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ABSTRACT: There have been some conjugate gradient methods with strong convergence but numerical instability 

and conversely. Improving these methods is an interesting idea to produce new methods with both strong convergence 

and  numerical stability. In this paper, a new hybrid conjugate gradient method is introduced based on the Fletcher

formula (CD) with strong convergence and the Liu and Storey formula (LS) with good numerical results. New 

directions satisfy the sufficient descent property, independent of line search.Under some mild assumptions, the global 

convergence of new hybrid method is proved.Numerical results on unconstrained CUTEst test problems show that the 

new algorithm isvery robust and efficient. 
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يهلکافخاصية الإنحدارا مترافقةال ميولمن خلال طریقة ال ةغيرالمقيّد لمسائ تحسينحل و  

پيمایی، مجيد رستمی هفرزاد را  

لإنتاجفكرةمثیرة.تحسینهذهالطرقكسیا،لکنغیرمستقرّةوغیرثابتةعددیاوعةقوبتوافقتهناكبعضمنطرقالإنحدارالمزدوج،التی:لخصمال

(CDةفلجر)طرقجدیدةبالتقاربالعددیالقویوالثابت.فیهذهالمقالة،قدعرّفتوقدّمتطریقةالإنحدارالمزدوجالمرکّبالجدیدعلیأساسصیغ

و لیو صیغة LSاستوری)بالتقاربالقویو ( القیاسیة تحتالشروط جیدة. رقمیة البحثبنتائج عن المستقلة الجهاتالجدیدة الجیدة. العددیة وبالنتائج

تدلّعلیأنّالخوارزمیة CUTEstاختبارالقضایاوالمسائلغیرالمقیدةعلىالنتائجالعددیة.الخطي،تماثباتالتقاربالجماعيللطریقةالمركبةالجدیدة

الجدیدة،قویةّجداّ.



 النتائجالعددیة.-التقاربالجماعی،شرطالتقلیلالکافی-التحسینغیرالمقیّد-الإنحدارالمزدوجطرق:الكلمات المفتاحية

 

 

 
 

 

 

1. Introduction 

onsider the unconstrained optimization problem 
𝑓(𝑥),                                                      𝑥∈ℝ𝑛

𝑚𝑖𝑛                                     )1) 

where 𝑓: ℝ𝑛 → ℝ is a smooth nonlinear function whose gradient at 𝑥 is available 𝑔 ≔ 𝑔(𝑥) = ∇𝑓(𝑥). There are 

many iterative methods to solveunconstrained optimization problem including the Newton methods, the quasi-Newton

methods, trust-region methods [21]. 

1.1 Conjugate gradient method 

The conjugate gradient (CG) methods are famous iterative methods for solving large-scale unconstrained

optimization problems whose iterative scheme is 

C 
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𝑥𝑘+1 ≔ 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ,            𝑥0 ∈ ℝ𝑛 .                                                           (2) 

Here 𝑥0 ∈ ℝ𝑛 is an initial point, 𝛼 > 0 is a step size, which is obtained by an exact or inexact line search methodsand  

𝑑𝑘 is a search direction computed by 

𝑑𝑘 = {
−𝑔𝑘,                            𝑘 = 0,
−𝑔𝑘 + 𝛽𝑘𝑔𝑘−1,          𝑘 ≥ 1,

                                                             (3) 

in which 𝛽𝑘 is a scalar, called the CG parameter and 𝑔𝑘 ≔ 𝑔(𝑥𝑘). Different choices for CG parameter are 

available, some of which are as follows 

𝛽𝑘
𝐹𝑅 ≔

‖𝑔𝑘‖2

‖𝑔𝑘−1‖2 ,                           Fletcher & Reeves (FR)  [8]                                (4) 

 

𝛽𝑘
𝐻𝑆 ≔

𝑔𝑘
𝑇𝑦𝑘−1

𝑑𝑘−1
𝑇 𝑦𝑘−1

,                       Hestenes & Stiefel (HS)     [15]                           (5) 

 

𝛽𝑘
𝐶𝐷 ≔ −

‖𝑔𝑘‖2

𝑔𝑘−1
𝑇 𝑑𝑘−1

,                    Fletcher (CD)  [7]                                                    (6) 

 

𝛽𝑘
𝑃𝑅𝑃 ≔

𝑔𝑘
𝑇𝑦𝑘−1

‖𝑔𝑘−1‖2 ,                    Polak & Ribire − Polyak (PRP)    [23,24]         (7) 

 

𝛽𝑘
𝐷𝑌 ≔

‖𝑔𝑘‖2

𝑑𝑘−1
𝑇 𝑦𝑘−1

,                                        Dai & Yuan (DY)  [4]                                 (8) 

 

𝛽𝑘
𝐿𝑆 ≔ −

𝑔𝑘
𝑇𝑦𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

,                                    Liu & Storey (LS)    [20]                            (9) 

𝛽𝑘
𝐻𝑍 ≔ (𝑦𝑘−1 − 2𝑑𝑘−1

‖𝑦𝑘−1‖2

𝑑𝑘−1
𝑇 𝑦𝑘−1

)
𝑇

𝑔𝑘

𝑑𝑘−1
𝑇 𝑦𝑘−1

,             Hager & Zhang (HZ)    [13]                 (10) 

 

in which ‖ .  ‖ is the Euclidean norm and 𝑦𝑘−1 ≔ 𝑔𝑘 − 𝑔𝑘−1. These methods require low memory. 

 

In order to guarantee the global convergence of CG methods, the search direction 𝑑𝑘 must satisfythe sufficient descent 

condition [1] 

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2,        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 0,                                                               (11) 

 

in which 𝑐 is a positive constant. In CG methods to solve (1) , after determining the descentsearch direction satisfying 

𝑔𝑘
𝑇𝑑𝑘 ≤ 0 for all 𝑘 ≥ 0, the step size 𝛼𝑘 needs to be found, which can be computed by inexact line search such as 

Armijo, Goldstein and Wolfe conditions. For a given constant 𝜌 ∈ (0,1), the Armijo line search is 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘) ≤ 𝜌𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 .                                                                     (12) 

The Armijo condition (12) along with 
𝑔𝑘+1

𝑇 𝑑𝑘 ≥ 𝜎𝑔𝑘
𝑇𝑑𝑘,             0 < 𝜌 < 𝜎 < 1,                                                            (13) 

is called the Wolfe line search [21].In addition, in a strong Wolfe line search, (13) is changed as 

|𝑔𝑘+1
𝑇 𝑑𝑘| ≤ −𝜎𝑔𝑘

𝑇𝑑𝑘 .                                                                                   (14) 

1.2    Applications of CG method 

Conjugate gradient methods play an important role in solving large-scale unconstrained optimization problems

which arise in economics, engineering, sciences and so on. Currently, the unconstrained optimization problems in 

impulse noise removal and image restoration have been solved by CG methods [2,17]. 

1.3 Contribution 

Although LS has a good performance in practice, it is generally not a strong convergence.On the other hand, in 

CD with strong convergence the numerical results are not efficient. The purpose of this paper is to overcome these 

drawbacks. We improve and combine LS and CD to obtain a new method with a good performance in practice and 

strong convergence properties. The new method always produces a sufficient descent direction which the global

convergence of it is established under some suitable assumptions. Also, we give some preliminary numerical 

experiments to illustrate the efficiency of new method. 

In Section 2, we describe our proposed method and give its algorithm. The sufficient descent condition of new 

direction and the global convergence of the new algorithm are established in Section 3. In Section 4, we report some 

numerical results to show the efficiency of new method.Finally, we give our conclusion in Section 5. 
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2.  Motivation and proposed algorithm 

In this section, we describe the new method to solve unconstrained optimization problem (1). The LS proposed 

by Liu and Story [02] . The global convergence of LS with Grippo & Lucidi line search is established in [11] . This 

method has good numerical results but its global convergence properties are not strong. Many researchers have 

proposed several modificationsof LS, see [19,26,27]. Fletcher in [7] proposed CDfor a general objective function with 

strong convergence properties, but in numerical performance is weak. We improve and combine CDand LS to obtain a 

new method with both the strong convergence and the good numerical results. Based on LS and CD parameters, we 

obtain 

𝛽𝑘
1 ≔ −

𝑔𝑘
𝑇𝑦𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

              𝑎𝑛𝑑          𝛽𝑘
2 ≔ −

‖𝑦𝑘−1‖2

𝑔𝑘−1
𝑇 𝑑𝑘−1

.                                                     (15) 

Here, 𝛽𝑘
1: = 𝛽𝑘

𝐿𝑆 and in the numerator of 𝛽𝑘
2 term ‖𝑦𝑘−1‖2 has replaced ‖𝑔𝑘‖2 in parameter 𝛽𝑘

𝐶𝐷. Therefore, the new 

conjugate gradient parameter is obtained by 

𝛽𝑘
𝑛𝑒𝑤: = 𝑡𝑘𝛽𝑘

2 − 𝛽𝑘
1,                                                                          (16) 

with 

 

𝑡𝑘 ≔ 2
𝑔𝑘

𝑇𝑑𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

.                                                                                (17) 

 

The parameters 𝛽𝑘
1, 𝛽𝑘

2 and 𝑡𝑘 guarantee the sufficient descent property and the global convergence. Furthermore, these 

parameters improve numerical results of new method in compared to CD and LS methods. Now, by substituting (15) 

and (17) in (11) , we get 

𝛽𝑘
𝑛𝑒𝑤: = −2

𝑔𝑘
𝑇𝑑𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

‖𝑦𝑘−1‖2

𝑔𝑘−1
𝑇 𝑑𝑘−1

+
𝑔𝑘

𝑇𝑦𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

.                                                      (18) 

 

Finally, the new search direction 𝑑𝑘 is computed by 

𝑑𝑘 = {
−𝑔𝑘,                                𝑘 = 0,

−𝑔𝑘 + 𝛽𝑘
𝑛𝑒𝑤𝑑𝑘−1,          𝑘 ≥ 1.

                                                            (19) 

 

Algorithm 1 solves the smooth unconstrained optimization problem (1).It takes the initial point 𝑥0 ∈ ℝ𝑛 as input and 

uses the following parameters:𝜀 > 0 (minimum threshold for the stopping test), 𝜅 ∈ (0,1) and 0 < 𝜌 < 𝜎 < 1 (Line 

search parameters), 𝑘𝑚𝑎𝑥 (maximum number of iterations), and 0 < 𝛼𝑚𝑖𝑛 < 𝛼𝑚𝑎𝑥 < ∞  (minimum and maximum 

values for 𝛼𝑘). It returns 𝑥∗ ≔ 𝑥𝑘  and 𝑓∗ ≔ 𝑓𝑘 as an optimum and its function value. Note that 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 prevent 

the production of too small and large step size, respectively. 

Algorithm 1 A new conjugate gradient method 

(S0) Compute the initial function value 𝑓0 ≔ 𝑓(𝑥0), the initial gradient vector 𝑔0 ≔ 𝑔(𝑥0) and set 𝑑0 ≔ −𝑔0. 

(S1) If ‖𝑔𝑘‖ ≤ 𝜀 or 𝑘 > 𝑘𝑚𝑎𝑥 , stop. 

(S2) Find 𝛼𝑘 satisfying (12) and (14) and restrict 𝛼𝑘 = 𝑚𝑎𝑥{𝛼𝑚𝑖𝑛 , 𝑚𝑖𝑛{𝛼𝑘 , 𝛼𝑚𝑎𝑥}}. Then, compute 𝑥𝑘+1 ≔ 𝑥𝑘 +

𝛼𝑘𝑑𝑘, 𝑓𝑘+1 ≔ 𝑓(𝑥𝑘+1) and 𝑔𝑘+1 ≔ 𝑔(𝑥𝑘+1). 

(S3) Calculate 𝛽𝑘+1
1  and 𝛽𝑘+1

2  by (15), obtain the parameter 𝑡𝑘+1 by (17), determine the parameter 𝛽𝑘+1
𝑛𝑒𝑤 by (16) and  

𝑑𝑘+1 ≔ −𝑔𝑘+1 + 𝛽𝑘+1
𝑛𝑒𝑤𝑑𝑘. 

(S4) Replace 𝑘 by 𝑘 + 1 and go to (S1). 

3. Convergence analysis 

In this section, the sufficient descent property and the global convergence of the Algorithm 1 are established. To 

do so, we make some assumptions on the objective function. 
(H1)The level set 𝐿(𝑥0) = {𝑥 ∈ ℝ𝑛| 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded, i.e.,there exists a constant 𝐵 > 0 such that 

‖𝑥‖ ≤ 𝐵,        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐿(𝑥0).                                                                    (20) 

(H2) In some neighborhood Ω ⊆ 𝐿(𝑥0),the gradient of the objective function 𝑓 is Lipschitz continuous, i.e., there 

exists a constant 𝐿 > 0 such that 

‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖,        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Ω.                                                    (21) 

From (H1) and (H2), there exists a positive constant 𝛾 such that 

‖𝑔(𝑥)‖ ≤ 𝛾,                                                                                       (22) 

see [21]. We now show that the generated directions by Algorithm 1 satisfy the sufficient descentcondition (11) with 

𝑐 =
7

8
 independent of line search type. 

Lemma 1 Suppose that the direction 𝑑𝑘 is generated by Algorithm 1. Then, we have 

𝑔𝑘
𝑇𝑑𝑘 ≤ −

7

8
‖𝑔𝑘‖2.                                                                                (23) 

Proof By multiplying (19) in 𝑔𝑘
𝑇 and using (18), we obtain 
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𝑔𝑘
𝑇𝑑𝑘 = −‖𝑔𝑘‖2 + 𝛽𝑘

𝑛𝑒𝑤𝑔𝑘
𝑇𝑑𝑘−1                                                                                                            

 

= −‖𝑔𝑘‖2 + (
𝑔𝑘

𝑇𝑦𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

− 2
𝑔𝑘

𝑇𝑑𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

‖𝑦𝑘−1‖2

𝑔𝑘−1
𝑇 𝑑𝑘−1

) 𝑔𝑘
𝑇𝑑𝑘−1                                                          

 

=
−‖𝑔𝑘‖2(𝑔𝑘−1

𝑇 𝑑𝑘−1)𝟐 + (𝑔𝑘−1
𝑇 𝑑𝑘−1)(𝑔𝑘

𝑇𝑦𝑘−1)(𝑔𝑘
𝑇𝑑𝑘−1) − 2‖𝑦𝑘−1‖2(𝑔𝑘

𝑇𝑑𝑘−1)𝟐

(𝑔𝑘−1
𝑇 𝑑𝑘−1)𝟐

. 

 

Take 

𝜐𝑘 ≔ 2(𝑔𝑘
𝑇𝑑𝑘−1)𝑦𝑘−1                           �̃�𝑘 ≔

1

2
 (𝑔𝑘−1

𝑇 𝑑𝑘−1)𝑔𝑘 .      

Using 𝜐𝑘
𝑇�̃�𝑘 ≤

1

2
(‖𝜐𝑘‖2 + ‖ �̃�𝑘‖2), we get 

𝑔𝑘
𝑇𝑑𝑘 ≤

1

Θ1
2 (−‖𝑔𝑘‖2Θ1

2 + 2Θ2
2‖𝑦𝑘−1‖2 +

1

8
Θ1

2‖𝑔𝑘‖2 − 2‖𝑦𝑘−1‖2Θ2
2) = −

7

8
‖𝑔𝑘‖2, 

where 

Θ1 ≔ 𝑔𝑘−1
𝑇 𝑑𝑘−1                  𝑎𝑛𝑑                Θ2 ≔ 𝑔𝑘

𝑇𝑑𝑘−1. 

 
Therefore, the search direction 𝑑𝑘 always satisfies the sufficient descent condition. 

 

Lemma 2 Suppose that (H2) holds and the tuning parameter 𝛼𝑚𝑎𝑥 is given. Then, there exists a constant ω1 > 0 such 

that 

|𝛽𝑘
1| ≤ 𝜔1

‖𝑑𝑘−1‖

‖𝑔𝑘−1‖2.                                                                                 (24) 

 

Proof From Lemma 1, we have 

 

𝑔𝑘−1
𝑇 𝑑𝑘−1 ≤ −

7

8
‖𝑔𝑘−1‖2,                             

 

so that 
1

|𝑔𝑘−1
𝑇 𝑑𝑘−1|

≤
8

7‖𝑔𝑘−1‖2.                                                                            (25) 

 

 

By the definition of 𝛽𝑘
1, we obtain 

 

|𝛽𝑘
1| = |−

𝑔𝑘
𝑇𝑦𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

| = |
𝑔𝑘

𝑇𝑦𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

|. 

Then, from the Cauchy-Schwarz inequality, (H2), (22) and (25), we get 

|𝛽𝑘
1| ≤

‖𝑔𝑘‖‖𝑦𝑘−1‖

|𝑔𝑘−1
𝑇 𝑑𝑘−1|

≤
8𝛾𝐿𝛼𝑘−1‖𝑑𝑘−1‖

7‖𝑔𝑘−1‖2
= 𝜔1

‖𝑑𝑘−1‖

‖𝑔𝑘−1‖2
, 

with 𝜔1: =
8𝛾𝐿𝛼𝑚𝑎𝑥

7
. 

 

Lemma 3 Suppose that (H2) holds and the tuning parameter 𝛼𝑚𝑎𝑥 is given. Then, there exists a constant ω2 > 0 such 

that 

 

|𝛽𝑘
2| ≤ 𝜔2

‖𝑑𝑘−1‖2

‖𝑔𝑘−1‖2.                                                                                (26) 

 

Proof  (H2), (15) and (25) result in 

 

|𝛽𝑘
2| = |−

‖𝑦𝑘−1‖2

𝑔𝑘−1
𝑇 𝑑𝑘−1

| =
‖𝑦𝑘−1‖2

|𝑔𝑘−1
𝑇 𝑑𝑘−1|

≤
8𝐿2𝛼𝑘−1

2 ‖𝑑𝑘−1‖2

7‖𝑔𝑘−1‖2
= 𝜔2

‖𝑑𝑘−1‖2

‖𝑔𝑘−1‖2
, 

where 𝜔2 ≔
8𝐿2𝛼𝑚𝑎𝑥

2

7
.  

 

Lemma 4 If (H2) holds, then there exists constant 𝜔3 > 0 such that 

 

|𝑡𝑘| ≤ 𝜔3
‖𝑑𝑘−1‖

‖𝑔𝑘−1‖2.                                                                             (27) 
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Proof The Cauchy-Schwarz inequality, (17), (22) and (25) imply 

 

|𝑡𝑘| = |2
𝑔𝑘

𝑇𝑑𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

| ≤ 2
‖𝑔𝑘‖‖𝑑𝑘−1‖

|𝑔𝑘−1
𝑇 𝑑𝑘−1|

≤
16𝛾‖𝑑𝑘−1‖

7‖𝑔𝑘−1‖2
= 𝜔3

‖𝑑𝑘−1‖

‖𝑔𝑘−1‖2
, 

in which 𝜔3 ≔
16𝛾

7
. 

 
 

Lemma 5 Suppose that (H1) and (H2) hold. If the sequence {𝑑𝑘} be generated by Algorithm 1, then there exists a 

constant 𝑀 > 0 such that 
‖𝑑𝑘‖ ≤ 𝑀,        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 0.                                                                (28) 

 

Proof 

We use induction to prove this lemma. First(22) implies that 

‖𝑑0‖ = ‖𝑔0‖ ≤ 𝛾. 

From the assumption of induction ‖𝑑𝑘−1‖ is bounded. Hence, the exists constant 𝑀∗ > 0 such that 
‖𝑑𝑘−1‖ ≤ 𝑀∗.                                                                           (29) 

 

Now, the definitions of 𝑑𝑘 and 𝛽𝑘
𝑛𝑒𝑤, give 

‖𝑑𝑘‖ = ‖−𝑔
𝑘

+ 𝛽
𝑘
𝑛𝑒𝑤𝑑𝑘−1‖ ≤ ‖𝑔

𝑘
‖ + |𝛽

𝑘
𝑛𝑒𝑤|‖𝑑𝑘−1‖ 

 

≤ ‖𝑔
𝑘
‖ + (|𝛽

𝑘
1| + |𝑡𝑘||𝛽

𝑘
2|)‖𝑑𝑘−1‖.         

We get from (22), (29) and Lemmas 2-4 that 

 

‖𝑑𝑘‖ ≤ 𝛾 + (𝜔1

‖𝑑𝑘−1‖

‖𝑔
𝑘−1

‖
2 + 𝜔2𝜔3

‖𝑑𝑘−1‖3

‖𝑔
𝑘−1

‖
4) ‖𝑑𝑘−1‖ 

          ≤ 𝛾 + (
𝜔1

𝜀2
‖𝑑𝑘−1‖ +

𝜔2𝜔3

𝜀4
‖𝑑𝑘−1‖3) ‖𝑑𝑘−1‖. 

  ≤ 𝛾 + (
𝜔1

𝜀2
𝑀∗ +

𝜔2𝜔3

𝜀4
(𝑀∗)3) 𝑀∗ ≔ 𝑀. 

 

 
The following result is a theorem in [29]. 

Lemma 6 Let 𝑑𝑘 be a sufficient descent direction and assume the step size 𝛼𝑘 satisfies the strong Wolfe line search 

(12) and (14). Then, based on (H1) and (H2), we have 

∑
(𝑔𝑘

𝑇𝑑𝑘)
2

‖𝑑𝑘‖2 < +∞.                                                      ∞
𝑘=0               (30) 

Theorem 1 Let 𝑑𝑘 be a sufficient descent direction and {𝑥𝑘} be the generated sequence by Algorithm 1. Also, (H1) 
and (H2) hold. Then 

lim𝑛→∞ inf  ‖𝑔𝑘‖ = 0.                                                               (31) 
Proof From Lemma 5, we obtain 

∑
1

‖𝑑𝑘‖2 ≥ ∑
1

𝑀2 = +∞∞
𝑘=0 .                                       ∞

𝑘=0                  (32) 

We use contradiction to prove this theorem. Hence, there exists a constant 𝜖 > 0 such that 

‖𝑔𝑘‖ ≥ 𝜖.                                                                        (33) 
Let 

Ξ𝑘 =
𝑔𝑘

𝑇𝑑𝑘

‖𝑔𝑘‖‖𝑑𝑘‖
.                                                                             (34) 

Using Lemma 1, we obtain 

Ξ𝑘 =
𝑔𝑘

𝑇𝑑𝑘

‖𝑔𝑘‖‖𝑑𝑘‖
≤ −

7

8

‖𝑔𝑘‖2

‖𝑔𝑘‖‖𝑑𝑘‖
= −

7

8

‖𝑔𝑘‖

‖𝑑𝑘‖
,                                                  (35) 

so that 

Ξ𝑘
2 ≥

49

64

‖𝑔𝑘‖2

‖𝑑𝑘‖2.                                                                                       (36) 

From (33), (34) and (36), we can obtain 

49

64

𝜖2

‖𝑑𝑘‖2 ≤
49

64

‖𝑔𝑘‖2

‖𝑑𝑘‖2 ≤ Ξ𝑘
2 =

(𝑔𝑘
𝑇𝑑𝑘)

2

‖𝑔𝑘‖2‖𝑑𝑘‖2 ≤
(𝑔𝑘

𝑇𝑑𝑘)
2

𝜖2‖𝑑𝑘‖2.                                                     (37) 
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By taking sums from both sides (37) and using Lemma 6, we have 

∑
1

‖𝑑𝑘‖2
≥ ∑

(𝑔𝑘
𝑇𝑑𝑘)

2

‖𝑑𝑘‖2
< +∞

∞

𝑘=0

,                                      

∞

𝑘=0

 

which contradicts with (32). Hence, the proof of the desired result is completed. 
 

4. Numerical experiments 

This section gives numerical results of some algorithms on a set of the nonlinear unconstrained optimization  test 

problems from CUTEst collection [11], given in Table 1. The dimensions of test problems are from 2 to12005 while 

the initial points are standard ones proposed in CUTEst. We apply the following algorithms to solve these test 

problems: 

 M1: Conjugate gradient method with 𝑑𝑘 ≔ −𝑔𝑘 + 𝛽𝑘
1𝑑𝑘−1. 

 M2: Conjugate gradient method with 𝑑𝑘 ≔ −𝑔𝑘 + 𝛽𝑘
2𝑑𝑘−1. 

 M3: Conjugate gradient method with 𝑑𝑘 ≔ −𝑔𝑘 + 𝛽𝑘
𝑛𝑒𝑤𝑑𝑘−1. 

 M4: Conjugate gradient method with 𝑑𝑘 ≔ −𝑔𝑘 + 𝛽𝑘
𝑛𝑒𝑤+𝑑𝑘−1 and 

𝛽𝑘
𝑛𝑒𝑤+ ≔ 𝑚𝑎𝑥{0, 𝛽𝑘

𝑛𝑒𝑤}. 

 DY: Conjugate gradient method with 𝑑𝑘 ≔ −𝑔𝑘 + 𝛽𝑘
𝐷𝑌𝑑𝑘−1. 

 HZ: Conjugate gradient method with 𝑑𝑘 ≔ −𝑔𝑘 + 𝛽𝑘
𝐻𝑍𝑑𝑘−1. 

 

All algorithms are implemented in Matlab 2011 programming environment on a 2.3Hz Intel core i3 processor  

laptop and 4GB of RAM with the double precision data type in Linux operations system. All algorithms are terminated 

whenever the inequality‖𝑔𝑘‖ < 10−6 holds or the maximum number of iterations exceeds 10000. The tuning strong 

Wolfe line search parameters are taken as 𝜌 = 0.0001, 𝜎 = 0.9, 𝛼𝑚𝑖𝑛 = 10−8 and 𝛼𝑚𝑎𝑥 = 108. 

Here, we use the performance profiles of Dolan & More [5] to compare M1, M2, M3, M4, DY and HZ 

algorithms on the test problems. We consider 𝑃 as designates the percentage of problems which are solved within a 

factor 𝜏 of the best solver. The horizontal axis of the figure gives the percentage of the test problems for which an 

algorithm is the fastest (efficiency), while the vertical axis gives the percentage of the test problems that were 

successfully solved by each algorithm (robustness). 

Figures 1-3 show that M4 is the best in terms of the total number of iterations, the total number of function 

evaluations and time in seconds in comparison with others. 

 

Table 1. Test functions taken from CUTEst collection. 

 

No. Test function Dim No. Test function Dim No. Test function Dim 

1 3PK 3 49 DQDRTIC 10000 97 NONDIA 1000 

2 AIRCRFTB 8 50 DQRTIC 5000 98 NONDQUAR 3000 

3 ALLINIT 4 51 EDENSCH 100 99 OSCIPANE 5000 

4 ALLINITU 4 52 EG2 1000 100 OSCIPATH 2 

5 ARGLINA 500 53 EG3 10000 101 OSLBQP 8 

6 ARGLINB 200 54 EIGENA 2550 102 PALMER1C 8 

7 ARWHEAD 5000 55 ENGVAL1 100 103 PALMER1D 7 

8 BARD 3 56 ENGVAL2 3 104 PALMER2C 8 

9 BDQRTIC 100 57 ERRINROS 50 105 PALMER3C 8 

10 BEALE 2 58 EXPFIT 2 106 PALMER4C 8 

11 BIGGS6 6 59 EXTROSNB 1000 107 PALMER5C 6 

12 BIGGSB1 100 60 FLETCBV2 10000 108 PALMER6C 8 

13 BOX2 3 61 FLETCHCR 500 109 PALMER7C 8 

14 BOX3 3 62 FMINSRF2 5625 110 PALMER8A 6 

15 BRKMCC 2 63 FMINSURF 5625 111 PALMER8C 8 

16 BROWNDEN 4 64 FREUROTH 2 112 PENALTY1 100 

17 BROYDN3D 5000 65 GENHUMPS 500 113 PENALTY2 50 

18 BROYDN7D 500 66 GENROSE 500 114 POWELLBC 1000 

19 BROYDNBD 5000 67 GROWTHLS 3 115 POWELLSG 5000 

20 BRYBND 500 68 GULF 3 116 QR3DLS 610 

21 CHAINWOO 1000 69 HAIRY 2 117 QUARTC 25 

22 CHNROSNB 50 70 HATFLDD 3 118 ROSENBR 2 

23 CLIFF 2 71 HATFLDF 3 119 S308 2 
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24 COSINE 1000 72 HATFLDFL 3 120 SCHMVETT 100 

25 CRAGGLVY 1000 73 HEART6LS 6 121 SENSORS 2 

26 CUBE 2 74 HEART8LS 8 122 SINEVAL 2 

27 CUBENE 2 75 HELIX 3 123 SINVALNE 2 

28 DALLASM 196 76 HILBERTA 10 124 SISSER 2 

29 DALLASS 46 77 HILBERTB 10 125 SNAIL 2 

30 DECONVU 63 78 HIMMELBA 2 126 SPARSINE 1000 

31 DENSCHNA 2 79 HIMMELBC 2 127 SPARSQUR 10000 

32 DENSCHNB 2 80 HIMMELBF 4 128 SPMSRTLS 4999 

33 DENSCHNC 2 81 HIMMELBG 2 129 SROSENBR 1000 

34 DENSCHNF 2 82 HIMMELBH 2 130 TAME 2 

35 DIXMAANA 9000 83 HUMPS 2 131 TESTQUAD 100 

36 DIXMAANB 3000 84 JENSMP 2 132 TOINTGOR 50 

37 DIXMAANC 3000 85 KOWOSB 4 133 TOINTGSS 10000 

38 DIXMAAND 3000 86 LIARWHD 5000 134 TOINTPSP 50 

39 DIXMAANE 3000 87 LOGHAIRY 2 135 TOINTQOR 50 

40 DIXMAANF 3000 88 MANCINO 100 136 TQUARTIC 10 

41 DIXMAANG 3000 89 MATRIX2 6 137 TRIDIA 5000 

42 DIXMAANH 3000 90 METHANOL 12005 138 VAREIGVL 500 

43 DIXMAANI 3000 91 MODBEALE 2 139 VIBRBEAM 8 

44 DIXMAANJ 3000 92 MOREBV 5000 140 WATSON 12 

45 DIXMAANK 3000 93 MSQRTALS 1024 141 WEEDS 3 

46 DIXMAANL 3000 94 MSQRTBLS 1024 142 WOODS 100 

47 DIXON3DQ 1000 95 MINE5D 10733 143 YFITU 3 

48 DJTL 2 96 NONCVXU2 1000 144 ZANGWIL2 2 

 

 

 
 

Figure 1.  Dolan-More performance profiles for the total number of iterations. 
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Figure 2.  Dolan-More performance profiles for the total number of function evaluations. 

 

 

 
 

Figure 3.  Dolan-More performance profiles for the time in seconds. 
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5.  Conclusion 

In this paper, we proposed a new conjugate gradient method for solving the unconstrained optimization problems 

with improving and combining LS and CD parameters. The new search directions of our algorithm satisfy the 

sufficient descent condition. It inherits the strong global convergence properties of CDand the numerical efficiency of 

LS. The global convergence under some mild assumptions is stablished. Our numerical experiments show that M4 is 

better than other algorithms in terms ofthe total number of iterations, the number of function evaluations and time in 

seconds. 
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