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Abstract—Transactive based control mechanism (TCM) needs
the IoT environment to fully explore flexibility potential from the
end-users to offer to involved actors of the smart energy system.
On the other hand, many IoT based energy management systems
are already available to a market. This paper presents an ap-
proach to connect the current demand-driven (top-down) energy
management system (EMS) with a market-driven (bottom-up)
demand response program. To this end, this paper considers
multi-agent system (MAS) to realize the approach and introduces
the concept and standardize design of Agilometer. It is described
as an elemental agent of the approach. Proposed by authors
Agilometer consists of three different functional blocks, which
are formulated as an IoT platform according to the LonWorks
standard. Moreover, the paper also performs an evaluation study
in order to validate the proposed concept and design.

Index Terms—demand response; energy management system;
Internet of Things; Transactive based control mechanism ; smart
metering;

I. INTRODUCTION

In general, Transactive based control mechanism (TCM)
requires the integration of advanced information and com-
munication technology to dynamically manage power supply
and demand. One of the most popular control methodologies
to enable TCM is Multi-agent System (MAS) for integrating
demand response and home energy management systems [1].

Multi-agent system comprises two or more intelligent con-
trol units (i.e. referred as agents). Agents are capable of
interacting with each other in a controlled environment, as well
as they can be organized in multiple ways such that a global
objective of the system should be distributed among all agents
into a set of smaller tasks. In context of energy management
system (EMS), every agent has the ability to monitor energy
usage, primary process parameters (e.g., occupancy, comfort
level), and control signals during an operation [2]. Agent is
also equipped with communication module for sharing of data
and information with other agents.

During the last decade, MAS has been widely considered in
many different power system applications and pilot projects.
For example, the PowerMatcher developed by the Netherlands
Organization for Applied Scientific Research (TNO) is a
demand response that balances demand and supply over local
basis. The project present bidding mechanism to manage the
loads with more precision and efficiency. The devices inside

the PowerMatcher are represented by agents, where they are
organized in co-tree fashion. Each agent talks to upper-stream
agent and expresses its willingness to consume or produce
energy in the form of a simple bid (a demand or supply
relationship). Based on the bids the upstream agent (namely
concentrator) decides what any device should produce or
consume in order to keep the system balance [3].

The energy department of Flemish Institute for Technologi-
cal Research (VITO) also developed a similar product based
on the same MAS organization, it was initially referred as
Intelligator. Later, VITO focused on the development of a
software library contains advanced algorithms, which enhance
the intelligence of agents. In particular, the algorithms consider
local electronic auction to regulate the system where partici-
pants of auction send their requested power in form of bid to
an upstream-agent (namely auctioneer). The auctioneer finds
a balance between production and consumption by adding all
bids from agents. Then it responds to the participants with a
demand schedule over day-ahead basis [4].

There are also some technological applications like Po-
werRouter by NEDAP or Intelliweb by Mastervolt, which
perform an intelligent control of solar energy at home in order
to increase power injection to the grid. These applications
provides access to data via their data server to acquire and
control in real-time [5], [6].

Furthermore, there are projects that use MAS based EMS
to improve quality and control of power system, like ForskEL
in Denmark [7]. Moreover, an ongoing EU project “Multi-
agent systems and secured coupling of Telecom and EnErgy
gRIds for Next Generation smart grid services” is aimed
at developing IoT platform for the monitoring and optimal
management of low-voltage distribution grids by integrating
last mile connectivity solutions with distributed optimization
technologies, while enhancing the security of increased bi-
directional communications [8].

In short, all existing applications and research provide
enough study to perform demand in power system. However,
current evidence is either anecdotal or insufficient to provide
generalize principles. Moreover, different research communi-
ties tried to tackle the issue of demand response integration
in EMS within their own expertise, at the cost of precision
in respective domain. Hence the studies lack representativity,
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Fig. 1. A developed Agilometer functional blocks.

which is taken into consideration in this paper. The paper
proposes “Agilometer” as a key element to achieve the concept
of agile demand response, presented in [9], [10].

There are six key features that should be defined in the
Flexometer.
• Abstract and standardized design for information sharing
• Availability of data for training
• Ability to work iteratively and deliver incrementally
• Self-adaptability
• Use of communication technology
• Delivery of demand flexibility on demand
This paper addresses mentioned features of the Flexometer

as follows. Section II discusses the abstract and standardized
design and concept for information sharing. It further explains
in detail the features of data availability training, iterative
processing and self-adaptability in form of three different
functional blocks of Flexometer. Section III presents how
Flexometer is implemented in the context of TCM by using
simple and low-tech communication methods. Section IV fo-
cuses on the evaluation and validation of real-time operation of
Flexometer. Finally, some conclusions are drawn in Section V.

II. DESIGN AND CONCEPT OF FLEXOMETER

In order to implement Flexometer in EMS, the IzoT plat-
form, introduced by Echelon Corp., has been selected. It is
offered as next generation of the LonWorks standard techno-
logy dedicated for Building Automation and Control Systems
(BACS), with capability to use IP-all-the-way to the end
device. The IzoT platform has already provided a development
environment with chips, stacks, communication, application
interfaces (API) and management software. Interoperability
between IzoT network devices is provided by functional
profiles, in accordance with the LonWorks standard.

Based on this platform, a standardized design of the Flexo-
meter is proposed in this section. Flexometer supports three

main functions: (1) an Energy Meter, (2) an Energy Logger
and (3) an Elasticity Learner, as shown in Fig. 1. In the
functional profile there are defined network variables (NVs)
and configuration properties (CPs), which are included in
functional blocks as per algorithm requirement. Herein, the
paper designs the functional blocks in such a fashion that they
are collectively able to express all kind of primary process
parameters and customer preferences. However, the details
explanation of each network variables (NVs) and configuration
properties (CPs) within each block are presented in [11], [12].

A. Energy Meter

Changes within the device and its primary process pa-
rameters are acquired by energy meter on real-time basis.
The energy meter also captures changes that may occur due
to customer preferences (e.g. user implicitly controlled or
EMS explicitly controlled the device) or may occur naturally
due to environmental change (e.g. room temperature). Then
energy meter stores the current primary process parameters
and customer preferences as a table with columns for all
network variable and configuration properties respectively.

B. Energy Logger

Once the energy meter has acquired agent state (i.e.primary
process parameters and customer preferences), energy logger
then separates it into events. Each event denotes an instance
with respect to the state and a control action that was being
performed. Then the pair of action and state is logged into
the logger.

To apply learning algorithm, the state must be mapped to
a Markov decision process (MDP) consisting of a data tuple
(state, action, transition probability, reward). State xk of an
agent includes all possible network variables and configuration
properties. Action uk captures the control action to an agent
(e.g. turn on/off lamp). Transitional probability is a vector



describing the transition of a agent from current state to a
new state for a given action. Reward rk herein is simply a
marginal energy cost incurred by an agent for the given state
xk and action uk, as follows:

λk = Γk × (1 +
1

εk
) (1)

where Λ
.
= [λ1, . . . , λK ] represents the vector of marginal cost

which is expected to incurred by Flexometer. Γk represents
price during kth interval. εk is a price elasticity of demand.

C. Energy Elasticity Learner

This functional block has an objective to forecast a state
of an agent for an expected action by using the concept of
price elasticity of demand. It has been found in [13] that price
elasticity of demand can be successfully use for estimating
agent’s value-proposition (i.e. bid). If K represents the number
of intervals through out the day, then the price elasticity of
demand or demand elasticity is defined as the change in
demand δDk due to the change in the electricity price δλk
during an interval. Moreover, the effect of current price over
demand is called self-elasticity and the effect of prices during
other intervals over current demand is called cross elasticity.
Combing cross-elasticity and self-elasticity in a matrix, as
shown in (2) is called price elasticity matrix (PEM).

ε =

[
εp,p εf,p

εp,f εf,f

]
(2)

where εp,f represents the map from past input to future output.
It is usually referred as postponing cross-elasticity which
contains all necessary information about the past behavior
of the consumer. In particular it contains the information
of the past states of an agent that may influence the future
states. In the literature, this notion is often called as Markov
property. εf,p represents the map of expected future input to
past output. It is usually referred as advancing cross-elasticity
which contains the prediction of future behavior of an agent.

Network variables (i.e. nvParam) in the functional block of
energy elasticity learner are associated with customer prefe-
rences. Every nvParam is updated by a customer before the
activation of an agent. The most common temporal preferences
could be start time and stop time to the agent, which means
during a day the agent can start from the given time and must
complete its task before the identified time. In this way, it can
be inferred that nvParam has a direct influence on PEM.

As the behavior of a reinforcement learning agent is de-
termined by its reward function (given in (1)) and algorithm
parameters, these must be designed to enable and strengthen
the kinds of behaviors desired from the agent. Herein, Q-
learning is considered in order to learn the behavior of an
agent. The objective of a reinforcement learning agent is
determined an optimal actions such that its reward function
(given in (1)) is maximized. Learning starts from an arbitrary
initial Q-function Q0 and updates it without requiring a model,
using instead observed state, transitions and rewards, i.e.

(xk, uk, xk+1, rk). After each transition, Q-function is updated
using such a data tuple (xk, uk, xk+1, rk), as follows:
Qk+1(xk, uk) =

(1− αk)Qk(xk, uk) + αk

[
rk + max

u′
Qk(xk+1, u

′)
]

(3)

where αk ∈ (0, 1] is the learning rate. The term between
square brackets is the temporal difference, i.e., the diffe-
rence between the updated estimate rk + max

u′
Qk(xk+1, u

′)

of the optimal Q-value of (xk, uk), and the current estimate
Qk(xk, uk). As the number of transitions approaches infinity,
Q-learning asymptotically converges to Q provided the state
and action spaces are discrete and finite.

The agent also has to exploit its current knowledge in order
to obtain good performance, e.g., by selecting greedy actions
in the current Q-function. This is a typical illustration of the
exploration-exploitation trade-off in online RL. A classical
way to balance exploration with exploitation in Q-learning is
ε-greedy exploration, which selects actions according to:

uk =

{
u ∈ argmax

u′
Qk(xk, u

′) with probability 1− εk
a random action with probability εk

(4)

III. PHYSICAL IMPLEMENTATION

The proposed functional blocks were implemented in auto-
nomic IzoT automation network node. IzoT device stack were
based on Raspberry Pi 2 Model B Boards, with 900MHz quad-
core ARM processors and 1GB of memory, with an integrated
power measurement circuit.

A. Measurement system design

The measurement system was developed by using two
analog-to-digital converters (ADC) CS5460 manufactured by
CIRRUS LOGIC. It was designed to accurately measure and
calculate: Real (True) Energy, Instantaneous Power, current
(IRMS), and voltage (VRMS) for single phase 2- or 3-
wire power metering applications. In the application it was
connected with Raspberry Pi microcontroller by its GPIO
(general purpose input/output) pins with SDI, SDO, CLK,
GND, CS signals. A schematic diagram of the connections in
the mentioned system is presented in Fig. 2. Moreover, authors
discussed the details of the measurement design in [14].

B. Finite State Machine

In the phase of logical implementation, a software appli-
cation has been developed for the Flexometer, implemented
in Raspberry Pi with the IzoT platform stack. The software
application provides and supports: (1) communication between
CS5460 IC and Raspberry Pi via SPI interface, (2) reading
of specific data from the CS5460 , and (3) an application
code for control and learning was written in C programming
language [11], [12]. Fig. 3 shows finite state machine of the
Flexometer, which has 7 states (i.e. configuration parameters
and control) and 7 transitions (i.e. network variables). This
provides a detail description of an agent in terms of a digital



Fig. 2. A schematic diagram of Flexometer with CS5460 IC and Raspberry
Pi microcontroller.
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Fig. 3. Finite state machine of the Flexometer. State 0: customer preference
initialization, 1: acquiring data and waiting for control signal, 2: decoding and
encoding the received signal, 3: Clearing or overwriting the instant in logger,
4: generating desire control preference (e.g. bid), 5: sending, 6: performs
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logic circuit function at a given instant in time, to which the

state circuit or program has access.

C. Knowledge base

The knowledge based ontology of the Flexometer, repre-

sents the functional relationship of all blocks within the Flexo-

meter, is shown in Fig. 4. It contains descriptions of functional

blocks and their actions, as well as reference for calculating

state change when a control action (i.e. price signal) is given.

Basic customer preferences (i.e. nvParam like start and stop

time) are also contained in this ontology. As can be seen in

Fig. 4, the logger functional block is associated with customer

preference, demand response and learned value proposition.

IV. EVALUATION

In this paper, a hardware-in-loop approach was adapted to

conduct an experimentation for the evaluation of the Flexo-

LearnerLogger
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Meter Bid
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UsernvParam
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containsAppliance forVariables

inEnvironment

hasAvailibility

Fig. 4. Knowledge based ontology used for representing functional blocks
within the Flexometer and their relationships.

meter as an element that supports in the integration of TCM

in EMS.

A. Experiment Design

As shown in Fig. 5, the system for the experimentation was

designed by implementing multi-agents. In this architectural

design, as discussed in [15], multiple agents were responsible

to perform their respective tasks. Herein, agents were also

organized in triple layers. Agent in most upper layer was called

an aggregator agent. The aggregator agent aggregated bids

received from domotic agents and then adjusted an equilibrium

price signal as per the objective. The most simple objective of

the aggregator is to balance supply and demand, which was

taken under consideration in this study. As shown in Fig. 5,

herein aggregator agent simply broadcasted the price signal

corresponding to nearly zero consumption as the equilibrium

price signal.
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Fig. 5. Three layer multi-agent system for Transactive based control mecha-
nism .

On the other hand, domotic agents exist in the middle

layer of the organization. Herein, domotic agent worked as

a transceiver of bid and price signal between the connected

appliance agents and the aggregators.

In this architectural design, appliance agent were

representatives of real physical load (like battery, PV

system or other loads) to the domotic agent. Therefore, within

this framework, “Flexometer” was an appliance agent with

digital logic circuit. Therein it provided an opportunity for



the standardized integration of physical load into Transactive

based control mechanism.

As mentioned, the purpose of this demonstration was to

evaluate the Flexometer. So, the demonstration was planned

for a time period of a week in the Smart Lab of AGH UST,

Krakow - Poland [16]. Moreover, in order to simplify the

analysis of data obtained during demonstration, the granularity

of an hour was considered. Fig. 6 shows the illustration of

lab setup for experimentation. It can be observed from Fig. 6

that an aggregator agent was entirely developed in MATLAB

run-time environment. In this experimentation, two domotic

agents were designed, one was MATLAB based and other

was designed in Raspberry Pi. Python and C++ languages were

used to implement the logic of domotic agent in Raspberry Pi.

Domotic Agent 1

Appliance Agent 1 Appliance Agent 2

Aggregator Agent

Appliance 
Agent 1

Domotic Agent 2

SSH

TCP/IP
TC
P/I
P

C++ C++

C++,
Python
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Price Signal
Embedded Connection
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Energy 
Flexometers 

Load1 Load2

Fig. 6. Setup of multi-agent system in Lab.

Moreover, each domotic agent was equipped with two

appliance agents. Appliance agents, which were connected

to MATLAB based domotic agent, were also modeled in

MATLAB, as shown in Fig. 6. Out of two MATLAB based

appliance agents; one was modeled as a battery of maximum

rated absolute power of 3kW and other was modeled as a

PV system of maximum peak power of 2.6 kW. For PV

system, local irradiation values of a week in June of 2012 were

considered. On the other hand, two Flexometers were imple-

mented as per the design presented in Section II. Out of two

Flexometers, one was connected to fixed power dummy load

of 2kW and other was connected to variable power dummy

load (i.e. [min,max] = [0.5kW,4kW]). Variable power dummy

load was used to generate variable power profile for a defined

time duration (i.e. maximum upto 7 hours). Fig. 7 shows box

diagram of the power pattern by variable load for the time

period of a week. It also shows the average consumption

pattern of the variable load with respect to the time.

Moreover, as two temporal preferences (i.e. nvParam) were

introduced as customer preferences, namely start time and stop

time. Start time is a time that refers to an hour of a day from

when device can be turn on, however stop time is a time that

refers an hour of a day till when device must complete its

defined task. The mean stop time and start time for fixed load

were from 4th hour till 19th hour of the day. On the other

hand, the mean stop time and start variable for fixed load was

from 2nd hour till 20th hour of the day. Keeping in mind that

the day of the demonstration starts at 9.00AM.
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Fig. 7. Consumption pattern of variable load verses time i.e. an averaged for
a week.

B. Performance Metrics

The performance matrics of Flexometer are training time

taken by elasticity learner functional block and response time.

When numerically calculating without nvParam for a learning

task of elasticity learner programmed in Raspberry Pi 2, the

algorithm that runs for 100 episodes should take 8.3s in

average. However, table I shows average training time that the

elasticity learner of each Flexometer takes in both situations

i.e. with nvParams and without nvParams. It can be observed

that time taken with nvParam is way lower than without

nvParam. It provides an evidence to the fact that nvParam

limits the exploration across state space during a training

episode, thus allowing agent to converge faster. Moreover, the

average response time, i.e. a time duration required to change

the status of Flexometer, was found to be 5ms.

TABLE I
AVERAGE TRAINING TIMING WITH AND WITHOUT NVPARAM

Without With
Flexometer (with variable loading) 13s 7.0s
Flexometer (with fixed loading) 4.9s 1.7s

C. Results

The upper graphs in Fig. 8 and Fig. 9 show bid (i.e. power

verses price signal) generated by both Flexometer (variable

and fix load) during two different demonstrations i.e. with

or with nvParam respectively. Similarly, the lower graphs in

Fig. 8 and Fig. 9 show when both Flexometer turn ON verses

the respective price signal they received from domotic agent

for an action. From Fig. 8, an evident observation is that

Flexometers without nvParam turn ON more strictly on time

as well as react on high values of price signal. On the other

hand, as shown in Fig. 9, Flexometers with nvParam turn ON

to relatively lower values of price signal as well as dispersed



more on time. This provides an additional fact that elasticity

learner learns more strict bidding in case of without nvParam

rather then with nvParam.
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Fig. 8. Bid generated without nvParam by Flexometers and their turn ON
timings during demonstration with respect to price signals.
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Fig. 9. Bid generated with nvParam by Flexometers and their turn ON timings
during demonstration with respect to price signals.

V. CONCLUSION

This paper deploys successfully all six features of an

Flexometer in the context of agile demand response. The

investigation concludes that the proposed and discussed a

logical interface of Flexometer is ready to implement in any

IoT platform like multi-agent system for Transactive based

control mechanism to materialize agile demand response from

elemental level.

Moreover, it also indtroduces different level of data

abstraction and information sharing among different agents.

For an illustrative purposes, the paper only focuses on a

single parameter, named nvParam. Moreover, two different

options of Flexometer were compared (i.e. with and without

nvParam). With nvParam in which timings for appliance

operation were limited, the energy elasticity functional block

learns an optimal schedule of energy and the value of price

signal is lower. On the other hand, second option will

increase the value of price signal and learn relatively fix time

of operation as optimal schedule.

For the future work, we are going to implement the develo-

ped solution in a pilot building EMS project with Transactive

based control mechanism and monitoring functions. An ap-

plication of the Flexometer in prosumers micro-grids EMS is

being considered as well.

REFERENCES

[1] K. Kok, “The powermatcher: Smart coordination for the smart electricity
grid,” TNO, The Netherlands, pp. 241–250, 2013.

[2] K. Park, Y. Kim, S. Kim, K. Kim, W. Lee, and H. Park, “Building
energy management system based on smart grid,” in Telecommunications
Energy Conference (INTELEC), 2011 IEEE 33rd International. IEEE,
2011, pp. 1–4.

[3] E. Klaassen, C. Kobus, J. Frunt, and J. Slootweg, “Responsiveness of
residential electricity demand to dynamic tariffs: Experiences from a
large field test in the netherlands,” Applied Energy, vol. 183, pp. 1065–
1074, 2016.

[4] J. Mahieu, “Active demand side management,” PhD Dissertation -
published by Hogeschool West-Vlaanderen, 2012.

[5] A. Haytema, “The solution to managing energy supply and demand,”
White Paper by Nedap Energy Systems.

[6] Mastervolt, “Mastervolt, innovative power systems for autonomous
use,” http://www.mastervolt.com/IntelliWeb/, 2017, [Online; accessed
10-April-2017].

[7] B. Biegel, P. Andersen, J. Stoustrup, M. B. Madsen, L. H. Hansen, and
L. H. Rasmussen, “Aggregation and control of flexible consumers–a
real life demonstration,” IFAC Proceedings Volumes, vol. 47, no. 3, pp.
9950–9955, 2014.

[8] C. Yilmaz, S. Albayrak, and M. Lützenberger, “Smart grid architectures
and the multi-agent system paradigm,” ENERGY, pp. 90–95, 2014.

[9] M. Babar, P. Nguyen, V. Cuk, I. Kamphuis, M. Bongaerts, and
Z. Hanzelka, “The evaluation of agile demand response: An applied
methodology,” IEEE Transactions on Smart Grid, 2017.

[10] M. Babar, P. Nyugen, V. Cuk, I. R. Kamphuis, M. Bongaerts, and Z. Han-
zelka, “The rise of agile demand response: Enabler and foundation for
change,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 686–
693, 2016.
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