
UHD Journal of Science and Technology | Jan 2020 | Vol 4 | Issue 1 87

1. INTRODUCTION

Computing technology is seeing significant progress and
significant interest, especially when the computation outsourcing
has been outsourced to a third party as the cloud is the most
frequently used form [1]. That is why many companies no longer
trust to store their sensitive data in the cloud, which uses traditional
unsecured encryption systems [2]. From this, the need to use
homomorphic encryption for banking data is coming, which
is a new approach that can help banks to increase data security
and management [3]. There are two types of homomorphic
cryptosystems: Partially homomorphic systems and fully
homomorphic systems [4]. Partially homomorphic schemes

support one of the additions or multiplication operations, these
systems are divided into two parts according to the process that
supports like the RSA, where it only supports the multiplication
process and does not support the addition process, for example,
if we have two numbers M1, M2 and they are encrypted by the
RSA, then its value becomes C1, C2 and on obtaining the product
of multiplying the two encrypted values C1 * C2 = C3 and then
we decrypt the encrypted output C3, we will get a result similar to
M1 * M2 = M3, but if we add the two values C1 + C2 = C4 and
when decrypting the result C4 we do not get a result similar to M1
+ M2 = M4. On the contrary, when the two values are encrypted
using Paillier, we find that only the result of C1+C2=C5 is similar
to M1+M2=M3 and C1*C2=C6 do not equal to M1+M2=M4.
Therefore, we say that the two algorithms (RSA and Paillier) are
not a fully homomorphic systems [5], [6]. The first FHE was
given in 2009 by Craig Gentry [7]. Researchers first researched
a (FHE) system in the late last century, specifically at the end of
the seventies, and soon after, in 1987, RSA was published, the
RSA algorithm became a leading approach by many researchers
because at that time there was no idea of the public key cipher

A Proposed Fully Homomorphic for Securing
Cloud Banking Data at Rest
Zana Thalage Omar1,2*, Fadhil Salman abed1,2

1University of Human Development, College of Science and Technology, Department of Computer Science,
Sulaymaniyah, Kurdistan Region of Iraq, Iraq, 2University of Sulaimani, College of Science, Computer Department,
Sulaymaniyah, Kurdistan Region of Iraq, Iraq

A B S T R A C T
Fully homomorphic encryption (FHE) reaped the importance and amazement of most researchers and followers in data
encryption issues, as programs are allowed to perform arithmetic operations on encrypted data without decrypting it and
obtain results similar to the effects of arithmetic operations on unencrypted data. The first (FHE) model was introduced
by Craig Gentry in 2009, and it was just theoretical research, but later significant progress was made on it, this research
offers FHE system based on directly of factoring big prime numbers which consider open problem now, The proposed
scheme offers a fully homomorphic system for data encryption and stores it in encrypted form on the cloud based on a
new algorithm that has been tried on a local cloud and compared with two previous encryption systems (RSA and Paillier)
and shows us that this algorithm reduces the time of encryption and decryption by 5 times compared to other systems.

Index Terms: Cloud Computing Security, Encryption, Decryption, Cloud Storage, Homomorphic Encryption

Corresponding author’s e-mail: Zana Thalage Omar, University of Human Development, College of Science and Technology, Department
of Computer Science, Sulaymaniyah, Kurdistan Region of Iraq, Iraq, University of Sulaimani, College of Science, Computer Department,
Sulaymaniyah, Kurdistan Region of Iraq, Iraq. E-mail: zana.th.omar@gmail.com

Received: 13-03-2020 Accepted: 10-05-2020 Published: 12-05-2020

Access this article online

DOI: 10.21928/uhdjst.v4n1y2020.pp87-95 E-ISSN: 2521-4217

P-ISSN: 2521-4209

Copyright © 2020 Omar and abed. This is an open access article
distributed under the Creative Commons Attribution Non-Commercial
No Derivatives License 4.0 (CC BY-NC-ND 4.0)

ORIGINAL RESEARCH ARTICLE UHD JOURNAL OF SCIENCE AND TECHNOLOGY

mailto:zana.th.omar@gmail.com

 Omar and abed: Cloud Banking Data Security

88 UHD Journal of Science and Technology | Jan 2020 | Vol 4 | Issue 1

that was presented during the RSA scheme for the first time [5].
Because this kind of encryption allows the key to decrypt the
encrypted data, and thus one can read and know all the data,
and for this reason, if one does not have the secret key, the data
become useless. Therefore, a question and an issue were asked:
Can mathematical operations apply to encrypted data without
decrypting it, and from this, the idea of using fully homomorphic
systems (FHE) was raised. After that, several attempts were
made to develop these systems, but most of the research did not
succeed as they received partially homomorphic schemes such as
RSA and Goldwasser-Micali [8]. The algorithm that achieves the
addition and multiplication properties can be considered as FHE,
as it is regarded as a special algorithm that contains the feature of
performing mathematical operations (addition and multiplication)
on data without decrypting it and obtaining correct results [9].
FHE is an encryption technology that allows calculations to be
performed on encrypted data without decrypting it, and this
results in an encrypted result where when this result is decrypted
we get a result similar to the result of the calculations on the data
without encrypting it [9]. The world of computing is in constant
progress, and the main challenge is to create a guarantee and
trust among customers when storing their sensitive data on the
cloud to ensure and respect their privacy. This is a new approach
that cloud providers follow to encrypt users’ data, upload it to
the cloud, and perform operations on it without decrypting it to
ensure the integrity of customer data [10]. This paper presents
a fully homomorphic system (the correct numbers and texts)
based on a new algorithm that will be explained later in this
paper as this scheme relies on data encryption and operations
performed on it without decrypting and reducing computational
complications and the time used to encrypt and decrypt data
and reduce energy consumption. Most of the previous research
in this field deals with data when encrypting after converting
it to the binary system and this means more time. As for our
current research, data operations are encrypted without the
need to convert them to binary representation and this reduces
mathematical operations and there is a reduction in the time of
encryption and encryption solution, as well as a mathematical
model has been suggested that deals with the inverse calculation
and the process of raising to the exponential and increases the
complexity of attacking the new system.

2. LITERATURE REVIEW

C. Gentry et al. (2012), this paper introduces contrast/
orientation techniques to transfer the elements of plain text
across these vectors very efficiently so that they are able to
perform general calculations in a batch way without the need
to decrypt the text and also make some improvements that

can accelerate the normal homomorphic, where you can
make homogeneous evaluation of arithmetic operations
using multi-arithmetic head only [11].

J. Fan et al. (2012), this paper concludes two copies of the
redefinition that lead to a quick calculation of homogeneous
processes using the parameter transformation trick, as this
paper conveys Brakerski’s fully homomorphic scheme based on
the learning with errors (LWE) problem to the ring-LWE [12].

Z. Brakerski et al. (2012), this paper introduces squash and
bootstrapping techniques to convert a somewhat symmetric
encryption scheme into an integrated symmetric encryption
scheme [13].

X. Cao et al. (2014), this paper presents a completely symmetric
encryption scheme using only a basic unit calculation as it
relies on the technique of using multiplication and addition
instead of using ideal clamps on a polynomial loop [14].

C. Xiang et al. (2014), this paper presents an entirely symmetric
encryption scheme on integers, as it reduces the size of the
public key using the square model encryption method in
public key elements instead of using a linear model based on
a stronger variant of the approximate-GCD problem [15].

M. M. Potey et al. (2016), this paper presents a completely
symmetric encryption system where it focuses on storing
customer data on the cloud in an encrypted form so that
customer data remain safe and when any data modification
is made the system loads data on the customer’s device and
modifies it and then stores it again on the cloud in encrypted
form [16].

K. Gai et al. (2018), this paper proposes a new solution for
mixing real numbers on a novel tensor-based FHE solution
that uses tensor laws to reduce the risk of unencrypted data
storage [17].

S. S. Hamad et al. (2018), these heirs offer a completely
symmetric encryption system, as it relies on the principle of
encryption a number from the plain text with another number
using a secret key without converting to binary format and
then comparing the result with a DGHV and SDC system [18].

S. S. Hamad et al (2018), this paper presents a fully
homomorphic encryption system based on Euler’s theory and
the time complexity has been calculated and compared with
other systems with an encrypt key size up to 512 bits while
the size of the key in our proposed scheme reaches more

 Omar and abed: Cloud Banking Data Security

UHD Journal of Science and Technology | Jan 2020 | Vol 4 | Issue 1 89

than 2048 bits and the encrypting process is done through
more complex and powerful mathematical equations [19].

V. Kumar et al (2018), this paper presents fully homomorphic
encryption system with probabilistic encrypting and relies
on Euler’s theory. The encrypting process is done through
the following mathematical equation (C=Mk* 𝜇 (n) +1 mod x)
while in our proposed scheme a more complex and difficult
mathematical algorithm is used which helps to stand more
against hacker attacks and deter them [20].

R. F. Hassan et al. (2019), this paper proposes a blueprint for
building asymmetric cloud-based architecture to save user data
in the form of unusual text. This pattern uses the elliptic curve
to create the secret key for data encryption. This pattern is a new
algorithm that reduces processing time and storage space [21].

3. STATEMENT OF THE PROBLEM

Cloud providers provide many services, including applications
and storage many companies and users do not trust the
providers of these services due to security concerns. Where
the user does not upload his personal data to the cloud
because the cloud providers are able to read and modify every
bit loaded on the cloud and use it for personal purposes, and
this thing does not comply with respecting the user’s privacy.
Furthermore, some cloud providers still use traditional
security techniques that are not secure with low-security level
to protect user privacy. Some of the cloud providers have
started to use high-level technologies to protect the privacy
of users and the security of their data, but there remains a
problem that the provider of the cloud itself is still able to
access user data, and this is not safe for users. This problem
can be solved when following FHE systems when storing
data on the cloud where these systems can encrypt the data
and store it in the cloud in an encrypted form and thus the
cloud provider or others cannot see the data and use it, so the
privacy of users and the security of their data are protected.

4. PROPOSED FHE SYSTEM

The proposed scheme works as follows:
Generating the encryption key and then encrypting the numbers
and texts and storing them in encrypted form on the cloud.
In our work, we use a local cloud and experiment with the
proposed scheme on it. The purpose of this process is to save
the data encrypted on the cloud so that no one can view the
data and use it for personal purposes Therefore, when the data
owner needs to perform an amendment of the encrypted data

on the cloud, an encrypted request is sent to the server, and the
server performs mathematical operations on the encrypted data
and returns an encrypted result where this encrypted result can
only be decrypted through the private encryption key which is
with the owner of data only so that he can decrypt the encrypted
result and see his data. In this way, we have been able to maintain
the privacy and security of the data when stored in the cloud.
These procedures go through three stages. Generation the
encryption key stage, the encryption stage, and the decryption
stage. The model of the proposed scheme is given in Fig. 1,
and the flowchart of the proposed scheme is given in Fig. 2.
The proposed scheme performs several random examples with
multiplication and addition as follows:
A. Key Generation:
 1. Generate two large Prime number p and q
 2. Compute n = p*q
 3. Calculate L=((P−1 mod q)*p)+((q−1 mod p)*q)
 4. Select r: Where r is a big random integer

B. B. Messages Encryption
The conditions:

(M1&M2), (M1+M2), and (M1*M2) < n

Where M1 and M2 are the Messages.

pK
sK

Storage

Key Generation

Encryption

Request

Decryption

Set to storage

Get from storage

Fig. 1. Model of proposed FHE scheme.

 Omar and abed: Cloud Banking Data Security

90 UHD Journal of Science and Technology | Jan 2020 | Vol 4 | Issue 1

The schema of message encryption is:

 C = L * Mr µ (p) +1 mod n. (1)

Where 𝜇 (p) = (p-1), Euler function and C, the ciphers text.

C. Message Decryption
The schema of cipher decryption is:

 M=C mod p (2)

Where M is the number or text that will be encrypt and C
is the result of the encrypted number or text we named it
cipher text

D. Euler’s Theorem
All of us know that Euler’s Theorem contains two-part they are:
1. M 𝜇 (p) ≡ 1(mod p), when p and m are prime to each other.
2. M r* 𝜇 (n) +1 ≡ M (mod n), when r is an integer, M<n and

n=p*q where q and p are two primes number.

E. A simple example of how to make an amendment
to encrypted data

We have two values M1 = 3, M2 = 5. We encrypt them
through a simple encryption equation that is multiplied by
each value, so we get C1 = M1 * 2 and C2 = M2 * 2, so
C1 = 6, C2 = 10 when we add the two values C1 + C2 =

C3 so C3 = 16 We decrypt C3 so we get the result 16/2 = 8
which is the same result when we add M1 + M2 = M3 where
3 + 5 = 8 as shown in Fig. 3.

5. THE PROVE OF OUR SCHEMA IS FHE

We choose two numbers M1, M2 and encrypt them to get two
encrypted or (ciphers) C1 and C2, respectively, and then we
combine C1 + C2 to get a new ciphered result we name it C3
then we decrypt C3 and compare the result with M3 which is
the result of combine M1 + M2 we also multiply C1 * C2 to
get C4 and compare it to M4, which is the result of M1 * M2.

A. The Prove of Additive Homomorphic
If the following condition is fulfilled, it becomes clear to us
that the proposed scheme additive homomorphic:

M1+M2=dec [enc (M1) + enc (M2)] (4)

Where dec is the decryption function and enc is the
encryption function

Proof:

C1=L*(M1
r µ (p) +1 mod n).

C2=L*(M2
r µ (p) +1 mod n).

C1+C2= L*(M1
r µ (p) +1 mod n) + L*(M2

r µ (p) +1 mod n).
dec (C1+C2) = (C1+C2) mod p
= [L*(M1

r µ (p) +1 mod n) + L*(M2
r µ (p) +1 mod n)] mod p

= [(L mod p) + ((M1
r µ (p) +1 mod n) mod p) + (L mod p) +

((M2
r µ (p) +1 mod n) mod p)]

= [(M1
r µ (p) +1 mod p) mod n + (M2

r µ (p) +1 mod p) mod n]

We know M1
r µ (p) +1 mod p = M1 and M2

r µ (p) +1 mod p = M2
by Euler’s Theorem so

Fig. 2. Flowchart of proposed FHE scheme. Fig. 3. A simple example of how modify encrypted data.

 Omar and abed: Cloud Banking Data Security

UHD Journal of Science and Technology | Jan 2020 | Vol 4 | Issue 1 91

= (M1 mod n) + (M2 mod n)
= (M1+M2) mod n
Because M1+M2 less than < (n)
 = M1+M2
dec (C1+C2) = M1+M2 so the condition is fulfilled

B. The Prove of Multiplicative Homomorphic

If the following condition is fulfilled, it becomes clear to
us that the proposed scheme multiplicative homomorphic:

 M1*M2=dec [enc (M1) * enc (M2)] (5)

Where dec is the decryption function and enc is the
encryption function

Proof:
C1=L*(M1

r µ (p) +1 mod n).
C2=L*(M2

r µ (p) +1 mod n).
C1*C2= (L*(M1

r µ (p) +1 mod n)) * (L*(M2
r µ (p) +1 mod n)).

dec (C1*C2) = (C1*C2) mod p
= [(L*(M1

r µ (p) +1 mod n)) * (L*(M2
r µ (p) +1 mod n))] mod p

= [(L mod p) * ((M1
rµ (p) +1 mod n) mod p) * (L mod p) *

((M2
r µ (p) +1 mod n) mod p)]

= [(M1
r µ (p) +1 mod p) mod n * (M2

r µ (p) +1 mod p) mod n]
We know M1

r µ (p) +1 mod p = M1 and M2
r µ (p) +1 mod p = M2

by Euler’s Theorem so
= (M1 mod n) * (M2 mod n)
= (M1*M2) mod n
Because M1*M2 less than < (n)
= M1*M2
dec (C1*C2) = M1*M2 so the condition is fulfilled

6. REAL EXAMPLE

Let us choose two different number M1= 10, M2 = 40,
select two big prime numbers p=523, q=617, select random

number r=100 and compute n, L where n = p*q and L =
((P−1 mod q)*p) + ((q−1 mod p)*q), as in Fig. 1, so n = 322691
and L = 322692 now we will compute C1, C2 as shown in
Fig. 4 where

C1= L*(M1
r µ (p) +1 mod n)

C1= 322692 * (10100*(522) +1 mod 322691)
C1= 84555952836
C2= L*(M2r µ (p) +1 mod n)
C2= 322692 * (40100*(522) +1 mod 322691)
C2= 70220360736

A. Check the Additive Homomorphism

As shown in Fig. 5, Let us define C3 is the result of C1+C2

C3= C1+C2
C3= 84555952836+70220360736
C3= 154776313572
M3= C3 mod p
M3= 154776313572 mod 523
M3= 50, which is the same of M1+M2 = 10 + 40 =50

B. Check the Multiplication Homomorphism

As shown in Fig. 6, Let us define C4 is the result of C1*C2
C4= C1*C2
C4= 84555952836*70220360736
C4= 5937549510520122247296
M4= C4 mod p
M4= 5937549510520122247296 mod 523
M4= 50, which is the same of M1*M2 = 10 * 40 =400

7. RESULTS

Our proposed method has been applied in Java Language
on a laptop that has these characteristics Intel (R) core (TM)

Fig. 4. Verification that the proposed scheme supports multiplicative homomorphic system.

 Omar and abed: Cloud Banking Data Security

92 UHD Journal of Science and Technology | Jan 2020 | Vol 4 | Issue 1

8110011485075986472668526287650474047702785552627
7139605888244856948751484971356945255025501977455
2242450237953291087748249243514503675865792656993
93729838051811451

Q=1428710476741675056983014575571840561823434645
4308656139478728164897664839386811178089812726550
5708304317799826040708010919513590630000335514123
0450272776428691918542268804417638286844165397915
2025714562637864986328594073222682892055143305181
2687655466062902039677657892147970940904308293447
443717248390239707

R=365786518636912644776042065063644900157123708
343207168729026337822168443513411848955281137920
158798190812229338500124674534784650074194884515
2271827981943

N=2423607304574691011057220168339429745775510876
8568255735015912152074767485603430716960118055838
9243234428533681091865082478949426971733704964018
7576258686356978941473841479446251805425174083399

i7-8550U CPU @1.80GHz 2.00GHz, 8 GB Ram, 64-bit
Operating System,x64-based processor, Windows 10 and Big
Integer library of java is used. We have previously seen that
in section 5 our scheme achieves the two properties (addition
and multiplication) on the correct numbers when encrypt in
contrast to the two systems (RSA and Pailler) that produce a
single property either multiplication or addition, we took as an
example of 2048 bit A message containing several languages:
English, Kurdish, Arabic and Chinese, to indicate that our
scheme works in all languages. The message was:

The language considered at the university is English

ەییزیلگنیئ ینامز ەدنەسەپ ەب ادۆكناز ەل ەك یەنامز وەئ

ةيزيلكنالا يه ةعماجلا يف ةربتعملا ةغللا

大學考慮的語言是英語

P=16963600001744112018845147215300525136637986969
1606741862700184835051235683163815632346364513963
5084178686272336909107427580252972488626713138540

Fig. 5. Verification that the proposed scheme supports additive homomorphic system.

Fig. 6. A real example of generating an encryption key and encrypting two different numbers.

 Omar and abed: Cloud Banking Data Security

UHD Journal of Science and Technology | Jan 2020 | Vol 4 | Issue 1 93

0

50000

100000

150000

200000

250000

300000

64
Bit

128
Bit

256
Bit

512
Bit

1024
Bit

2048
Bit

Ex
cu

tio
n

Ti
m

e
in

 m
s

Size of Key

Proposed
Method

RSA

Pailler

Fig. 7. Computation encryption time of various schema.

Fig. 8. Computation decryption time of various schema.

0

50000

100000

150000

200000

250000

300000

64
Bit

128
Bit

256
Bit

512
Bit

1024
Bit

2048
Bit

Ex
cu

tio
n

Ti
m

e
in

 m
s

Size of Key

Proposed
Method

RSA

Pailler

0064335766935428553190201256143433654205627755229
6773381542471828455818813480172653876483980783338
1523057539397742755088141082360135822895062302531
9405062251415063552873019444449238666440140085803
2829153319755489679960430558612883401366594381416
5468112883656495673094721811758386521739451237520
5070768701405826931878983152614067930454176175622
2924904444160392437762620644204922911348434700560
07271825256265091103199457484857

L=24236073045746910110572201683394297457755108
7685682557350159121520747674856034307169601180
5583892432344285336810918650824789494269717337
0496401875762586863569789414738414794462518054
2517408339900643357669354285531902012561434336
5420562775522967733815424718284558188134801726
5387648398078333815230575393977427550881410823
6013582289506230253194050622514150635528730194
4444923866644014008580328291533197554896799604
3055861288340136659438141654681128836564956730
9472181175838652173945123752050707687014058269
3187898315261406793045417617562229249044441603
9243776262064420492291134843470056007271825256
265091103199457484858

The Message after encryption (Cipher Text)

541476558809409702391337896786206578891371305860
691083047075666735305343010133163455201330600329

818224876828649953919527566237735831578747495518
661815006015094327373599324058140501637682523981
366081263444402953878958225004102881404987245214
085192130463968623162036132714218988345866733882
828903027959438577677193858956252126893602243322
002345822997903630750182808060329693726890973821
429052022147058264305295245097017754099269475380
968046201854139181624798301373478600684536391994
135042539217304792283425928429438405414943114956
731879603950076538717093967938918097476473355425
283428257417215267662967218064104960563636218183
044111151212122457871341575675158274986166996526
006578968820402465601212584511978294298514268554
125554995603375526132322574633145472359908234720
133081143881121000520379674740198817341417761860
826872691325817210768306765600237104658826101240
831563114649492567258100255788974674414548062825

TABLE 1: Computation encryption time of various
schema
Key Size Proposed method RSA Pailler
64 Bit 88 ms 59 ms 103 ms
128 Bit 139 ms 100 ms 182 ms
256 Bit 218 ms 149 ms 727 ms
512 Bit 1141 ms 397 ms 4212 ms
1024 Bit 6058 ms 2185 ms 55139 ms
2048 Bit 65876 ms 29820 ms 263303 ms
Average 12253 ms 5451 ms 53944 ms

TABLE 2: Computation decryption time of various
schema
Key Size Proposed Method RSA Pailler
64 Bit 31 ms 72 ms 193 ms
128 Bit 43 ms 116 ms 330 ms
256 Bit 50 ms 315 ms 1429 ms
512 Bit 60 ms 1450 ms 11441 ms
1024 Bit 131 ms 7829 ms 122628 ms
2048 Bit 260 ms 79609 ms 976289 ms
Average 95 ms 14898 ms 185385 ms

 Omar and abed: Cloud Banking Data Security

94 UHD Journal of Science and Technology | Jan 2020 | Vol 4 | Issue 1

289283723466283906129211351747505124028302482285
703983215028876622455291720747481357534432866979
561161051794214495384555564764420022771673904608
026921423801092986234452794686905395614250428215
39788299132797410163169266322544228501653889014
41231774699848323143262753973952981234912026166
08092930905934341723828737491536602463718665109
04460259954270328428583255617601007624795283333
12842498083186883479202672771030666642010819171
03871200835323397770355533934916679402150831209
71613731326031096116661094157439907155297740345
56154583520372539433462549143084673593882815487
33624326112691124298132589125000613618859548392
80194895402855066065235834892981371608451492075
898392646836063832420875791614210127746840887222
061576759203922203224378888374677613916469740136
215937279995273878941455335546570056409881117615
612427776918414604124368172979351492484034377939
232910419697167267189883148981938503891449737345
277644170563374412805408898899652315897930433017
221778569673211415882347553987827098592640370937
720688618264473231853293964905495556724277624311
697945653171210371750503583126470426057905397533
244577146375498719004689422402622745765224202206
710655778164805330785789281954819858081405410264
417267795724923069668706099902071….etc. Due to the
length of the encrypted text (Cipher Text), which reaches 67
pages, it has been truncated. Where the encrypted time was
1572 ms, and the decrypted time was 31 ms. We have also
tested it on text with 8KB in its size and several different
keys in terms of size, and we compared the results with
the planners from. In terms of velocity, we obtained the
following results: As shown in Tables 1 and 2, respectively,
and the graph in Figs 7 and 8.

8. CONCLUSION

Our scheme relies on FHE on whole numbers, texts, and
supports all languages such as English, Arabic, Kurdi, and
Chinese and others. Very large prime numbers (up to 617
digits, 2048 bit) represent the strength for the attack of
our scheme because the proposed system depends on the
problem of factorization to the primary factors, which are
considered mathematical problems under discussion at the
present time when taking the time. We have come to the
conclusion that our scheme is very effective in relation to
the time when encrypt and decrypt numbers and texts in
comparison with other techniques and approaches that are
circulated and used at the present time.

REFERENCES

[1] L. A. Tawalbeh and G. Saldamli. “Reconsidering big data security
and privacy in cloud and mobile cloud systems”. Journal of King
Saud University Computer, vol. 40, pp. 1-7, 2019.

[2] J. Domingo-Ferrer, O. Farràs, J. Ribes-González and D.
Sánchez. “Privacy-preserving cloud computing on sensitive data:
A survey of methods, products and challenges”. Computer and
Communications, vol. 140-141, no. 2018, pp. 38-60, 2019.

[3] S. Sakharkar, S. Karnuke, S. Doifode and V. Deshmukh. “A
research homomorphic encryption scheme to secure data mining
in cloud computing for banking system”. International Journal for
Innovative Research in Multidisciplinary Field, vol. 4, no. 4, pp.
276-280, 2018.

[4] J. H. Cheon, A. Kim, M. Kim and Y. Song. “Homomorphic encryption
for arithmetic of approximate numbers”. In: Lecture Notes in
Computer Science. Vol. 10624. Springer Science+Business
Media, Berlin, Germany, pp. 409-437, 2017.

[5]	 P.	Sha	and	Z.	Zhu.	 “The	modification	of	RSA	algorithm	 to	adapt	
fully homomorphic encryption algorithm in cloud computing”.
In: Proceeding 2016 4th IEEE International Conference Cloud
Computing and Intelligence Systems. pp. 388-392, 2016.

[6] L. Chen and Z. Zhang. “Bootstrapping Fully Homomorphic
Encryption with Ring Plaintexts Within Polynomial Noise. Vol. 2.
Conference Paper, pp. 285-304, 2017.

[7] C. Gentry. “A Fully Homomorphic Encryption Scheme”. Dissertation,
p. 169, 2009.

[8] V. Kumar and N. Srivastava. “Chinese Remainder Theorem
based Fully Homomorphic Encryption over Integers”. International
Journal of Applied Engineering Research, vol. 14, no. 2, pp. 203-
208, 2019.

[9] M. A. Mohammed and F. S. Abed. “A symmetric-based framework
for securing cloud data at rest”. Turkish Journal of Electrical
Engineering and Computer Sciences, vol. 1, pp. 347-361, 2019.

[10] K. Gai, M. Qiu, Y. Li and X. Y. Liu. “Advanced fully homomorphic
encryption scheme over real numbers”. In: Proceeding 4th IEEE
International Conference Cyber Secur Cloud Computing CSCloud
2017 3rd IEEE Intertnational Conference Scalable Smart Cloud,
SSC 2017, pp. 64-69, 2017.

[11] C. Gentry, S. Halevi and N. P. Smart. “Fully homomorphic
encryption with polylog overhead”. In: Lecture Notes in Computer
Science. Vol. 7237. Springer Science+Business Media, Berlin,
Germany, pp. 465-482, 2012.

[12] J. Fan and F. Vercauteren. “Somewhat practical fully homomorphic
encryption”. In: Proceeding 15th International Conference Practice
Theory Public Key Cryptogr, pp. 1-16, 2012.

[13] Z. Brakerski and V. Vaikuntanathan. “Fully homomorphic encryption
from ring-LWE and security for key dependent messages”. In:
Lecture Notes in Computer Science. Vol. 6841. Springer, Berlin,
Germany, pp. 505-524, 2011.

[14] X. Cao, C. Moore, M. O’Neill, N. Hanley and E. O’Sullivan. “High-
speed fully homomorphic encryption over the integers”. In: Lecture
Notes in Computer Science. Vol. 8438. Springer, Berlin, Germany,
pp. 169-180, 2014.

[15] C. Xiang and C. M. Tang. “Improved fully homomorphic encryption
over the integers with shorter public keys”. International Journal of
Security and its Applications, vol. 8, no. 6, pp. 365-374, 2014.

[16] M. M. Potey, C. A. Dhote and D. H. Sharma. “Homomorphic
encryption for security of cloud data”. Procedia Computer Science,

 Omar and abed: Cloud Banking Data Security

UHD Journal of Science and Technology | Jan 2020 | Vol 4 | Issue 1 95

vol. 79, pp. 175-181, 2016.
[17] K. Gai and M. Qiu. “Blend arithmetic operations on tensor-

based fully homomorphic encryption over real numbers”. IEEE
Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3590-
3598, 2018.

[18] S. S. Hamad and A. M. Sagheer. “Design of fully homomorphic
encryption by prime modular operation”. Telfor Journal, vol. 10, no.
2, pp. 118-122, 2018.

[19] S. S. Hamad and A. M. Sagheer. “Fully homomorphic encryption
based on Euler’s theorem”. The International Journal of Information

Security, vol. 9, no. 3, p. 83, 2018.
[20] V. Kumar, R. Kumar, S. K. Pandey and M. Alam. “Fully homomorphic

encryption scheme with probabilistic encryption based on euler’s
theorem and application in cloud computing”. In: Advances in
Intelligent Systems and Computing. Vol. 654. Springer, Berlin,
Germany, pp. 605-611, 2018.

[21] R. F. Hassan and A. M. Sagheer. “A proposed secure cloud
environment based on homomorphic encryption”. International
Advanced Research Journal in Science, Engineering and
Technology, vol. 6, no. 5, pp. 166-175, 2019.

