Finite Dimensional Chebyshev Subspaces of ℓ_{∞}

Aref K. Kamal

Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box 36, PC 123, Al-Khoud, Muscat, Sultanate of Oman, Email: akamal@squ.edu.om.

ABSTRACT: If A is a subset of the normed linear space X, then A is said to be *proximinal* in X if for each $x \in X$ there is a point $y_0 \in A$ such that *the distance* between x and A; $d(x, A) = \inf\{||x-y||: y \in A\} = ||x-y_0||$. The element y_0 is called a *best approximation* for x from A. If for each $x \in X$, the best approximation for x from A is unique then the subset A is called a *Chebyshev subset* of X. In this paper the author studies the existence of finite dimensional Chebyshev subspaces of ℓ_{∞} .

Keywords: Best approximation; Chebyshev subspaces; Banach lattice.

$$\ell_\infty$$
 فضاءات تشيبيشيف الجزئية محدودة المدى في

عارف كمال

الملخص: اذا كانت A مجموعة جزئية من فضاء المتجهات المعياري X, و كان لكل x في X توجد نقطة v₀ في A بحيث ان المسافة d(x, A) بين x و A تساوي ||x-y|| عندها نطلق على A اسم "مجموعة تقريبية" في X. النقطة y تسمى "احسن تقريب" للنقطة x من A. اذا كان احسن تقريب لكل x في X من A وحيد عندها تسمى المجموعة A " مجموعة تشيبيشيفية جزئية" من X.

 $\ell_{\,\,\infty}$ في هذه الورقة يدرس المؤلف امكانية وجود فضاءات جزئية تشيبيشيفية محدودة المدى في فضاء

الكلمات المفتاحية: احسن تقريب ، فضاءات تشيبيشيف الجزئية و متشابكات باناخ.

1. Introduction

If A is a subset of the normed linear space X, then A is said to be *proximinal* in X if for each $x \in X$ there is a point $y_0 \in A$ such that *the distance* between x and A; $d(x, A) = \inf\{||x-y||: y \in A\} = ||x-y_0||$. In this case the element y_0 is called a *best approximation* for x from A. If for each $x \in X$, the best approximation for x from A is unique, then the subset A is called a *Chebyshev subset* of X. If Q is a compact Hausdorf topological space, then C(Q) denotes the Banach space of all continuous real valued functions defined on Q equipped with the *uniform norm*, that is, $||f|| = \max\{|f(x)|: x \in Q\}$. For $1 \le p \le \infty$, ℓ_p denotes the classical Banach space of real sequences, and $L_p[0, 1]$ denotes the classical Banach spaces of real measurable functions.

Finite dimensional Chebyshev subspaces of Banach spaces have been the center of attention of mathematicians for a long time (see for example: [1-5]. One of their important properties is that the single valued metric projection function is continuous. (see, for example, [6]).

In 1956 Mairhuber [7] proved a special version of what was subsequently called Mairhuber's Theorem. Mairhuber's Theorem asserts that for any compact Hausdorff space Q, and for any $n \ge 2$, the Banach space C(Q) admits n dimensional Chebyshev subspaces if and only if Q is homeomorphic to a subset of a circle. ([8], Theorem 2.3, page 218). It was shown also that if Q is a compact Hausdorff space, then the n dimensional subspace N of C(Q) is a Chebyshev subspace if and only if each $g \ne 0$ in N has at most n-1 zeros. ([8] Theorem 2.2, page 215). In 1962, Ahiezer [9] showed that $L_1[0, 1]$ has no finite dimensional Chebyshev subspaces. It is easy to show that every finite dimensional subspace of a strictly convex space is a Chebyshev subspace ([10] page 23). Therefore for $1 , every finite dimensional subspace of <math>\ell_p$ and every finite dimensional subspace of $L_p[0, 1]$ is a Chebyshev subspace.

In this paper the author studies the existence of the n dimensional Chebyshev subspaces of ℓ_{∞} . This is an important space of sequences, but it is not clear if it has any finite dimensional Chebyshev subspaces. In Section 2 it is shown that for n>1, this Banach space has no Chebyshev subspace of dimension n.

AREF KAMAL

Before ending this section some terminologies and known results, that will be used later, will be mentioned.

Let ℓ_{∞} denote the Banach space all real bounded sequences $x = (x_1, x_2, ...)$ equipped with the norm $||x||_{\infty} = \sup\{|x_i|: i = 1, 2, ...\}$. The Banach spaces X and Y are said to be isometric to each other if there is a linear mapping ψ from X onto Y such that $||\psi(x)|| = ||x||$ for each $x \in X$. It is clear that the isometry preserves the proximinality properties; that is, if ψ is an isometry from X onto Y and A is a subset of X, then for any $x \in X$, $d(x, A) = d(\psi(x), \psi(A))$. Therefore x_0 is a best approximation for x from A if and only if $\psi(x_0)$ is a best approximation for $\psi(x)$ from $\psi(A)$. ([11], page 143) shows that the space ℓ_{∞} is not separable. In Theorem 1.1 there is another proof for this fact. **Theorem 1.1.** The space ℓ_{∞} is not separable.

Proof: For each $0 < \alpha < 1$, let $0.\alpha_1 \alpha_2 \alpha_3...$ be the binary representation of α , where $\alpha_i = 1$ or 0 for all i = 1, 2, 3, Define $x_{\alpha} \in \ell_{\infty}$ by $x_{\alpha} = (\alpha_1, \alpha_2, \alpha_3...)$. The set $A = \{x_{\alpha}; \alpha \in (0, 1)\}$ is an uncountable subset of ℓ_{∞} , and if $\alpha \neq \beta$ then $||x_{\alpha} - x_{\beta}||_{\infty} = 1$. Now let B be any dense subset of ℓ_{∞} , and let $\varepsilon = \frac{1}{3}$, then for any $\alpha \in (0, 1)$ one must have $B(x_{\alpha}, \varepsilon) \cap \frac{1}{3}$. $B = \{x \in B; ||x_{\alpha} - x|| < \frac{1}{3}\} \neq \phi$. For each $\alpha \in (0, 1)$ choose y_{α} to be any element in $B(x_{\alpha}, \varepsilon) \cap B$. It will be shown that if $\alpha \neq \beta$ in (0, 1) then $y_{\alpha} \neq y_{\beta}$. If this is true, then since the interval (0, 1) is uncountable and $\{y_{\alpha}; \alpha \in (0, 1)\} \subseteq B$, it follows that B is uncountable. Assume that $y_{\alpha} = y_{\beta}$ for some $\alpha \neq \beta$ in (0, 1), then $y_{\alpha} \in B(x_{\alpha}, \varepsilon) \cap B(x_{\beta}, \varepsilon)$. But then $||x_{\alpha} - x_{\beta}||_{\infty} \le ||x_{\alpha} - y_{\alpha}||_{\infty} + ||y_{\alpha} - x_{\beta}||_{\infty} < \frac{1}{3} < 1$, which contradicts the fact that $||x_{\alpha} - x_{\beta}||_{\infty} = 1$.

Theorem 1.2. : If Q is a compact subset of the circle, then C(Q) is separable.

Proof: It is clear that the set of all polynomial with rational number coefficients is a countable dense subset of C[0, 2π]. So C[0, 2π] is separable. Now let S be the unit circle in R×R. It will be shown that C(S) is separable. If this is true, then for any compact subset Q of S, C(Q) must be separable. For each point $\Theta \in S$ there is a unique $\theta \in [0, 2\pi)$ such that $\Theta = (\cos \theta, \sin \theta)$. Define ψ : C(S)→C[0, 2π] by $\psi(f)(\theta) = f(\Theta)$ if $\theta \neq 2\pi$, and $\psi(f)(2\pi) = \psi(f)(0)$. It is clear that for each $f \in C(S)$, the function $\psi(f)$ is continuous on $[0, 2\pi]$. So ψ is well defined. It is also clear also that ψ is linear, and that $||\psi(f)|| = ||f||$ for each $f \in C(S)$. So ψ is an isometry from C(S) into C[0, 2π]. But C[0, 2π] is separable, and therefore C(S) is also separable.

For a proof of a more general case one can refer to ([12] Proposition 7.6.2 page 126, and Proposition 623 page 95).

2. Main Results

Let X be a linear space and let \leq be a partially ordered relation defined on X. Then (X, \leq) is said to be a lattice if for each x and y in X, the least upper bound $x \lor y$ and the greatest lower bound $x \land y$ of x and y both exist in X. In this case if $x \in X$, then |x| is defined to be; $|x| = x \lor -x$. The Banach space X is called a Banach Lattice if it is a lattice and for each x and y in X, if $|x| \leq |y|$ then $||x|| \leq ||y||$. The element e in the Banach lattice is called a strong order unit if ||e|| = 1, and $x \leq e$ for all $x \in X$ with $||x|| \leq 1$. The Banach lattice is called an Abstract M space if $||x+y|| = \max \{||x||, ||y||\}$ for each x and y in X satisfying that $x \land y = 0$. For more information about Banach Lattices one can refer to [13].

The following theorem is Theorem 4 page 59 of [14].

Theorem 2.1.: Let X be a real Banach lattice. Then X is isometric to C(Q) for some compact Hausdorff space Q if and only if X is an abstract M space with a strong order unit.

Theorem 2.2. : The Banach space ℓ_{∞} is an abstract M Banach Lattice with a strong order unit.

Proof: Let \leq be the relation defined on ℓ_{∞} such that for each (x_i) and (y_i) in ℓ_{∞} , $(x_i) \leq (y_i)$ if and only if $x_i \leq y_i$ for all i = 1, 2, ... Then \leq is a partially ordered relation on ℓ_{∞} . If (x_i) and (y_i) are two elements in ℓ_{∞} then the least upper bound, $(x_i)\vee(y_i)$, of (x_i) and (y_i) is $(x_i)\vee(y_i) = (\max_i \{x_i, y_i\})$, and the greatest lower bound is $(x_i)\wedge(y_i) = (\min_i \{x_i, y_i\})$. It is clear that if (x_i) and (y_i) are two elements in ℓ_{∞} then both $(x_i)\vee(y_i)$ and $(x_i)\wedge(y_i)$ are also elements in ℓ_{∞} , and that if $|x_i| \leq |y_i|$ for all i = 1, 2, ... then $||(x_i)||_{\infty} \leq ||(y_i)||_{\infty}$. Therefore ℓ_{∞} with the relation \leq is a Banach lattice. If (x_i) and (y_i) are in ℓ_{∞} and $(x_i)\wedge(y_i) = 0$ then min $\{x_i, y_i\} = 0$ for all i = 1, 2, Therefore $x_i \geq 0$ and $y_i \geq 0$. For each i = 1, 2, ..., if $x_i > 0$ then $y_i = 0$, and if $y_i > 0$ then $x_i = 0$. Thus if min $\{x_i, y_i\} = 0$, then $x_i + y_i = \max_i \{x_i, y_i\}$. So for any (x_i) and (y_i) in

FINITE DIMENSIONAL CHEBYSHEV SUBSPACES OF ℓ_{∞}

 ℓ_{∞} , if $(x_i) \land (y_i) = 0$ then $||(x_i) + (y_i)||_{\infty} = \max\{||(x_i)||_{\infty}, ||(y_i)||_{\infty}\}$. Thus ℓ_{∞} is an abstract M space. Finally the constant function $e = (e_1, e_2, ...)$ defined by $e_i = 1$ for each I = 1, 2, ..., is a strong ordered unit for ℓ_{∞} .

Theorem 2.3. : There is a compact Hausdorff space Q such that ℓ_{∞} is isometric to C(Q).

Proof: By Theorem 2.2, ℓ_{∞} is an abstract M Banach Lattice with a strong order unit, and by Theorem 2.1, there is a compact Hausdorff Q such that X is isometric to C(Q).

The following theorem is an important theorem in Approximation Theory.

Theorem 2.4. (Mairhuber's Theorem): [15]: If n > 1, and C(Q) admits an n-dimensional Chebyshev subspace, then Q is homeomorphic to a subset of the circle.

Theorem 2.5.: If n > 1, then ℓ_{∞} has no Chebyshev subspace of dimension n.

Proof: By Theorem 2.2, ℓ_{∞} is isometric to C(Q) for some compact Hausdorff space Q. If this Q is homeomorphic to a subset of the circle, then by Theorem 1.2, ℓ_{∞} is separable. But by Theorem 1.1, ℓ_{∞} is not separable. Therefore, Q is not homeomorphic to a subset of the circle. By Theorem 2.4, if n >1, then ℓ_{∞} has no n-dimensional Chebyshev subspace.

3. Conclusion

If X is the Banach space ℓ_{∞} of all bounded sequences of real numbers then for $n \ge 2$, X has no finite dimensional Chebyshev subspaces of dimension n.

References

- 1. Borodin, P.A. Chebyshev subspaces in the spaces L_1 and C, Mathematical Notes, **91**, Issue 5(2012), 770-781.
- 2. Deutsch, F., Nürnberger, G., Singer, I. Weak Chebyshev subspaces and alternation, *Pacific Journal of Mathematics*, 1980, **89**, 9-31.
- 3. Garkavi, A.L. "On Chebyshev and almost-Chebyshev subspaces", Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1964, 28(4), 799-818.
- 4. Rakhmetov, N.K. On finite-dimensional Chebyshev subspaces of spaces with an integral matric, *Mathematics of the USSR-Sbornik*, 1993, **74(2)**, 361-382.
- 5. Kamal, A. On Copositive Approximation over Spaces of Continuous Functions II. The Uniqueness Of Best Copositive Approximation, *Analysis in Theory and Applications*, 2016, **32(1)**, 20-26.
- 6. Deutsch, F. and Lambert, J. On continuity of metric projections, *Journal of Approximation Theory*, 1980, **29**, 116-131.
- 7. Mairhuber, J.C. On Haar's theorem concerning Chebyshev approximation problems having unique solution, *Proceeding of American Mathematical Society*, 1956, **7**, 609-615.
- 8. Singer, I. "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces" Springer-Verlag, Berlin, 1970.
- 9. Ahiezer, N.I., Krein, M.G. "Some Questions in the Theory of Moments", Translations of Mathematical Monographs, 2, American Mathematical. Society, Providence, R.I, 1962.
- 10. Cheney, E.W. "Introduction to Approximation Theory", McGraw Hill Book Company, New York, 1966.
- 11. Kothe, G. "Topological Vector spaces I", Springer Verlag 1969.
- 12. Semadeni, Z. "Banach spaces of continuous functions I", PWN, Warsaw 1971.
- 13. Schaefer, H. "Banach Lattices and Positive operators", Springer-Verlage, Berlin Heidelberg New York, 1974.
- 14. Lacey, H.E. "The Isometric Theory of Classical Banach Spaces", Springer Verlag, 1970.
- 15. Schoenberg I. and Yang, C. On the unicity of solutions of problems of best approximation, *Annali di Matematica Pura ed Applicata*. 1961, **54**, 1-12.

Received 17 May 2016

Accepted 1 December 2016