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Abstract: 
In this paper, we present an analysis of the evolution of the history of science as a discipline 
focusing on the role of the mathematization of nature as a historiographical perspective. Our 
study is centered in the mathematization thesis, which considers the rise of a mathematical 
approach of nature in the 17th century as being the most relevant event for scientific 
development. We begin discussing Edmund Husserl whose work, despite being mainly 
philosophical, is relevant for having affected the emergence of the narrative of the 
mathematization of nature and due to its influence on Alexandre Koyré. Next, we explore 
Koyré, Dijksterhuis, and Burtt’s works, the historians from the 20th century responsible for 
the elaboration of the main narratives about the Scientific Revolution that put the 
mathematization of science as the protagonist of the new science. Then, we examine the 
reframing of the mathematization thesis with the narrative of two traditions developed by 
Thomas S. Kuhn and Richard Westfall, in which the mathematization of nature shares space 
with other developments taken as equally relevant. We conclude presenting contemporary 
critical perspectives on the mathematization thesis and its capacity for synthesizing scientific 
development.  
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_____________________________________________________________________________________ 
 
Introduction 

 
One of the most well-known episodes of the history of science is the so-called Scientific 
Revolution. Different historians and philosophers have distinct views on the subject. 
Moreover, as a historiographical category, it has a history of its own. In the 18th century, 
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scientists as Fontenelle, Lavoisier, Clairaut, D’Alembert, and Diderot had already used the 
term “revolutionary” concerning scientific works, even if sporadically (Nickles 2017; Cohen, I. 
1985, 4). However, it is in the 20th century that the idea of the scientific revolution was 
integrated into historical narratives. The works of Eduard Jan Dijksterhuis and Edwin Arthur 
Burtt, both published in 1924, incorporated the idea of a discontinuous transition in scientific 
development. However, the term scientific revolution was coined only in 1935 by Alexandre 
Koyré (1892–1964) in three essays, lately gathered in his book Études Galiléennes. Historians 
of science diverge on their understanding of the duration, definition, and even on the 
revolutionary character of the so-called Scientific Revolution.3 For instance, Butterfield (1965, 
7-8) considers it as a foundational event of science, and a breaking point in human history. 
While Kuhn (2012, 4, 156) and Feyerabend (1993, 165-166) add the notion of 
incommensurability to the narrative.      

The idea of rupture from an Aristotelian natural philosophy towards modern science is 
a stable factor in the majority of narratives of the Scientific Revolution. One of the main 
ingredients of such breakdown is the “mathematization thesis,” also called 
“mathematization of nature,” a term attributed to Koyré (Cohen, 2016, 143-148). The thesis 
claims that  

 
No other episode in the history of Western science has been as consequential as the 
rise of the mathematical approach to the natural world, both in terms of its impact on 
the development of science during the scientific revolution but also in regard to the 
debates that it has generated among scholars who have striven to understand the 
history and nature of science. (Gorham and Waters 2016, 1)  
 
Galileo Galilei (1564–1642) is often portrayed as a precursor of the use of mathematics 

in the explanation of natural phenomena, breaking with a long Aristotelian tradition, which 
supposedly had rejected it. However, some contemporary authors problematize such a 
disruptive view on epistemological and sociological grounds. For instance, they consider that 
the mathematization impulse came more from the expansion of Aristotelian mixed 
mathematics than from the works of Galileo and his contemporaries (Schuster 2017, 48-65; 
Gingras 2001, 383). Besides, Galileo’s work cannot be seen as definitive in the establishment 
of a consensus about the mathematical approach to natural phenomena, because there was 
significant resistance to this approach at least until the reception of Newton’s Principia 
(Gingras 2001).  

Although with different meanings, roles and emphasis, the mathematization thesis 
appears in the works of some important historians as Koyré, Dijksterhuis, and Burtt.  In the 
present paper, we focus on their work due to their status as precursors of a contextual 
history of science (Cohen 1994, 88; 2016, 148),  and for their consideration of the use of 
mathematics as a criterion of differentiation between the new science and the old scholastic 
philosophy.4 We discuss the mathematization thesis as a historiographical category to 
analyze the studies of nature in the period of the Scientific Revolution. It is important to 
emphasize that the issues discussed here are contingent to the studies of mechanics in the 
17th century, and would be different if our object of analysis were, for example, the history of 
the mathematization of electrical phenomena in the 18th and 19th centuries.  

___________________ 

3 Some continuist historians, as Duhem, Randall, Crombie and Peter Dear, point to the dependence of 
the “revolutionary thinkers” on older works and traditions (Nickles 2017).  
4 It does not mean that they were the first to recognize the mathematization of nature as an important 
feature of the new science. During the 18th and the 19th centuries, philosophers and historians were 
already discussing the relations between mathematics and science, such as Mach (1903) and the 
thinkers from the Neo-Kantian school of Marburg (Heis 2018) that influenced both Koyré and Husserl. 
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We begin analyzing Husserl’s thought because of his importance to the 
mathematization thesis, his influence over Koyré and his centrality to the emergence of the 
narrative of the mathematization of nature (Roux 2010, 319). Next, we explore the works by 
Koyré, Dijksterhuis, and Burtt that consider the mathematization of nature as a central aspect 
of the Scientific Revolution. Then we discuss the resignification of the thesis by Thomas S. 
Kuhn and Richard Westfall, who believed that the mathematization of nature has to be taken 
as equally relevant as other aspects in the historiography of the Scientific Revolution.5 We 
conclude presenting critical perspectives to the mathematization thesis and its capacity to 
synthesize scientific development. 

 
Edmund Husserl: The Idealization of Nature 
 
Edmund Husserl (1859–1938) is one of the authors responsible for the elaboration of the 
narrative of the science birth as a rupture with the qualitative view adopted by the Scholastic 
philosophers. Husserl, in his book The Crisis of European Science and Transcendental 
Phenomenology (1936), explores the mathematization of science, aiming at understanding its 
philosophical meaning and assumptions. The main goal of his work is to understand what he 
considers a crisis in the foundations of science at the beginning of the 20th century (Carr 1970, 
xvi), linked to a broader crisis of the European civilization and philosophy. Such a crisis was 
characterized by the demand that science ought to be based on rigorously objective grounds, 
which reduced the scope of legitimate research questions (Husserl 1970, 5-7). The material 
prosperity produced by the so-called positive sciences impelled humans to neglect issues of 
value as the meaning of life, which according to Husserl are decisive to genuine humanity: 
“Merely fact-minded sciences make merely fact-minded people” (Husserl 1970, 6). 

Husserl adopts a “historic-teleological” analysis to seek in the past the roots that lead 
to the crisis (Husserl 1970, 3). Taking Galileo as an example, he philosophically reconstructs 
the process of the mathematization of nature. Husserl claims that the mathematization of 
nature was done through the process of idealization,6 understood as a landmark of modern 
science. The author considers it a milestone because it represents a rupture with the old way 
of grounding knowledge about nature in the accumulation of immediate observations 
(Husserl 1970, 23). According to Garrison (1986, 330-1), Husserl’s idealization occurs in two 
stages: idealization1

 and idealization2. The first is an ascending movement from the material 
world of sensations to the world of abstractions. Idealization1 gives rise to the 
conceptualization of the abstract geometric objects. In the world of our perceptions, we 
have access to “proto-geometric” objects with irregular shapes that we perceive in a hazy 
way due to the imprecision of our senses. With successive measures, we are capable of 
softening those defects, arriving at more regular shapes. Approximate objects are enough 
for practical purposes, such as land-surveying and architecture. Nevertheless, for analytical 
purposes, it is necessary to construct perfect geometrical objects by extrapolation of the 
original series of measurements, arriving at ideal objects.  The process of idealization2 follows 
the inverse path. While the first departs from the world of perceptions to construct ideal 
objects, the second, that assumes the first, uses abstract objects as ‘guides’ to inquire about 
the world of perception, and substitute our diffuse judgments of the objects by more precise 

___________________ 

5 John Henry (2002) is another important historian of science that considers the mathematization of 
nature as central in the development of science. 
6 From more on the process of idealization in Husserl, see Garrison (1986, 333-5). 
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ones.7 Husserl considers Galileo as a Platonic-Pythagorean thinker8 (Gandt 2004, 70-74; 
Palmerino 2016, 30), and criticizes him for believing that geometry could be applied to nature 
without further considerations. To the German philosopher, Galileo failed to reflect on “how 
the free, imaginative variation of this world and its shapes results only in possible empirically 
intuitable shapes and not in exact shapes [...]” (Husserl 1970, 49). To Husserl, even when we 
direct our attention to the shapes of the objects, we do not experience an ideal geometric 
body, but one with the “effective content of the experience”. Even if we transform the 
sensible shapes by the imagination, we always obtain other sensible forms that can only be 
thought in terms of gradations of straightness, flatness, circularity, but not in absolute terms 
of perfect geometric shapes9 (Husserl 1970, 25). In short, Husserl blames Galileo for doing a 
“surreptitious substitution of the mathematically substructed world of idealities for the only 
real world, the one that is actually given through perception, that is ever experienced and 
experienceable” (Husserl 1970, 48-49). Husserl’s goal is not to make a historical 
interpretation, but a reconstruction to serve a philosophical reflection aiming the 
comprehension of the meaning of mathematization in the context of the “new science”. He 
intends to establish the “unavoidable necessity of a transcendental-phenomenological 
reorientation of philosophy” (Husserl 1970, 3). He focuses his analysis on Galileo because, in 
his understanding, it is in the Galilean physics that the mathematization of natural entities 
appears entirely developed for the first time.10 However, Husserl points out that it would be 
necessary a more careful historical analysis to ascertain the dependencies of Galileo on his 
predecessors (Husserl 1970, 57).11 Still, Husserl’s interpretation brings to the foreground one 
of the key points explored in this paper, which is the implicit substitution of the objects of 
the world by mathematical idealities. As the philosopher himself points out, the substitution 
seems so obvious and trivial to scientific practice that it is rarely problematized, 
contextualized, or justified (Husserl 1970, 24). Besides that, Edmund Husserl occupies a 
relevant historical place in the development of the history of the mathematization of science 
due to his influence over prominent historians, such as Alexandre Koyré.  

 
The Mathematization Thesis 

 
Alexandre Koyré: 
From a Heterogeneous to a Homogeneous Space  

 
Alexandre Koyré went to Göttingen, Germany, to study in 1908. There he took classes with 
Hermann Minkowski (1864–1909), David Hilbert (1862–1943), and Edmund Husserl, initially 
studying fundamental problems of mathematics. His conception of mathematics is based on 
a mathematical realism, of a Platonic and Cartesian type, being deeply influenced by Husserl 
(Gandt 2004, 97-104; Condé 2017, 35). This kind of mathematical realism had a significant 

___________________ 

7 This procedure comprises only mathematically describable aspects, as shape and position, excluding 
subjective ones as color and smell. For Soffer (1990, 68), the distinction between primary and 
secondary qualities is the cornerstone of the ontology of the new science in Husserl’s reconstruction. 
8 Husserl is not the first one to characterize Galileo as Platonic. This is a thesis advocated at least since 
1882 by Paul Natorp in Galileo as Philosopher. For a history of the thesis, see Matteoli (2019).  
9 Husserl’s stance on this matter can be criticized by pointing out that Galileo considered the 
imperfection of real bodies and phenomena was not a hindrance to the thesis that the world is 
essentially mathematical, given that mathematical entities can be equally complex and imperfect 
(Palmerino 2016, 39-41).   
10 See Durt (2012) for a discussion on Husserl’s genealogy of the mathematization of nature.  
11 Gandt (2004, 72) points out that Husserl erroneously attributes to Galileo contributions by Kepler, 
Descartes, Huygens, Boyle and Newton.  
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influence over his reading of Galileo and his historiography (Gandt 2004, 97-104). For 
instance, this influence can be noted when Koyré claims that modern science excludes the 
study of humans from its scope by replacing the qualitative world of sensory perceptions by 
an objective and quantitative one, a typically Husserlian thesis (Gandt 2004, 99). Husserl’s 
influences12 can also be noted on the fact that he defended that the mathematization of 
nature is not just a fundamental point in the establishment of modern science; it is also an 
epistemological attitude distinct from the Aristotelian philosophy. 

Therefore, in the context of the present paper, we ask what is the place of the 
mathematization of nature, so dear to Husserl, in Koyré’s historiography? An important one, 
but not the central, being subordinated to notions such as inertia and Galileo’s concept of 
motion and inserted in the transition from a finite and orderly cosmos to an infinite universe 
and homogeneous space.13  

For Koyré, the identification of space with geometrical space is crucial for the 
development of the concept of inertia. In the Aristotelian physics, space is not homogeneous, 
having particular points and zones (such as natural place and sublunary and superlunary 
zones), and motion is a particular phenomenon in the broader category of change (that 
includes, for instance, the growth of trees). In contrast, Galileo (still according to Koyré) 
considers motion as a translation from one point of a homogeneous and geometrical space 
to another. Besides the body’s position, nothing more changes while it is moving, which 
implies that its state can only be recognized if compared to other bodies. As a consequence, 
motion is considered ontologically identical to rest. That makes the Aristotelian notion of 
distinct points in space superfluous, once motion ceases to be a transitory phenomenon with 
a goal and becomes a state (Koyré 1943a, 336-9).  

For the French-Russian historian, thought experiments are part of mathematical 
reasoning and test the very consistencies of theories. He emphasizes the subordination of 
experiments to an a priori mathematical reasoning on Galilean physics. Natural laws are 
previously established by logical and mathematical deduction. In Koyré’s interpretation, 
Galileo would only perform experiments once mathematics had already established the 
conclusion: 

 
Thus necesse determines esse.14 Good physics is made a priori. Theory precedes fact. 
Experience is useless because before any experience we are already in possession of 
the knowledge we are seeking for. Fundamental laws of motion (and of rest), laws that 
determine the spatio-temporal behavior of material bodies, are laws of a mathematical 
nature. Of the same nature as those which govern relations and laws of figures and 
numbers. We find and discover them not in Nature, but in ourselves, in our mind, in our 
memory, as Plato long ago has taught us. (Koyré 1943a, 347) 
 
In the well-known passage of the Dialogue Concerning the Two Chief World Systems 

about the relativity of motion, Galileo says that when one releases a rock from the top of a 
mast of a ship in movement, the stone will fall in a rectilinear trajectory, hitting the mast’s 
base. Simplicio asks Salviati whether he had performed the experiment to reach this 
conclusion. Salviati answers, “without experiment, I am sure that the effect will happen as I 
tell you, because it must happen that way” (Galilei 1967, 145).  

___________________ 

12 The influences of Husserl on Koyré are an object of debate in the literature. See Schuhmann (1987) 
for a critic of this influence and an exposition of the relationship between the two; and Parker for a 
defense of this influence. Parker (2017, 246-247, 266-247) also claims that Koyré’s work should be seen 
as a contribution to phenomenalism.  
13 For more on this topic, see Koyré (1943a), and Cohen (1994, 75).  
14 Respectively “necessity” and “existence” in Latin. 
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Koyré mentions that in the 16th century, it was commonplace to consider that the main 
issue distinguishing Aristotle and Plato was the role attributed to mathematics on the study 
of nature (Koyré 1943b, 420-1). Koyré quotes the explicit discussion in Galileo’s dialogues 
about mathematical studies of nature. According to Koyré, Sagredo had advocated a Platonic 
position and convinced the Aristotelian Simplicio to change his mind. Koyré portrays Galileo’s 
motivation on the inquiry about the free fall of bodies in the dispute between Aristotle and 
Plato. By arguing that motion is also subject to mathematical representation, Galileo 
dismisses the Aristotelian position that nature does not conform to mathematical precision 
(Koyré 1943b). 

In his historiography, Koyré attributes a central role to the mathematization of 17th 
century science, with particular emphasis on the mathematical realism, arguing for the 
priority of theory over the experiment. Koyré still proposes a ‘root’ to the new mathematical 
thinking, which would be the Platonic idealism, contrasting with the Aristotelian thought of 
the scholastics.  In constructing his narrative, Koyré uses Husserl’s ideas, by emphasizing the 
shifting to an a priori mathematical thought, and by putting Galileo on the focus of the 
narrative. However, while Husserl practically identifies the rise of modern science with 
Galileo’s work, Koyré adds nuances to the story.15  

Nevertheless, Koyré is not the only historian to place mathematics in the center of the 
Scientific Revolution. Eduard Jan Dijksterhuis (1892-1965) and Edwin Arthur Burtt (1892–
1989): share the mathematization thesis with Koyré, but with distinct focus and 
interpretations. 

 
Eduard Jan Dijksterhuis: 
Mathematics in the Mechanization of the Worldview and the  
Hypothetico-Deductive Method  
 

Eduard Jan Dijksterhuis dedicated a substantial part of his professional life to teaching 
mathematics and sciences in secondary school. Only on a late stage of his life, in 1953, he 
assumed a recently created chair on the history of science at Utrecht University, Netherlands. 
In his studies as a historian, Dijksterhuis shared Koyré’s views about the centrality of 
mathematics to the development of modern science. However, their views have differences 
that illustrate the nuances of the mathematization thesis. Dijksterhuis synthesizes his 
perspective on the topic in the paper Designed for Grasping Quantities (1955).16 He considers 
that the fecundity of the relation between mathematics and physics should cause “wonder” 
because it is not evident that mathematics, a free creation of the human mind, is related to 
science, which deals with a reality indifferent to the human action (Dijksterhuis 1990, 115). 
According to him, if we feel indifferent to this, it is because our scholar education naturalized 
this relation. For Dijksterhuis, the comprehension of the relations between mathematics and 
physics through history is constrained to the understanding of the mechanistic view of the 
world17 and the construction of the hypothetico-deductive method (Dijksterhuis 1990, 118). 

___________________ 

15 Koyré mentions, for instance, other thinkers that tried to solve the Aristotelian objections to the 
Earth’s movement. He also points out that Galileo never assumed a definitive position concerning the 
infinity of the universe, restraining himself to deny its limitation by a physical sphere of fixed stars 
(Koyré 2006, 88). See also Parker (2017, 267,270) for distinctions between Koyré and Husserl. 
16 Originally published in Dutch under the Latin title Ad quanta intelligenda condita in reference to 
Kepler’s expression. Here we use H. F. Cohen’s English translation of 1990. 
17 See Feldhay (1994) for a criticism of the bias that the commitment with this theme imposes on 
Dijksterhuis’ narrative.  
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In the book The Mechanization of the World Picture (1961),18 the Dutch author adopts a 
historical perspective to analyze the emergence of mechanicism; the roles that mathematics 
plays in modern science, and what differentiates the ancient applied mathematics from, for 
example, Galileo’s and Newton’s mathematical mechanics. 

Dijksterhuis considers the mechanization of the world-picture as responsible for the 
most significant and comprehensive changes in science and society. He believes that the 
adequate definition of said view is the one that demands an explanation of the phenomena 
in Newtonian terms, which are different from ‘mechanic’ as understood in analogy to 
machines. A mathematized mechanics does not mean the mere use of mathematical 
expressions and words, which could be replaced by a common language, but the ontological 
sense of mechanical concepts and laws being mathematical (Dijksterhuis 1961, 499). 
Therefore, the centrality of the mathematization is hidden by the use of the term 
mechanization in the book’s title. Cohen claims that The Mathematization of the World-Picture 
would be a more appropriate title for Dijksterhuis’ book (Cohen 2016, 146).  

Dijksterhuis’ narrative is organized around the development and implementation of 
the hypothetico-deductive method, highlighting the complementarity and hierarchy of 
mathematics and experimentation. Experiments are designed after the formulation of 
mathematical hypotheses, deductions, and predictions (Dijksterhuis 1961, 70-1). The roles of 
mathematics in what he calls hypothetico-deductive method are to describe a set of empirical 
data, express a hypothesis that explains the data, and to work as a tool for deducting new 
possible observations (Dijksterhuis 1990, 117). Dijksterhuis uses the method as a 
historiographical category to analyze the development of scientific practice, pointing out 
when certain stages are or are not followed. 

For instance,19 Dijksterhuis highlights the mathematical character of On the Equilibrium 
of Planes by Archimedes. The starting point of its demonstrative structure are axioms 
considered self-evident or observable by analogy with what we see through our sense, 
followed by mathematical idealizations of material objects and mathematical deductions 
with physical conclusions. Confirmatory experiments are unnecessary, i.e., the last stage of 
the hypothetico-deductive method is not fulfilled (Dijksterhuis 1990, 115-118). Ancient 
astronomy is a distinct case because the movement of celestial bodies cannot be noticed 
exclusively by sensory perceptions. Therefore, the starting point of inquiry must take into 
account sets of quantitative data besides the axioms. The formulation of the hypothesis is 
constrained by “a priori assumptions which rested on religious, aesthetic, or scientific 
grounds” (Dijksterhuis 1990, 116). As an example, Dijksterhuis mentions the “platonic 
axiom”, which states that the movement of celestial bodies is circular and uniform. Ptolemy 
had used this axiom to describe the Sun’s movements and to predict its future positions 
(Dijksterhuis 1990, 116). 

It is crucial to notice that Dijksterhuis do not consider the use of the hypothetico-
deductive method as the only relevant feature to explain scientific development.  
Dijksterhuis views scientific results acquired until the 16th century as “tiny”, even despite the 
contributions of, for instance, Claudio Galen (129-217) and Robert Grosseteste (1168–1252) 
(Dijksterhuis 1990, 118).20 For Dijksterhuis, the development of mechanics (that he considered 
the prototype of classical physics) advanced only when thinkers, influenced by Archimedes, 

___________________ 

18 Originally published in Dutch in 1950 under the title Mechanisering van het wereldbeeld. Here we use 
C. Dikshoorn 1961 translation. 
19 For a more detailed analysis of the mentioned examples, see (Dijksterhuis 1961, 1990). 
20 He considers this ‘delay’ on the capacity of the method to generate results as an open issue in history, 
whose analysis hinges on several factors. Among them, he mentions the underestimation of the 
difficulties of natural inquiry by the Greeks (who used hypothesis without proper empirical 
confirmation), the qualitative character of the broadly accepted Aristotelian physics and the difficulty 
of the creation of an experimental method, among others (Dijksterhuis 1990, 119). 
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disengaged themselves from Aristotelian orthodoxy. For instance, he finds Simon Stevin’s 
(1548–1620) research on statics and hydrostatic as connected with Archimedes’ theories 
(Dijksterhuis 1990, 120).  

Dijksterhuis takes Galileo as a central figure in his historiography. For him, “with 
perfect acuity, Galileo establishes once and for all the scientific method for the study of 
inorganic matter” (Dijksterhuis 1961, 339). He takes Galileo’s work on free fall as an epitome 
of the mechanization of the world-picture and the establishment of the hypothetico-
deductive method. While Aristotelian physics is concerned with the causes of phenomena, 
Galileo was concerned with description. He searched for motions that could describe the 
natural events satisfactorily, relegating the search for the causes to other philosophers. The 
particular concern to the proper description of the phenomena shows the hypothetical 
character of Galileo’s work. Dijksterhuis also points out that experimentation in the Italian 
philosopher’s work always had a confirmatory function, as suggested by the hypothetico-
deductive method.21  

About the Galilean theory of motion, Dijksterhuis states: 
 
Once theoretical mechanics had inferred its axioms from the study of the natural 
phenomena of rest and motion [...], it turned from physical science to mathematics. 
Radically idealizing the phenomena by the elimination of all disturbing influences and 
schematizing everything with equal thoroughness by means of simplifying abstraction 
[...], mechanics developed into an autonomous science, quite remote from physical 
reality. (Dijksterhuis 1961, 346) 
 
This is a crucial point on Dijksterhuis’ narrative, which considers the detachment of 

mechanics from natural phenomena a critical step in the development of the mechanical 
(mathematical) world picture.  

According to Dijksterhuis, Isaac Newton’s (1643–1727) studies on gravity contributed 
to improving the hypothetico-deductive method. The mathematical laws that accurately 
describe the free fall and the orbits of the planets follow from the same hypothesis 
(Dijksterhuis 1990, 123-124). Due to the success of Newton’s theory and the difficulty of 
explaining the action at a distance in corpuscular terms, he abolished the requirement that 
hypotheses should “lend themselves in any case to a visual picture” (Dijksterhuis 1990, 123), 
being enough that they are useful to deduct the most significant amount of observable 
phenomena. Dijksterhuis concludes: 

 
Thus the expansion of the mathematical-empirical method22 accomplished by Newton 
was of a principal nature and significance in that the aim of a scientific theory could 
now be defined as providing a mathematical description of the course of a natural 
phenomenon, under the naturally added clause that the description must give rise to 
empirically verifiable consequences. (Dijksterhuis 1990, 124)  

 
With the development of mathematical sciences, the relation between mathematics 

and nature resurges, according to Dijksterhuis, as a continuity of the medieval problem of 
universals, which questioned the connection between idea and physical reality. The Platonic 
stance of universalia ante rem [universals before objects] is now understood as considering 
the world as an imperfect realization of mathematical ideals from the world of thought. The 
___________________ 

21 Nevertheless, Dijkstehuis recognizes that some confirmatory experiments for Galileo’s previsions 
were realized posteriorly (Dijksterhuis 1990, 120). Cohen (1994, 71-72) criticizes this point on 
Dijksterhuis’ argument, because historical data shows that Galileo made more heuristic experiments 
than Dijksterhuis credited him. 
22 Other term for hypothetico-deductive method used by Dijksterhuis. 
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Aristotelian universalia in re (universals in objects) conceives mathematical idealization as an 
abstraction from physical reality. Finally, the nominalist view, universalia post rem (universals 
after objects), understands mathematics as a useful tool to obtain approximate knowledge 
of reality.  
 

Edwin Arthur Burtt: 
Metaphysical Consequences of Mathematization 

 
Historical studies on the mathematization of science gained an air of robustness and strength 
in the 1920s, after the publication of Dijksterhuis and Edwin Arthur Burtt books, both in 1924. 
In this year, Burtt presented his Ph.D. thesis, The Metaphysical Foundations of Modern Physical 
Science: A Historical and Critical Essay,23 at Columbia University, the center of American 
pragmatism. Burtt had a significant influence on his coetaneous, for instance, Koyré changed 
the focus of his studies from the history of religion to history of science after reading Burtt’s 
book24 (Villemaire 2002, 3-4, 49).  

According to Lorraine Daston (1991, 523-4) and Diane Villemaire (2002, 49), Burtt uses 
the term ‘metaphysics’ denoting the assumptions that ground a scientist’s work and usually 
are not explicit nor analyzed critically.25 The Metaphysical Foundations is shaped by the 
conflict with the positivists26 whose main idea is that “it is possible to acquire truths about 
things without presupposing any theory of their ultimate nature [...]” (Burtt 1954, 227).  

The Metaphysical Foundations can also be taken as a seed of the approach later 
advocated by Kuhn (1977) and Westfall (1971), who consider the existence of two traditions 
in the historiography of the Scientific Revolution. Burtt recognizes the presence of a parallel 
current of studies on natural philosophy exemplified by William Gilbert (1544–1603), William 
Harvey (1578–1657), and Robert Boyle (1627–1691). Their empiricist approach contrasts with 
a kind of mathematical reductionism, exemplified by Galileo.  

Burtt (1954, 329) often reiterates the inevitability of the metaphysics because while 
trying to avoid it, we just end up adopting a hidden, uncritical metaphysics. He directs his 
attention to what he considers the main problem of modern philosophy – whether we can 
reach trustful knowledge, and how we do it. For the medieval philosophers, humans not only 
occupy the central physical place in the world, but also the world was made for us and, 
therefore, our ability to understand it was accepted a priori. Burtt’s goal is to enable the 
development of a new metaphysics that is compatible with modern science and 
simultaneously ensures a central place for humans (Burtt 1954, 304; Villemaire 2002, 52). 

According to Burtt, modern philosophers failed to accomplish this task. Burtt 
speculates that this failure is due to an uncritical adoption of the categories of modern 
science that deeply contrasts with the old ones. It does not mean that modern philosophers 
blindly accepted Newton’s categories, but none of them has subjected the whole of them to 
critical reflection (Burtt 1954, 35). The categories of substance, accident, causality, essence 
and idea, matter and form, potentiality and actuality are replaced by force, motion, laws, 
changes of mass in space and time. Therefore, in order to understand how this drastic change 
happened, it was necessary to investigate the origins of philosophical thought between 1500 
and 1700. Burtt’s investigation is distinct from Koyré and Dijksterhuis’, who were interested 

___________________ 

23 See Moriarty (1994) for an interpretation of Burtt’s works as a whole, and Chatzigeorgiou (2020) for 
a survey of the interpretations of Burtt’s work.  
24 Among other historians influenced by Burtt are Thomas Kuhn and Robin George Collingwood (1889-
1943).  
25 Definition posteriorly criticized by the historian Lorraine Daston (1991). 
26 ‘Positivists’ can denote a diverse group of thinkers but, according to Daston, Burtt refers to the ones 
from the 1890s, exemplified by Ernest Mach.  
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in constructing a historical overview of scientific ideas in the 17th century, while Burtt is 
involved with its philosophical consequences (Cohen 1994, 92). For him, the modern 
worldview structured by Isaac Newton influenced philosophers and the learned audience in 
general for being responsible for the creation of a new set of knowledge for the European 
intellectuality “such that all problems must have been viewed afresh because they were seen 
against it” (Burtt 1954 32).27  

Therefore, The Metaphysical Foundations aims at a historical analysis of the origins of 
Newton’s philosophical assumptions. Burtt begins with the question: why Copernicus and 
Kepler did compromise themselves with the defense of the heliocentric model against our 
sensory perception of the stillness of the Earth and a well-established natural philosophy? 
According to him, the answer lies in mathematics. For Copernicus and Kepler, the heliocentric 
model was more straightforward and more harmonic than the geocentric. Simpler because 
it reduced the number of necessary epicycles to explain the phenomena from eighty to thirty-
four;28 more harmonic because it represented the movements of all celestial bodies as 
concentric circles around the Sun, except the Moon (Burtt 1954, 36-39). Nonetheless, the 
question of why they prioritized the mathematical arguments over the philosophical and 
empirical ones remains.  

He discusses the rise of the Pythagorean and Platonic thought29 that asserts the 
mathematical nature of reality (Burtt 1954, 40-41, 207-209). Burtt considers Kepler’s 
understanding of cause as a mathematical harmony between diverse phenomena. It is a 
mathematical reformulation of the Aristotelian formal cause. Kepler appropriated the notion 
of primary and secondary categories from the ancient atomists and skeptics who states that 
the world presented to our senses is not an ultimate reality, but an expression of it (Burtt 
1954, 64). 

Burtt also puts Galileo in the spotlight, whose mathematical approach of movement is 
encouraged by the Copernican model. In this model, there is homogeneity between Earth 
and the skies, suggesting the possibility of a mathematical approach to earthly phenomena, 
given the validity of mathematical methods of movement of celestial bodies. It makes Galileo, 
according to Burtt, the first to consider the possibility of a complete and precise description 
of the movement of earthly bodies (Burtt 1954, 112).  

Burtt’s interest is to understand the metaphysical implications of the mathematical 
approach in the study of free fall. One of them is the change of emphasis on the question of 
why the bodies fall to how they fall. In his studies of free fall, Galileo used different categories 
than Aristotle had used. They were not explicitly formulated but can be inferred from how 
Galileo used them in his studies.  Mainly, the notions of space and time acquired new 
meanings in the new metaphysics (Burtt 1954, 91-8).   

Burtt, as the previously mentioned authors, explores the Galilean mathematical 
apriorism, showing how some parts of Galileo’s writings may suggest extreme 
interpretations. Among them, Galileo stated that experiments are a way to convince, not a 
necessary part of the new science. However, Burtt gradually dilutes the boldness of this kind 
of statement. He shows that they do not express a complete disconnection of Galileo from 
experience and observation; according to Burtt, Galileo meant that it is possible, with few 

___________________ 

27 Burtt saw Newton as an outstanding scientist but, as philosopher “he was uncritical, sketchy, 
inconsistent, even second-rate” (Burtt 1954, 208). Still, the Newtonian metaphysics ended up being 
implicitly accept because of its success (Burtt 1954, 230). 
28 Burtt is inaccurate in this point. Ptolemy's system, after Georg von Peuerbach’s (1423–1461) 
reformulation, used forty circles, while the most sophisticated version of Copernicus’ system in the De 
Revolutionibus used forty eight (Martins 2003, 82).  
29 Daston (1991) criticizes Burtt’s emphasis on this point, arguing that it is not a satisfactory explanation 
because not all thinkers explored in Burtt’s work as responsible for the ascension of the mathematical 
view of the world were Platonic.  
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experiments, to extract the mathematical essence of phenomena. Following such essence, 
it is possible to deduce valid conclusions to all similar instances, even when they are not 
subject to observation. Burtt summarizes Galileo’s method in three stages: intuition or 
resolution starting with phenomena to extract an underlying mathematical structure; 
demonstration making generalizations and deductions of new properties following the 
intuited structure from the previous step; and experimentation to verify the deductions 
(Burtt 1954, 81). 

 According to Burtt, the core of the metaphysics of modern science is the “ascription 
of ultimate reality and causal efficacy to the world of mathematics, which is identified with 
the realm of material bodies moving in space and time” (Burtt 1954, 303). The explanatory 
categories of science are defined according to the possibility of its mathematical expression. 
He also notes that over the Scientific Revolution, natural philosophers started to avoid 
metaphysical issues, except when they could be used to legitimize the mathematical 
conquest of the world (Burtt 1954, 306). Thus, for Burtt, as for Koyré and Dijksterhuis, the 
mathematization of the physical world plays a central role in the narrative about the Scientific 
Revolution.  

Cohen (1994, 88-89) and Villemaire (2002, 187) advocate that the relevance of The 
Metaphysical Foundations was not fully recognized, and both authors consider the book as 
the first contextual historical approach to the development of science in a discontinuous 
way. That may be due to the hostile context of the time when the book was published. It was 
a usual practice of the American philosophers of the 1930s to keep surveillance over 
philosophical groups that acknowledged the possibility of attaining trustful knowledge 
beyond logical and empirically. The Metaphysical Foundations was considered as a door to a 
less formal style of thinking. Another factor that illustrates the hostility to Burtt’s approach 
to the history of physics was the significant influence of the historian George Sarton (1884–
1956), founder of the History of Science Society, who considered the philosophy of science as 
useless to the advance of scientific knowledge (Villemaire 2002, 190). It is noteworthy that 
Burtt had prepared the grounds for the Kuhnian historiography that broke with Sarton’s 
tradition, and the next period would be more friendly to Burtt’s style of historiography. 

 
Synthesizing the Mathematization Thesis as a 
Historiographical category 

 
The limits of the mathematization thesis are not clear due to its malleability as a 
historiographical category. They will become more evident in the next sections where we 
expose the dilution and criticism of the program. Here we synthesize the main differences 
among the three historical works analyzed to illustrate the flexibility of the thesis.  

Koyré and Dijksterhuis contrast in terms of the main narrative of their works. For Koyré, 
mathematization allows the substitution of the conception of a limited cosmos by an infinite 
universe. Dijksterhuis considers the process of mathematization as tightly entangled to the 
origin of a mechanical world picture, identifiable with the birth of science.  However, the 
most critical difference between both authors lies in their views on the epistemic roles of 
mathematics. Koyré assumes a Galilean vision of mathematics as the language of nature. A 
result of this view is that the elaboration of a mathematical theory about natural phenomena 
can lead to, at least potentially, unveiling its reality. In contrast, Dijksterhuis considers 
mathematics as descriptive since it establishes quantitative relations between different 
entities, without mentioning their essences. For Dijksterhuis, mathematization corresponds 
to one stage of the scientific method that should be complemented by experiments, while 
Koyré considers experiments less relevant. 

Burtt’s approach diverges from Koyré and Dijksterhuis’ in its primary goal. While Koyré 
and Dijksterhuis intend to comprehend the birth of modern science, Burtt focuses on the 
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underlying philosophy that substantiates modern science and its ulterior impact on humans’ 
self-image. 

Since the three historians are distinguished for their contribution to the establishment 
of the mathematization thesis as central to the Scientific Revolution, one can ask why Koyré 
is the most famous name? Cohen (2016) points out some reasons. He first considers 
Dijksterhuis’ linguistic isolation, whose first book, Val en Worp, published in the same year as 
Burtt’s Metaphysical Foundations (1924), was written in Dutch. Dijksterhuis’ The 
Mechanization of the World Picture was also initially published in Dutch, being translated into 
English only in 1961, an inadequate translation, according to Cohen (2016, 151). Besides, 
Dijksterhuis worked mainly as a teacher and oriented his public lectures in the Netherlands 
mostly to a lay audience. Burtt also was not very committed to promoting his agenda due to 
his modest personality. On the other hand, Koyré’s success in propagating his thesis is a 
combination of his character with a cosmopolitan personality. Over his career, he transited 
between Germany, Egypt, France, and the United States and was also more devoted to 
advocating the mathematization thesis in the context of the Scientific Revolution (Cohen 
2016, 150-152).   

The mathematization thesis attracted attention due to its efficiency in establishing a 
cohesive narrative that brought together prominent characters such as Galileo, Descartes, 
Kepler, and Newton in a coherent narrative. At the same time that the focus on 
mathematization made the narrative attractive, it also made it fragile. Since the 1950s, its 
status started to be ‘diluted’ by Herbert Butterfield (1900–1979), Marie Boas Hall (1919–
2009), and Alfred Rupert Hall (1920–1979). The first extends the Scientific Revolution’s scope 
to the period between 1300 and 1800, including the impetus dynamic and the late revolution 
in chemistry consummated by Lavoisier, thus comprising periods and events in which 
mathematics could not be seen as central. Nevertheless, Butterfield still considers the 
existence of a ‘central’ Scientific Revolution (similar to the Scientific Revolution described in 
the mathematization thesis) inside this broader period.  Marie Hall and Alfred R. Hall 
characterize the origin of modern science by the prevalence of rational conceptions and 
methods, contrasted with those of magic, mysticism, and superstitions, with mathematics 
being one element among others that contributed to the birth of the new science (Cohen 
2016). 

It is no wonder that the mathematization thesis was subjected to criticism. After all, it 
minimizes the contributions of empirical natural philosophers such as Bacon, Harvey, Boyle, 
and Hooke to the Scientific Revolution; it neglects fields of knowledge that were 
mathematized later, as medicine and chemistry; without saying that it disregards the social 
context in which the birth of the new science took place. In the 1970s, Thomas Kuhn 
proposed a historiographical approach that considers a broader range of events as relevant 
without neglecting the developments attained by the historians of the mathematization 
thesis. 

 
Thomas Kuhn and the Two Traditions 
 
Thomas Kuhn, in the 1976 paper “Mathematical versus Experimental Traditions in the 
Development of Physical Science”, presents an alternative interpretation that copes with 
some of the weaknesses of the mathematization thesis without sacrificing its potential of 
syntheses. He starts with the question: is science a single cohesive body of knowledge with 
a shared history, or is it an assembly of independent disciplines with distinct histories? (Kuhn 
1977, 31).  

 The approach, which considers mathematics, physics, astronomy, chemistry, biology, 
and geology a cohesive body of knowledge called science, usually focuses on the intellectual, 
ideological, and institutional context in which science flourished, neglecting the conceptual 
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evolution of the individual disciplines. However, Kuhn considers that the development of 
institutions, values, methods, and scientific worldviews do not exhaust the study of scientific 
development (Kuhn 1977, 33). Those who consider science as a collection of independent 
disciplines are immune to this criticism due to their focus on technical content. Nevertheless, 
they can be criticized for reconstructing the limits between these disciplines in an 
anachronistic manner. 

Recognizing at same time science’s unity and disciplinary particularities, Kuhn 
proposes the existence of two parallel traditions, the classical mathematical sciences and the 
Baconian sciences. They differ in institutional structure, interaction between their disciplines, 
tendencies of practitioners of one subject to contribute to another, and shared intellectual 
and material prerequisites for their practices.  

The classical sciences include astronomy, statics (including hydrostatic), optics, 
mathematics, and harmony. According to Kuhn, it is the only field of knowledge that can 
eventually be recognized as physical sciences that progressed unequivocally since Antiquity, 
considering the accumulation of concrete and permanent knowledge as a measure of 
progress. The study of movement around the 14th century can be included in the classical 
sciences due to the Scholastic developments that detached it from the problem of broad 
qualitative changes, as it was conceptualized in the Aristotelian philosophy. The two main 
features that unite the six disciplines are their predominantly mathematical nature and 
relatively a priori character.30  

Kuhn considers the Baconian sciences in contrast to the experimental practices of the 
ancients. According to him, experiments used to be performed to reinforce a previously 
known result or to offer an answer to a question posed by an already existing physical theory. 
Besides, several ancient experiments were mental, being difficult for the historian to 
establish the ones that were performed and those that were not. In contrast, the 
experiments made by Baconians such as Gilbert, Boyle, and Hooke aimed to investigate and 
discover and were more valued than theory. They seek to verify how nature behaves in 
previously unknown circumstances, even under artificial conditions that existed only in 
laboratories-experiments that Bacon described as “twisting the lion’s tail”.  (Kuhn 1977, 43-
44).  

Some of the Baconians were influenced by atomist or corpuscular theories and 
metaphysical conceptions.  However, the gap between theory and experiment was deep. 
Therefore, the primary goal of experiments was to make an inventory of empirical facts that 
eventually could ground a coherent body of theoretical work. In addition, Baconian 
experimentation was characterized by the use of sophisticated instruments, as barometers, 
telescopes, microscopes, air pumps, thermometers, among others.  

In this scenario, one can ask whether classical mathematical sciences were influenced 
by Baconian experiments.  Kuhn answers no, at least on the conceptual level.  Even when 
experiments were performed, they usually confirmed previously known results, being 
sophisticated versions of ancient ones or the embodiment of old questions. Even when 
experiments revealed new phenomena related to the disciplines of classical sciences, it took 
a long time until they were incorporated into theory; for instance, in the case of optics, 
experiments of polarization, diffraction, and interference (Kuhn 1977, 45-6). 

Kuhn justifies the separation between disciplinary traditions based, among other 
factors, on Bacon’s attitude towards mathematics. Bacon considered mathematics and its 
‘quasi deductive’ structure of classical sciences as untrustworthy. In bringing attention to the 
importance of the experimental tradition, parallel to the classical sciences, Kuhn dilutes the 
___________________ 

30 Despite the fact that ancient mathematical science acknowledged empirical observations, they are 
considered a priori because they were independent of more complex and experiment-dependent 
observations. Following simple observations, theories could be elaborated deductively using 
mathematical concepts (Kuhn 1977, 35-6).  
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role of mathematics relative to the supporters of the mathematization thesis, while 
maintaining a protagonism to the mathematical current: 

 
If, therefore, one thinks of the Scientific Revolution as a revolution of ideas, it is the 
changes in these traditional, quasi-mathematical fields which one must seek to 
understand. Although other vitally important things also happened to the sciences 
during the sixteenth and seventeenth centuries (the Scientific Revolution was not 
merely a revolution in thought), they prove to be of a different and, to some extent, 
independent sort. (Kuhn 1977, 41) 
 
This point is reinforced by Kuhn’s statement about the underdevelopment of the 

Baconian sciences in the 17th and 18th centuries. He considers them as underdeveloped 
because they were unable to produce consistent theories that gave rise to accurate 
predictions (Kuhn 1977, 47). Consequently, Kuhn agrees with Koyré when he considers the 
theoretical reconceptualization of motion as more relevant than the development of 
experimentation: 

 
After all due qualification, some of it badly needed, Alexandre Koyré and Herbert 
Butterfield will prove to have been right. The transformation of the classical sciences 
during the Scientific Revolution is more accurately ascribed to new ways of looking at 
old phenomena than to a series of unanticipated experimental discoveries. (Kuhn 1977, 
46) 
 
In the book, The Construction of Modern Science: Mechanism and Mechanics (1971), 

Richard Westfall (1924–1996) presents a similar interpretation but using different categories 
and assuming their interaction. Adopting Koyré’s view that Platonic and Democritian 
currents were the constitutive elements of the new science, Westfall considers that they 
interacted in the 17th century in a quarrelsome manner. Despite the rejection of the qualitative 
descriptions of nature by the mechanical philosophy, the demand for a mechanical 
explanation for the phenomena was an obstacle to the complete mathematization of nature 
(Cohen 1994, 138-9). For Westfall, the culmination of the Scientific Revolution happens with 
Newton’s work that unified both currents. 

The approach of the two currents did not have continuity due to several factors. 
Among them, the progressive establishment of social studies of science causing a departure 
from the history of ideas towards sociological historiographical approaches; the growth on 
the number of professional historians; the decrease of scientists in the practice of the history 
of science; and the origin of continuist views that linked the 17th thinkers’ conceptions with 
philosophers from the Middle Ages, minimizing the revolutionary character of science and, 
hence, of the mathematization as a division criteria between the ancient and the modern 
sciences.  

 
Critics of the Mathematization Thesis 
 
After the dilution of the relevance of the mathematization thesis in the historiography, new 
critics to it were weaved. The philosopher Gary Hatfield (1951 - ) criticizes the philosophical 
roots of mathematization exposed by Koyré and Burtt.  He questions the existence of a 
Platonic-Pythagorean metaphysical basis shared by the main actors of the Scientific 
Revolution, claiming that their philosophical bases were different, having only  

 
a broadly shared attitude towards the relationship between mathematics and nature 
amounts to a simple statement that mathematical modes of description are useful in 
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the investigation of nature, a proposition that hardly qualifies as Pythagorean and 
Neoplatonic or as Metaphysical. (Hatfield 1990, 94)  
 
Hatfield sustains that Koyré and Burtt’s interpretation blurs Galileo’s philosophical 

contribution, which was to understand “how one can seek to establish the appropriateness 
of one type of approach to natural science over its competitors without first establishing a 
metaphysical framework as foundation and support” (Hatfield 1990, 118).  

Despite the possibility of identifying Platonic and Aristotelian influences in Galileo, 
Hatfield claims that he justified the value of the mathematical approach by its large number 
of well succeed examples, and not by philosophical bases. He explicitly criticizes some 
justifications used by Koyré to support the weight of the Platonic influence over Galileo as 
the doctrine of reminiscence in the Dialogue Concerning the Two Chief World Systems. Hatfield 
advocates that Salviati was ironic. He also points out that the mentions to Plato in the 
Dialogue always occurred in Simplicio’s and Sagredo’s lines, but never in Salviati’s ones 
(Hatfield 1990, 120-5). 

Lorraine Daston (1951 - ) criticizes Burtt’s analysis by pointing out that he disregarded 
the intellectual context that had allowed him to explain the origin of the metaphysical 
conceptions of the main characters. According to Daston, the setting provided by Burtt is 
“incidental, biographical, and pointedly nonrational”. She partially attributes this negligence 
to a 

 
[...] lingering psychologism admixed with positivist prejudices: presuppositions can be 
accepted or rejected only on faith, and thus predispositions (private, ineffable, 
idiosyncratic) are paramount.  In part, it is due to an implicit view of history, or at least 
of the history of philosophy, as having the forward momentum of a hurtling 
locomotive; ideas develop along certain lines because they must do so. (Daston 1991, 
524). 
 
Daston considers the relationship of necessity amid the distinction between primary 

and secondary qualities and the mathematization of science traced by Burtt as fragile. 
According to her, this is due to Burtt’s underestimation of the different interpretations of the 
distinction between primary and secondary qualities, and to his inappropriate assumption 
that mechanistic philosophy implies mathematization. This makes him inattentive to works 
that incorporate the mechanical philosophy and the distinction between primary and 
secondary categories but do not implement mathematization, as Descartes’ Principia and a 
substantial part of Boyle’s work (Daston 1991, 526-7). 

 Steven Shapin (1943 - ) criticizes the mathematization thesis on the sociological level. 
He considers mathematics as a language unable to foster the formation of the community of 
practitioners of experimental sciences that flourished in the 17th century. His goal is not to 
oppose philosophical arguments to the social value of mathematics, but to show that they 
are intertwined. The use of mathematics as a language to convey scientific statements was 
criticized for its supposed lack of intelligibility, except within a restricted community. 
Intelligibility, in its turn, was a precious value in the period. Boyle, for instance, considered it 
as a virtue that justified the adoption of the mechanical philosophy over the Scholastic. 
Moreover, intelligibility was necessary for the formation of a broad community capable of 
evaluating scientific statements, which Boyle considered a requisite for the establishment of 
a true physics (Shapin 1994).  

Yves Gingras (1954 - ) criticizes Koyré stating that the mathematization of nature was 
a progressive extension of the ancient mixed mathematics instead of a cultural boost caused 
by Neoplatonic influences. Nevertheless, the core of his critic resides in showing the 
collateral effects caused by the mathematization, made invisible by the habit of the historians 
to pay excessive attention to the ‘winners.’ According to him, this habit erroneously conveys 
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the idea that, after Newton’s Principia, the applicability of mathematics to nature became 
obvious and ceased to be opposed (Gingras 2001). Gingras structures his criticism based on 
epistemological, ontological, and social arguments. 

The epistemological changes consisted of the modification of what was understood by 
explanation. The success of the Newtonian mathematical approach to gravitation influenced 
an increasing number of natural philosophers to take the Newtonian mathematical 
description of motion as its explanation, dispensing the need for mechanical causes. The 
ontological consequence was that science starts to deal more with the relation of objects 
and less with its substance or nature. Gingras points out Maxwell’s commentary in a letter to 
J.A. Fleming in which he states, “the progress of science was indicated by our making our 
terms mean less and less”. He meant that physicists ceased to talk about categories as 
electric fluid and caloric and started to refer generically to electricity and heat, without saying 
what those substances are (Gingras 2001, 404).  In the social dimension, Gingras points out 
that the mathematization of physics restricted the participants in science because knowing 
mathematics became an acceptance criterion for being a member of the scientific 
community.  

Recently, Sophie Roux’s (1965 - ) proposed a complexification of the very notion of the 
mathematization of nature. She questions if the use of mathematics can make a clean cut 
between Aristotelian and classical quantitative physics. She points out that despite 
Aristotle’s statement that mathematics is only capable of capturing superficial properties of 
the objects, there were several Aristotelian currents of thought during the Renaissance that 
were compatible with the introduction of mathematics in natural philosophy (Roux 2010).  

She also points out the fact that the different forms of mathematizing nature varies 
according to the kind of mathematics used (algebra, geometry, calculus…) and according to 
the several facets of mathematical practice. Concerning the first distinction, she mentions 
how the Euclidean theory of proportions both guided and frustrated the Galilean analysis of 
motion, and how this analysis would be profoundly changed when transcribed to the 
language of calculus. 

 
These remarks may lead to the conclusion that the grand narrative about 
mathematization of nature has to be enriched with the dense spectrum of various 
mathematical practices. And, indeed, leaving behind the idealities that Husserl and 
Koyré waved at and replacing them with real practices such as manipulating numbers, 
extracting roots, representing perspective in pictures, compounding proportions, 
arranging numbers in tables, following rules and algorithmic procedures, linking 
propositions together, visualizing magnitudes in geometric diagrams, solving 
problems, measuring fields with specific instruments, drawing curves, making 
deductions and plotting the routes of ships, was a significant and much needed change 
of scenery. (Roux 2010, 328). 
 
These various criticisms put into question the generalizations explicitly made or 

assumed by the mathematization thesis and its authors. We advocate that the 
mathematization of nature in the 17th century cannot be easily traced back to Platonic or 
Aristotelian philosophical roots, as indicated by Hatfiled’s (1990) analysis of Galileo. Also, the 
extensive use of mathematics had some side-effects unrecognized by the highly idealized 
narrative of the mathematization thesis, such as those pointed by Shapin (1994) and Gingras 
(2001).  
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Final remarks 
 
Historians of the science of the beginning of the 20th century considered as the founders of 
the mathematization thesis introduced the notion that the most notorious event on the 
establishment of modern science was the expansion of the mathematical approach to nature 
in the 17th century. In their narratives, mathematization is the main criterion that separates 
the medieval Scholastic philosophy from the science of the moderns, in a discontinuous 
rupture. For Koyré (1943a), the use of mathematics was essential in the formulation of 
fundamental laws of modern science, such as inertia and indispensable for the transition 
from a notion of a closed world towards an infinite universe. For Dijksterhuis, the use of 
mathematics is indicative of scientific progress in at least two ways. First, as a landmark of a 
new worldview, the mechanical world picture, according to which the natural phenomena 
are explained in mechanical terms (in the sense of a mathematical discipline) (Dijksterhuis 
1961). Second, as an indicator of a supposedly methodological evolution (Dijksterhuis 1990). 
Burtt (1954) has a distinct goal from previously mentioned historians; his attention is 
predominantly devoted to the impacts of the mathematization of nature in the metaphysics 
of modern science, and how it entailed a diminishment of humans’ position in the universe. 

In the second half of the 20th century, the mathematization thesis is diluted in works 
such as those of Butterfield, Mary Hall, and Alfred R. Hall. They expand the period of the 
Scientific Revolution, including events in which mathematization had no fundamental role 
(Cohen 2016). In the 1970s, Kuhn (1977) and Westfall (1971) revise the relevance of 
mathematization in narratives of the scientific development by considering two traditions of 
scientific progress, mathematics being essential only to one of them. 

Since the end of the 20th century and at the beginning of the 21st, the protagonism of 
the mathematization thesis in historical narratives has been severely criticized. According to 
the critics, despite the indisputable role of mathematics in contemporary science, its use in 
the natural sciences was not always considered natural and unproblematic. Shapin (1994) 
and Gingras (2001), for instance, show how natural philosophers such as Boyle and Faraday 
criticized the social impact of the excessive use of mathematics. Gingras also points out other 
consequences of mathematization on epistemological and ontological levels: the changes in 
the meanings of explanation and the emphasis of mathematical structures over substance. 

Beyond the criticism previously presented in this paper, we can mention some 
narratives of the origin and development of science that take radically different principles 
than those of the mathematization thesis. For instance, Boris Hessen (1893–1936) relates the 
content of Newton’s scientific work with the economic demands of its time (Hessen 2009) 
and Robert Merton (1910–2003) considers the fast development of the scientific activity of 
the 18th century as a product of puritan values.  

Currently, the notion that modern science emerged from a discontinuous break with 
the Scholastic philosophy in the 17th century characterized predominantly by the broad 
application of mathematics to nature is untenable. The works of several actors as Bacon, 
Boyle, and Hooke do not fit this description, neither fields as medicine and chemistry. 
Nevertheless, if we remain aware of its exaggerations, complexities and subtleties brought 
up by contemporary critics, mathematization can still be a fruitful approach to writing the 
history of science. As an example, we mention Hendrik Floris Cohen’s (1946 - ) book How 
Modern Science Came into the World (2010), that extends the idea of two traditions 
introduced by Kuhn and Westfall to construct a historical narrative that incorporates 
mathematization as a critical constituent of the scientific development together with other 
features. 
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