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ABSTRACT: We introduce a new class of semigroups, that we call BZS - Boolean Zero Square-semigroups. A 

semigroup S with a zero element, 0, is said to be a BZS semigroup if, for every 𝑥 ∈ 𝑆, we have 𝑥2 = 𝑥 or 𝑥2 = 0. 

We obtain some properties that describe the behaviour of the Green’s equivalence relations ℛ, ℒ, ℋ and 𝒟. 

Necessary and sufficient conditions for a BZS semigroup to be a band and an inverse semigroup are obtained. A 

characterisation of a special type of BZS completely 0-simple semigroup is presented. 
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1. Introduction 

e shall use standard semigroup notation, that can be found, for example, in [1]. If S is a semigroup, 𝐸(𝑆) 

represents the set of idempotents of S, and 𝑉(𝑥) denotes the set of inverses of an element x in S. We recall that 

the natural order ≤𝑛 on the idempotents of a regular semigroup is defined by 
𝑒 ≤𝑛 𝑓 ⟺ 𝑒 = 𝑒𝑓 = 𝑓𝑒 

 

In [2], Farag and Tucci introduced the notion of a Boolean Zero Square (BZS) ring as an associative ring, not 

necessarily commutative and not necessarily with identity, such that every non-zero element of R is either idempotent 

or nilpotent of index 2, that is, 

(∀𝑥 ∈ 𝑅) 𝑥2 = 𝑥 ∨ 𝑥2 = 0 

 

The structure of BZS rings is investigated, in [2] and in [3]. 

It is possible to find in the literature several papers in Boolean Zero rings, and as a sample we refer to [4] in order to 

several constructions in this structure. 

Here we present a generalisation of these notions to semigroup theory, starting by introducing the following concept, 

that follows naturally from Ring theory. 

 

Definition. A semigroup 𝑆, with element zero 0, is said to be a BZS semigroup if, for every element 𝑥 in S, we have  

𝑥2 = 𝑥 or 𝑥2 = 0. 

 

In the ring case, there are more tools available due to the presence of two operations: addition and multiplication. This 

fact has, as a consequence, that the majority of the results obtained in [2] and [3] cannot be replicated to the semigroup 

case. 

 

One of the results obtained in [2] is that in a BZS ring, the set of nilpotent elements, is an ideal of the ring. This 

property does not hold in a general BZS semigroup, as it can easily be seen in Example 2 below. This happens because 

the result only mentions the multiplicative operation, although its proof uses the additive operation heavily. We obtain 

in Theorem 8 that in a BZS commutative semigroup the set of its nilpotent elements, is an ideal of the semigroup. 

 

In what follows, unless otherwise stated, S will always denote a BZS semigroup. We denote 

𝐸 = {𝑥 ∈ 𝑆|𝑥2 = 𝑥}  and  𝑁 = {𝑥 ∈ 𝑆|𝑥2 = 0} 

 

respectively, the set of idempotent elements and the set of nilpotent elements of S. 

 

Let us present some basic properties that hold in any such semigroup S. 

 

(∀𝑥 ∈ 𝑆) 𝑥3 = 𝑥2                      (1) 

 

For any 𝑥 ∈ 𝑆, we have two cases to consider: 

i) 𝑥2 = 𝑥 ⟹ 𝑥 ⋅ 𝑥2 = 𝑥 ⋅ 𝑥 ⟹ 𝑥3 = 𝑥2 

ii) 𝑥2 = 0 ⟹ 𝑥 ⋅ 𝑥2 = 𝑥 ⋅ 0 ⟹ 𝑥3 = 0 ⟹ 𝑥3 = 𝑥2 

which proves the result. 

 

 

(∀𝑥 ∈ 𝑆) 𝑥4 = 𝑥2 and 𝑥2 ∈ 𝐸(𝑆)                     (2) 

 

This follows immediately from (1). 

 

 

𝐸 ∩ 𝑁 = {0}                         (3) 

 

In fact, if 𝑥 ∈ 𝐸 ∩ 𝑁, we have 𝑥 = 𝑥2 = 0, and the result follows. 

 

 

(∀𝑥, 𝑦 ∈ 𝑆) 𝑥𝑦 ∈ 𝐸\{0} ⟺ 𝑦𝑥 ∈ 𝐸\{0}                                   (4) 

 

Let us, assume that 𝑥𝑦 ∈ 𝐸\{0}, that is, (𝑥𝑦)2 = 𝑥𝑦, with 𝑥𝑦 ≠ 0. If 𝑦𝑥 = 0 then,  

  
𝑦𝑥 = 0 ⟹ 𝑥 ∙ 𝑦𝑥 ∙ 𝑦 = 𝑥 ∙ 0 ∙ 𝑦

⟹ (𝑥𝑦)2 = 0                  
  

 

 

W 



BOOLEAN ZERO SQUARE (BZS) SEMIGROUPS 

 

33 

 

which is a contradiction, and therefore we can conclude that 𝑦𝑥 ≠ 0. Also, if (𝑦𝑥)2 = 0 then, using (1), we have 

(𝑦𝑥)2 = 0 ⟹ 𝑥(𝑦𝑥)2𝑦 = 𝑥 ∙ 0 ∙ 𝑦

⟹ (𝑥𝑦)3 = 0                  

⟹
⟹

(𝑥𝑦)2 = 0            
𝑥𝑦 = 0                

     

  

which is also a contradiction. So, (𝑦𝑥)2 = 𝑦𝑥 ≠ 0, which means that, 𝑦𝑥 ∈ 𝐸\{0}. 

Similarly, we prove the reverse implication. 

 

 

(∀𝑥, 𝑦 ∈ 𝑆) 𝑥𝑦 ∈ 𝑁 ⟺ 𝑦𝑥 ∈ 𝑁                      (5) 

 

If 𝑥𝑦 ∈ 𝑁 then, by (3), 𝑥𝑦 ∉ 𝐸\{0} and therefore by (4), 𝑦𝑥 ∉ 𝐸\{0}, that is 𝑦𝑥 ∈ 𝑁. The converse 

implication follows similarly. 

 

Now, let us present some examples to illustrate this concept, which show that they can be found in a wide variety of very 

well-known classes of semigroups, such as bands, completely 0-simple semigroups and inverse semigroups. 

Example 1. Any band, B, with zero is clearly, a BZS semigroup, with 𝐸 = 𝐵 and 𝑁 = {0}. 

 

 

Example 2. In a context of ordered semigroup theory, Blyth and McFadden presented in [5] a semigroup which has 

proved to be very helpful in describing several classes of ordered semigroups. More details of the relevance and properties 

of this semigroup can also be found in [6]. It can be defined by 𝑁5 = {𝑢, 𝑒, 𝑓, 𝑎, 𝑏} with the following Cayley table: 

 

 u e f a b 

u u u f f b 

e e e a a b 

f u b f b b 

a e b a b b 

b b b b b b 

 

It follows directly from the table that 𝑁5 is a BZS semigroup, b is its zero element, 𝑁 = {𝑎, 𝑏} and 𝐸 = {𝑢, 𝑒, 𝑓, 𝑏}. This 

semigroup appears in a different context, as an example of a completely 0-simple semigroup that it is not orthodox. 

Routine calculations show that it is 0-simple 

 

𝑁5 = 𝑁5𝑢𝑁5 = 𝑁5𝑒𝑁5 = 𝑁5𝑓𝑁5 = 𝑁5𝑎𝑁5 

 

and, for example, 𝑓 is a primitive idempotent. Since 𝑒𝑓 ≠ 𝑓𝑒,  we can state that 𝑁5 is not an orthodox semigroup. 

 

 

Example 3. Consider the completely 0-simple semigroup 𝑆 = (𝐼 × 𝐺 × Λ) ∪ {0} with operation 

 

 (𝑖, 𝑎, 𝜆)(𝑗, 𝑏, 𝜇) = {
(𝑖, 𝑎𝑝𝜆𝑗𝑏, 𝜇) if 𝑝𝜆𝑗 ≠ 0

0 if 𝑝𝜆𝑗 = 0
 

 

 (𝑖, 𝑎, 𝜆)0 = 0 = 0(𝑖, 𝑎, 𝜆) = 00 

 

where 𝐺0 = 𝐺 ∪ {0} is a zero group, with 𝐺 = 〈𝑥〉 an order two cyclic group, 𝐼, Λ are non-empty index sets and 𝑃 = [𝑝𝜆𝑖] 
is a Λ × 𝐼 sandwich matrix with entries in 𝐺0, and all the non-zero entries of 𝑃 are equal to x. Recall that every row and 

column of P has at least a non-zero entry. 

 

Consider 𝑇 = {(𝑖, 𝑥, 𝜆) ∈ 𝑆} ∪ {0} a subset of S, and let (𝑖, 𝑥, 𝜆), (𝑗, 𝑥, 𝜇) ∈ 𝑇. We have the following possibilities for the 

element 𝑝𝜆𝑗: 

 

 If 𝑝𝜆𝑗 ≠ 0, then (𝑖, 𝑥, 𝜆)(𝑗, 𝑥, 𝜇) = (𝑖, 𝑥𝑝𝜆𝑗𝑥, 𝜇) = (𝑖, 𝑥𝑥𝑥, 𝜇) = (𝑖, 𝑥, 𝜇) ∈ 𝑇 

 

 If 𝑝𝜆𝑗 = 0, then (𝑖, 𝑥, 𝜆)(𝑗, 𝑥, 𝜇) = 0 ∈ 𝑇 
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and we can say that 𝑇 is a semigroup, with the induced semigroup operation. Also, for any (𝑖, 𝑥, 𝜆) ∈ 𝑇, we have that 

 

 (𝑖, 𝑥, 𝜆)2 = {

(𝑖, 𝑥, 𝜆) if 𝑝𝜆𝑖 ≠ 0

0 if 𝑝𝜆𝑖 = 0
 

 

Therefore, 𝑇 is a BZS semigroup. 

 

 

Example 4. Consider the following set of 2 × 2 real matrices 

 

𝑆 = {𝐼, 𝐴, 𝐸11, 𝐸12, 𝐸21, 𝐸22, 𝑂} = {[
1 0
0 1

] , [
0 1
1 0

] , [
1 0
0 0

] , [
0 1
0 0

] , [
0 0
1 0

] , [
0 0
0 1

] , [
0 0
0 0

]} 

 

It is well known that S with the usual matrix multiplication is an inverse semigroup (see, for example [7, Section 7.6, 

Exercise 1]). S is not a BZS semigroup, since 𝐴2 = 𝐴𝐴 = 𝐼 ≠ 𝐴, 𝑂. 

 

But if we consider the subset 

𝑇 = {𝐼, 𝐸11, 𝐸12, 𝐸21, 𝐸22, 𝑂}, 

 

it gives us the following Cayley table 

 

 𝐼 𝐸11 𝐸12 𝐸21 𝐸22 𝑂 

𝐼 𝐼 𝐸11 𝐸12 𝐸21 𝐸22 𝑂 

𝐸11 𝐸11 𝐸11 𝐸12 𝑂 𝑂 𝑂 

𝐸12 𝐸12 𝑂 𝑂 𝐸11 𝐸12 𝑂 

𝐸21 𝐸21 𝐸21 𝐸22 𝑂 𝑂 𝑂 

𝐸22 𝐸22 𝑂 𝑂 𝐸21 𝐸22 𝑂 

𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 𝑂 

 

It follows immediately from the table that T is a subsemigroup of S which is a BZS inverse semigroup, with             

𝐸 = {𝐼, 𝐸11, 𝐸22, 𝑂} and 𝑁 = {𝐸12, 𝐸21, 𝑂}. 

 

2. Green’s Relations 
 

Let us now obtain some basic properties on the Green’s relations ℛ, ℒ, ℋ, 𝒥 and 𝒟 on a BZS semigroup S. 

 

𝑅0 = 𝐿0 = 𝐻0 = 𝐷0 = 𝐽0 = {0}                    (6) 
 

For any 𝑥 ∈ 𝑅0, we have that 𝑥 = 𝑥 ∙ 1 ∈ 𝑥𝑆1 = 0𝑆1 = {0}, which immediately implies that            

𝑅0 = {0}. The other equalities follow similarly. 

 

 

For 𝑥, 𝑦 ∈ 𝐸 or 𝑥, 𝑦 ∈ 𝑁                    (7) 

𝑥ℛ𝑦 ⟹ 𝑥𝑦ℛ𝑦𝑥  
 

In fact, if 𝑥, 𝑦 ∈ 𝐸, then, since ℛ is a left congruence [1, Proposition 2.1.2], 

  𝑥ℛ𝑦 ⟹ {
𝑥𝑥ℛ𝑥𝑦
𝑦𝑥ℛ𝑦𝑦

⟹ {
𝑥ℛ𝑥𝑦
𝑦𝑥ℛ𝑦

⟹ 𝑥𝑦ℛ𝑦𝑥 

and, if 𝑥, 𝑦 ∈ 𝑁 then 

  𝑥ℛ𝑦 ⟹ {
𝑥𝑥ℛ𝑥𝑦
𝑦𝑥ℛ𝑦𝑦

⟹ {
0ℛ𝑥𝑦
𝑦𝑥ℛ0

⟹(6) 𝑥𝑦 = 0 = 𝑦𝑥 ⟹ 𝑥𝑦ℛ𝑦𝑥 

For 𝑥, 𝑦 ∈ 𝐸 or 𝑥, 𝑦 ∈ 𝑁                    (8) 

𝑥ℒ𝑦 ⟹ 𝑥𝑦ℒ𝑦𝑥  
 

This follows similarly as in (7). 
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Note that properties (7) and (8) do not hold if one element is in E and the other is in N. To see this, consider 𝑁5 in Example 

2, where the ℛ classes of 𝑁5 are 𝑅𝑢 = {𝑢, 𝑓}, 𝑅𝑒 = {𝑒, 𝑎} and 𝑅𝑏 = {𝑏}, while its ℒ classes are 𝐿𝑢 = {𝑢, 𝑒}, 𝐿𝑓 = {𝑓, 𝑎} and 

𝐿𝑏 = {𝑏}. From property (7) we have that 𝑒 ∈ 𝐸, 𝑎 ∈ 𝑁, 𝑒ℛ𝑎 but 𝑒𝑎 = 𝑎 which is not ℛ related with 𝑎𝑒 = 𝑏. Similarly, for 

property (8). 

 

Theorem 1. Let S be a BZS semigroup. 

(1) If 𝑎 ∈ 𝐸, then 𝑅𝑎 ∩ 𝐸 is a subsemigroup of S, which is a right zero semigroup. In particular, if 𝑅𝑎 ⊆ 𝐸 then 𝑅𝑎 is a right 

zero semigroup. 
(2) If 𝑎 ∈ 𝑁, then 𝑅𝑎 ∪ {0} is a subsemigroup of S. 

 

Proof. (1): It is clear that 𝑅𝑎 ∩ 𝐸 is non-empty, since 𝑎 ∈ 𝑅𝑎 ∩ 𝐸. For any 𝑏, 𝑐 ∈ 𝑅𝑎 ∩ 𝐸, we have, 

 𝑏ℛ𝑎 and 𝑐ℛ𝑎 ⟹ 𝑏ℛ𝑐 ⟹ 𝑏 = 𝑏𝑏ℛ𝑏𝑐 ⟹ 𝑏𝑐 ∈ 𝑅𝑏 = 𝑅𝑎 

which means that, 𝑅𝑎 is a subsemigroup of S. Since 𝑏 and 𝑐 are idempotents, we have by [1, Proposition 2.3.3], that 𝑏𝑐 = 𝑐 

and therefore 𝑅𝑎 is a right zero semigroup. 

(2): It is clear that 𝑅0 = {0} is a subsemigroup of S. So, it is enough to consider 𝑎 ∈ 𝑁\{0}, that is, 𝑎 ≠ 0 and 𝑎2 = 0. For 

𝑏, 𝑐 ∈ 𝑅𝑎, there exist 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑆1 such that  

 𝑎 = 𝑏𝑥, 𝑏 = 𝑎𝑦, 𝑐 = 𝑎𝑧 and 𝑎 = 𝑐𝑤 

If, on one hand 𝑏2 = 0 , then 

 𝑎 = 𝑏𝑥 ⟹ 𝑏𝑎 = 𝑏(𝑏𝑥) = 𝑏2𝑥 = 0 ∙ 𝑥 = 0 ⟹ 𝑏𝑎 = 0 

and  

 𝑏𝑐 = 𝑏(𝑎𝑧) = (𝑏𝑎)𝑧 = 0 ∙ 𝑧 = 0 

If, on the other hand 𝑏2 = 𝑏, then by [1, Proposition 2.3.3], 𝑏𝑐 = 𝑐 ∈ 𝑅𝑎. 

Therefore, 𝑅𝑎 ∪ {0} is a subsemigroup of S. 

Note that in general, an ℛ class, 𝑅𝑥, is not a subsemigroup of S. In fact, if we consider the semigroup 𝑁5 of Example 2, and 

its ℛ class, 𝑅𝑒 = {𝑒, 𝑎}, where 𝑒 ∈ 𝐸 and 𝑎 ∉ 𝐸, then we have that 𝑎𝑒 = 𝑏 ∉ 𝑅𝑒, which means that, 𝑅𝑒 is not a 

subsemigroup of 𝑁5. 

 

Theorem 2.  Let S be a BZS semigroup. 

(1) If 𝑎 ∈ 𝐸, then 𝐿𝑎 ∩ 𝐸 is a subsemigroup of S, which is a left zero semigroup. In particular, if 𝐿𝑎 ⊆ 𝐸 then, 𝐿𝑎 is a right 

zero semigroup. 
(2) If 𝑎 ∈ 𝑁 then, 𝐿𝑎 ∪ {0} is a subsemigroup of S. 

 

Proof. Similar to the proof of Theorem 1. 

 

Like in the note to Theorem 2, we can use Example 2 to illustrate that an ℒ class of a BZS semigroup is not, in general, a 

subsemigroup of S. 

 

Theorem 3. Let S be a BZS semigroup. 

(1) If 𝑎 ∈ 𝐸, then 𝐻𝑎 is a group with only one element. 

(2) If 𝑎 ∈ 𝑆\𝐸, then 𝐻𝑎 ⊆ 𝑆\𝐸, (𝐻𝑎)2 = {0} and 𝐻𝑎 ∪ {0} is a subsemigroup of S. 

(3) If a 𝒟 class of S contains an idempotent, all its ℋ classes are singleton. 

 

Proof. (1): In fact, by [1, Corollary 2.2.6], 𝐻𝑎 is a subgroup of S. We need to prove that 𝐻𝑎 has a unique element. For 𝑎 = 0 

this is obvious, by (6). Let us now assume that 𝑎 ∈ 𝐸\{0}, and consider 𝑏 ∈ 𝐻𝑎. We have that 

 

 𝑏ℋ𝑎 ⟹ {
𝑏ℛ𝑎
𝑏ℒ𝑎

⟹ {
𝑏𝑏ℛ𝑏𝑎
𝑏𝑎ℒ𝑎𝑎

⟹ {𝑏2ℛ𝑏𝑎
𝑏𝑎ℒ𝑎

 

If 𝑏2 = 0 then 

 𝑏ℋ𝑎 ⟹ {
0ℛ𝑏𝑎
𝑏𝑎ℒ𝑎

⟹ {
𝑏𝑎 = 0
𝑎 ∈ 𝐿𝑏𝑎

⟹ 𝑎 ∈ 𝐿𝑏𝑎 = 𝐿0 = {0} ⟹ 𝑎 = 0 

which is a contradiction. Therefore, we can conclude that 𝑏2 = 𝑏, and 𝑏 is an idempotent. Using again [1, Corollary 2.2.6], 

we conclude that 𝑏 = 𝑎, and 𝐻𝑎 is a singleton subgroup of S. 

(2): Let 𝑎 ∈ 𝑆\𝐸, and consider 𝑦 ∈ 𝐻𝑎, which cannot be equal to 0, by (6). Then, 

 

 𝑦ℋ𝑎 ⟹ {
𝑦ℛ𝑎
𝑦ℒ𝑎

⟹ {
𝑦𝑦ℛ𝑦𝑎
𝑦𝑎ℒ𝑎𝑎

⟹ {
𝑦2ℛ𝑦𝑎
𝑦𝑎ℒ0

⟹ 𝑦2 ∈ 𝑅0 = {0} ⟹ 𝑦 ∈ 𝑁 
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and therefore 𝐻𝑎 ⊆ 𝑆\𝐸. 

Again, with 𝑎 ∈ 𝑆\𝐸 we have that 

 

 𝑏ℋ𝑎 ⟹ {
𝑏ℛ𝑎
𝑏ℒ𝑎

⟹ {
𝑎𝑏ℛ𝑎𝑎
𝑏𝑎ℒ𝑎𝑎

⟹ {
𝑎𝑏ℛ0
𝑏𝑎ℒ0

⟹ {
𝑎𝑏 = 0
𝑏𝑎 = 0

 

Therefore, for 𝑏, 𝑐 ∈ 𝐻𝑎, we can say that  

 

 𝑎𝑏 = 0, 𝑏𝑎 = 0, 𝑎𝑐 = 0 and 𝑐𝑎 = 0 

 

Since 𝑏ℋ𝑐, we have that 𝑏ℛ𝑐, and 

 

 𝑏ℛ𝑐ℛ𝑎 ⟹ 𝑐𝑏ℛ𝑐𝑐ℛ𝑐𝑎 = 0 ⟹ 𝑐𝑏ℛ0 ⟹ 𝑐𝑏 = 0 
 

from which, we conclude that (𝐻𝑎)2 = {0} and that 𝐻𝑎 ∪ {0} is a subsemigroup of S. 
(3): This follows by [1, Lemma 2.2.3] and (1). 

 

Note, that in Theorem 3(2) we verified that, for every 𝑎 ∈ 𝑁, the ℋ class 𝐻𝑎 is a subset of N. The same property does 

not hold for the ℛ and ℒ classes. In fact, the semigroup 𝑁5 of Example 2 is such that 𝑎 ∈ 𝑁, but 𝑅𝑎 = {𝑒, 𝑎} ⊄ 𝑁, as 

well as 𝐿𝑎 = {𝑓, 𝑎} ⊄ 𝑁. 

 

Theorem 4. Let S be a BZS semigroup. 

(1) If 𝑎 ∈ 𝑆\{0} and 𝐷𝑎 ⊆ 𝐸, then 𝐷𝑎 is a subsemigroup of S. 
(2) If 𝑎 ∈ 𝑆\𝐸, then 𝐷𝑎 ∪ {0} is a subsemigroup of S. 

 

Proof. (1): For any 𝑎 ∈ 𝑆\{0}, we have by (6), that 𝐷𝑎 ≠ {0}. The fact that 𝐷𝑎 ⊆ 𝐸 therefore implies that             

𝐷𝑎 ⊆ 𝐸\{0}. 

Considering any 𝑏, 𝑐 ∈ 𝐷𝑎, there exist 𝑑 ∈ 𝑆, such that 𝑏ℒ𝑑ℛ𝑐. By [1, Propositions 2.1.2 and 2.3.3], we have that 

 𝑑ℛ𝑐 ⟹ 𝑏𝑑ℛ𝑏𝑐 ⟹ 𝑏ℛ𝑏𝑐 ⟹ 𝑏𝑐 ∈ 𝑅𝑏 ⊆ 𝐷𝑎 

Thus, 𝐷𝑎 is a subsemigroup of S. 

(2) Consider any 𝑎 ∈ 𝑆\𝐸, that is, 𝑎 ≠ 0 and 𝑎2 = 0. For any 𝑏, 𝑐 ∈ 𝐷𝑎, there exist 𝑑 ∈ 𝑆, such that 𝑏ℒ𝑑ℛ𝑐, which 

means, in particular, that 𝑏 = 𝑥𝑑 and 𝑐 = 𝑑𝑦 for some 𝑥, 𝑦 ∈ 𝑆1. 

Also, 𝑑ℛ𝑐 implies 𝑏 = 𝑥𝑑ℛ𝑥𝑐 and therefore 𝑥𝑐 ∈ 𝑅𝑏. 

Then, 

𝑏𝑐 = (𝑥𝑑)(𝑑𝑦) = 𝑥(𝑑𝑑)𝑦  

If 𝑑2 = 𝑑, then 𝑏𝑐 = 𝑥𝑑2𝑦 = 𝑥𝑑𝑦 = 𝑥𝑐 ∈ 𝑅𝑏 ⊆ 𝐷𝑎.  

If 𝑑2 = 0, then 𝑏𝑐 = 0. 

Thus, 𝐷𝑎 ∪ {0} is a subsemigroup of S. 

3. Special classes of BZS semigroups 

We now devote our attention to obtaining necessary and sufficient conditions for a BZS semigroup S to be a band 

or an inverse semigroup. A characterisation of some BZS completely 0-simple is presented. Also, the commutativity 

property will be approached. 

 

Theorem 5. Let S be a BZS semigroup. The following statements are equivalent: 

(1) S is a band; 

(2) (∀𝑥 ∈ 𝑆) 𝑥3 = 𝑥. 

 

Proof. (1) ⟹ (2): The definition of a band tells us that 𝑥2 = 𝑥 for all 𝑥 ∈ 𝑆. Then, 

𝑥3 = 𝑥2 ∙ 𝑥 = 𝑥 ∙ 𝑥 = 𝑥  

and the result follows. 

(2) ⟹ (1): Take an element 𝑥 ∈ 𝑆. Since S is BZS, 𝑥2 = 𝑥 or 𝑥2 = 0. If 𝑥2 = 𝑥, there is nothing to prove. If 𝑥2 = 0, 

then 𝑥 = 𝑥3 = 𝑥2𝑥 = 0 ∙ 𝑥 = 0 which, immediately implies that 𝑥2 = 𝑥, for every element of S, that is, S is a band. 

 

In the following Theorem and its proof, we use the identification provided from Rees Theorem [1, Theorem 3.2.3], for 

a completely 0-simple semigroup S. Such S is isomorphic to 

(𝐼 × 𝐺 × Λ) ∪ {0}, 
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where G is a group, 𝐼 and Λ are non-empty index sets, and 𝑃 = [𝑝𝜆𝑖] is a Λ × 𝐼 sandwich matrix with entries in the zero group 

𝐺0 = 𝐺 ∪ {0}. Also, every row and column of P has at least a non-zero entry. The semigroup operation is defined by 

(𝑖, 𝑎, 𝜆)(𝑗, 𝑏, 𝜇) = {
(𝑖, 𝑎𝑝𝜆𝑗𝑏, 𝜇) if 𝑝𝜆𝑗 ≠ 0

0 if 𝑝𝜆𝑗 = 0
 

 

Theorem 6. Let S be a BZS semigroup. The following statements are equivalent: 

(1) S is a completely 0-simple semigroup with no zero entries in the sandwich matrix; 

(2) S is a rectangular 0-band. 

 

Proof. (1) ⟹ (2): Let S be a completely 0-simple semigroup. Considering an arbitrary element 𝑥 in 𝐺, for any 𝜆 ∈ Λ and 

𝑖 ∈ 𝐼, we have that 𝑝𝜆𝑖 ≠ 0. Then, 

 

(𝑖, 𝑥, 𝜆)2 = (𝑖, 𝑥, 𝜆)(𝑖, 𝑥, 𝜆) = (𝑖, 𝑥𝑝𝜆𝑖𝑥, 𝜆) ≠ 0, 

which therefore implies, since S is a BZS semigroup, that (𝑖, 𝑥, 𝜆)2 = (𝑖, 𝑥, 𝜆). Thus, 

 
(𝑖, 𝑥, 𝜆)(𝑖, 𝑥, 𝜆) = (𝑖, 𝑥, 𝜆) ⟺ (𝑖, 𝑥𝑝𝜆𝑖𝑥, 𝜆) = (𝑖, 𝑥, 𝜆)

⟺ 𝑥𝑝𝜆𝑖𝑥 = 𝑥                     

⟺ 𝑝𝜆𝑖 = 𝑥−1                     

 

In particular, if we replace x by the identity element of the group 1𝐺, we obtain 𝑝𝜆𝑖 = 1𝐺, and therefore 𝑥−1 = 1𝐺 which, is 

equivalent to 𝑥 = 1𝐺 . So, G is the trivial group. 

Then, 𝑆 is isomorphic to {(𝑖, 1𝐺 , 𝜆): 𝑖 ∈ 𝐼 and 𝜆 ∈ Λ} ∪ {0} , whose elements verify 

 

 (𝑖, 1𝐺 , 𝜆)(𝑗, 1𝐺 , 𝜇) = (𝑖, 1𝐺 , 𝜇)  and  (𝑖, 1𝐺 , 𝜆) ∙ 0 = 0 = 0 ∙ (𝑖, 1𝐺 , 𝜆) 

 

That is, S is a rectangular 0-band. 

(2) ⟹ (1): If S is a rectangular 0-band, then 

(∀𝑎 ∈ 𝑆)(∀𝑏 ∈ 𝑆\{0}) 𝑎2 = 𝑎 and 𝑎𝑏𝑎 = 𝑎 . 

Then, for any 𝑎, 𝑏 ∈ 𝑆 and 𝑏 ∈ 𝑆\{0}, we have that, 𝑎 = 𝑎𝑏𝑎 ∈ 𝑆𝑏𝑆 which implies that 𝑆 ⊆ 𝑆𝑏𝑆. 

Since, the reverse inclusion is always true, we can conclude that S is a 0-simple semigroup. 

 

Also, if in 𝑆\{0}, 𝑎 ≤𝑛 𝑏, then 𝑎𝑏 = 𝑏𝑎 = 𝑎. We have that 

 

𝑎𝑏 = 𝑏𝑎 ⟹ {
𝑎𝑏𝑎 = 𝑏𝑎𝑎
𝑏𝑎𝑏 = 𝑏𝑏𝑎

⟹ {
𝑎 = 𝑏𝑎
𝑏 = 𝑏𝑎

⟹ 𝑎 = 𝑏 

 

which, means that all non-zero idempotents are primitive, and therefore S is completely 0-simple. 

Also, if 𝑎, 𝑏 ∈ 𝑆\{0}, then if 𝑎𝑏 = 0 then 𝑎𝑏𝑎 = 0 ≠ 𝑎, which is a contradiction. So, all the entries of the sandwich matrix are 

not zero. 

 

It follows from the previous Theorem and its proof that for a BZS semigroup to be completely 0-simple where the sandwich 

matrix has no zero entries, it is necessary to have a singular group in the middle component of the Rees representation. 

In fact, we can say that a BZS semigroup is completely 0-simple where the sandwich matrix has no zero entries if, and only if, 

it is a completely simple semigroup with a zero adjoined. 

 

Theorem 7. Let S be a BZS semigroup. S is an inverse semigroup if, and only if, the following conditions hold: 

(1) S is regular; 

(2) (∀𝑥 ∈ 𝑆) 𝑥′𝑥2𝑥′ = 𝑥2, for any inverse 𝑥′ of 𝑥. 

 

Proof. Let S be an inverse semigroup. Any element x in S has a unique inverse denoted by 𝑥−1. By [1, Theorem 5.1.1], an 

inverse semigroup is a regular one, where the idempotents commute. So, by (2), 𝑥2 is an idempotent that, therefore, 

commutes with 𝑥𝑥−1 and with 𝑥−1𝑥. Thus, 

 

𝑥4 = 𝑥2 ⟹ 𝑥−1𝑥4 = 𝑥−1𝑥2 ⟹ 𝑥−1𝑥 ∙ 𝑥2 ∙ 𝑥 = 𝑥−1𝑥2 ⟹ 𝑥2 ∙ 𝑥−1𝑥 ∙ 𝑥 = 𝑥−1𝑥2 

 

⟹ 𝑥(𝑥𝑥−1𝑥)𝑥 = 𝑥−1𝑥2 ⟹ 𝑥3 = 𝑥−1𝑥2 ⟹ 𝑥3𝑥−1 = 𝑥−1𝑥2𝑥−1 
 

                       ⟹ 𝑥2 ∙ 𝑥𝑥−1 = 𝑥−1𝑥2𝑥−1 ⟹ 𝑥𝑥−1 ∙ 𝑥2 = 𝑥−1𝑥2𝑥−1 ⟹ 𝑥2 = 𝑥−1𝑥2𝑥−1 
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Conversely let us, assume that (1) and (2) hold. Let 𝑒  be an idempotent of S and  𝑒′ any inverse of 𝑒. By (2), we have 

that 𝑒′𝑒2𝑒′ = 𝑒2, that is, 𝑒′ = 𝑒. Thus, we can conclude that each idempotent in S has a unique inverse. Now, 

considering an element 𝑥 in 𝑆 and 𝑥′, 𝑥′′ inverses of 𝑥, we have that 𝑥𝑥′ and 𝑥𝑥′′ are idempotents and inverses of each 

other, as well as  𝑥′𝑥 and 𝑥′′𝑥. Thus, 𝑥𝑥′ = 𝑥𝑥′′ and 𝑥′𝑥 = 𝑥′′𝑥 and we can deduce that 

 𝑥′ = 𝑥′(𝑥𝑥′) = 𝑥′(𝑥𝑥′′) = (𝑥′𝑥)𝑥′′ = (𝑥′′𝑥)𝑥′′ = 𝑥′′ 

The result follows, since by [1, Theorem 5.1.1], a regular semigroup where each element has a unique inverse is an 

inverse semigroup. 

 

Theorem 8. Let S be a BZS commutative semigroup. Then, 

(1) E is a subsemigroup of S; 

(2) N is an ideal of S; 

(3) If S is inverse then 𝑥3 = 𝑥, for every 𝑥 ∈ 𝑆. 

 

 

Proof. Consider any elements 𝑥, 𝑦 ∈ 𝑆. 

(1):  If, on one hand, both belong to E, we have 𝑥2 = 𝑥 and 𝑦2 = 𝑦, and therefore 

(𝑥𝑦)2 = (𝑥𝑦)(𝑥𝑦) = 𝑥(𝑦𝑥)𝑦 = 𝑥(𝑥𝑦)𝑦 = (𝑥𝑥)(𝑦𝑦) = 𝑥2𝑦2 = 𝑥𝑦 

which means that 𝑥𝑦 ∈ 𝐸 , and therefore E is a subsemigroup of S. 

(2):  If, on the other hand, for example 𝑥 ∈ 𝑁, we have that 

 (𝑥𝑦)2 = (𝑥𝑦)(𝑥𝑦) = 𝑥(𝑦𝑥)𝑦 = 𝑥(𝑥𝑦)𝑦 = (𝑥𝑥)(𝑦𝑦) = 𝑥2 ∙ 𝑦2 = 0 ∙ 𝑦2 = 0 

Thus, 𝑥𝑦 ∈ 𝑁 and we can conclude that N is an ideal of S. 

 

(3): If S is an inverse commutative semigroup, any 𝑥 ∈ 𝑆 has a unique inverse, 𝑥−1, and we have by Theorem 7 (2), that 

𝑥 = 𝑥𝑥−1𝑥𝑥−1𝑥 = 𝑥(𝑥−1𝑥𝑥𝑥−1) = 𝑥 ∙ 𝑥2 = 𝑥3 
 

We have seen previously that  𝑥3 = 𝑥 for all 𝑥 ∈ 𝑆 holds in any BZS semigroup that it is also a band, or a commutative 

inverse semigroup. It also holds for a BZS completely 0-simple semigroup, where the sandwich matrix has no zero 

entries. However, this property does not hold for all the BZS semigroups. To see this, let us consider 

 

𝑇 = {𝐼, 𝐸11, 𝐸12, 𝐸21, 𝐸22, 𝑂} 
 

of Example 4, which is an inverse BZS semigroup. Note that we have 

 

𝐼3 = 𝐼,   𝐸11
3 = 𝐸11,  𝐸22

3 = 𝐸22,  𝑂3 = 𝑂, 

𝐸12
3 = 𝑂 ≠ 𝐸12,  𝐸21

3 = 𝑂 ≠ 𝐸21 

 

from which, we can deduce that the mentioned property does not hold in all the BZS semigroups. 

4. Conclusion 

In this paper, we introduce a new class of ordered semigroups: BZS - Boolean Zero Square semigroups. Several 

basic properties on Green’s relations are obtained. Necessary and sufficient conditions for a BZS semigroup to be a band 

and to be an inverse semigroup are obtained. A characterisation of a special type of BZS completely 0-simple semigroup 

is presented. 
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