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1.  Introduction

Many engineering problems lead to the consideration
of contact between surfaces.  These include studies relat-
ed to friction-induced vibration and noise, thermal and
electrical contact resistance, and mechanical seals, bush-
ing, fasteners, etc.  Examination of contact characteristics
encompasses equivalent contact stiffness and damping for
vibration and noise, and true contact area for mechanical
seals, and electrical and thermal resistance.  Accounting
for contact characteristics inherently necessitates charac-
terization of surface topography and development of prob-
abilistic models, which relate contact area, contact stiff-
ness, contact load and separation of surfaces.

These models are based on the presumption that a sur-
face can, in effect, be represented by a distribution of
asperities.  As two surfaces are brought into contact, the
macroscopic contact characteristic in question is a cumu-
lative effect of localized interactions of the asperities.
This approach has required the statistical formulation of a 
surface and statistical summation of microscopic contact 
effects to obtain probabilistic macroscopic expectation of
______________________________________
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the contact characteristic (contact area, load, and stiff-
ness).

Greenwood  and  Williamson  (1966) pioneered  "asper-
ity-based model."  The existing literature shows exten-
sions of the Greenwood and Williamson (GW) model over
the last three decades.  The present probabilistic models of
contact may be viewed with respect to the premise of elas-
tic and plastic contact.  The elastic models primarily rely
on the Hertz theory of contact between two elastic bodies
(Greenwood and Williamson, 1966; Greenwood and
Tripp, 1967, 1970; Hisakado, 1974; Bush et al. 1975 and
McCool, 1966).  These models differ in their assumptions
related to surface and asperity geometry and material
properties.  These extensions have included, for instance,
the inclusion of the surface curvature effects Greenwood
and Tripp, (1967), allowance for non-uniform curvature of
asperity summits Hisakado, (1974) and presumption of
average elliptic paraboloidal representation of asperity
Bush et al. (1975).  Other works presented  advanced
models for anisotropic materials McCool, (1986).  Of par-
ticular interest to the future goal of the present work is the
surface model in which asperities are allowed to form con-
tact on shoulders Greenwood and Tripp, (1967).

The plastic models are based on the presumption that
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contact is dominated by plastic flow.  Such models may be
best suited for load ranges that warrant large degree of
plastic flow.  The earliest work on plastic contact model is
attributed to  Abbott and Firestone (1933).  This model
utilizes the geometrical intersection of a plane with a
rough surface and presumes that contact flow pressure
exists over the area of contact, obtained from geometrical
intersection.  Later works include two dimensional ran-
dom process model Nayak, (1971), and investigations
leading to the postulation that volume conservation dic-
tates plastic flow (Pullen and Williamson, 1972;   Nayak,
1973).  The research work of Francis (1976, 1977), deal-
ing with plastic deformation of contact, include empirical
characterization using the results for spherical indentation.
Liu et al. (2000) derived exponential functions from a fit-
ting procedure applied to numerical results of the
Gaussian height distribution offering analytical expres-
sion for the Greenwood and Williamson (1966); elastic
model, Change, et al. (1986), elastic-plastic model and
Horng, (1998) elliptic elastic-plastic model.

Whereas the elastic and plastic models are seen to be
advantageous for extreme cases of loading, in a large
number of engineering applications, contact loads may
fall within ranges that do not warrant adequate representa-
tion by either elastic or plastic model.  This fact has led
researchers to consider what is referred to as elastic-plas-
tic models (Ishigaki et al. 1979, Chang et al. 1997).  In the
latter work, elastic-plastic model of contact is proposed
based on the conservation of volume during plastic defor-
mation.  The work proposed by Chang et al. (1997) treat
contact as elastic-plastic at macroscopic scale while at
microscopic level it views an asperity to experience ini-
tially elastic deformation followed by purely plastic defor-
mation when a critical interference is reached.  More
recent works (Kucharski et al. 1994; Chang, 1986) have

considered and modified contact models to treat elastic-
plastic behavior of metallic coating.

Finite element method solutions to elastic-plastic con-
tact problems were also utilized.  Liu et al. (2000) devel-
oped a finite element method solution for an elastic-plas-
tic contact problem.  The finite element method presented
by  Kogu and Etsion (2002) suggested that the evolution
of the elastic-plastic contact could be divided into three
distinct stages.  Kogu and Etsion (2003) presented an
improved finite element-based model for the contact of
rough surfaces.  The contact parameters for a single asper-
ity contact were predicted.

The present work proposes a modified elastic-plastic
model for surfaces in contact.  The critical interference
proposed by  Chang et al. (1986) is utilized to define fic-
titious asperities.  In this manner two sets of asperities are
defined: (1) those that are the actual surface asperities and
(2) the fictitious asperities which can only deform plasti-
cally.  The concept of elastic and plastic asperities allows
formulation of asperity deformation model which is also
elastic-plastic at microscopic scale; in contrast to the
model by Chang et al. (1986).  Volume conservation is
applied only to the plastic (fictitious) asperities.
Comparisons of the contact load/separation values pre-
dicted by the proposed model with that obtained through
experiments as reported by Kucharski et al. (1994)
demonstrate the effectiveness of the method in providing
accurate prediction of contact characteristics.

2.  The Mathematical Model

Consider first the contact between a rough surface cov-
ered with a number of asperities, that have spherical shape
at their summits with average radius  R  and a nominally
flat surface shown in Fig. 1.  The summit heights,  z, are
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Figure 1.  Contact between a flat and a rough surface



45

The Journal of Engineering Research Vol. 2, No. 1 (2005) 43-52

assumed to have probability density function  φ(z). The
probability that an asperity develops contact with the flat
plane is (Greenwood and Williamson, 1966):

(1)

where d is the separation based on asperity heights.  For N
asperities, the expected number of contacts will be:

(2)

where the total number of asperities, N, the density of
asperities, η, and the nominal area,  An, are related
according to

(3)

For this type of contact, the interference  w may be
described as (Greenwood and Williamson, 1966):

(4)

In analyzing the contact, the laws describing the depend-
ence of the local contact area, Ao, and the local contact
load, Po, on  w are employed.  Hence,

(5)

The expected total contact area, A1, and the expected total
contact load, P, are the statistical sums of the local contri-
butions of each asperity.  Therefore,

(6)

(7)

The Hertzian contact area,  Ao, contact load, Po, and the
maximum contact pressure between one asperity, having
interference  w with a plane, Pm, are given as follows:

(8)

(9)

(10)

where,

(11)

In the equations above   R is the average equivalent radius
of curvature.  In general, the maximum contact pressure is
related to the hardness of the softer material, H, through 

(12)

where  K is   the maximum contact pressure factor.  Tabor
(1977) showed that the plastic flow is reached when Pm=
0.6H.  The critical interference at the inception of plastic
deformation wc is defined by substituting  Eq. (12) in Eqs.
(10) and (14).

(13)

For w > wc, the contact is plastic.  Using the critical
interference and imposing the conservation of volume,
Chang et al. (1997) derived the modified equations
describing the contact area and load on an asperity:

(14)

and

(15)

It is appropriate here to emphasize the difference
between the  present  work and that proposed by  Chang
et al. (1997).  In the derivation of the equations, the
authors assume that an asperity behavior is initially elas-
tic.  As the load is increased the elastic behavior continues
to describe the deformation until a critical interference is
reached.  At this critical load and beyond, the asperity
deforms as a purely plastic body.  In the work of  Chang
et al. (1997) the elastic and plastic behavior do not occur
simultaneously for an asperity.  Hence, their formulation
can only be characterized as an elastic-then-plastic model
at microscopic scale.

The method proposed in this paper is shown to repre-
sent more accurately an elastic-plastic model of the con-
tact, through the introduction of a fictitious surface that
can only deform plastically.  As shown in Fig. 1, the criti-
cal interference, wc, is used to define a second surface.
This second surface is obtained by displacement of every
point on the surface by wc along the direction normal to
the surface (see Fig. 2).  As illustrated in Fig. 2, to obtain
the mathematical description of the plastic asperity, the
mapping of a point,  A, on the surface to a point, B, on the
plastic asperity must be considered.  It is also noted that
an asperity is described Fig. 2 in terms of a frame of ref-
erence whose origin is at the asperity peak and ordinate
points towards the mean plane Greenwood and Tripp,
(1967).  Therefore, ρy-frame is used to describe the origi-
nal asperity, whereas, xy-frame is employed for the plas-
tic asperity.
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     The respective positions of points A and B are 
denoted by Ar  and Br , as depicted in Fig.  2.  The 
position of point B on the fictitious asperity is : 
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(16)

(17)

Equations (16) and (17) may be used to obtain the equa-
tion describing the plastic asperity (see Appendix A for
detail).  To the first approximation, the equation of the
plastic asperity is given as (Appendix A):

(18)

Since the plastic asperities only deform plastically, their
introduction allows the reduction of Eqs. (14) and (15) to
the well-known forms:

(19)

(20)

Where, Rp represents the summit radius of curvature of the
plastic asperity.  Based on Eq. (18), this radius of curva-
ture is 

(21)

Clearly the formulation of the area of contact and con-
tact force for two surfaces involves interactions of two
sets of asperities:  the original surface asperities which are
assumed to deform elastically and plastic asperities that
deform plastically.  The next section presents this new
mathematical model of contact.

3. Elastic-Plastic Contact Between a Rough
Surface and a Plane

The contact between one asperity on a rough surface
and a plane is considered.  Figure 3 illustrates two types
of interactions.  The first is the elastic contact between the
plane and the surface asperity.  If the interference, w,
exceeds the critical interference wc, then the interaction
also includes plastic contact.  It is noted that the shaded
volume representing the interference of the plastic asperi-
ties and the plane contribute to the plastic portion of con-
tact whereas the remaining volume of interference con-
tributes to the elastic contact.  Therefore if we let Q be the
characteristic of contact (area or load) then it may be
obtained by appropriately accounting for the aforemen-
tioned interactions,  that is:

(22)

where Qe1 corresponds to the elastic contact between the
plane and surface asperity.  However this includes, as
shown in Fig. 3, a portion of the interference which is
plastic.  Therefore, the contribution due to elastic interfer-

Figure 2.  Plastic (fictitious) asperity shape
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ence between the plane and the plastic asperity Qe2 must
be subtracted to obtain the net elastic contribution.  The
contribution from plastic interaction due to the plastic
interference of the plane and plastic asperity Qp2 is, then,
added to the result.   Using this approach the area of con-
tact may be described as:

(23)

where,

(24)

(25)

(26)

(27)

(28)

(29)

It is noteworthy to mention here that the plastic asper-
ity peaks can be viewed as being farther away from the
plane by wc.  We have made the approximation as to the
mean plane of plastic asperity being wc below the mean
plane of the surface asperities.  Therefore the limits of
integration are shifted by  wc as presented in Eqs. (25) and
(26).  Furthermore, in these equations the summit curva-
ture corresponding to plastic asperities are used.
Proceeding in a similar manner, the contact load may be
written as:

(30)

where,

(31)

(32)

(33)

4. Results: Evaluation of the Proposed Model

The effectiveness of the proposed model is evaluated
using the data and results given by Chang et al. (1997) and
Kucharski et al. (1994).  For convenience we shall refer to
the former as CEB and the latter as KKPK models.  The
proposed model in this paper will be referred to as AFM
model.  In the ensuing discussion, results are presented in
two subsections.  In the first subsection the AFM model is
evaluated and compared with the CEB model.  In the sec-
ond subsection AFM, CEB and KKPK models are tested
against experimental results given by Kucharski et al.
(1994).

4.1  Comparison of AFM and CEB models
In  the CEB model, as it is the case in our model, a

dimensionless form of the probability density function is
introduced:

(34)

To combine the material and surface topographic prop-
erties in contact, the plasticity index, ψ, is introduced
according to Greenwood and Williamson (1996):

(35)

The relation between separation  h and  σ of the sur-
face microgeometry model and  d and  σs of the asperi-
ty-based model is given as:

(36)

A form for plasticity index is obtained by substituting
Eqs. (13) and (36) in (35), to give:
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     The data employed by Chang et al. (1997) pertaining 
to steel on steel material is employed with the following 
parameters: MPaEE 5

21 1007.2 ×== , Brinell hardness 
MPaH 1960= , 29.021 == νν . The maximum contact 

pressure is taken  to be based on 6.0=K , and β and 
σ/R are selected for different values of plasticity index 
from the experimental work of Nuri and Halling (1975).  
These values and the values of *

cw  and σ/σs, calculated 
from Eqs. (35) and (36), respectively, are shown in 
Table 1.  Figure 4 illustrates the contact area versus 
separation, both given in dimensionless form, for the 
AFM and CEB models.  While both models  predict 
similar contact area for low plasticity index, the AFM 
model predicts higher values for materials of higher 
plasticity  index.  Figure 5   depicts   the   dimensionless  
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Figure 4.  Contact area ration versus separation:  Comparison between 
AFT and CEB models

Figure 5.  Dimensionless separation versus contact load: Comparison 
between AFT and CEB models

Ψ  ηη  R σ σ/R  σ/σs 
0.5   0.0302 8.75x10-5 1.299192 
0.8 0.374 2.00x10-4 1.001331 
2.5 0.601 1.77x10-3 1.000515 

 

Table 1. Plasticity index and surface topography
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(38)

Therefore material with low plasticity index may be
approximated as a purely elastic body.  On the other hand,
for high plasticity index (softer material), the contact is
approximately totally plastic and the total expected
dimensionless contact load for elastic-plastic contact of
Eq. (30) is approximately:

(39)

Figure 6 depicts the contact area ratio versus dimen-
sionless contact load for different values of, φ, as predict-
ed by the AFM and CEB models.

4.2  Comparison of AFM, CEB and KKPK models
It is the intent of this subsection to evaluate the pro-

posed model (AFT) and   present  a comparative study of 
the model with those proposed by CEB and KKPK.  In
doing so we present the experimental results by Kucharski
et al. (1994) as the basis of these comparisons.  They pre-
sented a finite element model of elastic-plastic contact
(referred to as KKPK).  They also performed measure-
ment of contact load, area and approach.  In their work,
steel specimens are employed with Young's modulus  E1 =
200,000 MPa, Poisson's ratio  v1 = 0.3 and tensile yield
strength  Y = 400 MPa.  The three dimensional profilom-
etry of sand-blasted surface (E60), average over three
samples, are given as follows  Kucharski et al. (1994):

As in Kucharski et al. (1994), 3Y/2 is employed
instead of KH value in calculating the plastic contact con-
tribution.  Moreover, dimensionless approach is used
instead of separation in presenting the results.  In this case,

approach is obtained by Kucharski et al. (1994):

(40)

where  α is the approach, and  zmax and  h are the maxi-
mum peak height and separation.

Figure 7 illustrates the results.  In this case dimension-
less approach is with respect to the maximum summit
height,  Msh. Clearly, the proposed (AFM) model presents
the most favorable agreement between the predicted con-
tact load/approach values to that obtained by measure-
ments.  The accuracy of the AFM model is also attested to
by the results shown in Fig. 8.  The results show that the
AFM model provides significantly more accurate predic-
tion of contact load and contact area than CEB and KKPK
models.

4.3 Elastic-Plastic Contact for Rough Surfaces 
In this section direct formulation of contact of rough-

on-rough surfaces based on the work of Greenwood and
Tripp  (1967)   is presented.  The purpose here is  to
demonstrate the adaptability of the proposed contact
model  using   plastic   asperity   concept   and   also   a
formal mathematical treatment of contact between two
rough  surfaces.   Greenwood and Tripp  (1967) intro-
duced  elastic   as   well   as   plastic models   for  two
rough surfaces covered with paraboloidal asperities.
Consideration   of   contact   between   two asperities
results   in   the   following    description   of interference 

(41)

where  z1 and  z2 are the heights of asperities on surfaces
one and two, respectively.  r is the radial distance denot-
ing the offset between the central lines of the two asperi-
ties.  For a summit radius of curvature R, the presumption
of Hertzian contact leads to:

(42)
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The expected dimensionless contact load for elastic con-
tact is
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and that for plastic contact is
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Figure 6.  Contact area ratio versus contact load: Comparison between
AFT amd CEB models
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Figure 8.  Contact area versus dimensionless load: Comparison between AFT, CEB,
experimental results of KKPK, and FEM model of KKPK
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Hence, using the proposed method, the total dimension-
less expected contact load for elastic-plastic behavior is:

(46)

where,

(47)

(48)

(49)

and  σ denotes the standard deviation of sum of asperity
heights on the two surfaces.

5. Conclusions

A mathematical formulation of elastic-plastic contact
has been presented in this paper.  Using the definition of
critical interference, the concept of elastic and plastic
asperities have been developed in which a rough surface
is represented by two surfaces.  The first surface is the
actual physical surface and is assumed to deform as a
purely elastic body.  The second surface is a fictitious one
and it is derived from the physical surface and the critical
interference.  This surface is assumed to deform as a pure-
ly plastic body.  The development of the elastic and plas-
tic surfaces has facilitated the mathematical formulation
of elastic-plastic contact of rough surfaces.  Comparison
of the proposed model with the existing models for elas-
tic-plastic contact have been performed.  The measure-
ment results of previously performed experiments on
sand-blasted steel surface (Kucharski et al. 1994) have
shown that the proposed model provides significant
improvement over previous models in the prediction of
contact load and area of contact.  The proposed model
(AFT) gives better prediction than CEB since in CEB for
every asperity the elastic quantity due to plastic pressure
Qe2  is not considered.  Hence, the elastic and plastic
behaviors do not occur simultaneously for an asperity.
Therefore, their formulation can only be characterized as
an elastic-then-plastic model at microscopic scale and
elastic-plastic model at macroscopic scale.

Appendix A

Consider an asperity and assume that its shape is quad-
ratic as proposed by Greenwood and Tripp (1971).  The
equation of the surface asperity is given by

(A1)

(A2)

The unit tangential vector is obtained as

(A3)

Hence the unit normal vector is

(A4)

Then the description of the plastic asperity is obtained by

(A5)

or

(A6)

(A7)

let

then

(A8)

Therefore, the shape of the plastic (fictitious) asperity is
given by:

(A9)
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as shown in Fig.  2.  The figure also illustrates fictitious 
plastic asperity whose shape is obtained by a 
displacement of cw  along the normal to the quadratic 
curve.  Let  tu  and nu  represent the tangential and 
normal unit vector to the quadratic at point A.  The 
position of point A is given by vector Ar  as: 
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