
  
TRANSACTIONS ON ENVIRONMENT AND ELECTRICAL ENGINEERING ISSN 2450-5730 Vol 1, No 4 (2016) 

© G. Belli, G. Brusco, A. Burgio, D. Menniti, A. Pinnarelli, N. Sorrentino and P. Vizza  

 

Abstract – The increase of renewable non-programmable 

production and the necessity to locally self-consume the produced 

energy led to utilize ever more storage systems. To correctly 

utilize storage systems, an opportune management method has to 

be utilized. This paper implements a multi-period management 

method for storage systems, using different management 

strategies. The method aims to minimize the total absorbed and 

supplied energy or the peak power exchanged with the grid. The 

results show the effectiveness of the method in diminishing the 

energy exchanged with the grid and also the possibility to 

optimize the performance of the storage systems. 

Keywords — Storage management, multi-pediod scheduling, 

prosumer, optimal energy management 

 

I. INTRODUCTION 

he common tendency to produce on site the necessary 

energy to the end user by means of small size plants, 

generally from non-programmable renewable sources, led to a 

rapid increase of installed photovoltaic (PV) power. Although 

PV generation offers economic and environmental benefits, its 

non-programmability can reduce these benefits. To increase 

the possibility to self-consume the produced energy and 

increase the profit for the user, storage systems should be 

utilized. 

Otherwise, it is worth to underline that storage systems have 

a limited lifetime, related to their charge and discharge cycles. 

For this reason, it is opportune to manage storage systems with 

a specific strategy that can ensure them a long lifetime [1-2]. 

In order to better manage storage systems, realizing an 

accurate scheduling, generation and load forecasting systems 

would be useful to help the management of the grid. 

Several methods carrying out storage management, 

considering different strategies, have been proposed in 

literature [3-7]. Such methods focus on an economical 

optimization, or a real time management without considering 
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the optimization of storage lifetime. In [3] the “economical” 

optimal management of a storage system is carried out in a 

single period (24 hours ahead); if the optimization is not 

required 24h ahead, the method utilizes a real time approach. 

In [4] an appropriate management to reduce losses and 

increase distribution grid capacity is implemented and to this 

aim, a distributed storage is utilized; such a method allows to 

improve the utilization of renewable energy resources 

minimizing the energy adsorption from the grid.  

Both methods [3,4] are implemented on a 24h period and 

they consider an economical optimization, moreover a multi-

generation/multi-storage scheduling is realized. 

It would be interesting to observe the benefits for a single 

user equipped with a PV generation system and a storage 

system, if the considered period is greater than 24h and a 

multi-period optimal management method is adopted. 

In [5] users equipped of energy storage systems are 

considered; it explains how the interaction of different storage 

systems can be harmful for the grid, although such storage 

systems have been introduced to protect it. So a novel 

management technique for distributed storage systems is 

implemented. The utilization of this technique led to saving up 

to 13% of the electricity bill for each consumer with a 4-kWh 

storage system. 

In [6] a day ahead optimization algorithm is implemented to 

provide the optimal storage and/or production scheduling 

strategy for a single user. The real load profile is considered 

exactly as the programmed 24h ahead profile.  

At the user level, that is a prosumer level, it is advantageous 

to know generation and load profiles forecast to choose the 

better storage power scheduling. 

Indeed, a goal for the user should be to make “himself-

sustainable”, satisfying his total energy demand by means of 

local energy production, minimizing the exchanges of energy 

with the grid.  

This paper presents a multi-period storage management 

method and considers a prosumer equipped with a storage 

system. In particular basing on weather forecast, generation 

and load forecasts are obtained; Artificial Neural Networks are 

utilized to implement the two forecasting models. Starting 

from these load and generation forecasts, different simulations 

are performed: the method minimizes the overall energy 

exchanged with the grid, the power peaks between prosumer 
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and grid or the energy in a particular time interval; moreover, 

a limit for the power exchanged with the grid is considered. 

Worth noting that the benefits of the storage systems have 

been also demonstrated by the same authors in [8]; in 

particular, they underline the suitability of the Li-Ion batteries 

compared with lead-acid batteries. Indeed, in this paper the 

economic aspects concerning the storage systems and in 

particular the management of the storage system are not 

examined. In this paper, an energetic and power analysis is 

carried out. 

The rest of the paper is structured as follows: in the second 

section, the implemented forecasting models are illustrated; in 

the third part, Storage Management Method is described; in 

the last part, simulation results are shown and the benefits in 

the use of the method are underlined. 

I. PV AND LOAD FORECASTING MODELS  

The Multi-Period Storage Management (MPSM) Method 

has for input the renewable production profile and the load 

profile of a user. To generate these profiles, the MPSM 

method uses renewable production and load forecasting 

models. Several production and load forecasting models exist 

in literature; they present different accuracy which depends on 

several factors, such as utilized input data, utilized 

methodology, and so on. Independently from the used method, 

the results of the generation and load power forecast can be 

evaluated in different way. 

 

A. Accuracy Estimation 

Many performance parameters are used according to 

forecast purpose. In general, all these parameters represent the 

error between the forecasted and the actual value.  

The Mean Absolute Error (MAE) [9] measures how close 

forecasts are to the outcomes. It is more sensitive to high value 

of the discrepancy between the forecasted and the actual 

power profiles, so it is used to underline the presence of 

discrepancy peaks (emphasizing the high error). It allows to 

know the consequent average power imbalance; the MAE is 

given by: 

MAE =
1

N
∑|fi − yi| =

N

i=1

1

N
∑|ei|

N

i=1

                (1) 

where fi is the forecast value, yi is the real value. Moreover, 

the evaluation of the Maximum Absolute Error (MaxAE) is 

important to know the maximum difference between fi and yi, 

in particular it is useful to know the maximum power 

imbalance resulting from the forecast; it is given by: 

MaxAErr = Max(|fi − yi|)                        (2) 

The Mean Squared Error (MSE) [9] measures the mean 

square discrepancy between fi and yi. The MSE is more 

sensitive than the MAE to high error value. The MSE square 

root provides another statistical quantity, that is the Root 

Mean Squared Error (RMSE). The MSE and the RMSE are 

defined as: 

𝑀𝑆𝐸 =
1

𝑁
∑(fi − yi )

2

𝑁

𝑖=1

                             (3) 
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Another important statistical quantity is the Mean Absolute 

Percentage Error (MAPE) [9]. It measures the forecasting 

accuracy and expresses this accuracy as a percentage. It is 

calculated by: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

fi − yi

fi

|

𝑁

𝑖=1

                          (5) 

Moreover, the Maximum Percentage Error (MAxPE) allows 

knowing what the maximum percentage discrepancy between 

the forecasted and the actual value is: 

MaxPE = max (|
fi − yi

fi

|)       ⩝ i = 1 … N (6) 

Such statistical parameters allow to estimate the accuracy of 

the several forecasting models, to find the best suited to the 

case under estimation. 

 

B. PV forecasting model 

Referring to renewable production forecasting model, it is 

supposed that the power source is a photovoltaic (PV) plant.  

Several PV forecasting models exist in literature: they often 

present accurate results. However, such models are very 

sophisticated and require information not always available, as 

those presented in [10-12]; the PV forecasting model 

implemented by the authors uses available input data and for 

this reason it is defined a “practical” forecasting model.  

Such a PV generation forecasting model is implemented by 

an Artificial Neural Network (ANN). 

For the implementation of the ANN, the Neural Network 

Toolbox of Matlab is utilized. The chosen ANN typology is a 

Multi-Layer Perceptron (MLP), with a supervised training 

algorithm; in particular, the back-propagation algorithm is 

used. Moreover, only a hidden layer is utilized, the activation 

function of all the neurons is tan-sigmoidal, while the training 

function is the Levenberg-Marquardt method [13]. 

 Chosen the ANN typology, it is necessary to provide to the 

method historical input data and historical output (target) data 

(in the case under examination the collect of the PV power 

production data really generated by the PV plant).   

The number of neurons of the input layer is chosen 

considering the input data, while the number of neurons of the 

hidden layer has been determined empirically. In fact, a 

sensitivity analysis has been conducted: the input data are kept 

constant and the number of neurons of the hidden layer are 

changed; under this condition, several tests to calculate the 

MAPE have been made. The optimum number of neurons for 

the hidden layer, to minimize the MAPE is 30, as shown in 

Figure1. 



 

 

 

Fig. 1. Sensitivity analisys 

So, summarizing, the implemented ANN consists in (Fig. 2): 

 

 5 input neurons (meteorological condition of the 
considered hour h, meteorological condition of the 
hour h+1, meteorological condition of the hour h-1, 
the hourly irradiance, the considered hour); 

 30 hidden layer neurons; 

 1 output neuron (hourly forecasted power production). 

 

Fig. 2. ANN PV Forecasting Representation 

 

Meteorological data about sky conditions are transformed to 

be used as input data for the ANN, in a number.  A “1” to “5” 

scale has been used to represent the increasing of cloudiness. 

The minimum value (“1”) indicates “clear-sky” condition 

while the maximum value (“5”) indicates “storm” (Tab.1). 

TABLE I.  WEATHER CONDITIONS CODING 

Code Weather condition 

1 Clear sky 

2 Nearly cloudless, scattered clouds 

3 Few clouds 

4 Partly cloudy 

5 Covered, Storm 

 

The model has been tested on a specific a PV plant and 

good results are obtained both for clear and non-clear sky 

conditions. 

Indeed, the results show that: in clear sky conditions the 

MAPE is less than 10%, while in non-clear sky conditions the 

MAPE is about 42%. The MAE, compared to PV power plant, 

is equal to 2.6% for clear sky conditions and 6.8% for non-

clear sky conditions. 

Figure 3 depicts the results of the PV forecast for the days 

from 30 August to 2 September; for these days, clear-sky 

conditions were predicted. The MAPE is calculated for all the 

four days: it is equal to 9.8%. Whereas, the percentage error is 

maximum and equal to 45% in the hours close to sunrise and 

sunset; while the percentage error becomes minimum (less 

than 1%) for the hours of higher production.  

 

Fig. 3. Clear-Sky Days Results 

 

C. Load forecasting model 

Referring to the load forecasting model, in [14] the 

relevance to use load forecast for several purposes is 

underlined, especially for islanded operation, because it is 

necessary to guarantee grid stability, in addition to allow 

generation programmable system to work at a maximum 

efficient point.  

In literature, there are a large number of load forecasting 

models as those presented in [15]. Reference [16] highlights 

that is more difficult to predict the individual load than an 

aggregate of loads. Nevertheless, in this paper a predictive 

model for an individual load is implemented. 

The load forecasting model implemented in this paper 

utilizes accessible data; such a model predicts also individual 

and aggregate loads. Although its simplicity the results 

demonstrate the good performances of the model. 

A feed-forward Multi-Layer Perceptron (MLP) ANN, 

supervised by a back-propagation algorithm, has been 

implemented (Fig. 4). For ANN training, the collection of 

consumption data of the considered user is necessary. 

Similarly than PV forecasting model, also for load forecasting 

model a sensitivity analysis has been carried out, so to detect 

the number of the hidden layer neurons which lead to a better 

accuracy of the model. 

The implemented ANN consists in:  

 7 input neurons (month, day, day type, hour, daily 
maximum temperature, daily minimum temperature 
and daily average temperature); 

 30 hidden layer neurons; 

 1 output neuron (hourly forecasted power 
consumption).   
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Fig. 4. ANN Load Forecasting Representation 

The input data are so defined: the day, month and hour 

identify the period which the forecast is required; the day type 

identify if the considered day is a workday or a holiday, if it is 

a day before or after a holiday. Moreover, the minimum, 

maximum and average temperature are utilized; these are 

useful specially if the electric air conditioning is utilized, in 

particular maximum temperature is useful for cooling, 

whereas minimum temperature is useful for heating. 

 

The load forecasting model has been tested on real data of 

a typical residential user. In Fig. 5, the forecasted and the real 

load profiles are shown, for three days (Thursday, Friday and 

Saturday). The obtained Mean Absolute Error (MAE), 

compared to the rated power of the considered user’s contract 

is less than 6%, that is an acceptable error for the purpose of 

the method. 

 

 

Fig. 5. Forecasted load profile and real load profile 

Figure 5 depicts the results of the load forecast model; the 

MAPE is calculated and it is less than 20%. Whereas, the 

percentage error is maximum in the hours and day with a low 

consumption, and the minimum percentage error occurs for 

the workdays, when the consumption is high, and it is less 

than 1%.  

 

 

II. STORAGE MANAGEMENT METHOD DESCRIPTION  

The most important variables used in the Multi-Period 

Storage Management (MPSM) method are reported in Table 2. 

TABLE II.  MPSM METHOD VARIABLES 

Nomenclature 

𝑃𝑔𝑡

𝑑 Grid Transferred Power; (time t, day d) 

𝑃𝐿𝑡
𝑑 Load Power; (time t, day d) 

𝑃𝑆𝑡
𝑑 Storage Transferred Power; (time t, day d) 

𝐸𝑆𝑡
𝑑 Storage Energy Level; (time t, day d) 

𝐸𝑆𝑚𝑖𝑛
, 𝐸𝑆𝑚𝑎𝑥

 Minimum and maximum Storage Energy Level 

𝑃𝑆𝑚𝑖𝑛
, 𝑃𝑆𝑚𝑎𝑥

 Minimum and maximum Storage Power 

𝐸𝑆𝐼𝑛𝑖𝑡
 Initial Energy stored 

 

The main equations which describe the MPSM method are as 

follow:  

𝑂𝐹: min (∑ 𝑓(𝑃𝑔𝑡

𝑑)

𝐷
𝑇

𝑡=1
𝑑=1

)                                   (7) 

s.t. 

𝑃𝑔𝑡

𝑑 = 𝑃𝐿𝑡
𝑑 − 𝑃𝑃𝑉𝑡

𝑑 − 𝑃𝑆𝑡
𝑑       (8) 

𝐸𝑆𝑡+1
𝑑 = 𝐸𝑆𝑡

𝑑 + 𝑃𝑆𝑡
𝑑 ∗ 𝑡       (9) 

𝐸𝑆𝑚𝑖𝑛
≤ 𝐸𝑆𝑡

𝑑 ≤ 𝐸𝑆𝑚𝑎𝑥
       (10) 

𝑃𝑆𝑚𝑖𝑛
≤  𝑃𝑆𝑡

𝑑 ≤ 𝑃𝑆𝑚𝑎𝑥
      (11) 

𝑠𝑖𝑔𝑛(𝑃𝑆𝑡
𝑑) = 𝑠𝑖𝑔𝑛(𝑃𝑃𝑉𝑡

𝑑 − 𝑃𝐿𝑡
𝑑)     (12) 

𝐸𝑆𝑡=1
𝑑=1 = 𝐸𝑆𝐼𝑛𝑖𝑡

        (13) 

The MPSM method can be utilized for more days (d) and 

every day is divided in more time intervals (t); such time 

intervals are the same of that used in the forecasting models. 

In Objective Function (OF) (7), 𝑓(𝑃𝑔𝑡

𝑑) indicates different 

goals of energy exchange optimization. Indeed, the user can 

require to: minimize overall the energy exchanges with the 

grid, minimize the power peaks or minimize the energy 

exchanged for a particular time period with the grid 

The MPSM method is subjected to the constraints from (8) 

to (13).  Constraint (8) is used to calculate the power 

exchanged with the grid, 𝑃𝑔𝑡

𝑑. The constrains (9), (10), (11), 

(12) and (13) concern the storage. In (9) the variation of the 

stored energy (between two time intervals) is calculated, in 

(10) the stored energy is limited between a minimum and 

maximum value (depending on the used storage); in (11) the 

charge and discharge storage power is limited, (12) indicates 

that the storage can charge only if there is a power surplus (PV 

power 𝑃𝑃𝑉𝑡
𝑑 is greater than the load power 𝑃𝐿𝑡

𝑑), vice versa 

storage can only discharge. In (13) the initial stored energy is 

defined as 𝐸𝑆𝐼𝑛𝑖𝑡
.  

Once load and PV production power forecasts for the user 

are obtained, the difference between the two profiles is 

calculated. This difference profile represents the input of the 



 

 

MPSM method, which solves the Objective Function (OF), 

taking into account the constraints. The method returns the 

storage power exchange profile and the consequent grid power 

exchange profile.  

III. SIMULATION  

To test the effectiveness of the MPSM method, some 

simulations are carried out, considering as prosumer a build of 

University of Calabria: this is a business user, equipped with 

photovoltaic plants.  

The considered build has a maximum power consumption 

of 25 kW and the installed PV plants power is 45 kW.  

The test considers a time period of 7 days, from the 10th to 

16th October 2015. In Fig. 6, load and PV power forecast 

profiles of the considered 7 days are reported. 

 After determining load and PV power profiles, it is necessary 

to sizing storage system for the required function. 

 

A. Non optimized PV power 

First of all, the storage capacity is calculated to supply 

loads and limit the exchange of energy with the grid.  

Storage capacity will be the smallest between the resulting 

average daily energy purchased and supplied to the grid, 

which are calculated as the difference between PV production 

and load profiles. This analysis is carried out for profiles of a 

typical day. In the present case, the daily purchased energy is 

almost 170 kWh, whereas the energy supplied to the grid is 80 

kWh; so the storage would have a capacity of 80 kWh.  

After calculating storage capacity, an overestimation to be 

conservative will be necessary: an increase of 20% will be 

considered. In addition, in order to safeguard the storage 

useful life, a residual state of charge (SOC) of 40% has to be 

considered as a further increase of the estimated storage 

capacity.  

Considering the previous estimated storage capacity (80 

kWh) and the increases of 20% and 40%, the obtained storage 

capacity is about 140 kWh. 

Starting from the calculation of the difference between load 

and PV power forecasts, it is used for two groups of 

simulations. The first group of simulation aims to minimize 

the total exchange of energy with the grid, trying to make the 

prosumer self-sustainable and to avoid congestions on the 

grid. Instead, the second group of simulations aims to 

minimize only the peaks of energy during the day, trying to 

reduce the costs of energy supply and to avoid worthless 

oversize of the generation plants. For both the groups of 

simulations, the comparison is made between the condition 

with storage working in “real time”, that is no storage 

management is taking into account, and the condition with 

storage managed by MPSM method.  

The starting point is the value of the overall energy 

exchanged between the user and the grid without using a 

storage system: this value is equal to 1.68 MWh, where 1.13 

MWh is the energy adsorbed by the user and 0.55 MWh is the 

energy left to the grid. 

For the first groups of simulations, when none 

management method is utilized, the total energy exchange 

with the grid decreases until 0.69 MWh, where 0.60 MWh is 

the purchased energy by the user and 0.09 MWh supplied to 

the grid. If the storage is managed by MPSM method, the total 

energy exchanged with the grid is equal to 0.68 MWh. 

Respect the previous case, the difference is very limited. 

Although this difference is only of 0.01 MWh, the positive 

effect of the MPSM method consists in the possibility to 

maximize the performances of the storage. Indeed, using a 

“real time” operation strategy, the charge and discharge cycles 

are not optimized because they are partial cycles, while with 

MPSM method, the storage executes always full cycles of 

charge and discharge (Fig.7). Only in a few hours, a distorted 

trend is visible in Fig. 7, due to the high variability of weather 

conditions on the 5th day, that involves to have a partial cycle 

of charge and discharge.  

For the second group of simulations, minimizing only the 

peaks of power exchanged with the grid, the power exchanged 

in “real time” reaches 23 kW, while using MPSM method, it is 

about 8 kW. In Fig. 8 the exchanged energy profile with and 

without MPSM method are depicted. 

 
Fig. 6. Load and PV profiles 

 

 



 

 

 

Fig. 6. Stored Energy Profile with and without MPSM 

 
Fig. 7. Exchanged power profiles with and without MPSM     

B.  Optimized PV power 

In this section, starting from the average daily load profile 

and the monthly average daily PV production profile, to 

minimize the exchange of energy with the grid, the PV plant is 

sized to cover the daily energy demand. Considering this, the 

obtained rated PV power is about 56 kW. 

Similarly to the previous subsection A, the storage system 

is properly sized and the obtained capacity is about 240 kWh. 

With such data the method is utilized to carry out the same test 

of the previous case. 

First of all, the MPSM method is utilized to minimize the 

exchange of energy with the grid; the obtained result of the 

total energy exchanged with the grid is equal to 0.41 MWh, 

where 0.25 MWh is the purchased energy by the user and 0.16 

MWh is the energy supplied to the grid.  

In this case, as the rated PV power and the storage capacity 

are optimized, the use of the MPSM method, compared to the 

real time management, does not contribute to many 

advantages in the management of the charge/discharge storage 

cycles.  

The real advantage would occur in the management of the 

exchanged energy with the grid for the days with non-clear 

sky conditions.  In Fig. 9 the exchanged energy profile with 

the grid, with and without the MPSM method is depicted. 

Moreover, referring to Fig. 9, it is possible to observe that 

the energy supplied to the grid is greater than the energy 

purchased from the grid; only the 5th day the purchased energy 

is greater than the supplied one, because it is not a clear sky 

day. 

 

Fig. 8. Exchanged grid power profile with and without MPSM 

Worth noting that the PV power is sized to cover the daily 

energy demand; so if the rated PV power increase, obviously 

the produced energy increase and as a consequence the total 

energy exchanged with the grid increases. In fact, for example, 

if the rated PV power is 60 kW the total exchanged energy is 

0.49 MWh, instead of 0.41 MWh. This shows that before to 

use the MPSM method, optimal PV and storage sizing is 

necessary. 

 

C. Grid Power Restriction 

In this section, it is supposed that the considered prosumer 

has a limit for 𝑃𝑔𝑡

𝑑. This can be due to different reason, for 

example if the prosumer has a contract with the energy 

provider for a reduced power, or if the power line is designed 

for a limited power. 

In fact, this kind of optimization allows to reduce the 

problems due to the congestion problem and any restrictions 

of the power interface devices.  

In particular two cases are examined: in the first case the 

maximum 𝑃𝑔𝑡

𝑑 (Pg_max) is 10 kW, in the second case Pg_max 

is 7 kW. Worth noting that the limit for the power is both for 

the supplied and delivered energy. The MPSM method is 

completed using the sequent equations: 

|𝑃𝑔𝑡

𝑑| ≤ 𝑃𝑔_𝑚𝑎𝑥                                 (14) 

The OF is implemented to minimize the entire energy 

exchanged with the grid, as implemented above. It is worth to 

underline that this test is different to the previous 

minimization of the peak power, in fact in the previous case a 

restriction for 𝑃𝑔𝑡

𝑑 is not utilized but solely the peaks of 𝑃𝑔𝑡

𝑑  

are reduced.  

In the first test Pg_max is equal to 10 kW and the 

constraint (12) is relaxed, in this way the storage can be 

charged also by the grid and can discharge also if there is a 

surplus of energy, this is limited only through the OF. 

The utilized storage capacity is 240 kWh and the rated PV 

power is 56 kW; the load profile is reported in Fig. 6. 

In this first case, the obtained result of the total energy 

exchanged with the grid is equal to 0.41MWh, where 0.26 

MWh is the purchased energy by the user and 0.15 MWh is 

the energy supplied to the grid.  



 

 

In the second case, Pg_max is equal to 7 kW, the total 

energy exchanged with the grid is also equal to 0.41MWh, and 

the purchased energy is equal to 0.26 MWh whereas the 

supplied energy to the grid is equal to 0.15 MWh. 

Such results demonstrate that the constrains on  

𝑃𝑔𝑡

𝑑 are almost irrelevant for the OF, in fact the quantity of 

energy exchanged with the grid is the same of the previous 

case. The only difference is for the profile of 𝑃𝑔𝑡

𝑑: in Figs. 10 

and 11 the profiles of power exchanged with the grid for either 

cases are reported.  

 

Fig. 9. Exchanged grid power profile with the constrain Pg_max=10 kW 

 

 

Fig. 10. Exchanged grid power profile with the constrain Pg_max=7 kW 

The figures show that the trend of 𝑃𝑔𝑡

𝑑 is constant in the 

area where the power peak occur, this means that for those 

time and day the bonds are achieved; this is particularly 

observable for Pg_max is 7 kW. 

Moreover, worth noting that the maximum power Pg_max 

(7 kW), obtained in this case, is less than the maximum power 

obtained with the minimization of the peak of power (in 

Subsection A) where Pg_max is 8.2 kW. 

It is important to observe the behaviour of the storage 

system when Pg_max is equal to 7 kW compared to the case 

when there is not a constrain for 𝑃𝑔𝑡

𝑑: in figure 12 this 

comparison is reported. 

 

Fig. 11. Stored Energy Profile with and without Pg_max constrain 

It is possible to observe the differences between the two 

profiles, especially for the fifth day. In fact, to limit the power 

exchanged with the grid, in particular the power drawn from 

the grid, the stored energy is maintained as long as it is not 

used to decrease 𝑃𝑔𝑡

𝑑: the battery is not discharged just when 

there is a deficit of energy but when this energy is utilized to 

limit the maximum 𝑃𝑔𝑡

𝑑. 

Thanks to the MPSM method the prosumer can employ a 

reduced power contract with consequent less costs for the 

prosumer. At the same time the Distribution System Operator 

(DSO) can design the line for a reduced power, with further 

savings. 

 

IV. CONCLUSION  

The paper shows the importance of an opportune 

management method for storage devices. In fact, the positive 

effect resulting from the use of storage systems, particularly in 

relation to non-programmable resources, can be increased if an 

appropriate management strategy is utilized. One of the 

feature of the implemented method is its multi-periodicity. In 

fact, if the management is made on more days, there are more 

data input and the storage can be managed in a better way.   

The presented storage management method implements 

different management goals. 

First of all, the method minimizes the total energy 

exchanged with the grid to make users self-sustainable. This 

implies the use of opportune PV and load forecast models. 

Secondly the method is also utilized to reduce the peak of 

power exchanged with the grid, decreasing from 23 kW to 

about 8 kW. 

Moreover, it is underlined that an accurate sizing of PV 

and storage systems is necessary before to implement and 

utilize a management strategy. 

The results are compared with the real time storage 

management; such a comparison shows the effectiveness of 

the method. The results show also the possibility to optimize 

the performance of the storage device in terms of charge and 

discharge cycles. 

At the end, the behaviour of the management method, if a 

constrain for the maximum 𝑃𝑔𝑡

𝑑 is utilized, is evaluated. 

Simulations are carried out; they demonstrate that despite a 

further constrain is utilized, the entire energy exchanged with 

the grid is minimized. This can be a good result both for the 



 

 

prosumer and for the DSO, indeed they can respectively 

reduce the contract power and reduce the line capacity, with 

consequent savings.  

Moreover, it would be interesting evaluate the behaviour of 

the method if a schedulable load is adopted. 
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