 
(DLS_CNN) for writer recognition so, in this research used 
the combination between neural network (NN) with line 
segmentation. On the other hand in Chahi et al. [16], the 
authors proposed a new algorithm called LSTP but at the 
classification step base on NN achieved Hamming distance.

While great interest and substantial progress have been 
observed in the field of  handwriting based biometrics and 
its applications [17], the identification of  writers is based on 
relatively complex scripts, that is, Arabic [18] and Chinese [19] 
which remains a less investigated area [20], rare comparable 
between each of  the scripts among researchers have resulted 
in vague results which are not proportional to its widespread 
use. Most of  the researches in this area share the same purpose 
of  determining a script’s authorship through the acquisition of  
individual handwriting characteristics. In the current process, 
all document features are found and created, after which the 
feature vector distance is compared between the query and the 
library image. Nevertheless, this performance is considered 
far from being achieved, and it is computationally very costly, 
particularly a significant problem in document image analysis 
and retrieval is the search for the relevant document from 
large and complex document image repositories. Apart from 
issues of  database size (scale), there is a problem of  data 
heterogeneity. The smooth incorporation of  such techniques 
with the current knowledge in forensic handwriting is still 
unknown. Such approaches are not obsolete and are still 
used today. Some researchers in the same field have used the 
principal component analysis method to extract the most 
important information. The data performed as testing and 
training on the grayscale’s images like 12,500 images [21].

Ghiasi and Safabakhsh [22] generated feature vectors for 
each manuscript by taking advantage of  the normalized 
and resampled contours of  connected segments. Then, 
for writer recognition, they used these feature vectors to 
form a codebook. They also solve cursive handwriting, the 
method utilizes the occurrence histogram of  the shapes in a 
codebook, connected complements can be too long and may 
have a wide range of  shapes. To prevent complex patterns, the 
authors used small fragments of  the connected components 
and implemented two effective methods for extracting code 
from contours. One of  the techniques uses the actual pixel 
coordinates of  contoured fragments, while the other utilizes 
linear piecewise approximation using segment angles and 
lengths and removes some of  the unnecessary information. It 
helps to identify and group similar shapes. The shorter length 
of  this code allows it to be applied faster and also helps the 
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quicker generation of  the codebook. The authors tested this 
code on two English databases and one Persian and found 
better performance than other contemporary techniques 
in 2013. It may be quicker to generate codebooks, but the 
computational times of  this technique are long.

3. METHODOLOGY

In this study, the author brings forward a methodology 
characterizing the writer through the division of  the text into 
smaller fragments, and potential clusters are searched within 
it. This is based on premise that writer recognition is related 
to the physical stroke’s generation by the writer. Rather than 
dividing the writing in graphemes, the method divides them 
into small fragments that are enough to be utilized in writer 
recognition. Further detailed elaboration of  the modules is 
provided in the next sections.

3.1. Binarization
Under this process, the digitized document images are scanned 
in the form of  grayscale images. The research addresses 
handwritten scanned documents, and as such, there are two 
objects to the image, namely, handwriting and background, and 
in this research, the primary object of  interest is handwriting. 
Therefore, handwriting is separated from the background 
through the use of  binarization that is categorized into two 
classes. The study employs the popular Otsu’s thresholding 
logarithm (known as bae benchmark) for the calculation of  
the threshold from the grayscale image. A grayscale original 
image along with its binarized version is demonstrated in Fig. 1.

3.2. Componentization of Writing
Before handwriting fragmentation, the applied method entails 
the division of  handwriting into related components in what 
is known as componentization. This forms clusters of  the 
entire related black pixels based on their connectivity. In an 
individual connected component, the pixels adjacencies are 
gauged through the use of  8-side connectivity, after which 
they are labeled with sequential numbers. For every pixel 
with the same label, a component obtained from the image 
is highlighted for their fragmentation. The connecting image 
components are depicted in Fig. 2.

3.3. Fragmentation of Components
This study brings forward a writer characterization method 
through a specific sample by examining small invariant 
fragments and exploiting the writing redundancy. The step 
entailing the division of  handwriting into fragments is a 
significant one in the applied method, and it considers them 
along with the adjacent fragments connected to them. More 
specifically, the adjacent fragments are acquired through the 
writing division into windows after which, the main and 
adjacent fragments are categorized into individual codebooks 
for the ultimate writer characterization method.

3.4. Feature Extraction
It is the comparison among the fragments through pattern 
matching or by representing them with a set of  features. 
Although pattern matching is a simple process, it calls 
for maintaining the fragment’s pixel values, otherwise, the 
comparison outcome may lose its robustness to both noise 
and distortions. A comparison of  features mitigates the 
representation space of  the dimension but it is susceptible 
to distortions. Thus, the applied method represents each 
writing fragments (main and adjacent) using a set of  features 
including vertical and horizontal projections, upper and lower 
profiles along with a group of  familiar shape descriptors (i.e., 
elongation, solidity, rectangularity, orientation, and perimeter).

3.4.1. Horizontal and vertical projections
Projections provide the number of  black pixels present 
in the fragmented image, within each row and column. 
More specifically, the horizontal projection is produced by 
determining the number of  black pixels in every column 
of  the image, while the vertical projection is produced by 
determining the number of  black pixels in every role of  the 
same.

3.4.2. Upper and lower profile
For the upper and lower profile, the former is described as 
the distance of  the first black pixel from the top of  every 
fragmented image, while the latter is the distance of  the first 
black pixel from the bottom of  every fragment. Both upper 
and lower fragment profiles are calculated by determining 
the column of  the fragment and the distance between the 
upper black pixels to the lower one.

Fig. 1. Image binarization. (a) Grayscale handwriting image before binarization, (b) image after binarization.

a b
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Fig. 2. Bounding box of connected components.

Fig. 3. Primary codebook obtained from the main fragmented 
windows on a writing sample (Sample: W0010Para2).

3.4.3. Orientation
The direction of  a stroke (or its slope) in a fragmented image 
is calculated through its orientation feature, specifically by the 
angle between the X-axis and the major axis of  an ellipse that 
approximates the fragment. It is evident from Fig. 3. 18b that 
an ellipse comprises a group of  points that move around the 
black pixels of  the fragmented stroke, whose sum constitutes 
the distance from two fixed points, namely, F1 and F2, and 
it remains constant.

3.4.4. Rectangularity
This feature refers to the ratio of  the object area to the 
bounding box area, the latter of  which is the smallest 
rectangle encapsulating the writing shape in a fragment. 
Rectangularity is mathematically defined as follows:

  Rec gularity =
A
A
FW

BB
tan  (1)

In the above equation, AFW denotes the number of  pixels in 
the fragmented window area, while ABB denotes the bounding 
box area containing the stroke region.

3.4.5. Elongation
This feature refers to the ratio between the bounding box 
height and its width. A bounding box was obtained from 
a fragment enclosing a stroke. The stroke elongation is 
mathematically represented by the following equation:

    Elongation =
l
s
b

b
 (2)

From the above equation, lb represents the bounding box 
longer side and the Sb represents the bounding box shorter side.

3.4.6. Perimeter R
This feature represents the shape boundary’s total length. 
More specifically, the boundary of  the shape comprises a 
group of  pixels in the boundary having a non-shape pixel 
as an adjacent pixel. Mathematically, the perimeter can be 

calculated by tracking the stroke’s boundary pixel after which 
the steps are summed up.

3.4.7. Solidity
This feature is useful in measuring the fragment’s density and 
is calculated as the ratio between the fragment areas and is 
corresponding to convex. The solidity value ranges from 0 
to 1 and a solidity value that is near to 0 depicts an irregular 
object, while that is near to 1 is a solid one. Solidity can be 
mathematically represented as:

   Solidity =
A
A
FW

CR
 (3)

In the above equation, AFW denotes the fragment area, while 
ACR denotes the convex region area.

3.5. Clustering of Fragments
The present section proceeds to present the grouping of  
similar fragments, extracted through the use of  main and 
adjacent windows, into clusters referred to as codebook. 
The features are used to make clusters, in that closely related 
fragmented patterns are clustered together to make a class. 
In each class, patterns are distinct from those in other 
classes, and in each cluster, every individual class contains 
a group of  invariant writing patterns. The implemented 
method produces two distinct cluster sets, by matching the 
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to evaluate the performance of  the system and study the 
sensitivity of  the performance to different parameters. 
Since two codebooks, primary and secondary, have been 
presented, writer recognition results on each of  these 
codebooks are presented. All experiments are conducted 
on the latest, largest, and standard Kurdish handwritten 
documents database known as KRDOH [23]. Moreover, 
the implemented method is also benchmark against the best 
and up-to-date methods found in the literature of  writer 
identification that has used IAM [24] data set. Sample forms 
from the database are shown in Fig. 5.

This study first evaluates the performance of  primary 
and secondary codebook separately and then merges 
both codebooks. Initial experiments were conducted on 
210 random writers from the KRDOH dataset. Table 1 
summarizes the results of  a primary codebook, secondary 
codebook, and merged codebooks. Using the primary 
codebook, an identification rate of  87.14% (Top-5: 91.03% 
and Top-10: 94.08%) is achieved with an EER of  5.92%. The 
secondary codebook achieves slightly better identification 
rate of  89.26% (Top-5: 92.14% and Top-10: 96.17%) with 
3.83% EER. By merging the two codebooks, the overall 
identification rate is increased to 91.87% (Top-5: 93.3% and 
Top-10: 97.6%) and EER drops to 2.4%.

Later, Table 2 provides a performance comparison of  
the latest writer identification techniques. Oriented 
basic image features and the concept of  graphemes 
codebook were employed by Durou et al., 2019 [25], 
achieved 92% identification rate on the IAM dataset. Later 
(Nguyen et al., 2019) [26], the author used a CNN-based 
method for text-independent writer identification on the 

invariant patterns features. The entire main strokes extracted 
through the use of  main windows are clustered to develop a 
primary cluster, while the entire adjacent windows fragments 
are clustered to develop a secondary cluster. Figs. 3 and 4 
illustrate the primary and secondary codebooks generated 
from the main and adjacent fragmented windows.

4. RESULTS AND DISCUSSION

This section discusses the experimental evaluation of  the 
applied technique. Many experiments were performed 

Fig. 4. Secondary codebook obtained from the adjacent fragmented 
windows on a writing sample (Sample: W0010Para2).

Fig. 5. Examples of the scanned forms of KRDOH dataset.
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