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ABSTRACT: We present and investigate a new type of implicit fractional linear multi-step method of order two 

for fractional initial value problems. The method is obtained from the second-order superconvergence of the 

Grünwald-Letnikov approximation of the fractional derivative at a non-integer shift point. The method coincides 

with the backward difference method of order two for the classical initial value problem when the order of the 

derivative is one. The weight coefficients of the proposed method are obtained from the Grünwald weights and are 

hence computationally efficient compared with that of the fractional backward difference formula of order two. The 

stability properties are analyzed and it is shown that the stability region of the method is larger than that of the 

fractional Adams-Moulton method of order two and the fractional trapezoidal method. Numerical results and 

illustrations are presented to justify the analytical theories.  
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 محسّنتحليل نوع جديد من الطريقة الكسرية الخطية متعددة الخطوات من الدرجة الثانية مع استقرار 

 حنيفة محمد ناصر و خديجة الحسني 

متعددة الخطوات من الدرجة الثانية لمشاكل القيمة الأولية الكسرية. يتم الخطية الكسرية  نوع جديد من الطريقة الضمنية في هذا البحث نقدم :صلخمال

 وقد تبين ان هذه غير صحيحة. ذات قيمة إزاحة عند نقطة هالكسري هللمشتق جرنوالد الدرجة الثانية لتقريب ذوالفائق  الحصول على الطريقة من التقارب

واحداً. يتم الحصول على  هالقيمة الأولية الكلاسيكية عندما يكون ترتيب المشتق ئلهالعكسي من الرتبة الثانية لمستتطابق مع طريقة الاختلاف  الطريقة 

، وبالتالي فهي فعالة من الناحية الحسابية مقارنة بمعادلة الفرق الجزئي المتخلف من الدرجة الثانية. تم  دجرنوال معاملات الوزن للطريقة المقترحة من أوزان

الكسرية من الدرجة الثانية وطريقة شبه مولتن -أدمز طريقةمنطقة الاستقرارلأكبر من  المقترحة يل خصائص الثبات وتبين أن منطقة الاستقرار للطريقةتحل

 . عرض النتائج العددية والرسوم التوضيحية لتبرير النظريات التحليلية وقد تمالمنحرف الجزئية. 

 .الاستقرار، منطقة التقارب الفائق ،  الكسرية ، طريقة الاختلاف العكسيمولتن -ق أدمزطر،  المولدة الدالة جرنوالد، تقريبات :مفتاحيةالكلمات ال
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1. Introduction 

Consider the fractional initial value problem (FIVP) 

 

                         𝑡0
𝐶 𝐷𝑡

𝛽
𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡)),    𝑡 ≥ 𝑡0,    0 < 𝛽 ≤ 1, (1) 

                          𝑦(𝑡0) = 𝑦0, 
 

where   𝑡0
𝐶 𝐷𝑡

𝛽
 is the left Caputo fractional derivative operator of order 𝛽 defined in Section 2, 𝑓(𝑡, 𝑦) is a bounded 

function satisfying the Lipschitz condition in the second argument 𝑦 guaranteeing a unique solution to the problem [1]. 

There is no loss in considering the fractional order in the interval 𝛽 ∈ (0,1]. For, when 1 < 𝛽 ≤ 𝑛 = ⌈𝛽⌉, with 

appropriate initial conditions, the FIVP (1) can be formulated as a system of FIVP of order 0 < 𝛽/𝑛 ≤ 1, just as in the 

case of classical initial value problems (IVPs) with higher integer order derivatives [2]. 

Fractional calculus, despite its long history, has only recently gained a place in science, engineering, artificial 

intelligence, and many other fields [3-6]. 

In the recent past, many numerical methods have been developed for solving (1) approximately. We are 

interested in the numerical methods of the type commonly known as the fractional linear multi-step methods 

(FLMMs). 

The basic numerical method of FLMM type of consistency order one for (1) is obtained from the Grünwald-

Letnikov form for the fractional derivative [7,8]. The weight coefficients for this basic FLMM are the  Grünwald 

weights obtained from the series of the generating function 𝜔1(𝑧) = (1 − 𝑧)𝛽. 

Lubich [9] introduced a set of higher-order FLMMs as convolution quadrature methods for the Volterra integral 

equation (VIE) obtained by reformulating (1) (See also eg. [1]). The quadrature coefficients are obtained from the 

fractional-order power of a rational polynomial of the generating polynomials for the linear multi-step method (LMM) 

of classical initial value problems (IVPs). As a particular subfamily of these FLMMs, the fractional backward 

difference formulas (FBDFs) were also proposed by Lubich in [10]. Another particular form of FLMM type is the 

fractional trapezoid method of order 2. 

Many researchers have utilized these formulations to construct variations of the FLMMs (see eg. [11] and the 

references therein). Galeone and Garrappa [12] studied some implicit FLMMs generalizing the Adams-Moulton 

methods for classical IVPs. Galeone and Garrappa [13] and Garrappa [14] have also investigated a set of explicit 

FLMMs generalizing the Adams-Bashforth methods. 

In this paper, we propose and analyze a new type of FLMM of order 2. The method is computationally efficient and 

has improved stability. We also present algorithms to solve linear and non-linear FIVPs using the proposed FLMM. 

We also compare the method with other known FLMMs of order 2 and show that the presented method outweighs the 

other methods in terms of stability and/or computational efficiency. 

We classify the previously known FLMMs into subclasses based on the form of their generating functions which 

indicate that our FLMM presented here falls into a new subclass not encountered in the past literature. 

This paper is organized as follows. In Section 2, the preliminaries and previous relevant works are summarized. 

In Section 3, the new FLMM of order 2 is introduced along with a computational algorithm. Numerical examples for 

testing the method are given in Section 4. In Section 5, the stability of the method is analyzed. In Section 6, the new 

method is compared with other FLMMs and Section 7 draws some conclusions. 

2.  Preliminaries 

For a sufficiently smooth function 𝑦(𝑡) defined for 𝑡 ≥ 𝑡0, the left Riemann-Liouville (RL) fractional derivative 

of order 0 < 𝛽 ≤ 1 is defined by (see eg. [20])  

 

   𝑡0
𝑅𝐿𝐷𝑡

𝛽
𝑦(𝑡) =

1

Γ(1−𝛽)

𝑑

𝑑𝑡
∫  

𝑡

𝑡0

𝑦(𝜏)

(𝑡−𝜏)𝛽 𝑑𝜏,    0 < 𝛽 ≤ 1, (2) 

 

where Γ(⋅) is the Euler-Gamma function. 

The left Caputo fractional derivative of order 𝛽 > 0 is defined as  

 

   𝑡0
𝐶 𝐷𝑡

𝛽
𝑦(𝑡) =

1

Γ(1−𝛽)
∫  

𝑡

𝑡0

𝑦′(𝜏)

(𝑡−𝜏)𝛽 𝑑𝜏,    0 < 𝛽 ≤ 1. (3) 

 

In addition to the above two definitions, the Grünwald-Letnikov(GL) definition is useful for numerical approximations 

of fractional derivatives.  

  𝑡0
𝐺𝐿𝐷𝑡

𝛽
𝑦(𝑡) = lim

ℎ→0

1

ℎ𝛽
∑  ∞

𝑘=0 𝑔𝑘
(𝛽)

𝑦(𝑡 − 𝑘ℎ), (4) 

  

where 𝑔𝑘
(𝛽)

= (−1)𝑘 Γ(𝛽+1)

Γ(𝛽−𝑘+1)𝑘!
 are the  Grünwald weights and are the coefficients of the series expansion of the  

Grünwald generating function  
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 𝜔1(𝑧) = (1 − 𝑧)𝛽 = ∑  ∞
𝑘=0 𝑔𝑘

(𝛽)
𝑧𝑘 . 

 

The coefficients 𝑔𝑘
(𝛽)

 can be successively computed by the recurrence relation  

 

 𝑔0
(𝛽)

= 1,        𝑔𝑘
(𝛽)

= (1 −
𝛽+1

𝑘
) 𝑔𝑘−1

(𝛽)
,    𝑘 = 1,2, . ..  . (5) 

 

For theoretical purposes, the function 𝑦(𝑡) is zero-extended for 𝑡 < 𝑡0, hence the infinite summation in (4). 

Practically, the upper limit of the sum is 𝑛 = ⌈(𝑡 − 𝑡0)/ℎ⌉. 
The three definitions are equivalent under homogeneous initial conditions [8]. 

2.1  Fractional linear multi-step methods 

Among the several numerical methods to solve (1), we list the numerical methods that fall under the category of 

FLMM. 

The fundamental and widely investigated numerical approximation scheme is the Grünwald-Letnikov method 

(also called the fractional backward Euler method) obtained by replacing the fractional derivative operator in (1) with 

its GA operator 𝛿ℎ
𝛽

 of order one [8].  

 

 𝛿ℎ
𝛽

𝑦(𝑡): =
1

ℎ𝛽
∑  ∞

𝑘=0 𝑔𝑘
(𝛽)

𝑦(𝑡 − 𝑘ℎ) = 𝑓(𝑡, 𝑦) + 𝑂(ℎ). (6) 

 

By choosing the discretization step ℎ appropriately to align the discrete points 𝑡 − 𝑘ℎ with the endpoints of the 

problem domain [0, 𝑇] and assuming zero extension for the unknown function 𝑦(𝑡) for 𝑡 < 0, the infinite sum in (6) is 

reduced to a finite sum. Dropping the first order error term, choosing ℎ = 𝑇/𝑁, 𝑁 ∈ ℕ, and denoting 

  

 𝑡𝑛 = 𝑛ℎ,    𝑦𝑛 ≈ 𝑦(𝑡𝑛)    and    𝑓𝑛 = 𝑓(𝑡𝑛, 𝑦𝑛), (7) 

 

equation (6) gives the GL scheme  

 ∑  𝑛
𝑘=0 𝑔𝑘

(𝛽)
𝑦𝑛−𝑘 = ℎ𝛽𝑓𝑛,    𝑛 = 1,2, . . . , 𝑁. 

 

A shifted GL approximation of (6) is given by replacing 𝑘 by 𝑘 − 𝑟 and a shifted GL scheme is then given by  

 

 ∑  𝑛
𝑘=0 𝑔𝑘

(𝛽)
𝑦𝑛−𝑘+𝑟 = ℎ𝛽𝑓𝑛,    𝑛 = 1,2, . . . , 𝑁, (8) 

 

where 𝑟 is the shift. The shifted scheme is also of the first order when the shift 𝑟 is an integer. However, at 𝑟 = 𝛽/2, 

the scheme (8) gives super-convergence of order 2 [15].  

 

 𝛿ℎ,𝛽/2
𝛽

𝑦(𝑡): =
1

ℎ𝛽
∑  ∞

𝑘=0 𝑔𝑘
(𝛽)

𝑦(𝑡 − (𝑘 − 𝛽/2)ℎ) = 𝑓(𝑡, 𝑦) + 𝑂(ℎ2). (9) 

 

However, this super-convergence scheme introduces an additional difficulty in dealing with values of the 

function 𝑦 at points not aligned with the grid points [15]. In Section 3, we modify this super-convergence scheme to 

construct a new scheme of order 2. 

A general way to approximate the FIVP (1) is to replace the fractional derivative by the form with general 

weights 𝑤𝑘 as  

 Ωℎ
𝛽

𝑦(𝑡): =
1

ℎ𝛽
∑  ∞

𝑘=0 𝑤𝑘𝑦(𝑡 − 𝑘ℎ), (10) 

 

where the weights 𝑤𝑘 are to be determined for a desired order of consistency. Thus, Grunwald-type approximation 

schemes for the FIVP have the form expressed in conformance with the classical backward difference form (BDF) as  

 

 ∑  𝑛
𝑘=0 𝑤𝑘𝑦𝑛−𝑘 = ℎ𝛽𝑓𝑛,    𝑛 = 1,2, . . ., (11) 

 

where 𝑤𝑘 are coefficients in the expansion of some appropriate generating function 𝑤(𝑧). 

In Lubich [10], the weights 𝑤𝑘 in (11) are chosen as the coefficients of the series expansion of the generating function  

 

 𝑤(𝑧) = (
𝜌(1/𝑧)

𝜎(1/𝑧)
)

𝛽

, (12) 

 

where 𝜌, 𝜎 are the generating polynomials of the LMM for classical IVP. 

It is enough to consider generating functions in the form  

 𝛿(𝜉) = (
𝑎(𝜉)

𝑏(𝜉)
)

𝛽 𝑝(𝜉)

𝑞(𝜉)
, (13) 
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where 𝑎, 𝑏, 𝑝, and 𝑞 are polynomials, and 𝜉 = 1/𝑧 [10]. 

The generating function of an FLMM completely characterizes the approximation scheme, its stability, and the 

order of consistency through the following theorems. 

 

Theorem 1 [16, 17, 18]. The order of an FLMM with generating function 𝛿(𝜉) is 𝑝 if and only if  

 

 
1

𝑥𝛽 𝛿(𝑒−𝑥) = 1 + 𝑂(𝑥𝑝). (14) 

  

Moreover, the approximation corresponding to 𝛿(𝜉) satisfies, with 𝐷𝑡
𝛽

 denoting the RL fractional derivative,  

 

 𝛿ℎ
𝛽

𝑦(𝑡) = 𝐷𝑡
𝛽

𝑦(𝑡) + ℎ𝑝𝑎𝑝(𝛽)𝐷𝑡
𝛽+𝑝

𝑦(𝑡) + ℎ𝑝+1𝑎𝑝+1(𝛽)𝐷𝑡
𝛽+𝑝+1

𝑦(𝑡)+. . ., 

 

where 𝑦(𝑡) is assumed to be sufficiently smooth.  

 

Theorem 2 [10] The stability region of an FLMM with generating function 𝛿(𝜉) is given by 

  

 𝑆 = {𝛿(𝜉): |𝜉| > 1}. (15) 

2.2.  Subclasses of FLMMs 

We classify the FLMMs in the literature into subclasses. This classification suggests that the proposed FLMM in 

this paper belongs to a new subclass.   

1. The fractional trapezoid subclass: The fractional trapezoidal method of order 2 (FT2) obtained from the 

trapezoidal rule for the ODE has the generating function [10]  

 𝛿𝐹𝑇2(𝜉) = (2
1−𝜉

1+𝜉
)

𝛽

. (16) 

It is the only method known so far in the form 𝛿(𝜉) = (
𝑎(𝜉)

𝑏(𝜉)
)

𝛽

 with deg𝑏(𝜉) ≥ 1. 

2. The FBDF subclass: The fractional backward difference formula (FBDF) [13] obtained from the BDF for 

classical ODE has generating function of the form 𝛿(𝜉) = (𝑎(𝜉))𝛽. For orders 1 ≤ 𝑚 ≤ 6, a set of six FBDF 

methods have been obtained with polynomials corresponding to the generating polynomials of the BDF of 

order 𝑚 given by 𝑎(𝜉) = ∑  𝑚
𝑘=1

1

𝑘
(1 − 𝜉)𝑘. The second order FBDF2, for example, is given by [10] 

 𝛿𝐹𝐵𝐷𝐹2(𝜉) = (
3

2
− 2𝜉 +

1

2
𝜉2)

𝛽

. (17) 

3. Fractional Adams subclass: The fractional Adams methods have the generating functions of the form 

𝛿(𝜉) =
(1−𝜉)𝛽

𝑞(𝜉)
, where the polynomial 𝑞(𝜉) is determined to have order 𝑝 of consistency for the method [11—

14]. When 𝑞(0) = 0, the method is explicit and is called fractional Adams-Bashforth methods [13,14] while 

𝑞(0) ≠ 0 gives implicit methods which  are called fractional Adams-Moulton methods (FAMs)[12]. The 

second order FAM method is given by the generating function.  

𝛿𝐹𝐴𝑀1(𝜉) =
(1−𝜉)𝛽

(1−
𝛽

2
)+

𝛽

2
𝜉
. (18) 

4. Rational polynomial subclass: In [19], a classical LMM type of approximation is proposed to obtain a class of 

FLMMs by approximating the generating function of the FBDF methods by rational polynomials in the form 

𝛿(𝜉) =
𝑝(𝜉)

𝑞(𝜉)
. This approach, however, reduces the order of the methods and requires higher degree 

polynomials 𝑝 and 𝑞, to achieve orders close to the order of FBDF considered. 

3.  A new fractional linear multi-step method 

We present the main result of constructing an FLMM of order 2 which belongs to a new subclass. We need the 

following lemma from the Taylor series expansion. 
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Lemma 1  Let 𝑦(𝑡) ∈ 𝐶1[𝑎, 𝑏] and 𝑦′′(𝑡) exists. Then, for 𝜇 ∈ (𝑎, 𝑏) and ℎ > 0, we have  

 

 𝑦(𝑡 + 𝜇ℎ) = (1 + 𝜇)𝑦(𝑡) − 𝜇𝑦(𝑡 − ℎ) + 𝑂(ℎ2). (19) 

  

The fractional derivative of the FIVP (1) (assuming with no loss 𝑡0 = 0 and 𝑦(𝑡0) = 0) is replaced by the 

approximation with super convergence (9) of order 2. This gives, at 𝑡 = 𝑡𝑛,  

 

 𝛿ℎ,𝛽/2
𝛽

𝑦(𝑡𝑛) =
1

ℎ𝛽
∑  ∞

𝑘=0 𝑔𝑘
(𝛽)

𝑦(𝑡𝑛−𝑘+𝛽/2) = 𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) + 𝑂(ℎ2). (20) 

 

Since 𝛽/2 is not an integer for 0 < 𝛽 ≤ 1, the point 𝑡𝑛−𝑘+𝛽/2 in (20) is not aligned with the discrete points in the 

computational domain {𝑡𝑚, 𝑚 = 0,1, . . . , 𝑁}. Using Lemma 1 with 𝑡 = 𝑡𝑛−𝑘 and 𝜇 = 𝛽/2, we replace 𝑦(𝑡𝑛−𝑘+𝛽/2) by 

(19).  

 

                                   
1

ℎ𝛽
∑  ∞

𝑘=0 𝑔𝑘
(𝛽)

[(1 +
𝛽

2
) 𝑦(𝑡𝑛−𝑘) −

𝛽

2
𝑦(𝑡𝑛−𝑘−1)] = 𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) + 𝑂(ℎ2). (21) 

 

With the notations in (7), we obtain the new implicit FLMM approximation scheme  

 

                                     Δℎ,𝛽/2
𝛽

𝑦𝑛: = ∑  𝑛
𝑘=0 𝑔𝑘

(𝛽)
[(1 +

𝛽

2
) 𝑦𝑛−𝑘 −

𝛽

2
𝑦𝑛−𝑘−1] = ℎ𝛽𝑓𝑛,    𝑛 = 1,2, ⋯, (22) 

 

where the function values 𝑦𝑛−𝑘 and 𝑦𝑛−𝑘+1 are properly aligned with the grid points in the computational domain.  

Theorem 3 The generating function of the new implicit FLMM is given by  

 

 𝛿(𝜉) = (1 − 𝜉)𝛽𝑝(𝜉), (23) 

  

where 𝑝(𝜉) = (1 +
𝛽

2
) −

𝛽

2
𝜉. Moreover, the generating function satisfies  

 

 
1

𝑥𝛽 𝛿(𝑒−𝑥) = 1 + 𝑂(𝑥2) 

confirming order 2 consistency.  

 

Proof. The sum on the left side of (21) is manipulated, with 𝑝0 = 1 + 𝛽/2 and 𝑝1 = −𝛽/2, as follows:  

 

 ∑  ∞
𝑘=0 𝑔𝑘

(𝛽)(𝑝0𝑦𝑛−𝑘 + 𝑝1𝑦𝑛−𝑘−1) = 𝑝0 ∑  ∞
𝑘=0 𝑔𝑘

(𝛽)
𝑦𝑛−𝑘 + 𝑝1 ∑  ∞

𝑘=0 𝑔𝑘
(𝛽)

𝑦𝑛−𝑘−1 

 = 𝑝0 ∑  ∞
𝑘=0 𝑔𝑘

(𝛽)
𝑦𝑛−𝑘 + 𝑝1 ∑  ∞

𝑘=1 𝑔𝑘−1
(𝛽)

𝑦𝑛−𝑘 = ∑  ∞
𝑘=0 (𝑝0𝑔𝑘

(𝛽)
+ 𝑝1𝑔𝑘−1

(𝛽)
)𝑦𝑛−𝑘 , (24) 

 

where we have set 𝑔−1
(𝛽)

= 0. The weights  

 𝑤𝑘 = 𝑝0𝑔𝑘
(𝛽)

+ 𝑝1𝑔𝑘−1
(𝛽)

,    𝑘 = 0,1, . .. (25) 

 

are the coefficients of the generating function  

 

 𝛿(𝜉) = 𝑝0(1 − 𝜉)𝛽 + 𝑝1𝜉(1 − 𝜉)𝛽 = (1 − 𝜉)𝛽(𝑝0 + 𝑝1𝜉). 
Moreover, we have  

 
1

𝑥𝛽 𝛿(𝑒−𝑥) = 1 −
𝛽(3𝛽+5)

24
𝑥2 + 𝑂(𝑥3) 

 

which, by Theorem 1, confirms the order 2 consistency of the method.  

 

The generating function for the new FLMM is of the form (23) and is different from those subclasses listed in 

subsection 2.2. Therefore, it can be considered to belong to a new subclass in the family of FLMMs. 

The notion of super-convergence and nodal alignment have been applied for space fractional diffusion equations in 

[15] and [20]. The fractional Adam-Moulton method (FAM1) [12] of order 2 derived from fractional Newton-Gregory 

functions and Taylor series expansion methods, can also be derived from the super-convergence of the Grünwald 

approximation in the form  

 
1

ℎ𝛽
∑  ∞

𝑘=0 𝑔𝑘
(𝛽)

𝑦(𝑡𝑛−𝑘) = 𝑓𝑛−𝛽/2 + 𝑂(ℎ2) 

 

by replacing the right-hand side with the respective second-order approximations  

 

 𝑓𝑛−𝛽/2 = (1 −
𝛽

2
) 𝑓𝑛 +

𝛽

2
𝑓𝑛−1 + 𝑂(ℎ2). (26) 
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The generating function for the FAM1 is thus given by (18). 

Dimitrov et al. [21] formulated an order 2 scheme with super-convergence from asymptotic expansions of the super-

convergence. However, the non-aligned points of super-convergence have not been re-aligned in their work. 

To the knowledge of the authors, the application of super-convergence of Grünwald approximation for time-fractional 

differential equations with re-alignments of the super-convergence point has not appeared before in the literature. The 

following theorem relates the proposed FLMM scheme (22) with the FBDF of order 2 by Lubich [10] and the FAM1 

of order 2 by Galeone and Garrappa [12]. 

Theorem 4 When 𝛽 → 1,   

1. the new FLMM converges to the BDF2 method of order 2 for the classical ODE by generating polynomial 

𝛿(𝜉) =
3

2
− 2𝜉 +

1

2
𝜉2.  

2. the FAM1 converges to the fractional trapezoid method of order 2 with generating function 𝛿(𝜉) = 2
1−𝜉

1+𝜉
.  

Proof. Immediate by substituting 𝛽 = 1 in (18) and (16) respectively.  

3.1.  Implementation 

Here, we give two algorithms to compute the approximate solutions for the FIVP for linear and non-linear cases 

respectively using the new FLMM. 

For brevity, we use the following notations: For a sequence 𝑎 = {𝑎𝑘}, the vector slice [𝑎𝑖 , 𝑎𝑖 + 1, … , 𝑎𝑗] is denoted by 

𝑎𝑖:𝑗. The convolution of two vectors 𝑎, 𝑏 of size 𝑛 + 1 is denoted by 𝑎 ∗ 𝑏 = ∑  𝑛
𝑘=0 𝑎𝑘𝑏𝑛−𝑘. 

We reformulate the new FLMM scheme (22) with (24) and (25) as  

 

 ∑  𝑛
𝑘=0 𝑤𝑘𝑦𝑛−𝑘 = 𝑤0:𝑛 ∗ 𝑦0:𝑛 = 𝑤0𝑦𝑛 + 𝑤1:𝑛 ∗ 𝑦0:𝑛−1 = ℎ𝛽𝑓𝑛. (27) 

 

In the case of linear FIVP, we have 𝑓(𝑡, 𝑦) = 𝜆𝑦(𝑡) + 𝑠(𝑡) for some constant 𝜆 and function 𝑠(𝑡). The scheme (27) for 

this case, with 𝑠𝑛 = 𝑠(𝑡𝑛), is then  

 𝑤0𝑦𝑛 + 𝑤1:𝑛 ∗ 𝑦0:𝑛−1 = ℎ𝛽(𝜆𝑦𝑛 + 𝑠𝑛) 

which gives  

𝑦𝑛 =
1

𝑤0 − 𝜆ℎ𝛽
[ℎ𝛽𝑠𝑛 − 𝑤1:𝑛 ∗ 𝑦0:𝑛−1],    𝑛 = 1,2, . ..  . 

Algorithm 1 is given for the linear FIVP. 

Algorithm 1 (For linear FIVP) 

1. Define 𝑠(𝑡)  (for 𝑓(𝑡, 𝑦) = 𝜆𝑦 + 𝑠(𝑡)).  

2. Input 𝛽, 𝜆, ℎ, and 𝑁.  

3. Define 𝑔 with 𝑔0 = 1, 𝑔𝑛 = (1 −
𝛽+1

𝑛
) 𝑔𝑛−1,    𝑛 = 1,2, … , 𝑁.   

4. Define 𝑝 = [1 + 𝛽/2, −𝛽/2].  𝑤0:𝑁 == {𝑝 ∗ 𝑔𝑘−1:𝑘 , 𝑘 = 0,1, … , 𝑁}.  

5. Define array 𝒚 = {𝑦𝑘 , 𝑘 = 0,1, … , 𝑁} and set 𝑦0 = 0.   

6. For 𝑛 = 1,2, … , 𝑁 

𝑦𝑛 =
1

𝑤0 − 𝜆ℎ𝛽
[ℎ𝛽𝑠(𝑡𝑛) − 𝑤1:𝑛 ∗ 𝑦0:𝑛−1].                           

7. Return 𝒚.  

For non-linear FIVP, the non-linear equation (27) in 𝑦𝑛 needs to be solved for the unknown 𝑦𝑛. The Newton-

Raphson method numerically solves this with an initial seed 𝑦𝑛,0 = 𝑦𝑛−1. Algorithm 2 is given for the non-linear FIVP. 

Algorithm 2 (For non-linear FIVP) 

1. Define 𝑓(𝑡, 𝑦), 𝑓𝑦(𝑡, 𝑦).  

2. Input 𝛽, ℎ, and 𝑁. 

3. Define 𝑔 with 𝑔0 = 1, 𝑔𝑛 = (1 −
𝛽+1

𝑛
) 𝑔𝑛−1, 𝑛 = 1,2, … , 𝑁.   

4. Define 𝑝 = [1 + 𝛽/2, −𝛽/2] .  𝑤0:𝑁 = {𝑝 ∗ 𝑔𝑘−1:𝑘, 𝑘 = 0,1, … , 𝑁}.  

5. Define array 𝒚 = {𝑦𝑘 , 𝑘 = 0,1, … , 𝑁} and set 𝑦0 = 0.   

6. 𝑇𝑜𝑙𝑒𝑟𝑒𝑛𝑐𝑒 = 10−15, 𝐸𝑟𝑟𝑜𝑟 = 108 .   

7. For 𝑛 = 1,2, … , 𝑁  

𝑥0 ← 𝑦𝑛−1.   

𝑐𝑛 = 𝑤1:𝑛 ∗ 𝑦0:𝑛−1.   

𝐸𝑟𝑟𝑜𝑟 > 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒  

𝐹 = 𝑤0𝑥0 − ℎ𝛽𝑓(𝑡𝑛, 𝑥0) + 𝑐𝑛.  

𝐽𝐹 = 𝑤0 − ℎ𝛽𝑓𝑦(𝑡𝑛, 𝑥0).  

𝑦𝑛 = 𝑥0 −
𝐹

𝐽𝐹
.   

𝐸𝑟𝑟𝑜𝑟 = |𝑦𝑛 − 𝑥0|.  
𝑥0 ← 𝑦𝑛.      

8. return 𝒚.  
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Table 1. Computational order of the new FLMM for example 1. 

 

    𝛽 = 0.4   𝛽 = 0.8  𝛽 = 1.0 

𝑀 Max. Error Order Max Error Order Max Error Order 

8  6.533e-03   –   1.803e-02   –   2.538e-02   –  

16  1.882e-03   1.79544   5.319e-03   1.76094   7.569e-03   1.74543  

32  5.052e-04   1.89743   1.449e-03   1.87619   2.078e-03   1.86499  

64  1.309e-04   1.94874   3.783e-04   1.93741   5.448e-04   1.93116  

128  3.330e-05   1.97438   9.665e-05   1.96858   1.395e-04   1.96533  

256  8.400e-06   1.98720   2.443e-05   1.98427   3.530e-05   1.98261  

512  2.109e-06   1.99360   6.140e-06   1.99213   8.879e-06   1.99130  

1024  5.285e-07   1.99680   1.539e-06   1.99606   2.227e-06   1.99564  

2048  1.323e-07   1.99840   3.853e-07   1.99803   5.575e-07   1.99782  

4096  3.309e-08   1.99920   9.640e-08   1.99902   1.395e-07   1.99891  

 

Table 2. Computational order of the new FLMM for example 2. 

 

    𝛽 = 0.4   𝛽 = 0.8  𝛽 = 1.0 

𝑀 Max. Error Order Max Error Order Max Error Order 

8  1.698e-01   –   7.835e-02   –   6.985e-02   –  

16  2.779e-02   2.61128   1.978e-02   1.98599   1.769e-02   1.98155  

32  6.648e-03   2.06349   5.060e-03   1.96667   4.466e-03   1.98563 

64  1.663e-03   1.99866   1.286e-03   1.97645   1.122e-03   1.99286  

128  4.186e-04   1.99047   3.245e-04   1.98628   2.812e-04   1.99660 

256  1.052e-04   1.99271   8.155e-05   1.99260   7.037e-05   1.99836 

512  2.638e-05   1.99566   2.044e-05   1.99616   1.760e-05   1.99920 

1024  6.605e-06   1.99764   5.117e-06   1.99804   4.402e-06   1.99960 

2048  1.653e-06   1.99877   1.280e-06   1.99901   1.101e-06   1.99980  

4096  4.133e-07   1.99938   3.202e-07   1.99950   2.752e-07   1.99990 
 

4.   Numerical tests 

We used the new FLMM to compute approximate solutions of the FIVP (1) with a linear and a non-linear source 

function 𝑓(𝑡, 𝑦) in the time interval [0,1]. 
 

 Example 1:  

 𝐶𝐷0
𝛽

𝑦(𝑡) =
Γ(𝑚 + 1)

Γ(𝑚 + 1 − 𝛾)
𝑡𝑚−𝛾 −

Γ(𝑚)

Γ(𝑚 − 𝛾)
𝑡𝑚−1−𝛾 + 𝜆𝑦(𝑡) + 𝑡𝑚 − 𝑡𝑚−1, 

         𝑦(0) = 0,  
  

where 𝜆 = −1 and we set 𝑚 = 5. The exact solution is given by 𝑦(𝑡) = 𝑡𝑚 − 𝑡𝑚−1. 

  

Example 2:  

 𝐶𝐷0
𝛽

𝑦(𝑡) =
Γ(2𝛽 + 5)

Γ(𝛽 + 5)
𝑡𝛽+4 −

240

Γ(6 − 𝛽)
𝑡(5−𝛽) + (𝑡2𝛽+4 − 2𝑡5)2 − 𝑦(𝑡)2, 

          𝑦(0) = 0, 
  

with exact solution 𝑦(𝑡) = 𝑡2𝛽+4 − 2𝑡5. 

 

The problems are solved for fractional order values 𝛽 = 0.4,0.8 and 1.0. The computational domain for both 

problems are {𝑡𝑛 = 𝑛/𝑀, 𝑛 = 0,1, ⋯ , 𝑀} and step size ℎ = 1/𝑀, where 𝑀 is the number of subintervals of the 

problem domain [0,1]. The problems were solved for 𝑀 = 2𝑗 , 𝑗 = 3,4, . . . ,12. 

The computational order of the new FLMM method is computed by the formula  

 

 𝑝𝑗+1 = log(𝐸𝑗+1/𝐸𝑗)/log(ℎ𝑗+1/ℎ𝑗) 

 

where 𝐸𝑗 , ℎ𝑗 are the merror and the step size for 𝑀 = 2𝑗. 
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Tables 1 and 2 list the maximum errors and computational orders for Examples 1 and 2 respectively for various 

grid sizes 𝑀 = 8,16, . . . ,4096. The computational orders confirm the theoretical order 2 of the new FLMM. 

5.  Analysis of linear stability 

For the analysis of the stability of an FLMM, we have the following preparations. The analytical solution to the 

test problem  

 𝐶𝐷𝑡
𝛽

𝑦(𝑡) = 𝜆𝑦(𝑡),    𝑦(0) = 𝑦0 

 

is given by 𝑦(𝑡) = 𝐸𝛽(𝜆𝑡𝛽)𝑦0, where 𝐸𝛽(⋅) is the Mittag-Leffler function  

 

𝐸𝛽(𝑥) = ∑  
∞

𝑘=0

𝑥𝑘

Γ(𝛽𝑘 + 1)
. 

 

The analytical solution 𝑦(𝑡) of the test problem is stable in the sense that it vanishes in the 𝛽𝜋-angled region  

 

Σ𝛽 = {𝜉 ∈ ℂ: |arg(𝜉)| >
𝛽𝜋

2
}, 

 

where the angle 𝛽𝜋/2 is measured from the positive real axis. 

The analytical unstable region is thus the infinite wedge {𝜉 ∈ ℂ: |arg(𝜉)| ≤
𝛽𝜋

2
} = ℂ\Σ𝛽. 

 

For the numerical stability of FLMM, we have the following criteria: 

 

Definition 1 Let 𝑆 be the numerical stability region of an FLMM. For an angle, 𝛼, define the sector  

 

 𝑆(𝛼) = {𝜉: |𝜋 − arg(𝜉)| < 𝛼}, 
 

where the angle 𝛼 is measured from the negative real axis. 

The FLMM is said to be   

    1.  𝐴(𝛼)-stable if 𝑆(𝛼) ⊆ 𝑆.  

    2.  𝐴-stable if it is 𝐴(𝜋 − 𝛽𝜋/2)-stable. That is, Σ𝛽 ⊆ 𝑆.  

    3.  unconditionally stable if it is 𝐴(0)-stable. That is if the negative real line (−∞, 0) ⊆ 𝑆. 

 

We analyze the stability of the new FLMM through its stability region 𝑆 = {𝛿(𝜉) = (1 − 𝜉)𝛽𝑝(𝜉): |𝜉| > 1} = ℂ\𝑆𝑐, 
where 𝑆𝑐 = {𝛿(𝜉) = (1 − 𝜉)𝛽𝑝(𝜉): |𝜉| ≤ 1} is the unstable region. 

 

Theorem 5  The unstable region 𝑆𝑐 is bounded and symmetric about the real axis. Moreover, For 0 < 𝛽 ≤ 1, if the 

imaginary part of 𝜉, ℑ(𝜉) > 0, then the real part ℜ(𝛿(𝜉)) > 0 and ℑ(𝛿(𝜉)) < 0.  

 

Proof. For the boundedness of 𝑆𝑐, we see that for |𝜉| ≤ 1,  

 

|𝛿(𝜉)| ≤ (1 + |𝜉|)𝛽 [(1 +
𝛽

2
) +

𝛽

2
|𝜉|] ≤ 2𝛽(1 + 𝛽) < ∞. 

 

For the symmetry about the real axis, we immediately see that 𝛿(𝜉)̅ = 𝛿(𝜉). 

For 𝜉 = 𝑒𝑖𝜃, we have  

1 − 𝜉 = (𝑒−
𝑖𝜃
2 − 𝑒

𝑖𝜃
2 ) 𝑒

𝑖𝜃
2 = 2𝑖sin

𝜃

2
𝑒

𝑖𝜃
2 = 2sin

𝜃

2
𝑒𝑖(

𝜃
2

−
𝜋
2

) =: 𝑏𝑒𝑖𝜙 , 

 

where 𝜙 ≡ 𝜙(𝜃) =
𝜃

2
−

𝜋

2
 and 𝑏 ≡ 𝑏(𝜃) = 2sin

𝜃

2
= 2cos𝜙 > 0 for 0 < 𝜃 < 2𝜋. 

Now, writing 𝛿(𝜉) = (1 − 𝜉)𝛽 + 𝛽/2(1 − 𝜉)𝛽+1, we have for the real part of 𝛿(𝜉),  

 ℜ(𝛿(𝜉)) = 𝑏𝛽[cos𝛽𝜙 + 𝛽cos𝜙cos(𝛽 + 1)𝜙] =: 𝑏𝛽𝑔(𝜃) (28) 

 

where, with some trigonometric manipulations,  

 

𝑔(𝜃) = (1 +
𝛽

2
) cos𝛽𝜙 +

𝛽

2
cos(𝛽 + 2)𝜙. 
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Now, 

 

                          𝑔′(𝜃) = −𝛽 (1 +
𝛽

2
) [sin𝛽𝜙 + sin(𝛽 + 2)𝜙]𝜙′ = −

1

2
𝛽(2 + 𝛽)sin(𝛽 + 1)𝜙cos𝜙 > 0,  

 

because, for 0 < 𝜃 < 𝜋, 𝜙 ∈ (−𝜋/2,0) where cos𝜙 > 0 and (𝛽 + 1)𝜙 ∈ [−
(𝛽+1)𝜋

2
, 0] in the quadrants III and IV for 

0 < 𝛽 ≤ 1 where sin(𝛽 + 1)𝜙 < 0.  

Hence, 𝑔(𝜃) is increasing with 𝑔(0) = cos(𝛽𝜋/2) > 0. Thus, 𝑔(𝜃) > 0 for 0 < 𝜃 < 𝜋. It then follows from the 

symmetry that ℜ(𝛿(𝜉)) = ℜ(𝛿(𝜉)̅) > 0 . 

For the imaginary part of 𝛿(𝜉),  

 

 ℑ(𝛿(𝜉)) = 𝑏𝛽[sin𝛽𝜙 + 𝛽cos𝜙sin(𝛽 + 1)𝜙] =: 𝑏𝛽ℎ(𝜃) < 0, (29) 

 

because, when 0 < 𝜃 < 𝜋, we see that 𝜙 and 𝛽𝜙 are in the quadrant IV where cos𝜙 > 0 and sin𝛽𝜙 < 0, and (𝛽 +
1)𝜙 is in the quadrants III and IV where sin(𝛽 + 1)𝜙 < 0. This gives ℑ(𝛿(𝜉(𝜃)) < 0 for 0 < 𝜃 < 𝜋. When 𝜋 < 𝜃 <
2𝜋, we again see that 𝜙 and 𝛽𝜙 are in quadrant I where cos𝜙 > 0 and sin𝛽𝜙 > 0, and (𝛽 + 1)𝜙 is in the quadrants I 

and II where sin(𝛽 + 1)𝜙 > 0. This gives ℑ(𝛿(𝜉(𝜃)) > 0 for 𝜋 < 𝜃 < 2𝜋. and the proof is completed.  

 

Theorem 5 tells us that the new FLMM is 𝐴(
𝜋

2
)-stable for 0 < 𝛽 ≤ 1. We have a stronger result. 

 

Theorem 6  The FLMM in (22) is 𝐴-stable for 0 < 𝛽 ≤ 1.  

 

Proof. From (28) and (29), the tangent at 𝜃 ∈ [0, 𝜋] on the stability region boundary {𝛿(𝜉): |𝜉| = 1} is ℎ(𝜃)/𝑔(𝜃) with 

its derivative given by  

𝑑

𝑑𝜃

ℎ(𝜃)

𝑔(𝜃)
=

𝛽(𝛽 + 1)(𝛽 + 2)cos2𝜙

2(𝑔(𝜃))2
> 0. 

 

Thus, the tangent is monotonically increasing in [0, 𝜋] with minimum at 𝜃 = 0,  
 

(ℎ/𝑔)(0) = −tan(𝛽𝜋/2). 
 

Therefore, from the symmetry, the unstable region is contained in the wedge {𝜉: |arg(𝜉)| ≤
𝛽𝜋

2
} = ℂ\Σ𝛽 meaning that 

the new FLMM is 𝐴-stable.  

 

The 𝐴-stability confirms that, for 0 < 𝛽 ≤ 1, our new FLMM is 𝐴(𝜋/2)-stable and hence unconditionally stable.  

 

 

 
 

Figure 1. Unstable regions and 𝐴-stable tangent boundaries for the new FLMM in (23).  

 
In Figure 1, the unstable regions and the A-stable tangent boundaries of the new FLMM given by the generating 

function (23) for fractional order values 𝛽 = 0.25,0.5,0.75,1 are shown. Note that the unstable region for a generating 

function 𝛿(𝜉) is given by the graph (see also (15) )  
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 𝑆𝑐 = {𝛿(𝜉): |𝜉| ≤ 1}. 

6.  Comparison of stability regions 

We compare the stability regions of previously established implicit FLMMs of order 2 with our new FLMM 

which we now denote by NFLMM2 for want of an abbreviation. 

For this, we consider the Lubich’s fractional backward difference method FBDF2 [10], the fractional Adams-

Moulton method FAM1 [6] and the fractional Trapezoid rule [10, 22] given by their respective generating functions in 

(17), (18) and (16). 

  
 (a) 𝛽 = 0.25 (b) 𝛽 = 0.50  

           
  (c) 𝛽 = 0.75 (d) 𝛽 = 0.90 

 

Figure 2. Comparing the unstable regions of FAM1, NFLMM2 and FBDF2 for various 𝛽. 

 

In Figure 2, the unstable regions for these FLMMs and our NFLMM2 are shaded for various values of 𝛽. Note 

that the straight lines in the figures depict the boundary of the stability region of the FT2 method in which the left sides 

of the lines are the stability region which also corresponds to the boundary of the analytical stability regions Σ𝛽. The 

unstable regions of FT2 are not shaded for clarity. 

The advantage of our NFLMM2, in terms of the unstable regions (UR), is that the UR of the NFLMM2 is smaller 

than that of the FAM1 and is very much closer to the UR of the FBDF2. Also, the UR of the FT2 is the largest among 

all the URs. 

We note this from the observation that the unstable regions (see also the figures in Figure 2) satisfy the ordering 

 

 𝛿𝐹𝐵𝐷𝐹2(−1) < 𝛿𝑁𝐹𝐿𝑀𝑀2(−1) < 𝛿𝐹𝐴𝑀1(−1) < 𝛿𝐹𝑇2(−1) = +∞. 
 

The computational costs of all the FLMMs of order 2 in the general form (11) are the same. Therefore, the 

efficiency of the methods is measured by the computational cost of the weights 𝑤𝑘 in (11). 

The weights 𝑤𝑘 of NFLMM2 have the simplest computational effort as they involve only a linear combination of 

the Grünwald weights 𝑔𝑘
(𝛽)

 given in (25) which can be recursively computed by (5) with only one previous weight. 
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In contrast, the weights of FBDF2 require computations using Miller’s formula (see eg. [12] ) with two previous 

weights. 

The weights of FAM1 require more effort as its generating function involves a rational function. However, in this 

case, the right-hand side of the FAM1 scheme has the form (26) with almost the same computational effort as 

NFLMM2. Nevertheless, the right-hand side of this scheme requires two coefficients and two values of the function 

𝑓(𝑡, 𝑦) requiring an additional memory [6]. 

Finally, computing the weights for FT2 needs more effort as it requires the first 𝑛 coefficients of its generating function 

and FFT [12]. 

7.  Conclusion 

We proposed and analyzed a new FLMM of order two for FIVPs that falls under a new subclass of FLMM. The 

new FLMM is as 𝐴-stable as the other known order two methods. However, the proposed method has a larger stability 

region than that of the FAM1 and FT2 methods. The computational cost of the NFLMM2 is better than that of the 

FBDF2 method, whereas the FAM1 requires an additional memory requirement in its iterations. Hence, the proposed 

method can be considered competitive with the other methods of order 2 in terms of stability and/or computational 

cost. 
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