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Abstract. Togo's energy situation is characterized by a low rate of access to electricity 
(38.07 % in 2017). In the Kara region, there is certainly a wind potential whose study is 
necessary for the production of electricity. Thus, from the data recorded each day at intervals 
of one hour, we used Weibull distribution to evaluate the wind energy potential at 10m and 
then at 25m, 50m, 75m and 100m. However, the promotion of this source requires not only 
the knowledge of its potential but also the evolution of its quantity over time because in 
reality wind energy is confronted with the random nature of the wind. Thus, for the prediction 
of the wind potential in the region of Kara, we used artificial neural networks. The neural 
architecture used is a multilayer perceptron with a single neuron under the hidden layer 
whose activation function is a sigmoid function while the output layer uses a linear function. 
The prediction results obtained with an average squared error of 0.005 and a correlation of 
0.96 show that the prediction results using this tool are acceptable and can be generalized 
under the same conditions on other sites. The evaluation of the wind potential in the region of 
Kara has enabled us to determine the amount of total energy available in the wind at different 
altitudes. Through the average values of wind speeds determined, we could make an optimal 
choice of wind turbine to convert this kinetic energy of the wind into electrical energy. 
Keywords: Wind power, Weibull distribution, Artificial Neural Networks.  

Introduction 

Through improvement of technologies in recent years, wind power generation has reached a 
high level of technological maturity and industrial reliability [1]. However, the major problem 
with this energy is the high variability of its production due to the random nature of its source 
which is wind. The choice of wind turbines and the height of their mast therefore requires a 
prior determination of the wind potential. In this study, we will present the results and discuss 
the static assessment of wind potential in the Kara region after presenting the methodology 
and data used. 

Methodology 

Evaluating the wind potential of a site requires a rigorous scientific approach. This approach 
requires not only the meteorological data and the determination of the mathematical function 
used to approximate the histogram of wind speed frequencies. 
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(2) 

Meteorological data collection 

The Kara region is one of the five regions of Togo. It consists of seven prefectures: Assoli. 
Bassar, Binah, Dankpen, Doufelgou, Keran and Kozah. Wind characteristics must be known 
in order to assess the wind potential of a site. These characteristics are mainly wind speed 
and direction. To these two can be added ambient temperature, pressure, relative humidity.  

Statical representation of the information 

When wind data information is available, it can be represented in the form of a histogram. 
The histogram illustrates the variation in the relative frequency of wind speeds. If the wind 
speed intervals are decreasing, the limit of the histogram is a probability density function [2]. 
However, it is difficult to manipulate the data set for a wind speed frequency distribution. For 
theoretical considerations, it is more appropriate to approach the wind speed frequency 
histogram by a continuous mathematical function than by a discrete table of values. 
According to the literature, several models are available to model the wind speed distribution 
[3]. A Gaussian or Rayleigh distribution function is not always adequate in the case of wind 
speeds [4]. According to GUMBEL J.E [5], a better solution is to use the Weibull distribution 
[6]. Through In TROEN et al [7], the Weibull distribution is currently a standard for the 
representation of wind site climatology. The advantage of this representation is that the mean 
annual production of a given wind turbine can be quickly determined by knowing the Weibull 
characteristic of the site and the power curve of the wind turbine. as detailed in [7], [8]. 

Weibull distribution 

The Weibull function can be described by two or three parameters. Due to its advantages 
highlighted by JUSTUS [9], [10] and to wind industry standards, we use the two-parameter 
Weibull function as described by TROEN et al [7]. Its mathematical expression is given by 
equation (1): 
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Where:  

 𝑓(𝑣) is the probability density and represents the frequency distribution of the 
velocities; 

 𝐴 (m/s) is the Weibull scale parameter that provides information on the average wind 
speed characteristic of the site; it is the value of the speed for which the Weibull 
function admits a maximum;  

  𝑘 (without unit) is the Weibull form factor. representative of the asymmetry of the 
function; it indicates the more or less pointed character of the distribution. 

For k =1, we obtain an exponential law [4]. The Rayleigh distribution for k = 2 is only a 
special case of the Weibull distribution [12]. The approximation of a Gaussian distribution is 
obtained for k = 3.6. 
 

Hybrid Weibull distribution 

The Weibull hybrid distribution is used at sites where the frequency of calm winds is relatively 
high [9]. Indeed, this rather significant proportion of calm winds cannot be neglected, as the 𝑘 
factor is close to the value 1, thus representing an exponential distribution. Equation 
(2) gives us the expression of the Weibull hybrid distribution: 
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𝐹𝑜 represents the frequency of calm speeds. which is determined from wind data.  
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Available kinetic power 

The available kinetic power in the wind is given by [2], [12], [13] through equation (3) 

𝑃𝑑 =
1

2
𝜌𝑎 ⁡𝑆⁡𝑣𝑚

3        (3) 

Where Pd is the available kinetic power in the wind, ρa is the air density. S is the area swept 
by the blades and vm is the average wind speed upstream of the blades. 

Recoverable power 

It is impossible to transform all the kinetic power available in the wind into mechanical power 
by means of a wind turbine. That would have meant zero speed just behind the rotor. BETZ 
has shown [14-15] that there is an optimal wind speed behind the rotor so that there is 
maximum power extracted from the wind which then gives a maximum power coefficient Cp. 
The recoverable power is:  

𝑃𝑟 = 𝐶𝑝⁡𝑃𝑑      (4) 

𝐶𝑝 =
16

27
 for the maximum power coefficient according to Betz [14]. [15]. In practice, 0.35≤ Cp 

≤0.45 according to A.W. Manyonge et al [16]. 

Vertical extrapolation 

Wind speed can be extrapolated vertically by a logarithmic law [17]. 

𝑣(𝑧) = 𝑣10 (
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)      (5) 

where v(z) is the wind speed at altitude z. V10 is the wind speed at 10m. Zo is the site 
roughness. 

Wind speed forecasting techniques and extension to power forecasting 

There are two main approaches to simulating the behaviour of the wind field at a site. These 
are the physical and statistical approaches. So-called "physical" models are based on 
considerations of the physics of the atmosphere and lead to a Numerical Weather Prediction 
(NWP). NWP models [18] (for an introduction to NWP models) are suitable for forecasts 
ranging from several hours to several days. The HIRLAM (Hight Resolution Local Area 
Modelling). [19] and the CFD (Computational Wind Dynamics) model are the main examples. 
When dealing with short forecast horizons (minutes to hours), the use of statistical methods 
is more advisable [20]. Models using these approaches are usually based on time series 
analysis. The simplest of these is the autoregressive (AR) model: an nth-order AR is a model 
in which the future value is obtained to within one noise (error) as a linear combination of the 
last n measured values. To model different weather series [21] such as monthly precipitation 
[22], annual flow [23] and many other applications [24]; their generalization ARMA (or 
ARIMA). [25-26] has been used. Kalman filter methods [27]. Markov chain tools [28] and 
wavelets [29] are also time series based approaches applied to wind speed data. However 
all approaches that directly describe the stochastic dynamics of the amplitude face problems 
related to the non-Gaussian nature of its statistics and the presence of seasonal effects [20]. 
Other more recent techniques, based on artificial intelligence have been considered in the 
context of wind resource forecasting. Black-box models would also allow non-linear 
processes to be modelled, unlike classical linear methods. Following the studies of Cadenas 
et al [30], who focused their comparison on the structure of the network, they concluded that 
a 2-layer network with 2 neurons on the input layer and 1 on the output layer is better. The 
squared error obtained for this architecture is indeed 0.16%. In our work. we used a two-
layer perceptron and varied the number of neurons under the hidden layer. The activation 
function of the latter is sigmoid. At the output, the activation function is kept always linear. 
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Wind speed (v(t-1)), temperature (T(t-1)), pressure (P(t-1)), relative humidity (RH(t-1)) all at 
time t-1, velocity (v(t-2)) at time t-2 are the input variables of the model. The output is of 
course the wind speed (v(t)) at time t. The different configurations are presented in the table 
below. 

Table 1. Presentation of the different configurations of the prediction models 

Configurations Input Output 

1 T(t-1). P(t-1), RH(t-1), v(t-1) V(t) 

2 T(t-2), P(t-2), RH(t-2), v(t-2) V(t) 

3 T(t-1), P(t-1), RH(t-1), v(t-2) V(t) 

Results. analysis and discussion 

Choosing which Weibull distribution to use 

The analysis of the wind frequency histogram (Figure 1) reveals that cool and moderate 
winds are quite frequent (98.70%). Calm winds, on the other hand are less frequent (1.30%). 
It is therefore more practical to use the classical Weibull distribution to assess the wind 
potential in the Kara region as it would better reflect the wind statistics in the Kara region. 
 

 

 

 

 

 

 

 

Figure 1. Frequency histogram 

Frequency distribution of wind speeds 

Figure 2 is a frequency distribution. As the velocity classes are sufficiently narrow, we had 
represented in red through equation 1 the Weibull probability density function which is a 
probability law in the form of an integral. The coefficients 3.15 and 2.16 are respectively the 
scale parameter and the Weibull form factor. The median of 2.58m/s reflects that the wind 
thus blows at less than 2.58m/s half the speed of the wind of the time and at more than 
2.58m/s during the other half. 
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Figure 2. Weibul probability density 

Static evaluation of wind potential using the conventional Weibull 

distribution at 10metres 

The curve in Figure 3 represents the variation of the total energy available in the wind and 
the maximum recoverable energy at 10m as a function of wind speed. These curves were 
obtained using equations (3) and (4). 
 

 

 

 

 

 

 

 

 

Figure 3. Available and recoverable power 

On Figure 3. two main parts can be distinguished. Firstly, the extremities for which the power 
is almost zero. In reality, for speeds below 1m/s this is due not only to the scarcity of calm 
winds but also to the fact that their energy content is very low; on the other hand, for speeds 
above 5m/s the cause is solely due to the low frequency of strong winds. Secondly, for 
moderate winds with speeds between 1m/s and 5m/s, the value of the total power available 
is not negligible. However, at an altitude of 10m, the total energy available in the wind is low. 
Moreover, at this height, the wind is often slowed down by obstacles. In order to make 
optimal use of wind energy in the Kara region, we therefore need to get more wind at higher 
altitudes. 

Extrapolation of results to different altitudes 

Using equation (5). the wind speed data were then extrapolated to other heights. 
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Figure 4. Wind speed distribution function at different altitudes 

Analysis of Figure 4 reveals that as one moves upwards. the amplitude of the density curve 
increases and is shifted to the right. This phenomenon is due to an increase in the number of 
high wind speeds and a decrease in the number of low wind speeds resulting in an increase 
in the average speed. Table 2 summarizes the different average values of speed, total 
available and recoverable power, scaling parameter and form factor at different altitudes. 

Table 2. Average values of speeds and energies at different altitudes 

Height 

(m) 

Average 

speed (m/s) 

Total power 

(W/m²) 

Recoverable power 

(W/m²) 

Scale parameter 

A (m/s) 

Form 

factor k 

10 2.79 27.67 15.21 3.16 2.16 

25 4.2 86.64 51.34 4.74 2.18 

50 5.25 170.09 100.79 5.94 2.18 

75 5.87 237.56 140.78 6.63 2.18 

100 6.3 294.92 174.77 7.13 2.18 

Dynamic evaluation of wind speed 

Features of the best models in each configuration 

The characteristics of the best model in each configuration are shown in the table below. For 
these 3 configurations. we note that the best results are obtained with a neuron under the 
hidden layer. 

Table 3. Characteristics of the best architecture 

Configurations 

Number 

of 

neurons 

MSE RMSE MAE R² ρ 

1 1 0.00538 0.07341 0.02630 0.90877 0.95851 

2 1 0.01036 0.10179 0.04474 0.75627 0.88440 
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Configurations 

Number 

of 

neurons 

MSE RMSE MAE R² ρ 

3 1 0.01064 0.10317 0.04506 0.7489 0.88123 

 

Prediction of available and recoverable energy with the chosen model 

The best architecture is the configuration 1 with one neuron under the hidden layer. The 
input variables of the neural network model are wind speed (v(t-1)), temperature (T(t-1)), 
pressure (P(t-1)), relative humidity (RH(t-1)) all at time t-1. The output of the model is of 
course the wind speed (v(t)) at time t. The prediction results are shown in the table below in 
which we can distinguish the square error (MSE) and its square root (RMSE), the absolute 
error (MAE), the coefficient of determination (R²) and the correlation coefficient (𝜌). The 
figures below show the superimposed curves of target (red curve) and predicted (blue curve) 
energies at 10m, 25m, 50m, 75m and 100m respectively as a function of wind speed. 

 
Figure 5.Target and predicted energy curves at 10m Figure 6.Target and predicted energy curves at 25m  

Figure 7.Target and predicted energy curves at 
50m  

Figure 8.Target and predicted energy curves at 
75m  
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Figure 9.Target and predicted energy curves at 10m 

The observation of the above figures reveals that each curve obtained by our neural network 
architecture model coincides with the energy curve available on the site. Nevertheless. a 
small shift between these curves is observed from 2.5m/s, 3.5m/s, 4m/s, 4.2m/s and 4.5m/s 
respectively at altitudes of 10m, 25m, 50m, 75m and 100m respectively. The maximum 
deviation is obtained when the curves reach their maximum and begins to narrow beyond the 
nominal speed until a new coincidence is reached when the energy is cancelled out. The 
results obtained for the estimation of available and recoverable energy at 10m. 25m. 50m. 
75m and 100m are given in Table below. 

Table 4. Predicted energies at different altitudes 

 Available energy (Wh/m²) Recoverable energy (Wh/m²) 

Height (m Target Prediction Target Prediction 

10m 29.4362 27.9153 17.4437 16.5424 

25m 99.3230 94.2226 58.8581 55.8415 

50m 194.9986 185.0032 115.5547 109.6315 

75m 272.3616 258.3854 161.9994 153.1172 

100m 338.1195 320.7831 200.3671 190.0936 

Pitch orientation 

The compass rose allows us to better appreciate the dominant wind directions. Analysis of 
Figure 10 reveals that there are two dominant wind directions, northeast and southwest. 
However, southwest, and more precisely a southward tilt of a geometric angle varying 
between the first and second sector (between 0° and 60° to the South) remains the best 
option for the orientation of the pales as 32% of the winds blow in this direction. This figure 
also supports the thesis of KODJO et al. that winds tend to generally have one or two 
dominant directions for which most of the energy is produced [31]. 
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Figure 10. Compass rose 

Conclusion 

Prior knowledge of the wind characteristics of a site allows a better appreciation of its wind 
potential. In the Kara region, 20 years of data at an altitude of 10 m from the meteorological 
database of the website 'www.soda-pro.com/web-service/meteo-data/merra' were used. The 
wind speed data obey the Weibull distribution law with a scale parameter A = 3.16m/s and a 
form factor k = 2.18. The study shows that the mean wind speed varies from 2.79m/s at 10m 
to 6.3m/s at 100m. The average energy content of these speeds is higher at an altitude of 
100m (294.92Wh/m2). The wind rose indicates that more than 30% of the winds come from 
the southwest. In order to develop a much broader expertise, it would be interesting to make 
measurements in each prefecture of the Kara region. In this way, an atlas of the region could 
be established. In addition, other sites in Togo could also be studied in order to get an 
overview of the wind potential of the whole country. The choice of turbines should therefore 
be based on the characteristics of the site to better convert a large amount of the kinetic 
energy of the wind into electrical energy. 
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