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Abstract— In this work, a state-space model and control of a 

DC-DC Buck converter, considering a continuous operating, are 

presented. A PID controller is considered in the strategy, that 

considers a low pass filter in the derivative term. The proposed 

model is validated by comparing it with a switched model. The 

PID gains are obtained by the Ziegler-Nichols method. In order 

to improve the system’s performance considering an 

environment containing high-frequency noises, the modified PID 

controller is implemented with several configurations. 

 

Index Terms—Choppers, Step Down Converter, PID 

Controller, Ziegler-Nichols Method, Average Model.  

 

I. INTRODUCTION 

OWER electronics is an applied science that aims the 
static converters study in order to control and convert 

electrical energy into a compatible signal (voltage level and/or 
frequency) to determined devices. These converters operate by 
switching semiconductor devices and they can classified as: 
AC-DC, AC-AC, DC-AC and DC-DC [1], [2]. 

DC-DC converters, also known as Choppers, are power 
electronic circuits with linear and non-linear characteristics,  
that are composed by resistors, capacitors and inductors and 
semiconductor switches, respectively [3]. Their applications 
encompass from power sources for electronic devices to 
photovoltaic generation plants. By controlling the input 
voltage switching, DC-DC converters can adjust the 
magnitude of the output voltage analogously to a AC 
transformer, adding the possibility of adjusting the output 
voltage [4]. 

The mentioned converters operate by the Pulse Width 
Modulation (PWM) principle, in which a semiconductor 
switch, actuated by a pulse generator, is used to control the 
amperage level from the input to the output of the electrical 
system [2], [4]. This technique aims to reach the highest 
efficiency as possible (100%), however, due to the real 
characteristics (non-ideal) of these semiconductor devices, a 
typical efficiency related to the converters ranges from 70% to 
95% [5]. 

The four classical topologies for non-isolated DC-DC 
converters are: Cuk, Buck (Step-Down); Boost (Step-Up); and 
e Buck-Boost [6]. Each one of them has exclusive properties 
that include the steady-state voltage gain, the source of the 
input and output currents and the oscillatory characteristics of 
the output voltage. The most common topology, and probably 
the simplest, is the Buck (step-down), possibly because its 
output voltage is always less than the input voltage, with the 
same polarity and not isolated. 

The first step to project an efficient controller to the 
Choppers is to obtain a complete system’s model, including 
the most part of the non-linearities. A linear model with small 
signals, by means of a state-space average model around an 
adequate operation point, is a valid option [7]. 

In general, the most control techniques applied on Choppers 
represents a challenging field due to their non-linear and time-
varying characteristics [8]. These techniques perform the 
switching control of the semiconductor devices aiming the 
maximization of the efficiency related to the power transfer 
and the good tracking of the output voltage. Several control 
techniques are used in these converters, although there is a 
preference for controllers with simple and low cost 
architecture in industrial applications [9], [10]. In this way, 
Proportional-Integrative-Derivative (PID) controllers are 
highlighted [11], [12]. 

One of the most popular method to adjust the PID gains is 
the proposed by Ziegler e Nichols (ZN) [13], due to its simple 
rules and satisfactory performances when it is applied on first 
order systems [14]. In general, ZN method is used to tune PID 
controllers under ideal conditions without significant noises 
and disturbances, which often does not represent a real 
situation. Therefore, it is necessary to consider their effects in 
the control algorithm [15]. 

On the other hand, a filter system is necessary when there 
are significant noise levels in the control plant. Traditionally, 
filters are applied on derivative term, due to its characteristic 
in amplification high-frequency noises.  

This work approaches the high-frequency noise effects in 
DC-DC Buck converter coupled to a PID controller, with a 
low-pass filter in the derivative term and tuned by ZN method. 

To do this, a linear model to small disturbances of the Buck 
converter is considered, by means of the average state-space 
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model and also considering the dynamic of the PID controller. 
Finally, the system’s output response for two different PID 
gains with the low-pass filter in the derivative term is 
compared with a standard PID architecture. 

The rest of the paper is divided as follows: the PID control 
structures considered in this work are presented in Section II; 
in Section III, the mathematical description of the PID 
controller considering the average model of the Buck 
converter is addressed; the ZN method is discussed in Section 
IV; the main results and conclusions are presented in the 
Sections V and VI, respectively. 

II. PID CONTROLLER 

The feedback loop in control systems aims to provide the 
real output signal (controlled variable added to noises, 
disturbances, and others) of the plant to the control system’s 
input and then to generate a signal to be applied on the 
manipulated variable, according to the considered control law 
and aiming to reach a desired reference. The PID controller 
uses this feedback concept with the proportional (P), 
integrative (I) and derivative (D) gains, all of them related to 
the error (difference between the desired reference and the real 
output signal), which present specific contributions in the 
control signal calculation [16]. The well-known PID topology, 
the ISA algorithm [17], is presented in Eq. (1). 
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where u  is the control variable;  e r y   is the error 
calculation; r  is the reference value (set point); y  is the 
controlled variable (system’s output); while 

i
T  and 

d
T  are 

constants integral and derivative times, respectively, and 
p

k  is 
the proportional gain of the PID controller. 

Although simple, the control output computed by the Eq. 
(1) presents severe implications in real applications, mainly 
due to the derivative part (related to 

dT  constant time), that 
carries out noise amplification and then the control variable (
u ) may be unfeasible. 

Let n  a sinusoidal noise with amplitude and frequency(
) given by (2), and 

nu is its contribution to the derivative term 
in the control signal, given by (3). 
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According to Eq. (3), when    , hfk  . 
In order to avoid unfeasible values (very high values) from 

derivative part in high frequencies, a common procedure is to 

limit its bandwidth using a low-pass filter with the transfer 
function (TF) defined in (4) [18]. 
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According to [16], acceptable values for ranges from 0.05 
to 0.125. Converting ISA algorithm presented in Eq. (1) into 
frequency domain and applying the TF of Eq. (4) to derivative 
term, Eq. (5) can be defined. 
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In addition to limiting gains of the high frequency 
components from the error, by the relation 

pk  , the low-
pass filter solves the problem of the non-causality of the ideal 
PID controller (Eq. (1)) adding a pole in its transfer function. 

III. ZIEGLER-NICHOLS METHOD 

Ziegler and Nichols publish in 1942 a work [19] in which 
two they describe two strategies to tune P, PI and PID gains. 
These strategies contemplate a step and frequency response 
methods. In this work, the step response method is adopted. 

Ziegler and Nichols defined as acceptable that the ratio 
between the amplitude peaks (due to a disturbance in the 
operation point) in the closed-loop response ( 1A and 2A  in Fig. 
1 (a)) is about 4. However, there is no guarantee that this ratio 
corresponds to a real system, after tunning process. 

 

 
Fig. 1. (a) Impulse response of a system with transport delay; (b) Step 

response method. 

 
An illustrative example of the step response method is 

shown in Fig. 1 (b), considering an open-loop system. This 
response represents a first-order system with delay transport 
and its transfer function  H s  is presented in Eq. (6). 

0 T
1

T
2

0

K

Time
(b)

Open Loop
System
Fit Line Z-N
Method

2 4 6 8
-0.5

0

0.5

1.0

Angle (rad)
(a)

A1 = 0.742

A2 = 0.185



 
 

1

2 1 1
sTK

H s e
T T s


 

 (6)

The first-order response (Fig 1 (b)) is composed by two 
parameters: the time delay ( 1T ) and the time constant 2 1T T . 
They can be determined with a tangent line to the inflection 
point and by observing its intersections between the axis 
related to the time and the state-steady value, K . 

In real time control systems, a wide variety of process plant 
can be modeled as (6) and from K , 1T  and 2T  it is possible to 
obtain the controller gains as described in TABLE I. 

 
TABLE I 

CONTROLLER’S GAINS OBTAINED FROM THE STEP RESPONSE METHOD. 
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IV. PID CONTROLLER ADDED TO THE AVERAGE STATE SPACE 

MODEL 

In DC-DC Buck converter, shown in Fig. 2, the input 
voltage is represented by an ideal DC source inV , while the 
switch S  is a MOSFET transistor. 

Li  is the current through 
inductor L , 

Cv  is the capacitor’s voltage ( C ) and d ∈ �0,1� 
is the PWM’s duty cycle and it is the control signal of the 
switch S . R  and D  are resistor and diode, respectively. 

 

 
Fig. 2. DC-DC Buck converter. 

 
In order to determine the differential equations of the Buck 

converter, with switching period T , the Kirchhoff’s Laws are 
applied to each functioning state, that is, when S  is closed at 

 0,dT  and when S  is open at  ,dT T . In this way, the 
average state space model for the Buck converter [7] is given 
by Eq.  (7)-(8). 
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The transfer function in (9) is related to the capacitor 
voltage under a small duty cycle variation around the 
operation point of the Buck converter.  
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From the Buck converter definition (Eq. (7)-(8)), an 
expanded state-space model is proposed, including the 
modified PID dynamics (Eq. (5)). 

The Buck converter dynamic with a PID controller can be 
described by (10). 

 
 
 

, ,

0 , ,

, ,

x f x w u

h x w u

y g x w u







&

 (10)

where f , h  and g  represent differential, algebraic and 
output equations, respectively, while x , w  and u  are the 
following vectors, respectively: state variables, algebraic 
vector and system’s input. 

The use of linear techniques for stability analysis under 
small disturbances in a dynamic system is a valid approach 
due to its linearization around an equilibrium point. In this 
way, assuming small variations around the operation point 

 0 0 0, ,x w u , the linearized form of (10) can be described in 
matrix form as (11). 
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In (11), J  matrices are the system’s Jacobians at the 
equilibrium point  0 0 0, ,x w u . Assuming that 

4J  is non-
singular, Δw (vector of linearized algebraic variables) can be 
excluded and then the linear and time-invariant in (11) can be 
rewritten as (12). 
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In (12), the state 
e

A , input 
e

B , output 
e

C and feedback 
e

D  
matrices can be defined, respectively by Eq. (13)-(16). 
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For the system addressed in this paper, the output variables 
are not related to the system’s input which implies eD 0 . 

In order to represent the Buck converter with a control 
about the capacitor voltage 

Cv , as in (12), it is necessary to 
consider each term of the PID dynamic equation (Eq. (5)), 
individually. From that, Fig. 3 illustrates the considered 
control structure through block diagram with the algebraic and 
states variables from (7) and (8). 

 

 
Fig. 3. Block diagram of the system with the PID controller. 

 
From Fig. 3, it is possible to obtain the new state variables, 

i  and 
d  , in addiction to the equations that define the 

algebraic variables 
p

 , 
d  and  d s , as shown in Eq. (17)-

(21), respectively. 
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Applying the linearization by first order Taylor 
approximation to Eq. (7)-(8) and (17)-(21) and considering the 
linearized system’s output as 

Cy v   , it is possible to obtain 
the matrix formulation for the complete system PID-Buck, as 
shown in (22), in which the vector of the expanded state 
variables  tL C i d

i v       
e

Δx . 
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The submatrices J  and B  are used to determine 
e

A , 
e

B  
and 

eC , from (22) and (13)-(16), resulting (23)-(25). 
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From Eqs. (23)-(25), it is possible to represent the dynamic 
model of the Buck converter in matrix form and compact, 
when it is under small disturbances around an operating point 

 ref, CveX .  
The transfer function (  P

G s ), aiming the control of 
voltage 

Cv , is obtained according to the model parameters in 
state space, assuming that the disturbance inputs are null, as in 
Eq. (26).  
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In this work, results obtained considering the both PID 
(standard) and modified, according to Eq. (1) and (5), 
respectively, are compared, in order to validate the approach 
addressed in this paper. For that, the transfer function of each 
compared controller, defined in (27) and (28), with the 
constants 0a , 1a , 2a  and 3a , is defined in Eq. (29)-(32). 
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V. RESULTS 

The proposed system, based on the transfer functions of  
Buck converter,  G s , and PID controller,  C

G s , and 
considering the voltage sensor gain, 

S
K , can be represented 

through the diagram of Fig. 4. 
 
 

 
Fig. 4. System’s diagram. 

 
In Fig. 4,  N s  represents the measurement noises of 

C
v  

and  C
G s  encompasses Eq. (27)-(32) and the characteristics 

of the Buck converter shown in TABLE II. 
TABLE II 

PARAMETERS OF THE CONTROLLED SYSTEM 

PARAMETER VALUE 

Input voltage ( inV ) 12 V 

Output voltage (
Cv ) 5 V 

Inductance ( L ) 2.4 mH 

Output capacitance ( C ) 5.6 µF 

Load resistance ( R ) 10 Ω 

PWM frequency ( f ) 10 kHz 

 

With the output power of 10 W, the ripples of the output 
voltage, 

C
v , and of the inductor’s current, 

L
i , are 5.39% 

and 6.04%, respectively, which leads the converter to operate 
in continuous mode. 

In order to validate the average state-space model of the 
Buck converter, represented by Eq. (7) and (8), the simulation 
software PSIM® was used. To do that, all parameters of 
TABLE II were considered to obtain the switched model 
response. Furthermore, a 5V step was applied in the reference 
voltage of the switched models, aiming to obtain the open-
loop response. The respective responses under disturbances 
are presented in Fig. 5. 

 

 
Fig. 5. Transfer functions’ response related to the state-space and switched 

model.  

 
It is important to highlight in Fig. 5 that the state-space 

average model is a satisfactory representation of the 
converter’s dynamic under low frequency. The suppression of 
high frequency components of the switched model, due to the 
discontinuity of the switching process, occurs with the use of 
average values of the instantaneous variables for a switching 
period of the power switch S  of Fig. 2. 

After validation of the average model, the response of the 
open-loop transfer function not compensated was obtained 
(Fig. 6), considering   1CG s   and   0N s  . In this way, a 
step of 0.415 was applied in the duty-cycle of PWM reference 
( ref

d ). That response is presented in Fig. 6 and it can be 
represented by (6) with a line tangent to its inflection point. 

The constants of static gain, transport delay and apparent 
time (Eq. (6)) can be determined by inspection of Fig. 6, that 
is, 0.415K  , 1 32T   µs and 2 1 322T T   µs. Based on 
these values and according to the TABLE I, the PID parameters 
are presented in TABLE III. 

 
TABLE III 

GAIN AND TIME CONSTANTS OF PID CONTROLLER BY MEANS OF ZIEGLER-
NICHOLS METHOD. 

Controller kp Ti (µs) Td (µs) 

PID 29 64 16 
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Fig. 6. Response for Ziegler-Nichols method. 

 
Applying the constants of TABLE I and III in the closed-loop 

transfer function presented in (27), that is, considering a 
standard PID ( 0  ), it is possible to determine the constants 
about damping ( 0.391   ) and the damped frequency          
( 36.4d  krad/s) of the oscillatory mode caused by the pair 
of conjugated complex poles. The time response with ref 5

C
v 

V is presented in Fig. 7. 
 

 
Fig. 7. Response of the capacitor voltage (

C
v ) with changes in the reference 

voltage ( ref
Cv ). 

 
From the response presented in Fig. 7, it is possible to 

conclude that the controlled variable presents low 
accommodation time for starting ( 1

a
T   ms) and for 

disturbances around the equilibrium point ( 0.7aT   ms), 
however the percentual overshoot is higher than 60%. 
Therefore, if the designer aims a better performance for 
overshoot characteristic, a fine tuning would be necessary in 
the PID gains. 

According to the literature [16]–[18], a standard PID 
controller requires a special attention in its derivative term 
when it is applied in real process. In order to mitigate this 
situation, a modified structure is considered in this work, in 
which a low-pass filter is added to derivative term, as 
presented in (5). To compare the performance between the 
standard and modified PID architectures, a Gaussian noise 
(average value equal to zero, components at frequencies up to 

2.5 MHz and standard deviation  = 0.1) is inserted into the 
system.  

 

 
Fig. 8. (a) Density and probability function; (b) Gaussian noise. 

 
The response of the density and probability function is 

shown in Fig. 8 (a), while in Fig. 8 (b) is the Gaussian noise 
along the time (applied in  N s ). 

To compare the performance between the considered 
standard and modified PID controllers, 3 levels of   (Eq. (28)
) are considered: 0   (PID standard in (27)); 0.05  ; and 

0.125  . The last two values are chosen based on [16]. The 
system’s responses to small disturbances around the operation 
point, considering the two mentioned controllers are presented 
in Fig. 9. 

In the first experiment ( 0  ), the obtained response is the 
dotted line (Fig. 9), which suggests the difficulty of the control 
action to follow the reference quickly, when this characteristic 
is compared to the other cases. In the following experiments, 
with 0.05  and 0.125  , the responses are presented in 
blue and black colors, respectively. It is reasonable to 
conclude that the voltage 

Cv  is faster when 0.125  , in 
which there is a greater rejection of high-frequency 
disturbances due to the modified PID. This effect can be 
explained due to the lower cutoff frequency of the low-pass 
filter with 0.125   (79 kHz), when it is compared to 

0.05  (198 kHz). 

 
Fig. 9. Response of the capacitor voltage (

C
v ) to the changes in the reference 

voltage ( ref
Cv ). 
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It is important to notice that the increase of  causes a 
higher overshoot in the system’s response related to the 
reference voltage, what is expected due to the decrease in the 
derivative term. 

VI. CONCLUSIONS 

A modified PID controller (a low-pass filter is added to the 
derivative term) was considered in the state-space average 
model of a DC-DC Buck converter. From the expanded state 
equations, that is, adding the controller dynamics, two closed-
loop transfer functions were obtained, related to the use of 
standard and the modified PID controllers, respectively. 

In order to validate the proposed model, its step response 
was compared to the switching model available on PSIM® 
software and the obtained results show equivalent dynamics. 

The PID controller was tuned by means of Ziegler-Nichols 
method. Is can be observed that, from a step input reference, 
the output voltage reaches acceptable performance, according 
to the project requirements adopted in this work.  

Aiming the minimization of a high frequency noises effects, 
a low-pass filter was considered in the derivative term of the 
PID controller. Its performance was compared to a standard 
PID, according to the literature. From the presented results, it 
can be concluded that the system’s output shows faster 
response, when it is compared to the other addressed cases. 

In future works, we intend to consider other control 
techniques with optimization methods, aiming to minimize the 
overshoot and the stabilization time. 
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