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The Use of Historical Data and Global Climate 
Models to Assess Historical and Future Surface 

Water and Groundwater Availability in the 
Trinity River Basin in Texas

Abstract: As part of the Integrated Water Availability Assessment Program, the U.S. Geological Survey (USGS) and local 
partners, compiled historical data and developed surface-water (1980–2099) and groundwater (1949–2087) models to assess 
changes in recent historical and future water availability in the Trinity River Basin in Texas. A Trinity River Basin surface-water 
model and a Trinity River alluvium aquifer groundwater model were created to evaluate future water availability and long-term 
trends under different global climate model scenarios. The Trinity River Basin is divided into two regional water planning groups: 
Region C Water Planning Group and Region H Water Planning Group. Trend analyses using historical data (1900–2017) 
indicated an increase of annual precipitation on the watersheds that drain into the reservoirs in Region C Water Planning Group. 
However, the global climate model ensemble mean for the Trinity River Basin surface-water model indicates a downward trend 
in annual precipitation, resulting in a downward trend in Hortonian runoff. Additionally, the global climate model ensemble 
mean for the Trinity River Basin surface-water model and the Trinity River alluvium aquifer groundwater model both indicate a 
downward trend in recharge. The results show that the change in future water availability that can be attributed to climate change 
is small, assuming the average of the ensembles is the best predictor of the future. 

Keywords: water availability, surface water, groundwater, water budget, trends, Trinity River

1 U.S. Geological Survey, Oklahoma-Texas Water Science Center, Fort Worth, Texas
2 U.S. Geological Survey, Oklahoma-Texas Water Science Center, Austin, Texas
* Corresponding author: mshivers@usgs.gov
Received 6 May 2022, Accepted 13 January 2023, Published online 27 March 2023.

Citation: Milmo, MJ, McDowell, JS, Yesildirek, MV, Harwell, GR. 2023. The Use of Historical Data and Global Climate Models to Assess 
Historical and Future Surface Water and Groundwater Availability in the Trinity River Basin in Texas. Texas Water Journal. 14(1):34-61. 
Available from: https://doi.org/10.21423/twj.v14i1.7146. 

© 2023 Molly J. Milmo, Jeremy S. McDowell, Monica V. Yesildirek, Glenn R. Harwell. This work is licensed under the Creative Commons 
Attribution 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/ or visit the TWJ 
website.

Molly J. Milmo1, Jeremy S. McDowell1, Monica V. Yesildirek2, Glenn R. Harwell1

mailto:mshivers%40usgs.gov?subject=Texas%20Water%20Journal
https://doi.org/10.21423/twj.v14i1.7146
https://creativecommons.org/licenses/by/4.0/
https://journals.tdl.org/twj/index.php/twj/about#licensing


Texas Water Journal, Volume 14, Number 1

35Surface Water and Groundwater Availability in the Trinity River Basin in Texas

Terms used in paper

Acronym/Initialism Descriptive Name
CMIP5 Coupled Model Intercomparison Project Phase 5
GCM Global Climate Model
gSSURGO Gridded Soil Survey Geographic Database
HRU Hydrologic Response Unit
IWAA Integrated Water Availability Assessment
LLNL Lawrence Livermore National Laboratory
LOCA Localized Constructed Analogs
m/day Meters per day
NetCDF Network Common Data Form
NHM National Hydrologic Model
NOAA National Oceanic and Atmospheric Administration
PRMS Precipitation-Runoff Modeling System
RCP Representative Concentration Pathway
RWPG Regional Water Planning Group
SWB USGS Soil-Water-Balance Code
TRA Trinity River Authority
TRAA Trinity River alluvium aquifer
TRB Trinity River Basin
TWDB Texas Water Development Board
USACE U.S. Army Corps of Engineers
USGS U.S. Geological Survey

INTRODUCTION

In 2019, the U.S. Congress provided the U.S. Geological 
Survey (USGS) Water Availability and Use Science Program 
with resources to implement Integrated Water Availabili-
ty Assessments (IWAAs). The purposes of the IWAAs are to 
provide nationally consistent assessments of water availability 
and identify factors that limit water availability. The IWAAs 
are designed to meet the following six objectives: (1) provide 
accurate assessments of available water resources, (2) determine 
the quantity of water available for human and ecological needs, 
(3) quantify long-term trends in water availability, (4) provide 
assessments of changes in water availability, (5) explore factors 
that limit water availability, and (6) forecast water availability 
for economic development, energy production or conservation, 
and environmental or other in-stream uses (USGS 2021a). The 
Trinity River Basin (TRB) in Texas was selected as one of 10 
basins to support development of IWAAs with state and local 
partners using cooperative matching funds (USGS 2021b).

The TRB is a major source of water for large, rapidly grow-
ing metropolitan areas in Texas. Maintaining the quantity and 
quality of water resources is vital to meeting the water demands 
of the greater Dallas-Fort Worth metropolitan area and down-
stream metropolitan areas such as the Houston metropolitan 
area, which are among the fastest growing cities in the Unit-
ed States (U.S. Census Bureau 2020a, 2020b). In response to 
current (2022) water demands and increasing demand require-
ments associated with population growth, an improved under-
standing of current and future water availability is needed to 
help resource managers efficiently manage water resources in 
the TRB and plan for future needs. To gain a better under-
standing of water availability, the USGS entered into a cooper-
ative agreement with the following entities that manage water 
resources in the TRB: Trinity River Authority (TRA), City of 
Dallas, North Texas Municipal Water District, and Tarrant 
Regional Water District. 
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Purpose and Scope

The purpose of this study was to assess TRB water availabil-
ity, quantify long-term trends, and forecast future TRB water 
availability. This was done using surface-water and ground-
water models to evaluate future conditions under different 
global climate scenarios. This assessment builds on a recently 
completed study that evaluated historical long-term trends in 
streamflow and other hydrologic properties for the TRB as well 
as other water-supply basins in Texas (Harwell et al. 2020). 
In this study, those historical long-term trends were used to 
forecast climate scenarios, and the results were used to inform 
a surface-water model (Precipitation-Runoff Modeling Sys-
tem [PRMS] model) and groundwater model (MODFLOW 
numerical groundwater-flow model). The water-availability 
assessment was done by using historical and recently collected 
data to assess possible changes in future TRB water availability. 
The surface-water and groundwater models were used to eval-
uate future conditions under different existing global climate 
models (GCMs) through 2099 and 2087, respectively. Using 
historical data and GCMs provided a means for comparison of 
various climate projections in the TRB. 

The GCMs that were used were published as part of the 
Localized Constructed Analogs (LOCA) downscaling Cou-
pled Model Intercomparison Project Phase 5 (CMIP5; LLNL 
2021). To help account for the inherent uncertainty associated 
with GCMs, 30 different GCMs were chosen to simulate the 
ranges of possible values for climatic variables such as precip-
itation and temperature for surface-water and groundwater 
predictive models. An ensemble mean was computed for each 
climatic variable from these ranges of possible values.

Study Area

The Trinity River’s headwaters are in north-central Texas, 
west of the Dallas-Fort Worth metropolitan area. From there, 
the river flows approximately 550 miles southeast into the Gulf 
of Mexico, east of Houston, Texas (TWDB 2019). South of 
the Dallas-Fort Worth metropolitan area, four main tribu-
taries join to form the main stem of the Trinity River: Clear 
Fork Trinity River, West Fork Trinity River, Elm Fork Trini-
ty River, and East Fork Trinity River (Figure 1; TRA 2021). 
The TRB covers 17,913 square miles and is the largest river 
basin contained entirely in Texas (TWDB 2019). The Texas 
Water Development Board’s (TWDB) regional water plan-
ning groups (RWPGs) divide Texas into different regions for 
water-management purposes (TRA 2021). Most of the TRB 
(81%) is included in either RWPG C (hereinafter referred to 
as Region C) or RWPG H (hereinafter referred to as Region 
H). Region C includes the upstream part of the TRB, where-
as Region H includes the downstream part of the TRB. The 
Trinity River provides water to more than half the population 

of Texas. As of July 2016, the populations of regions C and H 
were 7.23 and 6.80 million, respectively, and are projected to 
increase to 14.0 and 11.7 million, respectively, by 2070 (TRA 
2021). Municipal water demands accounted for 90% of the 
total use in Region C in 2016 and 55% in Region H in 2015 
(TRA 2021). About 90% of the water supply in Region C is 
from surface water, mostly from reservoirs, and about 71% 
of the water supply in Region H is from surface water (TRA 
2021).

There are 32 reservoirs in the TRB, with a total of about 7.0 
million acre-feet of conservation storage (TRA 2021; TWDB 
2019). As of 2022, the USGS operates 24 lake and reservoir 
water-surface elevation stations in the TRB (USGS 2022). Of 
the 32 reservoirs, 14 were analyzed in Harwell et al. (2020) for 
historical long-term trends, and these 14 reservoirs represent 
74% of the total storage in the TRB. 

Harwell (2020) divided the TRB into five sections; section 1 
was the most downstream, and section 5 was the most upstream 
section. Within Harwell et al.’s (2020) five defined sections, 
the mean annual precipitation from 1900 through 2017 was 
51.28, 44.87, 38.55, 37.38, and 34.53 inches for sections 1, 
2, 3, 4, and 5, respectively (Figure 2). Annual precipitation 
and annual reservoir surface evaporation indicate that for most 
of Texas, evaporation exceeded the mean annual precipitation: 
annual evaporation during 1954–2013 averaged 55.1 inch-
es, while the mean annual precipitation during 1940–2014 
averaged 39.4 inches (Wurbs and Zang 2014; Wurbs 2021; 
TWDB 2021a). 

Although surface water accounts for 90% of Region C’s 
water supply, groundwater is an important source of municipal 
water supply in some of Region C’s rural areas (TRA 2021). 
Within Region H, groundwater accounts for about 28% of 
water supply (TRA 2021). One groundwater source, the Trin-
ity River alluvium aquifer (TRAA), underlies the Trinity River 
and its adjacent stream corridor and tributaries (Figure 1). The 
TRAA consists of alluvium and terrace deposits of gravel, sand, 
silt, and clay of Quaternary age (Hanko and Brikowski 2009; 
USGS 2014) and covers about 5,265 square miles, or 29% of 
the TRB. Groundwater–surface-water interactions take place 
between the alluvium and terrace geologic units that contain 
the TRAA and the overlying Trinity River and its tributar-
ies, indicating that groundwater resources can be affected by 
changes in streamflow. Although TWDB does not recognize 
the TRAA as a major or minor aquifer in Texas, it is recog-
nized as a viable aquifer by Groundwater Management Area 
14, Region H, and the Bluebonnet Groundwater Conserva-
tion District (Groundwater Management Area 14 et al. 2016; 
Region H Water Planning Group et al. 2020; Williams 2010). 
Although few data related to the TRAA were available as of 
2021 for model input and calibration (TWDB 2021b), mod-
eling of the groundwater in the alluvium was included in this 
study to better understand future water availability.
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Figure 1. Trinity River Basin study area, Trinity River Alluvium aquifer (TRAA) extent, and regional water planning group extents.
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Figure 2. Trinity River Basin PRMS model extent showing 1,192 hydrologic response units and 620 stream segments (Hay 2019) 
and showing sections used in long-term trend analysis (Harwell et al. 2020).
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METHODS

The following methods were used to better understand water 
availability: a statistical analysis of hydrologic trends and the 
development of surface-water and groundwater models for fore-
casting purposes. A surface-water model of the TRB was devel-
oped by using the PRMS (Leavesley et al. 1983). A numerical 
groundwater-flow model of the TRAA was developed by using 
MODFLOW-NWT (Niswonger et al. 2011), which is a mod-
ified form of the MODFLOW-2005 groundwater-flow model 
(Harbaugh 2005). The surface-water and groundwater models 
were then used for forecasting climate scenarios. Historical pre-
cipitation and air temperature values, as well as GCMs, were 
used to simulate current and projected water-budget compo-
nents. The methods for each approach and the methodology 
for selecting the GCMs are discussed below. 

Long-term Trends

Using the same methods used in Harwell et al. (2020), Ken-
dall’s tau was used to detect upward or downward trends in 
precipitation, groundwater levels, and streamflow. Kendall’s 
tau is a rank-based correlation coefficient that measures the 
strength of the monotonic relationship between two variables. 
The relationships between precipitation and streamflow and 
between streamflow and storage were also assessed using Kend-
all’s tau. Multiple regression equations with periodic functions 
were developed to test the statistical significance of any changes 
in annual mean air temperature over time at the 95% confi-
dence level (p-value ≤ 0.05; Helsel et al. 2020).

The approach used by Harwell et al. (2020) to analyze for 
trends in different sections of the TRB was also used in this 
study. The previously mentioned five sections defined by Har-
well et al. (2020) were created by making roughly equal divi-
sions of the aggregated counties that overlap the TRB. These 
sections were used for analyzing historical long-term trends 
(Figure 2). This accounted for possible latitudinal and longitu-
dinal climate differences across the TRB with respect to precip-
itation trends. An area-weighted daily mean precipitation total 
was computed for each section from the daily precipitation 
data (NOAA 2021). The area-weighted daily mean precipita-
tion totals were analyzed for temporal trends in precipitation 
over monthly, seasonal, and annual time steps (McDowell et al. 
2020). The trends from Harwell et al. (2020) informed scenari-
os for the surface-water and groundwater modeling.

Where Harwell et al. (2020) detected statistically significant 
monotonic historical long-term trends in annual or seasonal 
precipitation, this study used the Theil slope estimate to calcu-
late the seasonal or annual change in precipitation quantities to 
estimate additional future reservoir water volume gains or loss-
es. The Theil slope, a nonparametric estimate of a regression 
slope (Helsel et al. 2020), was also used to quantify projected 
water-budget components from modeling results. 

Nonparametric tests were used to facilitate statistical compar-
isons of datasets that might differ from a normal distribution 
(Helsel et al. 2020). The Mann-Whitney rank sum test was used 
to test for differences in decadal data. The Mann-Whitney test 
indicates whether one group—or decade in this case—tends to 
produce larger observations than a second group (Helsel et al. 
2020). No assumptions were made about the distributions of 
the data in either group.

Surface-water Model: Precipitation-Runoff Modeling 
System

PRMS is a deterministic, distributed-parameter, physi-
cal-process-based modeling system developed to evaluate 
watershed-scale hydrologic responses to various combinations 
of climate variables (Markstrom et al. 2015). Hydrologic simu-
lations are done on a daily time step with daily input data, and 
the model outputs are designated by the user as daily, monthly, 
or annual time steps.

Model Inputs and Parameters

Hydrologic simulations for the TRB were done by using past 
and projected climate data as inputs to the PRMS model. Cli-
mate input variables—daily precipitation, daily minimum air 
temperature, and daily maximum air temperature—were used 
in the hydrologic simulations to evaluate annual hydrologic 
response to changes in climate variables from 2018 to 2099. 
Outputs of the model include annual water budget variables 
such as precipitation, actual evapotranspiration, surface runoff, 
and groundwater recharge. In the PRMS model, surface runoff 
is generated when the precipitation rate exceeds the infiltration 
rate of soil that may not be saturated; this type of surface runoff 
is referred to as “Hortonian runoff” (Horton 1933). 

To account for the complexity of the hydrologic cycle, sev-
eral inputs and parameters are required to compute hydrologic 
simulations in PRMS. A full list of required components is 
provided in Markstrom et al. (2015). In conjunction with the 
PRMS software, the surface-water model used in this study 
includes the USGS National Hydrologic Model (NHM) data 
infrastructure, which is designed “to fill the gap between the 
detailed local models used in engineering hydrology and glob-
al land-surface models.” (p. 193 in Regan et al. 2019). The 
NHM data infrastructure was configured for use with PRMS 
and allows for extraction of one or more watersheds or hydro-
logic response unit (HRU). This data infrastructure provides a 
standardized modeling platform for model distribution, com-
parability, and interoperability; a consistent geospatial struc-
ture; and default parameter values (Regan et al. 2018). 

NHM-PRMS can be used to compute hydrologic-simulation 
results of the temporal and spatial distribution of water avail-
ability and storage across the continental Unites States using 
national-scale datasets. These datasets include hydrography, 
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solar radiation, evapotranspiration, geology, soils, land cover, 
topography, snow-covered area, and snow-water equivalent. 
NHM-PRMS is currently configured with the Daymet Version 
3 dataset (Thornton et al. 2016), which includes daily values 
of precipitation, minimum air temperature, and maximum air 
temperature from January 1980 through December 2016. A 
national PRMS model, referred to as the “NHM-PRMS, by 
HRU Calibrated Version” was recently published (Hay 2019) 
and was used in this study. This surface-water model includes 
PRMS parameter values calculated using the calibration pro-
cedure from the NHM-PRMS, by HRU Calibrated Version. 
The multiple-objective, stepwise, automated calibration proce-
dure was used to identify the optimal set of parameters for each 
HRU using historical climate data from 1980 to 2016. 

The historical climate inputs used in the surface-water model  
weredaily precipitation, daily minimum air temperature, and 
daily maximum air temperature on a sub-watershed or HRU 
scale. As shown in Figure 2, the model consists of 1,192 HRUs 
and 620 stream segments and has an area of 11,471,544 acres 
(Yesildirek et al. 2023). The model also includes daily stream-
flow inputs of 71 streamgaging stations from 1980 through 
2016, selected for the national PRMS model. Parameters com-
prise values calculated geospatially by HRU or stream segment 
with a monthly time step or for the duration of the model-sim-
ulation period, depending on the parameter type. 

PRMS hydrologic outputs are computed using methods 
based on physical laws and/or empirical relations. Climate out-
puts for the model are calculated by HRU and then geograph-
ically weighted within the model to provide an average for the 
TRB. The actual evapotranspiration output in the model is the 

computed rate of water loss, which reflects the availability of 
water to satisfy potential evapotranspiration; specifics of the 
computation are presented in Leavesley et al. (1983). To calcu-
late Hortonian runoff, the “srunoff_smidx” module was used 
(Regan et al. 2018). In PRMS, recharge is the current available 
water in the soil recharge zone; details for calculating recharge 
are presented in Leavesley et al. (1983).

Model Scenarios 

The surface-water model runs consist of 32 scenarios for 
the period from 2018 to 2099 (Table 1). The scenarios used 
were 30 downscaled LOCA GCMs (LLNL 2021), one forward 
run using climate data from 1980 through 2016 for the TRB 
(TRB-fwd), and one trend run applying historical long-term 
trends from Harwell et al. (2020) to TRB-fwd climate data 
(TRB-trend). Climate data used in the scenarios were daily 
precipitation, daily minimum air temperature, and daily maxi-
mum air temperature calculated by HRU.

The TRB-fwd scenario was generated by repeating 1980–
2016 Daymet data from Thornton et al. (2016) starting in 
2017 until the year 2099. Because precipitation progressively 
increases from the northern extent of the TRB to the southern 
extent, the TRB-trend scenario was generated using TRB-fwd 
precipitation and then applying statistically significant histori-
cal monthly precipitation trends (Table 1) from Harwell et al. 
(2020) by section (Figure 2) from 2018 to 2099. Additionally, 
temperature inputs for the TRB-trend scenario used a statisti-
cally significant upward trend in historical basin air tempera-
ture of 0.02 °F per year from Harwell et al. (2020) applied to 
TRB-fwd minimum and maximum air temperatures. 

Section 1 Section 2 Section 3 Section 4 Section 5
January -- -- 0.0106 -- --
February -- -- -- -- 0.0063

March -- -- -- 0.009 0.0099
April -- −0.016 -- -- --
May -- -- -- -- --
June 0.0172 0.0128 0.0139 -- 0.0112
July -- -- -- -- --

August -- -- -- -- --
September 0.0156 0.0129 -- -- --

October -- -- 0.0138 -- --
November 0.0175 -- -- -- --
December -- -- -- -- --

Table 1. Statistically significant historical monthly precipitation trends (in inches/year) for the 
Trinity River Basin-trend scenario from Harwell et. al. (2020). -- indicates no value was reported 
(months with no reported value did not have a statistically significant trend). 
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Numerical Groundwater Model

The numerical groundwater-flow model (McDowell et al. 
2023) uses MODFLOW-NWT (Niswonger et al. 2011) to 
simulate steady-state and transient groundwater flow, recharge, 
and discharge across the TRB. The full model grid consists of 
909 rows, 788 columns, and two layers for a total of 716,292 
cells per layer, of which 54,551 are active in each layer, with a 
total area of approximately 3,369,961 acres. Model grid-cell 
dimensions, which were selected to align with the 1,000-meter 
USGS National Hydrogeologic Grid (Clark et al. 2018), are 
500 meters in both directions, which equates to slightly less 
than 62 acres per model cell. The historical groundwater simu-
lation period starts in 1949 (designated as a steady state simula-
tion to obtain initial conditions) and continues through 2018. 
The future scenarios start in 2018 (designated as a steady state 
simulation to obtain initial conditions) and continue through 
2087. 

The surficial extent of the model was set to the surficial expo-
sure extent of the alluvium and terrace deposits containing the 
TRAA (USGS 2014). Unique model cell values were selected 
for Quaternary alluvium and terrace geologic units underly-
ing the Trinity River and its tributaries; drain cells (model cells 
where water leaves the model to the Trinity River and its trib-
utaries); each major lake in the TRB; and all major and minor 
aquifers underlying the alluvium and terrace deposits contain-
ing the TRAA. 

The top layer of the model represents the TRAA, and the 
bottom layer represents underlying geologic units that con-
tain major and minor aquifers (as defined by TWDB [2021b, 
2021f ]), each with unique hydraulic conductivity values. Grid 
cells in the bottom layer (all set to a thickness of 250 meters) 
located in areas between the TWDB-defined extents of the 
major and minor aquifers—Carrizo, Gulf Coast, Nacatoch, 
Queen City, Sparta, Trinity, and Woodbine aquifers—were 
assigned an average hydraulic conductivity value based on the 
lithology of those areas. 

The surface of the model was developed to represent the land 
surface based on an approximately 30-meter digital elevation 
model from the USGS National Elevation Dataset (USGS 
2020), which was resampled to the 500-meter model cell size. 
The base of the TRAA was delineated by using Railroad Com-
mission of Texas geophysical logs (Railroad Commission of 
Texas 2021), TWDB groundwater database geophysical logs 
(TWDB 2021c), TWDB Brackish Resources Aquifer Char-
acterization System geophysical logs (TWDB 2021d), and 
TWDB drillers’ reports (TWDB 2021e) from wells and bore-
holes within the boundaries of the Quaternary alluvium and 
terrace deposits. Keywords used to select drillers’ reports con-
taining the alluvium included “alluvium,” “alluvial,” “sand,” 
“silt,” “clay,” and “gravel.” Reports with these keywords, along 
with the geophysical logs, were used to make picks on the base 

of the aquifer from underlying units. The base of wells that 
were labeled as completed in the alluvium were selected as the 
aquifer base, as well formations above which sand, gravel, silt, 
and clay were found. Aquifer thickness values ranged from 
a minimum of 5 meters (set manually to avoid convergence 
issues with thin cells) to a maximum of slightly less than 44 
meters, based on values provided by the Brazos River alluvium 
aquifer conceptual model (Ewing et al. 2016). The thickness 
of the Brazos River alluvium aquifer is likely similar to that of 
the TRAA because their depositional histories are similar and 
the formations that contain the aquifers are of similar age, size, 
and lithology. Because there were little available data to char-
acterize the thickness of the TRAA throughout its extent, the 
uncertainty associated with the assigned thickness was large, 
and it is likely that the alluvium is thinner than depicted in 
parts of the model. 

MODFLOW-NWT packages used in the TRAA numerical 
groundwater-flow model include discretization, basic, upstream 
weighting, drain, general-head boundary, well, head-observa-
tion, output control, and recharge. Detailed descriptions of 
these packages are presented in the MODFLOW-NWT docu-
mentation (Niswonger et al. 2011). All these packages, except 
for recharge and well, are held constant across all simulated sce-
narios. The discretization package is used to specify model set-
tings such as layers, rows, columns, cell sizes, and time discreti-
zation. The basic package is also used to specify model settings, 
which include defining active and inactive cells and the starting 
hydraulic heads for all model cells. The upstream weighting 
package is used to define storage properties, such as specific 
storage and specific yield, and flow properties, such as hori-
zontal and vertical hydraulic conductivity. The well package is 
used to define locations, volumes, and times for groundwater 
pumpage, or withdrawals. The drain package is used to simu-
late groundwater flowing out of the aquifer as outflows con-
tributing to surface water. The drain package only accommo-
dates surface-water outflow; it does not allow water to return to 
the aquifer. In contrast to the drain package, the river package 
accommodates flow both into and out of the aquifer. Stream-
flow gain-loss data are commonly used for assessing flows into 
and out of the aquifer. Because streamflow gain-loss data that 
could be used to assess groundwater–surface water exchanges 
between the alluvium aquifer and the Trinity River were not 
available, the drain package was used instead of the river pack-
age. The general-head boundary package is also used to simu-
late head-dependent flux boundaries. In this case, it was used 
to handle low-elevation areas with convergence issues near the 
seaward extent of the model north of Trinity Bay. The head-ob-
servation package is used to specify observations of hydraulic 
head so observed groundwater levels in wells can be compared 
with the simulated values. Finally, the recharge package is used 
to input a specified flux distributed across the top layer of the 
model, in units of meters per day (m/day).
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Model Values 

To simplify the model, uniform values were used for both 
specific storage (the volume of groundwater released from one 
unit volume of the aquifer under one unit decline in hydraulic 
head) and specific yield (the ratio of the volume of water that 
a saturated aquifer will yield by gravity relative to the total vol-
ume of the aquifer [Johnson 1967]) for both layers. Similarly, 
to model-thickness values, the specific storage and specific yield 
values used in the Brazos River Alluvium aquifer conceptual 
model (Ewing et al. 2016) were also used to guide decisions for 
these model values. Specific storage was set to 0.0001 inverse 
meters for the top layer and 1.0x10-7 inverse meters for the 
bottom layer, whereas specific yield was set to 0.15 for the top 
layer and 0.01 for the bottom layer. Hydraulic conductivity, a 
coefficient describing the capacity of a rock to transmit water 
(Fetter 1994), was set in units of meters per day. The value used 
for much of the top layer (including Quaternary alluvium and 
Quaternary terrace geologic units) was 100 m/day, whereas the 
bottom layer varied 8.4–40 m/day, with a value of 27.4 m/
day for the non-aquifer areas. The value of horizontal hydrau-
lic conductivity for all lakes in the top layer of the model was 
1,500 m/day—a high value to allow water to pass through the 
lake cells because of the complex nature of inter-basin transfer 
and regulation in the TRB. Vertical hydraulic conductivity for 
both layers was set to 1% of horizontal hydraulic conductivity, 
ranging 1–15 m/day for the top layer and 0.08–0.4 m/day for 
the bottom layer. 

Primary Model Control: Recharge

The main control on water going into the groundwater 
model is recharge, which affects the output to surface water 
from aquifer storage. Recharge was calculated using the USGS 
Soil-Water-Balance (SWB) code (Westenbroek et al. 2010) 
for the historical model recharge calculation and SWB code 
version 2.0 (Westenbroek et al. 2018) for all climate scenario 
recharge calculations. SWB 2.0 was used for the climate sce-
narios because it has been refactored to allow use of Network 
Common Data Form (NetCDF) version 4 input files, which is 
the native format of the climate data sets used (LLNL 2021).

SWB uses a modified Thornthwaite and Mather (1957) 
soil-water-balance method on a gridded data structure to com-
pute the daily volume of net infiltration; net infiltration is 
assumed to take place any time the soil-moisture value exceeds 
the total available water for the cell. Inputs for SWB are dai-
ly climate data (precipitation, minimum air temperature, and 
maximum air temperature), elevation, flow direction (gener-
ated from the elevation grid), land cover, and soil type. Cli-
mate data for the historical model run were acquired from the 
National Oceanic and Atmospheric Administration’s historical 
daily dataset (NOAA 2021), and climate data for the future 

scenarios was acquired from Lawrence Livermore Nation-
al Laboratory (LLNL; LLNL 2021). Land-cover types from 
the National Land Cover Database (MRLC 2016) were used 
to assign runoff curve numbers and plant root-zone depths, 
values that respectively control the surface-water runoff and 
rate of infiltration through the soil (Westenbroek et al. 2010). 
Four Gridded Soil Survey Geographic Database (gSSURGO) 
hydrologic soil groups, categorized from A (high infiltration, 
low overland flow) to D (low infiltration, high overland flow; 
NRCS 2021), were used to characterize cells by available water 
content. All inputs were resampled to fit the 500-meter model 
grid cells. SWB results were filtered to remove the fifth per-
centile outliers from each annual result for all scenarios and 
otherwise left as-is, without an automated calibration process. 
Annual recharge values across all scenarios range from about 
8,000 acre-feet/year (0.03 inches/year) to about 2,400,000 
acre-feet/year (8.55 inches/year) with a mean value of about 
620,000 acre-feet/year (2.21 inches/year).

Uncertainty and Sensitivity

Uncertainty in groundwater modeling is assessed in a vari-
ety of ways. In this study, hydraulic head values measured in 
wells were compared to simulated hydraulic head values at the 
same time (for the historical period) and location in the mod-
el. Both observed and simulated values of hydraulic head were 
plotted and compared to a 1:1 line that represents a perfect 
fit (Figure 3) to evaluate the overall simulation-to-observation 
performance. The figure shows that the simulated values tend 
to be less than the observed values and, on average, the simu-
lated hydraulic heads are 5.01 meters (6.3%) lower than the 
observed hydraulic heads (which average just under 80 meters). 
Over 80% of all simulated hydraulic heads were between 10 
meters lower and 5 meters higher than the observed hydrau-
lic heads. Additionally, the differences between the GCMs and 
the historical model run were compared to understand vari-
ance and the range of the simulated values. In contrast to a 
traditional calibration approach, the outputs of both SWB and 
MODFLOW were used to bound the uncertainty through the 
modeling process.

Varying specific yield ratio in the top model layer was also 
used to assess model sensitivity—understanding how this 
parameter affects water-budget components is important in 
understanding model sensitivity. Specific yield values were 
adjusted from low (0.1) to high (0.2) and compared to what 
was used in the base model (0.15). When adjusted to low spe-
cific yield, the average annual volumetric rate of water leaving 
to drains of the GCM ensemble mean(the annual mean of the 
30 GCMs) increased from about 596,000 acre-feet to about 
598,000 acre-feet, an increase of about 0.3%. In contrast, the 
average annual volume of water going to storage in the aquifer 
decreased from about 7,000 acre-feet to about 5,000 acre-feet, 
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a decrease of about 29%. The change of simulated hydrau-
lic heads when adjusted to low specific yield was a negligible 
increase (less than a hundredth of a percent). When adjusted to 
high specific yield, the average annual volumetric rate of water 
leaving to drains of the GCM ensemble mean also decreased 
by about 2,000 acre-feet/year, whereas the average annual vol-
umetric rate of water going to storage in the aquifer increased 
by about 2,000 acre-feet/year. The change of simulated hydrau-
lic heads when adjusted to high specific yield was a negligible 
decrease (less than a hundredth of a percent).

Model Scenarios

The groundwater model runs consist of 32 scenarios for the 
period from 2018 to 2087 (Table 2) in addition to the histor-
ical base run. The scenarios are 30 downscaled LOCA GCMs 
(LLNL 2021), one forward run using climate data from 1949 
through 2017 (TRAA-fwd), and one trend run applying his-
torical long-term trends from Harwell et al. (2020) to TRAA-
fwd climate data (TRAA-trend). The TRAA-fwd scenario was 
generated by repeating historical climate data (NOAA 2021) 
starting in 2018 until the year 2087. To develop the TRAA-
trend scenario, local historical climate data (NOAA 2021) 
were averaged over the period of record from 1949 to 2017 

and extrapolated out for future data use starting in 2018 after 
applying an upward linear rate of change of 0.06 inches/year 
from Harwell et al. (2020). Additionally, historical air tem-
perature trends of 0.02 °F per year from Harwell et al. (2020) 
for both daily minimum air temperature and daily maximum 
air temperature were applied to account for projecting rates of 
change in the future. 

Global Climate Model Scenarios

Thirty LOCA GCM scenarios (LLNL 2021) were selected 
to evaluate possible future basin conditions as climate inputs 
to the surface-water and groundwater models developed for 
this study. Fifteen unique LOCA GCMs were used, each with 
representative concentration pathways (RCPs) of 4.5 and 8.5 
(Table 2). An RCP of 4.5 simulates a scenario that represents 
moderate global emissions, whereas an RCP of 8.5 simulates 
a scenario that represents high global emissions. Where the 
temperature data for each RCP differed, once factored into the 
models, the variance was minimal because precipitation was 
the primary driver of model outputs. The USGS Geo Data 
Portal (Blodgett et al. 2011) was the source of the surface-water 
model GCM data, and the LLNL (LLNL 2021) was the source 
for the groundwater model GCM data. Climate data from 

Figure 3. One-to-one plot comparing observed and simulated hydraulic heads.
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Scenario name RCP Short 
name Scenario details TRB surface-

water model
TRAA groundwater 

model

TRB forward -- TRB-fwd Forward run of historical data (1980–2016) for the 
PRMS model X --

TRB forward trend -- TRB-trend Trends from Harwell et al. 2020 applied to PRMS-
fwd X --

TRAA forward -- TRAA-fwd Forward run of historical data (1949–2017) for the 
TRAA model -- X

TRAA forward 
trend -- TRAA-trend Trends from Harwell et al. 2020 applied to TRAA-

fwd-base -- X

BCC-CSM1.1-M 4.5 GCM1 Beijing Climate Center, Climate System Model, 
moderate resolution, version 1.1

X X
BCC-CSM1.1-M 8.5 GCM2 X X

CanESM2 4.5 GCM3
Second Generation Canadian Earth System Model

X X
CanEMS2 8.5 GCM4 X X
CCSM4 4.5 GCM5

Community Climate System Model, Version 4
X X

CCSM4 8.5 GCM6 X X
FGOALS-G2 4.5 GCM7 Flexible Global Ocean-Atmosphere-Land System 

Model Grid-Point, version 2
X X

FGOALS-G2 8.5 GCM8 X X
GFDL-CM3 4.5 GCM9 Geophysical Fluid Dynamics Laboratory Climate 

Model, version 3
X X

GFDL-CM3 8.5 GCM10 X X
GFDL-ESM2G 4.5 GCM11 Geophysical Fluid Dynamics Laboratory Earth 

System Model with Generalized Ocean Layer 
Dynamics (GOLD) component

X X

GFDL-ESM2G 8.5 GCM12 X X

GFDL-ESM2M 4.5 GCM13 Geophysical Fluid Dynamics Laboratory Earth 
System Model with Modular Ocean Model 4 

(MOM4) component

X X

GFDL-ESM2M 8.5 GCM14 X X

GISS-E2-R 4.5 GCM15 Goddard Institute for Space Studies Model E2, 
coupled with the Russell Ocean model

X X
GISS-E2-R 8.5 GCM16 X X

IPSL-CM5A-LR 4.5 GCM17 L’Institut Pierre-Simon Laplace Coupled Model, 
version 5A, coupled with Nucleus for European 
Modeling of the Ocean (NEMO), low resolution

X X

IPSL-CM5A-LR 8.5 GCM18 X X

IPSL-CM5A-MR 4.5 GCM19 L’Institut Pierre-Simon Laplace Coupled Model, 
version 5A, coupled with NEMO, mid resolution

X X
IPSL-CM5A-MR 8.5 GCM20 X X

MIROC5 4.5 GCM21 Model for Interdisciplinary Research on Climate, 
version 5

X X
MIROC5 8.5 GCM22 X X

MIROC-ESM 4.5 GCM23 Model for Interdisciplinary Research on Climate, 
Earth System Model

X X
MIROC-ESM 8.5 GCM24 X X
MPI-ESM-LR 4.5 GCM25 Max Planck Institute Earth System Model, low 

resolution
X X

MPI-ESM-LR 8.5 GCM26 X X
MRI-CGCM3 4.5 GCM27 Meteorological Research Institute Couple 

Atmosphere-Ocean General Circulation Model, 
version 3

X X

MRI-CGCM3 8.5 GCM28 X X

NorESM1-M 4.5 GCM29 Norwegian Earth System Model, version 1 
(intermediate resolution)

X X
NorESM1-M 8.5 GCM30 X X

RCP: Representative Concentration Pathway; TRB: Trinity River Basin; TRAA: Trinity River alluvium aquifer; PRMS: Precipitation-Runoff 
Modeling System; GCM: Global Climate Model; 

Table 2. List of Trinity River Basin (TRB) model scenarios used for both the surface-water model and the Trinity River alluvium aquifer 
(TRAA) groundwater model. A representative concentration pathway (RCP) of 4.5 simulates a scenario that represents moderate global 
emissions, whereas an RCP of 8.5 simulates a scenario that represents high global emissions. The climate data for all scenarios with an 
RCP value were acquired from the Lawrence Livermore National Laboratory’s downscaled climate projections dataset (LLNL 2021).
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the GCM scenarios that were used as inputs in both the sur-
face-water model and the TRAA groundwater model include 
daily precipitation, minimum air temperature, and maximum 
air temperature. A majority of the GCM data extend to the year 
2099; therefore the choice was made to run the surface-water 
model scenarios to the year 2099. The simulation period for 
the TRAA groundwater model extends to 2087 to allow for 
roughly equivalent time periods for both historical data and 
future projections.

To minimize the number of GCMs in this study and use 
the most suitable climate data, GCMs were selected based on 
Venkataraman et al. (2016), which evaluated how well GCM 
historical data fit the different Texas climate divisions. Met-
rics used to evaluate the GCMs include mean absolute error, 
normalized standard deviation, and Kendall’s tau. Additionally, 
because of the variability of the GCM climate data, the model 
outputs in this study are reported using the annual mean of 
the 30 GCMs, referred to as GCM ensemble mean. The GCM 
ensemble mean is used because it reduces the dispersion of the 
results as compared to individual GCM scenarios.

RESULTS

Historical long-term trends, surface-water model results, and 
groundwater model results were analyzed using Kendall’s tau, 
Theil slopes, and Mann-Whitney rank-sum tests. When possi-
ble, comparisons were made with projected water availability 
estimates in the 2016 RWPG water plan (Freese and Nichols, 
Inc. et al. 2015; Region H Water Planning Group et al. 2015).

Historical Long-term Trend Analysis

From the results of previous work by Harwell et al. (2020), 
precipitation trend analyses on an annual time step in the TRB 
indicated upward trends in most sections (Figure 2). Data from 
eight of the 36 stations selected in Harwell et al. (2020, p. 4) 
and analyzed for annual streamflow trends indicated upward 
trends, and all eight stations are in the upper sections (sections 
4 and 5) of the study area. None of the data from stations in 
the lower sections indicated trends in annual streamflow. Data 
from 16 of the 36 stations indicated upward trends in annual 
minimum streamflow. All the trends in annual peak streamflow 
were in the sections that include the Dallas-Fort Worth metro-
politan area. Data from two monitoring stations—one USGS 
streamgage and one U.S. Army Corps of Engineers (USACE) 
simulated-inflow station—indicated upward trends in annual 
peak streamflow, and data from one other USGS streamgage 
indicated a downward trend in annual peak streamflow. Sim-
ulated-inflow stations are reservoir stations with inflow data 
calculated as a mass balance over a 24-hour period. These data 
were provided by USACE for analyses in Harwell et al. (2020). 

Refer to Harwell et al. (2020) for the mass balance equation 
used by USACE to simulate reservoir inflow. 

Of the different river basins included in Harwell et al. (2020), 
the TRB has the second largest potential flood storage volume 
at 8,947,349 acre-feet available in the numerous reservoirs 
built between 1890 and 2013. Potential flood storage volume 
is defined as the difference between maximum storage volume 
and normal storage volume. A positive association between 
potential flood storage volume and annual streamflow was 
detected at 11 monitoring stations in the TRB, indicating that 
annual streamflow increases as potential flood storage increas-
es. Data from seven of the 11 monitoring stations also indicat-
ed upward trends in annual streamflow. The ratio of stream-
flow volume to precipitation volume (percent of total water 
that falls on a watershed that results in streamflow) from anal-
ysis in Harwell et al. (2020) was used to estimate the amount 
of runoff volume to reservoirs in response to upward trends 
in precipitation in the historical record. Precipitation data in 
Harwell et al. (2020) included the period from 1900 through 
2017. Streamflow volume data included variable time periods 
ranging from 1869 through 2017, and periods of record for 
each station are included in Harwell et al. (2020). The purpose 
of this analysis was to determine how much additional surface 
water might be available in reservoirs within Region C (Figure 
1) in the future if the upward trends in precipitation reported 
in Harwell et al. (2020) were to continue. For this study, the 
Theil slope estimate was calculated for all years and seasons in 
sections 3, 4, and 5 with statistically significant upward trends 
in precipitation. The mean annual slope was 0.06 inches/year, 
and the mean seasonal slope was 0.02 inches/year for each of 
the three seasons.

Figure 4 shows the annual increase in volume by season 
to the 14 reservoirs analyzed in Harwell et al. (2020) within 
Region C using the aforementioned ratios of streamflow vol-
ume to precipitation volume. Harwell et al. (2020) defined 
three seasons for the purpose of analysis: season 1 (November, 
December, January, and February), season 2 (March, April, 
May, and June), and season 3 (July, August, September, and 
October). All 14 reservoirs are expected to increase in volume 
during season 1, with a total annual increase in volume of 
3,440 acre-feet/year (Figure 4). Five of the 14 reservoirs are 
expected to increase in volume during season 2, with a total 
annual increase in volume of 1,338 acre-feet/year. Lastly, three 
of the 14 reservoirs are expected to increase in volume during 
season 3, with a total annual increase in volume of 708 acre-
feet/year. Therefore, the estimated total annual increase in vol-
ume to the 14 reservoirs from upward trends in precipitation 
is 5,486 acre-feet, or 0.12% of the projected water availability 
in 2070 of 4,444,916 acre-feet/year in regions C and H (Table 
3). Projected water availability in 2070 is calculated from the 
values in Table 3 as the sum of the total volumes including 
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2020 2030 2040 2050 2060 2070

Region C totals  
(including groundwater) 2,316,273 2,279,349 2,275,427 2,282,147 2,281,830 2,270,143

Region C  
groundwater totals 146,178 146,190 146,188 146,135 146,132 146,096

Region H totals  
(including groundwater) 3,053,250 2,986,351 2,988,846 2,991,555 2,993,812 2,995,590

Region H  
groundwater totals 742,067 672,561 673,289 674,231 674,721 674,721

Table 3. Current and estimated future water supply availability (acre-feet/year) as reported in the 2016 regional water planning group 
water plans (Freese and Nichols, Inc. et al. 2015; Region H Water Planning Group et al. 2015).

Figure 4. Annual increase in volume by seasons to reservoirs in Region C based on projected annual increases in precipitation in the 
Trinity River Basin from Harwell et al. (2020).
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groundwater in regions C and H and subtracting the sum of 
the groundwater volumes in both regions.

PRMS Surface-water Model

The surface-water model results for the scenarios include 
water budget variables of precipitation as an input and actu-
al evapotranspiration, Hortonian runoff, and recharge as out-
puts. Figure 5 shows annual means of the water budget vari-
ables from 2018 to 2099 for all the model scenarios: the 30 
GCMs, TRB-fwd, TRB-trend, and the GCM ensemble mean, 
which is the annual mean of all the GCM scenarios. Precipi-
tation is a large driver for model outputs, as seen in the Figure 
5. As precipitation increases, Hortonian runoff and recharge 
values increase. 

From 2018 to 2099, TRB-fwd and TRB-trend mean annual 
precipitation values were 42.11 and 43.74 inches/year, respec-
tively, a difference of 1.63 inches/year (Table 4). Neither the 

TRB-fwd nor the TRB-trend mean annual precipitation values 
indicate statistically significant upward or downward trends. 
For the 2018–2099 period, the GCM ensemble mean yielded 
a mean annual precipitation value of 38.21 inches/year. The 
time trend of the GCM ensemble mean data is statistically sig-
nificant with a Kendall’s tau value of –0.2980 (p-value ≤ 0.01), 
indicating a downward trend in precipitation. The comput-
ed Theil slope estimate for the period from 2018 to 2099 is 
–0.0314, which corresponds to a downward trend in precipita-
tion of about 0.03 inches/year.

Mean annual actual evapotranspiration for the TRB-fwd 
scenario was 27.94 inches/year and 28.90 inches/year for the 
TRB-trend scenario, a difference of 0.96 inches/year. Nei-
ther the TRB-fwd nor the TRB-trend mean annual actual 
evapotranspiration values indicate statistically significant time 
trends. The GCM ensemble mean had a mean annual actual 
evapotranspiration value of 27.88 inches/year. The time trend 
of the GCM ensemble mean data is statistically significant with 

TRB-fwd TRB-trend TRB global climate 
model ensemble mean

Precipitation  
(inches/year)

Mean 42.11 43.74 38.21
Min 25.33 26.29 34.08
Max 68.77 70.54 41.21
Kendall's tau −0.0620 −0.0063 −0.2980 
p-value 0.4116 0.9330 < 0.001
Theil slope −0.0307 −0.0052 −0.0314

Actual 
evapotranspiration 
(inches/year)

Mean 27.94 28.9 27.88
Min 20.63 21.37 25.38
Max 33.58 34.76 29.82
Kendall's tau −0.0533 0.0120 −0.2314 
p-value 0.4784 0.8727 0.0021
Theil slope −0.0088 0.0023 −0.0127

Hortonian runoff  
(inches/year)

Mean 1.86 1.94 1.53
Min 0.83 0.86 1.34
Max 3.88 4.11 1.69
Kendall's tau −0.0757 −0.0187 −0.2096
p-value 0.3184 0.8039 0.0061
Theil slope −0.0021 −0.0008 −0.0013

Recharge  
(inches/year)

Mean 5.03 5.2 3.64
Min 1.73 1.88 2.87
Max 10.81 10.91 4.28
Kendall's tau −0.0534 −0.0087 −0.4263 
p-value 0.4784 0.9075 < 0.001
Theil slope −0.0038 −0.001 −0.0092

Table 4. Summary statistics of the simulated annual water budget (2018–2099) from the Precipitation-Runoff Modeling System 
(PRMS) surface-water model within the Trinity River Basin (TRB).
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Figure 5. Annual simulated surface-water model water budget components (precipitation, actual evapotranspiration, 
Hortonian runoff, and recharge) from 2018 through 2099 for the Trinity River basin-fwd scenario (blue), Trinity River 
basin-trend scenario (red), the Global Climate Model ensemble mean (black), and Global Climate Models (light gray).

Figure 5. Annual increase in volume by seasons to reservoirs in Region C based on projected annual increases in precipitation in the 
Trinity River Basin from Harwell et al. (2020).
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Figure 6. Violin plots showing the distributions, median values, and quartiles of the 
precipitation component of the Trinity River Basin surface-water model budget by 
decade. Blue indicates the distribution of data, white dots indicate the median, the gray 
box indicates the interquartile range, and the vertical gray lines indicate the extent of the 
range of values, with outliers excluded.

Figure 7. Violin plots showing the distributions, median values, and quartiles of the 
evapotranspiration component of the Trinity River Basin surface-water model budget by 
decade. Blue indicates the distribution of data, white dots indicate the median, the gray 
box indicates the interquartile range, and the vertical gray lines indicate the extent of the 
range of values, with outliers excluded.
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Figure 8. Violin plots showing the distributions, median values, and quartiles of the 
Hortonian runoff component of the Trinity River Basin surface-water model budget by 
decade. Blue indicates the distribution of data, white dots indicate the median, the gray 
box indicates the interquartile range, and the vertical gray lines indicate the extent of the 
range of values, with outliers excluded.

Figure 9. Violin plots showing the distributions, median values, and quartiles of the recharge 
component of the Trinity River Basin surface-water model budget by decade. Blue indicates the 
distribution of data, white dots indicate the median, the gray box indicates the interquartile 
range, and the vertical gray lines indicate the extent of the range of values, with outliers 
excluded.
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a Kendall’s tau value of –0.2314 (p-value ≤ 0.01), indicating 
a downward trend in actual evapotranspiration. The comput-
ed Theil slope estimate for the period from 2018 to 2099 is 
–0.0127, which equates to a downward trend in actual evapo-
transpiration of about 0.01 inches/year. This is likely a result of 
less water input to the system as precipitation, resulting in less 
surface water available for evapotranspiration.

From 2018 to 2099, TRB-fwd and TRB-trend mean Horto-
nian runoff values were 1.86 inches/year and 1.94 inches/year, 
respectively, a difference of 0.08 inches/year. Neither the TRB-
fwd nor the TRB-trend mean annual Hortonian runoff values 
indicate statistically significant time trends. The GCM ensem-
ble mean had a mean annual Hortonian runoff value of 1.53 
inches/year. The time trend of the GCM ensemble mean data 
is statistically significant with a Kendall’s tau value of –0.2096 
(p-value ≤ 0.01), indicating a downward trend in Hortonian 
runoff. The computed Theil slope estimate for the period from 
2018 to 2099 is –0.0013, which equates to a downward trend 
in Hortonian runoff of about 0.0013 inches/year.

TRB-fwd and TRB-trend mean annual recharge values were 
5.03 inches/year and 5.2 inches/year, respectively, a difference 
of 0.17 inches/year. Neither the TRB-fwd nor the TRB-trend 
mean annual recharge values indicate statistically significant 
time trends. The GCM ensemble mean for 2018 to 2099 yield-
ed a mean annual recharge value of 3.64 inches/year. The time 
trend obtained from the surface-water model for the GCM 
ensemble mean is statistically significant with a Kendall’s tau 
value of −0.4263 (p-value ≤ 0.01), indicating a downward 
trend in recharge. The computed Theil slope estimate for the 
period from 2018 to 2099 is −0.0092, so the downward trend 
in recharge is about 0.0092 inches/year.

Decadal plots of the GCM ensemble data are included to 
show the distributions and the variability in the GCM data 
by decade (Figures 6–9). The violin plots (Hintze and Nelson 
1998) were constructed to visualize the distribution and prob-
ability density of the GCM ensemble data (Figures 6–9) and 
include 300 data points per decade, representing 10 years of 
annual variable data for each of the 30 GCM scenarios. Vari-
ables plotted include precipitation (Figure 6), actual evapo-
transpiration (Figure 7), Hortonian runoff (Figure 8), and 
recharge (Figure 9). According to results of the Mann-Whitney 
rank-sum test (p-value ≤ 0.05), the 2090 decadal precipitation 
data are not equivalent to the 2020, 2030, and 2040 decadal 
precipitation data. As expected from the downward precipi-
tation trend of the GCM mean annual precipitation data 
previously discussed, the 2090 decadal precipitation data are 
significantly less than the 2020, 2030, and 2040 decadal pre-
cipitation data (Figure 6). The differences between the 2090 
decadal precipitation data and the 2050, 2060, 2070, and 
2080 decadal precipitation data are not statistically significant.

Decadal differences for evapotranspiration, Hortonian 
runoff, and recharge are similar to those of precipitation. 

Mann-Whitney test results indicate that the 2090 decadal 
values are significantly less than the earlier decades of 2020, 
2030, and 2040 for the other components of the water budget, 
except for evapotranspiration. For evapotranspiration, there is 
no difference between the 2090 and 2030 data. However, 2090 
evapotranspiration values are less than 2020 and 2040 values. 
These results are expected given the downward trends in the 
ensemble means for all water budget components.

Numerical Groundwater Model Inflows, Outflows, 
and Storage 

The simulated output of the numerical groundwater model 
for the TRAA-forward, TRAA-trend, and GCM scenario runs 
includes volumetric water budget components in acre-feet/year 
for the inputs and outputs of the model (Figure 10). These 
water budget components are recharge, drains, storage change, 
cumulative storage change, head-dependent boundaries, and 
wells. Except for groundwater storage change, positive val-
ues indicate groundwater going into the model (groundwater 
inflows), whereas negative values indicate groundwater flowing 
out of the model (groundwater outflows). 

Recharge to the aquifer—the primary inflow to the MOD-
FLOW model—is largely controlled by precipitation but is also 
dependent on other variables, such as land cover and soil type. 
Groundwater storage change represents the change in ground-
water being stored in the aquifer at any given time. When 
groundwater storage change is negative, net groundwater is 
entering the aquifer, and when groundwater storage change is 
positive, net groundwater is leaving the aquifer. Cumulative 
groundwater storage change is simply the cumulative change 
in aquifer storage by year, representing the change in simulated 
volume of groundwater stored in the aquifer in any given year. 
For reference, at the end of the base model transient period, the 
model estimates there are about 4.3 million acre-feet in stor-
age for the TRAA. Drains signify the volume of water flowing 
out of the aquifer and include all simulated reaches of rivers 
and streams. Head-dependent boundaries show groundwater 
flowing out of the aquifer (and sometimes entering the system) 
at the seaward extent of the model near Trinity Bay, and wells 
show groundwater being pumped out of the system. 

Because of the many different approaches and objectives 
when creating the GCMs (Table 2), the GCM input data 
exhibit a high level of variance, which is reflected in the output 
of the various GCM scenarios and is why the GCM ensemble 
mean is analyzed. Annual simulated values for recharge from 
all GCM scenarios range from about 8,000 acre-feet to about 
2,385,000 acre-feet, whereas the GCM ensemble mean ranges 
from about 377,000 acre-feet/year to about 743,000 acre-feet/
year (Table 5). The time trend of the GCM ensemble mean 
recharge data is statistically significant with a Kendall’s tau val-
ue of −0.3998 (p-value ≤ 0.05), indicating a downward trend 
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TRAA-fwd TRAA-trend TRAA global climate 
model ensemble mean

Recharge (acre-
feet/year)

Mean 637,713 968,917 607,644
Min 116,723 797,750 376,876
Max 1,981,320 1,147,434 742,647
Kendall's tau 0.1688 1.0 −0.3998
p-value 0.04 < 0.001 < 0.001
Theil slope 4,054 5,141 −2,376

Drains (acre-feet/
year)

Mean 634,298 941,728 604,051
Min 335,892 696,359 485,036
Max 1,195,479 1,118,890 701,611
Kendall's tau −0.2481 −1.0 0.4834
p-value 0.0026 < 0.001 < 0.001
Theil slope −3,015 −5,118 1,878

Storage change 
(acre-feet/year)

Mean 1,923 −17,230 −2,186
Min −782,919 −93,348 −126,506
Max 364,225 −11,988 108,676
Kendall's tau −0.0307 −0.2089 0.1390
p-value 0.709 0.011 0.091
Theil slope −494 −45 472

Cumulative Storage 
Change (acre-feet/
year)

Mean 238,009 −678,744 −269,746
Min −214,616 −1,188,868 −424,124
Max 791,989 −93,348 −21,513
Kendall's tau −0.3222 −1.0 0.4510
p-value < 0.001 < 0.001 < 0.001
Theil slope −5,407 −14,152 3,650

Table 5. Summary statistics of the simulated annual water budget (2018–2087) from the groundwater model in the Trinity 
River alluvium aquifer (TRAA) within the Trinity River Basin. 

in recharge. The computed Theil slope estimate of recharge for 
the period from 2019 to 2087 indicates a downward trend of 
−2,376 acre-feet/year. From 2019 to 2087, TRAA-fwd and 
TRAA-trend mean annual recharge values were about 638,000 
and 969,000 acre-feet/year, respectively, a difference of 331,000 
acre-feet/year. The TRAA-fwd recharge values indicate a statis-
tically significant upward trend with a Kendall’s tau value of 
0.1688 (p-value ≤ 0.05). 

The time trend of the GCM ensemble mean drain data is sta-
tistically significant with a Kendall’s tau value of 0.4834 (p-val-
ue ≤ 0.05), indicating an upward trend (decrease in ground-
water flowing out of the aquifer). The computed Theil slope 
estimate for the period from 2019 to 2087 indicates an upward 
trend of 1,878 acre-feet/year, or a decrease in the amount of 
groundwater flowing out of the aquifer. From 2019 to 2087, 
TRAA-fwd and TRAA-trend mean annual drain values were 
about 634,000 and 942,000 acre-feet/year, respectively, a dif-
ference of 308,000 acre-feet/year. The TRAA-fwd drain values 

indicate a statistically significant downward trend with a Ken-
dall’s tau of −0.2481 (p-value ≤ 0.05). 

The trend of the GCM ensemble mean storage change data 
for the period from 2019 to 2087 is not statistically significant, 
so the Theil slope estimate was not calculated. From 2019 to 
2087, TRAA-fwd and TRAA-trend mean annual groundwater 
storage change values were about 2,000 and 17,000 acre-feet/
year stored in the aquifer, respectively, a difference of 15,000 
acre-feet/year. 

The time trend of the GCM ensemble mean cumulative 
groundwater storage change data is statistically significant with 
a Kendall’s tau value of 0.4510 (p-value ≤ 0.05), indicating an 
upward trend in groundwater consistently flowing out of the 
aquifer to rivers and streams. The computed Theil slope esti-
mate of cumulative storage change for the period from 2019 
to 2087 indicates an upward trend of 3,650 acre-feet/year, or 
a decrease in the amount of groundwater in storage over time. 
From 2019 to 2087, TRAA-fwd and TRAA-trend mean annu-
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Figure 10. Annual simulated numerical groundwater-model water budget components (recharge, drains, storage, 
cumulative storage, head-dependent boundaries, and wells) from 2019 through 2087 for the Trinity River alluvium 
aquifer-fwd scenario (blue), the Trinity River alluvium aquifer-trend scenario (red), the Global Climate Model ensemble 
mean (black), and Global Climate Models (light gray).

Figure 10. Annual simulated numerical groundwater-model water budget components (recharge, drains, storage change, cumulative 
storage change, head-dependent boundaries, and wells) from 2019 through 2087 for the Trinity River alluvium aquifer-fwd scenario 
(blue), the Trinity River alluvium aquifer-trend scenario (red), the global climate model ensemble mean (black), and global climate models 
(light gray).
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al cumulative groundwater storage change values were about 
238,000 acre-feet/year flowing out of the aquifer and about 
679,000 acre-feet/year being stored in the aquifer, respectively, 
a difference of 917,000 acre-feet/year. The TRAA-fwd annual 
cumulative groundwater storage change indicates a statistically 
significant downward trend with a Kendall’s tau of −0.3222 
(p-value ≤ 0.05).

The GCM ensemble mean, TRAA-fwd run, and TRAA-
trend run water budget components are compared in Figure 
10. Because of the linear nature of the trend extrapolation for 
the trend run (which was based on the 1900–2017 period of 
record), it is likely a high estimate of the range of possible out-
comes. Conversely, the GCM ensemble mean indicates that 
the overall water availability for the future will likely be within 
the upper and lower bounds of water availability determined in 
the historical simulation period (1949–2018). 

Decadal analysis of the water budget also provides insight 
into future groundwater conditions in the TRB. Violin plots of 
the primary water budget components (recharge, drains, and 
storage change) were created to better understand the distribu-
tion of values across decades (Figures 11–13). Figure 11 shows 
the recharge component of the groundwater model water bud-
get by decade, including every year in each decade for all 30 
GCM scenarios. Because recharge is the main control on vol-
ume of groundwater in the model, more recharge to the model 
means more groundwater is available to leave the model via 
drains or to be stored in the aquifer. Simulated median annu-
al recharge (Figure 11) ranges from about 632,000 acre-feet/
year in the 2020 decade to about 462,000 acre-feet/year in the 
2070 decade. Simulated median annual drain values (Figure 
12) range from about 633,000 acre-feet/year out of the sys-
tem in the 2040 decade to about 517,000 acre-feet/year out 
of the system in the 2070 decade. Simulated median annual 

Figure 11. Violin plots showing the distributions, median values, and quartiles of the recharge 
component of the groundwater budget by decade. Blue indicates the distribution of data, 
white dots indicate the median, the gray box indicates the interquartile, and the vertical gray 
lines indicate the extent of the range of values, with outliers excluded. There are 300 values 
per decade for each violin plot, except for the 2080 decade, which includes 240 values.
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Figure 12. Violin plots showing the distributions, median values, and quartiles of the drain 
component of the groundwater budget by decade. Blue indicates the distribution of data, 
white dots indicate the median, the gray box indicates the interquartile, and the vertical 
gray lines indicate the extent of the range of values, with outliers excluded. There are 300 
values per decade for each violin plot, except for the 2080 decade, which includes 240 
values.

storage change (Figure 13), while highly variable, ranges from 
about 16,000 acre-feet/year being added to aquifer storage in 
the 2020 decade to about 40,000 acre-feet/year flowing out of 
the aquifer in the 2050 decade.

Negative cumulative storage change values mean that water 
is going into the aquifer—an increase in groundwater stor-
age in the alluvial aquifer. There is a high degree of variabil-
ity across different climate scenarios, as some scenarios show 
groundwater will be increasing in the aquifer whereas others 
show groundwater will be decreasing. Typically, when there 
is more recharge to the aquifer for a given scenario and year, 
cumulative storage change values will be more negative, rep-
resenting an increase in groundwater storage and vice versa. 
Figure 14 shows that the GCM ensemble mean has an initial 
increase of groundwater available (negative values) in the allu-
vial aquifer, followed by a gradual decrease over the rest of the 
projected time period.

Limitations

All water budgets, including the results of this study, have 
uncertainties associated with them because of simplifying 
assumptions within the models. Uncertainties for the results of 
this study stem from measurement and modeling errors, as well 
as natural variability in precipitation patterns, evapotranspira-
tion, soil and vegetation properties, and diurnal, seasonal, and 
long-term climate trends (Healy et al. 2007). Model limita-
tions associated with PRMS include the following four factors: 
(1) groundwater or reservoir withdrawals are not simulated, (2) 
interbasin transfers are not simulated, (3) land use changes are 
not simulated, and (4) the effect of frozen ground on runoff is 
not simulated (Bjerklie et al. 2015). Additional uncertainties 
exist specifically for the TRAA. Because the TRAA is not for-
mally classified as an aquifer, few data have been collected to 
characterize its geologic or hydraulic properties, and no gain-
loss studies have been done to assess groundwater–surface water 
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Figure 13. Violin plots showing the distributions, median values, and quartiles of the 
storage change component of the groundwater budget by decade. Holding with MODFLOW 
convention, gain of groundwater storage is shown as an aquifer outflow (negative). Blue 
indicates the distribution of data, white dots indicate the median, the gray box indicates 
the interquartile, and the vertical gray lines indicate the extent of the range of values, with 
outliers excluded. There are 300 values per decade for each violin plot, except for the 2080 
decade, which includes 240 values.

exchanges between the alluvium aquifer and the Trinity River. 
As such, this groundwater model should be used for basin-wide 
water budget assessments and not localized regions within the 
TRB. Population growth, land-use changes, and other like-
ly anthropogenic effects that could appreciably reduce water 
availability in the future were not considered in the simulations 
described herein.

Application and interpretation of outputs from GCM simu-
lations require an understanding of some basic considerations 
and limitations of the results as summarized by Taylor et al. 
(2012). These include unforced variability, bias correction, 
downscaling, and multi-model ensemble (Krinner et al. 2020; 
Soriano et at. 2019). GCMs typically have grid cells that are 
approximately 100 kilometers by 100 kilometers. Climate 
change models are being tasked to provide climate change 
effects on increasingly smaller spatial scales. To accomplish 
this task, downscaling techniques have been developed to take 

GCM output and provide meaningful information at scales 
smaller than the size of the GCM’s grid cells (Taylor et al. 
2012). LOCA is a statistical downscaling technique that uses 
history to add improved fine-scale detail to GCMs (Pierce et 
al. 2014). LOCA errors tend to pattern those of random vari-
ability in sampling as opposed to errors showing spatial pattern 
biases. However, like all statistical models, LOCA is based on 
historical data and thus assumes that spatial relationships and 
local and average climate fields will not change for future cli-
mate scenarios.

Research has shown that the use of multi-model ensemble 
means and the ensemble range (spread of minimum and max-
imum across many GCMs) will provide better projections of 
future changes in climate and represent the most conservative 
approach given the challenges of predicting complicated sys-
tems like climate (Venkataraman et al. 2016). Therefore, long-
term climate trends from an ensemble mean of many GCMs 



Texas Water Journal, Volume 14, Number 1

57Surface Water and Groundwater Availability in the Trinity River Basin in Texas

Figure 14. Plot showing cumulative groundwater storage over time for all Global Climate Model scenarios, with the ensemble mean 
plotted in black and each Global Climate Model scenario plotted in gray. Negative values represent an increase in groundwater storage.

Figure 14. Plot showing cumulative groundwater storage change over time for all global climate model scenarios, with the ensemble 
mean plotted in black and each global climate model scenario plotted in gray. Negative values represent an increase in groundwater 
storage.

will provide a broad representation of future climate condi-
tions, not an accurate description of the timing and magnitude 
of individual future events (Venkataraman et al. 2016).

DISCUSSION

The TRB is predominately within two regions of the TWDB 
RWPGs: Region C is in the upstream part of the TRB, and 
Region H is in the downstream part of the TRB (Figure 1). 
Both RWPGs inform stakeholders of the water supply and 
demand by providing and updating a water plan every 5 years. 
Although water plans for these two regions are available for 
2021 (Freese and Nichols, Inc. et al. 2020; Region H Water 
Planning Group et al. 2020), for the purpose of this study, 
values provided in the 2016 water plans were used (Freese and 
Nichols, Inc. et al. 2015; Region H Water Planning Group 
et al. 2015). Using land use change projections and predict-
ed population changes in the area, TWDB and the RWPGs 
produce water supply availability values for the regions for 
the next 50 years in decadal increments. Local entities use the 
information provided in the RWPG water plans to make man-
agement decisions regarding water use. Although the RWPGs’ 
water plans are thorough and comprehensive, one limitation is 
that they do not consider future climate change as part of their 
projected water budget. This study aimed to provide an initial 
framework for stakeholders to evaluate the vulnerability of the 
TRB to a changing climate through the use of GCMs. Howev-

er, the scope of this study is limited by simplified models that 
do not account for the complex regulation in the upper part of 
the TRB or the TRB’s projected anthropogenic changes, which 
include substantial population growth and land-use changes, 
particularly in and near the Dallas-Fort Worth and Houston 
metropolitan areas. As such, the results of this study and the 
findings of the RWPG water plans cannot be compared direct-
ly but could be studied in conjunction to better understand 
TRB water availability. 

The mean annual increase in precipitation to Region C reser-
voirs from historical data (1900–2017) is 0.06 inches/year, and 
the mean seasonal increase is 0.02 inches/year for each of the 
three seasons. The estimated total annual volume increase from 
upward precipitation trends reported in Harwell et al. (2020) 
to 14 Region C reservoirs is 5,486 acre-feet/year (2018–2070) 
inches/year, or 0.12% of regions C and H’s projected water 
availability in 2070 of 4,444,916 acre-feet/year (Table 3). Pro-
jected water availability in 2070 is calculated from the values in 
Table 3 as the sum of the total volumes including groundwater 
in regions C and H and subtracting the sum of the groundwa-
ter volumes in both regions.

However, according to the surface-water model analysis, the 
GCM ensemble mean annual precipitation indicates a down-
ward trend in precipitation of about 0.03 inches/year (2018–
2099), resulting in a downward trend in Hortonian runoff. The 
surface-water model GCM ensemble mean indicates a down-
ward trend in Hortonian runoff of about 0.0013 inches/year. 
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Simulated results of the surface-water model GCM ensemble 
mean indicate a downward trend in actual evapotranspiration 
of about 0.01 inches/year, likely a result of less water input 
to the system as precipitation and therefore less surface water 
available for evapotranspiration. Lastly, the surface-water 
model GCM ensemble mean indicates a downward trend in 
recharge of −0.0092 inches/year or approximately 8,764 acre-
feet/year to the TRB.

Similar to the surface-water model results, the TRAA ground-
water model analysis of the GCM ensemble mean indicates 
a downward trend of about 2,376 acre-feet/year of recharge 
to the TRAA, or 0.30% of the projected 2070 groundwater 
availability in regions C and H (Table 3). The downward trend 
in recharge is a result of the downward trend in precipitation 
from the GCM ensemble mean. The TRAA groundwater 
model GCM ensemble mean indicates an upward trend in the 
amount of groundwater flowing out of the aquifer to rivers 
and streams at a rate of about 1,877 acre-feet/year. The TRAA 
model GCM ensemble mean also indicates an upward trend 
of 3,655 acre-feet/year in cumulative storage change, and the 
amount of groundwater in the aquifer is decreasing despite 
an initial increase in groundwater storage, as depicted by the 
annual GCM ensemble mean data in figure 14.

The GCM ensemble mean and trend scenario results show 
long-term stability in the water budget for both surface water 
and groundwater for the study period. The estimated total 
annual increase in volume to 14 Region C reservoirs from 
upward trends in precipitation is 5,486 acre-feet/year (2018–
2070). However, the surface-water model GCM ensemble 
mean annual precipitation indicates a downward trend in pre-
cipitation of about 0.03 inches/year (2018–2099), resulting 
in a downward trend in Hortonian runoff of approximately 
0.0013 inches/year. The GCM ensemble mean for the sur-
face-water model (11,471,544 acres) indicates a downward 
trend in recharge of about 8,764 acre-feet/year. The GCM 
ensemble mean for the TRAA groundwater model (3,369,961 
acres) also indicates an upward trend (decrease of groundwater 
storage) of 3,655 acre-feet/year in cumulative storage change, 
and the amount of groundwater in the aquifer is decreasing 
despite an initial increase in groundwater storage. The results 
of this analysis show that the overall change in future water 
availability attributable to climate change is small, assuming 
the average of the ensembles is the best predictor of the future. 
The scientific consensus is that water availability in the future 
will be more variable compared to the past because of the like-
lihood of longer and more severe droughts punctuated by more 
intense storms (Nielsen-Gammon et al. 2021).

Any use of trade, firm, or product names is for descriptive 
purposes only and does not imply endorsement by the U.S. 
government.
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