Boolean Zero Square (BZS) Semigroups

G.A. Pinto

Department of Mathematics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud, PC 123, Muscat, Sultanate of Oman. Email: goncalo@squ.edu.om

ABSTRACT: We introduce a new class of semigroups, that we call **BZS** - Boolean Zero Square-semigroups. A semigroup *S* with a zero element, 0, is said to be a BZS semigroup if, for every $x \in S$, we have $x^2 = x$ or $x^2 = 0$. We obtain some properties that describe the behaviour of the Green's equivalence relations \mathcal{R} , \mathcal{L} , \mathcal{H} and \mathcal{D} . Necessary and sufficient conditions for a BZS semigroup to be a band and an inverse semigroup are obtained. A characterisation of a special type of BZS completely 0-simple semigroup is presented.

Keywords: BZS semigroup; Green's relations; Regular; Completely 0-simple; Inverse and band.

أشباه الزمر البولانية ذات المربع الصفري

ج. أ. بينتو

الملخص: لقد اوجدنا نوعا جديدا من اشباه الزمر و أطلقنا عليه اسم "اشباه الزمر البولانيه ذات المربع الصفري". شبه الزمرة S الذي يحتوي على صفر O, يسمى شبه زمرة البولانيه ذو مربع صفري اذا كان كل x في S يحقق اما x² = x او C² = 3. لقد اوجدنا بعض الصفات التي تصف تصرف علاقة جرين التكافؤية *R*, *L*, *H* ترم . كما اوجدنا الشروط اللازمة و الشروط الكافية ليكون شبه الزمرة هذا شبه زمره باندية , شبه زمرة معاكسة. كما اوجدنا التوصيف الكامل تنوع خاص من اشباه الزمر البولانيه ذات المربع الصفري وهو شبه الزمرة الصفري البسيط التامي .

الكلمات المفتاحية: شبه زمرة البولانيه ذو مربع صفري، علاقة جرين، منتظم، الصفري البسيط التام، معكوس و فرقة.

G.A. PINTO

1. Introduction

We shall use standard semigroup notation, that can be found, for example, in [1]. If S is a semigroup, E(S) represents the set of idempotents of S, and V(x) denotes the set of inverses of an element x in S. We recall that the *natural order* \leq_n on the idempotents of a regular semigroup is defined by

$$e \leq_n f \iff e = ef = fe$$

In [2], Farag and Tucci introduced the notion of a Boolean Zero Square (BZS) ring as an associative ring, not necessarily commutative and not necessarily with identity, such that every non-zero element of R is either idempotent or nilpotent of index 2, that is,

$$(\forall x \in R) \quad x^2 = x \quad \lor \quad x^2 = 0$$

The structure of BZS rings is investigated, in [2] and in [3].

It is possible to find in the literature several papers in Boolean Zero rings, and as a sample we refer to [4] in order to several constructions in this structure.

Here we present a generalisation of these notions to semigroup theory, starting by introducing the following concept, that follows naturally from Ring theory.

Definition. A semigroup S, with element zero 0, is said to be a *BZS semigroup* if, for every element x in S, we have $x^2 = x$ or $x^2 = 0$.

In the ring case, there are more tools available due to the presence of two operations: addition and multiplication. This fact has, as a consequence, that the majority of the results obtained in [2] and [3] cannot be replicated to the semigroup case.

One of the results obtained in [2] is that in a BZS ring, the set of nilpotent elements, is an ideal of the ring. This property does not hold in a general BZS semigroup, as it can easily be seen in Example 2 below. This happens because the result only mentions the multiplicative operation, although its proof uses the additive operation heavily. We obtain in Theorem 8 that in a BZS commutative semigroup the set of its nilpotent elements, is an ideal of the semigroup.

In what follows, unless otherwise stated, S will always denote a BZS semigroup. We denote $E = \{x \in S | x^2 = x\}$ and $N = \{x \in S | x^2 = 0\}$

respectively, the set of *idempotent* elements and the set of *nilpotent* elements of S.

Let us present some basic properties that hold in any such semigroup S.

$$(\forall x \in S) \quad x^3 = x^2 \tag{1}$$

For any $x \in S$, we have two cases to consider:

i) $x^2 = x \implies x \cdot x^2 = x \cdot x \implies x^3 = x^2$ *ii)* $x^2 = 0 \implies x \cdot x^2 = x \cdot 0 \implies x^3 = 0 \implies x^3 = x^2$ which proves the result.

$$(\forall x \in S) \quad x^4 = x^2 \quad \text{and} \quad x^2 \in E(S) \tag{2}$$

This follows immediately from (1).

$$E \cap N = \{0\}\tag{3}$$

In fact, if $x \in E \cap N$, we have $x = x^2 = 0$, and the result follows.

$$(\forall x, y \in S) \quad xy \in E \setminus \{0\} \iff yx \in E \setminus \{0\}$$

$$\tag{4}$$

Let us, assume that $xy \in E \setminus \{0\}$, that is, $(xy)^2 = xy$, with $xy \neq 0$. If yx = 0 then, $yx = 0 \implies x \cdot yx \cdot y = x \cdot 0 \cdot y$ $\implies (xy)^2 = 0$

BOOLEAN ZERO SQUARE (BZS) SEMIGROUPS

which is a contradiction, and therefore we can conclude that $yx \neq 0$. Also, if $(yx)^2 = 0$ then, using (1), we have $(yx)^2 = 0 \implies x(yx)^2y = x \cdot 0 \cdot y$

$$\Rightarrow x(yx)^2y = x \cdot 0 \cdot y$$

$$\Rightarrow (xy)^3 = 0$$

$$\Rightarrow (xy)^2 = 0$$

$$\Rightarrow xy = 0$$

which is also a contradiction. So, $(yx)^2 = yx \neq 0$, which means that, $yx \in E \setminus \{0\}$. Similarly, we prove the reverse implication.

$$(\forall x, y \in S) \quad xy \in N \quad \Longleftrightarrow \quad yx \in N \tag{5}$$

If $xy \in N$ then, by (3), $xy \notin E \setminus \{0\}$ and therefore by (4), $yx \notin E \setminus \{0\}$, that is $yx \in N$. The converse implication follows similarly.

Now, let us present some examples to illustrate this concept, which show that they can be found in a wide variety of very well-known classes of semigroups, such as bands, completely 0-simple semigroups and inverse semigroups. **Example 1.** Any band, *B*, with zero is clearly, a BZS semigroup, with E = B and $N = \{0\}$.

Example 2. In a context of ordered semigroup theory, Blyth and McFadden presented in [5] a semigroup which has proved to be very helpful in describing several classes of ordered semigroups. More details of the relevance and properties of this semigroup can also be found in [6]. It can be defined by $N_5 = \{u, e, f, a, b\}$ with the following Cayley table:

	и	е	f	а	b
u	и	и	f	f	b
е	е	е	a	а	b
f	и	b	f	b	b
а	е	b	а	b	b
b	u e u e b	b	b	b	b

It follows directly from the table that N_5 is a BZS semigroup, b is its zero element, $N = \{a, b\}$ and $E = \{u, e, f, b\}$. This semigroup appears in a different context, as an example of a completely 0-simple semigroup that it is not orthodox. Routine calculations show that it is 0-simple

$$N_5 = N_5 u N_5 = N_5 e N_5 = N_5 f N_5 = N_5 a N_5$$

and, for example, f is a primitive idempotent. Since $ef \neq fe$, we can state that N_5 is not an orthodox semigroup.

Example 3. Consider the completely 0-simple semigroup $S = (I \times G \times \Lambda) \cup \{0\}$ with operation

$$(i, a, \lambda)(j, b, \mu) = \begin{cases} (i, ap_{\lambda j}b, \mu) & \text{if } p_{\lambda j} \neq 0\\ 0 & \text{if } p_{\lambda j} = 0 \end{cases}$$
$$(i, a, \lambda)0 = 0 = 0(i, a, \lambda) = 00$$

where $G^0 = G \cup \{0\}$ is a zero group, with $G = \langle x \rangle$ an order two cyclic group, *I*, Λ are non-empty index sets and $P = [p_{\lambda i}]$ is a $\Lambda \times I$ sandwich matrix with entries in G^0 , and all the non-zero entries of *P* are equal to *x*. Recall that every row and column of *P* has at least a non-zero entry.

Consider $T = \{(i, x, \lambda) \in S\} \cup \{0\}$ a subset of *S*, and let $(i, x, \lambda), (j, x, \mu) \in T$. We have the following possibilities for the element $p_{\lambda j}$:

If
$$p_{\lambda j} \neq 0$$
, then $(i, x, \lambda)(j, x, \mu) = (i, xp_{\lambda j}x, \mu) = (i, xxx, \mu) = (i, x, \mu) \in T$

If $p_{\lambda i} = 0$, then $(i, x, \lambda)(j, x, \mu) = 0 \in T$

and we can say that T is a semigroup, with the induced semigroup operation. Also, for any $(i, x, \lambda) \in T$, we have that

$$(i, x, \lambda)^2 = \begin{cases} (i, x, \lambda) & \text{if } p_{\lambda i} \neq 0 \\ \\ 0 & \text{if } p_{\lambda i} = 0 \end{cases}$$

Therefore, *T* is a BZS semigroup.

Example 4. Consider the following set of 2×2 real matrices

$$S = \{I, A, E_{11}, E_{12}, E_{21}, E_{22}, O\} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

It is well known that *S* with the usual matrix multiplication is an inverse semigroup (see, for example [7, Section 7.6, Exercise 1]). *S* is not a BZS semigroup, since $A^2 = AA = I \neq A, O$.

But if we consider the subset

$$T = \{I, E_{11}, E_{12}, E_{21}, E_{22}, O\},\$$

it gives us the following Cayley table

				E_{21}		
Ι	Ι	E_{11}	<i>E</i> ₁₂	$E_{21} \\ O \\ E_{11} \\ O \\ E_{21} \\ O$	E ₂₂	0
E_{11}	E_{11}	E_{11}	E_{12}	0	0	0
E_{12}	E_{12}	0	0	E_{11}	E_{12}	0
E_{21}	E_{21}	E_{21}	E_{22}	0	0	0
E_{22}	E_{22}	0	0	E_{21}	E_{22}	0
0	0	0	0	0	0	0

It follows immediately from the table that T is a subsemigroup of S which is a BZS inverse semigroup, with $E = \{I, E_{11}, E_{22}, 0\}$ and $N = \{E_{12}, E_{21}, 0\}$.

2. Green's Relations

Let us now obtain some basic properties on the Green's relations $\mathcal{R}, \mathcal{L}, \mathcal{H}, \mathcal{J}$ and \mathcal{D} on a BZS semigroup S.

$$R_0 = L_0 = H_0 = D_0 = J_0 = \{0\}$$
(6)

For any $x \in R_0$, we have that $x = x \cdot 1 \in xS^1 = 0S^1 = \{0\}$, which immediately implies that $R_0 = \{0\}$. The other equalities follow similarly.

For
$$x, y \in E$$
 or $x, y \in N$ (7)
 $x \Re y \implies xy \Re yx$
In fact, if $x, y \in E$, then, since \Re is a left congruence [1, Proposition 2.1.2],
 $x \Re y \implies \begin{cases} xx \Re xy \\ yx \Re yy \end{cases} \implies \begin{cases} x \Re xy \\ yx \Re y \end{cases} \implies xy \Re yx$
and, if $x, y \in N$ then
 $x \Re y \implies \begin{cases} xx \Re xy \\ yx \Re yy \end{cases} \implies \begin{cases} 0 \Re xy \\ yx \Re y \end{cases} \implies (0 \Re xy = 0 = yx \implies xy \Re yx$
 $\sum x \Re y \implies f = 0$ (0)

For $x, y \in E$ or $x, y \in N$ $x \pounds y \implies xy \pounds yx$ (8)

This follows similarly as in (7).

Note that properties (7) and (8) do not hold if one element is in E and the other is in N. To see this, consider N_5 in Example 2, where the \mathcal{R} classes of N_5 are $R_u = \{u, f\}$, $R_e = \{e, a\}$ and $R_b = \{b\}$, while its \mathcal{L} classes are $L_u = \{u, e\}$, $L_f = \{f, a\}$ and $L_b = \{b\}$. From property (7) we have that $e \in E$, $a \in N$, $e\mathcal{R}a$ but ea = a which is not \mathcal{R} related with ae = b. Similarly, for property (8).

Theorem 1. Let S be a BZS semigroup.

(1) If $a \in E$, then $R_a \cap E$ is a subsemigroup of S, which is a right zero semigroup. In particular, if $R_a \subseteq E$ then R_a is a right zero semigroup.

(2) If $a \in N$, then $R_a \cup \{0\}$ is a subsemigroup of S.

Proof. (1): It is clear that $R_a \cap E$ is non-empty, since $a \in R_a \cap E$. For any $b, c \in R_a \cap E$, we have,

 $b\mathcal{R}a$ and $c\mathcal{R}a \implies b\mathcal{R}c \implies b = bb\mathcal{R}bc \implies bc \in R_b = R_a$

which means that, R_a is a subsemigroup of S. Since b and c are idempotents, we have by [1, Proposition 2.3.3], that bc = cand therefore R_a is a right zero semigroup.

(2): It is clear that $R_0 = \{0\}$ is a subsemigroup of S. So, it is enough to consider $a \in N \setminus \{0\}$, that is, $a \neq 0$ and $a^2 = 0$. For b, $c \in R_a$, there exist x, y, z, $w \in S^1$ such that

$$a = bx$$
, $b = ay$, $c = az$ and $a = cw$

If, on one hand $b^2 = 0$, then

$$a = bx \implies ba = b(bx) = b^2x = 0 \cdot x = 0 \implies ba = 0$$

and

$$bc = b(az) = (ba)z = 0 \cdot z = 0$$

If, on the other hand $b^2 = b$, then by [1, Proposition 2.3.3], $bc = c \in R_a$.

Therefore, $R_a \cup \{0\}$ is a subsemigroup of S.

Note that in general, an \mathcal{R} class, R_x , is not a subsemigroup of S. In fact, if we consider the semigroup N_5 of Example 2, and its \mathcal{R} class, $R_e = \{e, a\}$, where $e \in E$ and $a \notin E$, then we have that $ae = b \notin R_e$, which means that, R_e is not a subsemigroup of N_5 .

Theorem 2. Let S be a BZS semigroup.

(1) If $a \in E$, then $L_a \cap E$ is a subsemigroup of S, which is a left zero semigroup. In particular, if $L_a \subseteq E$ then, L_a is a right zero semigroup.

(2) If $a \in N$ then, $L_a \cup \{0\}$ is a subsemigroup of S.

Proof. Similar to the proof of Theorem 1.

Like in the note to Theorem 2, we can use Example 2 to illustrate that an \mathcal{L} class of a BZS semigroup is not, in general, a subsemigroup of S.

Theorem 3. Let S be a BZS semigroup.

(1) If $a \in E$, then H_a is a group with only one element. (2) If $a \in S \setminus E$, then $H_a \subseteq S \setminus E$, $(H_a)^2 = \{0\}$ and $H_a \cup \{0\}$ is a subsemigroup of S. (3) If a D class of S contains an idempotent, all its H classes are singleton.

Proof. (1): In fact, by [1, Corollary 2.2.6], H_a is a subgroup of S. We need to prove that H_a has a unique element. For a = 0this is obvious, by (6). Let us now assume that $a \in E \setminus \{0\}$, and consider $b \in H_a$. We have that

$$b\mathcal{H}a \implies \begin{cases} b\mathcal{R}a \\ b\mathcal{L}a \end{cases} \implies \begin{cases} b\mathcal{R}ba \\ ba\mathcal{L}aa \end{cases} \implies \begin{cases} b^2\mathcal{R}ba \\ ba\mathcal{L}a \end{cases}$$
= 0 then
$$ba(a \implies 0) = 0 \qquad (0\mathcal{R}ba \implies 0) = 0$$

If $b^2 =$

$$b\mathcal{H}a \implies \begin{cases} 0\mathcal{R}ba \\ ba\mathcal{L}a \end{cases} \implies \begin{cases} ba = 0 \\ a \in L_{ba} \end{cases} \implies a \in L_{ba} = L_0 = \{0\} \implies a = 0$$

which is a contradiction. Therefore, we can conclude that $b^2 = b$, and b is an idempotent. Using again [1, Corollary 2.2.6], we conclude that b = a, and H_a is a singleton subgroup of S.

(2): Let $a \in S \setminus E$, and consider $y \in H_a$, which cannot be equal to 0, by (6). Then,

$$y\mathcal{H}a \implies \begin{cases} y\mathcal{R}a \\ y\mathcal{L}a \end{cases} \implies \begin{cases} yy\mathcal{R}ya \\ ya\mathcal{L}aa \end{cases} \implies \begin{cases} y^2\mathcal{R}ya \\ ya\mathcal{L}0 \end{cases} \implies y^2 \in R_0 = \{0\} \implies y \in N \end{cases}$$

and therefore $H_a \subseteq S \setminus E$. Again, with $a \in S \setminus E$ we have that

$$b\mathcal{H}a \implies \begin{cases} b\mathcal{R}a \\ b\mathcal{L}a \end{cases} \implies \begin{cases} ab\mathcal{R}aa \\ ba\mathcal{L}aa \end{cases} \implies \begin{cases} ab\mathcal{R}0 \\ ba\mathcal{L}0 \end{cases} \implies \begin{cases} ab=0 \\ ba=0 \end{cases}$$

Therefore, for $b, c \in H_a$, we can say that

ab = 0, ba = 0, ac = 0 and ca = 0

Since $b\mathcal{H}c$, we have that $b\mathcal{R}c$, and

 $b\mathcal{R}c\mathcal{R}a \implies cb\mathcal{R}cc\mathcal{R}ca = 0 \implies cb\mathcal{R}0 \implies cb = 0$

from which, we conclude that $(H_a)^2 = \{0\}$ and that $H_a \cup \{0\}$ is a subsemigroup of *S*. (3): This follows by [1, Lemma 2.2.3] and (1).

Note, that in Theorem 3(2) we verified that, for every $a \in N$, the \mathcal{H} class H_a is a subset of N. The same property does not hold for the \mathcal{R} and \mathcal{L} classes. In fact, the semigroup N_5 of Example 2 is such that $a \in N$, but $R_a = \{e, a\} \not\subset N$, as well as $L_a = \{f, a\} \not\subset N$.

Theorem 4. Let S be a BZS semigroup. (1) If $a \in S \setminus \{0\}$ and $D_a \subseteq E$, then D_a is a subsemigroup of S. (2) If $a \in S \setminus E$, then $D_a \cup \{0\}$ is a subsemigroup of S.

Proof. (1): For any $a \in S \setminus \{0\}$, we have by (6), that $D_a \neq \{0\}$. The fact that $D_a \subseteq E$ therefore implies that $D_a \subseteq E \setminus \{0\}$.

Considering any $b, c \in D_a$, there exist $d \in S$, such that $b\mathcal{L}d\mathcal{R}c$. By [1, Propositions 2.1.2 and 2.3.3], we have that

 $d\mathcal{R}c \implies bd\mathcal{R}bc \implies b\mathcal{R}bc \implies bc \in R_b \subseteq D_a$

Thus, D_a is a subsemigroup of S.

(2) Consider any $a \in S \setminus E$, that is, $a \neq 0$ and $a^2 = 0$. For any $b, c \in D_a$, there exist $d \in S$, such that $b \pounds d\mathcal{R}c$, which means, in particular, that b = xd and c = dy for some $x, y \in S^1$. Also, $d\mathcal{R}c$ implies $b = xd\mathcal{R}xc$ and therefore $xc \in R_b$.

Then,

bc = (xd)(dy) = x(dd)y

If $d^2 = d$, then $bc = xd^2y = xdy = xc \in R_b \subseteq D_a$. If $d^2 = 0$, then bc = 0. Thus, $D_a \cup \{0\}$ is a subsemigroup of *S*.

3. Special classes of BZS semigroups

We now devote our attention to obtaining necessary and sufficient conditions for a BZS semigroup S to be a band or an inverse semigroup. A characterisation of some BZS completely 0-simple is presented. Also, the commutativity property will be approached.

Theorem 5. Let S be a BZS semigroup. The following statements are equivalent: (1) S is a band; (2) $(\forall x \in S) x^3 = x$.

Proof. (1) \Rightarrow (2): The definition of a band tells us that $x^2 = x$ for all $x \in S$. Then, $x^3 = x^2 \cdot x = x \cdot x = x$

and the result follows.

(2) \Rightarrow (1): Take an element $x \in S$. Since S is BZS, $x^2 = x$ or $x^2 = 0$. If $x^2 = x$, there is nothing to prove. If $x^2 = 0$, then $x = x^3 = x^2 x = 0 \cdot x = 0$ which, immediately implies that $x^2 = x$, for every element of S, that is, S is a band.

In the following Theorem and its proof, we use the identification provided from Rees Theorem [1, Theorem 3.2.3], for a completely 0-simple semigroup *S*. Such *S* is isomorphic to

 $(I \times G \times \Lambda) \cup \{0\},\$

where G is a group, I and Λ are non-empty index sets, and $P = [p_{\lambda i}]$ is a $\Lambda \times I$ sandwich matrix with entries in the zero group $G^0 = G \cup \{0\}$. Also, every row and column of P has at least a non-zero entry. The semigroup operation is defined by

$$(i, a, \lambda)(j, b, \mu) = \begin{cases} (i, ap_{\lambda j}b, \mu) & \text{if } p_{\lambda j} \neq 0\\ 0 & \text{if } p_{\lambda j} = 0 \end{cases}$$

Theorem 6. Let S be a BZS semigroup. The following statements are equivalent:
(1) S is a completely 0-simple semigroup with no zero entries in the sandwich matrix;
(2) S is a rectangular 0-band.

Proof. (1) \Rightarrow (2): Let *S* be a completely 0-simple semigroup. Considering an arbitrary element *x* in *G*, for any $\lambda \in \Lambda$ and $i \in I$, we have that $p_{\lambda i} \neq 0$. Then,

$$(i, x, \lambda)^2 = (i, x, \lambda)(i, x, \lambda) = (i, xp_{\lambda i}x, \lambda) \neq 0,$$

which therefore implies, since *S* is a BZS semigroup, that $(i, x, \lambda)^2 = (i, x, \lambda)$. Thus,

$$\begin{aligned} (i, x, \lambda)(i, x, \lambda) &= (i, x, \lambda) &\Leftrightarrow \quad (i, x p_{\lambda i} x, \lambda) = (i, x, \lambda) \\ &\Leftrightarrow \quad x p_{\lambda i} x = x \\ &\Leftrightarrow \quad p_{\lambda i} = x^{-1} \end{aligned}$$

In particular, if we replace x by the identity element of the group 1_G , we obtain $p_{\lambda i} = 1_G$, and therefore $x^{-1} = 1_G$ which, is equivalent to $x = 1_G$. So, G is the trivial group.

Then, *S* is isomorphic to $\{(i, 1_G, \lambda) : i \in I \text{ and } \lambda \in \Lambda\} \cup \{0\}$, whose elements verify

$$(i, 1_G, \lambda)(j, 1_G, \mu) = (i, 1_G, \mu)$$
 and $(i, 1_G, \lambda) \cdot 0 = 0 = 0 \cdot (i, 1_G, \lambda)$

That is, *S* is a rectangular 0-band.

 $(2) \Rightarrow (1)$: If S is a rectangular 0-band, then

 $(\forall a \in S)(\forall b \in S \setminus \{0\})$ $a^2 = a$ and aba = a

Then, for any $a, b \in S$ and $b \in S \setminus \{0\}$, we have that, $a = aba \in SbS$ which implies that $S \subseteq SbS$. Since, the reverse inclusion is always true, we can conclude that *S* is a 0-simple semigroup.

Also, if in $S \setminus \{0\}$, $a \leq_n b$, then ab = ba = a. We have that

$$ab = ba \implies \begin{cases} aba = baa \\ bab = bba \end{cases} \implies \begin{cases} a = ba \\ b = ba \end{cases} \implies a = b$$

which, means that all non-zero idempotents are primitive, and therefore *S* is completely 0-simple. Also, if $a, b \in S \setminus \{0\}$, then if ab = 0 then $aba = 0 \neq a$, which is a contradiction. So, all the entries of the sandwich matrix are not zero.

It follows from the previous Theorem and its proof that for a BZS semigroup to be completely 0-simple where the sandwich matrix has no zero entries, it is necessary to have a singular group in the middle component of the Rees representation. In fact, we can say that a BZS semigroup is completely 0-simple where the sandwich matrix has no zero entries if, and only if, it is a completely simple semigroup with a zero adjoined.

Theorem 7. Let S be a BZS semigroup. S is an inverse semigroup if, and only if, the following conditions hold: (1) S is regular; (2) $(\forall x \in S) x' x^2 x' = x^2$, for any inverse x' of x.

Proof. Let S be an inverse semigroup. Any element x in S has a unique inverse denoted by x^{-1} . By [1, Theorem 5.1.1], an inverse semigroup is a regular one, where the idempotents commute. So, by (2), x^2 is an idempotent that, therefore, commutes with xx^{-1} and with $x^{-1}x$. Thus,

$$x^{4} = x^{2} \implies x^{-1}x^{4} = x^{-1}x^{2} \implies x^{-1}x \cdot x^{2} \cdot x = x^{-1}x^{2} \implies x^{2} \cdot x^{-1}x \cdot x = x^{-1}x^{2}$$
$$\implies x(xx^{-1}x)x = x^{-1}x^{2} \implies x^{3} = x^{-1}x^{2} \implies x^{3}x^{-1} = x^{-1}x^{2}x^{-1}$$
$$\implies x^{2} \cdot xx^{-1} = x^{-1}x^{2}x^{-1} \implies xx^{-1} \cdot x^{2} = x^{-1}x^{2}x^{-1} \implies x^{2} = x^{-1}x^{2}x^{-1}$$

G.A. PINTO

Conversely let us, assume that (1) and (2) hold. Let *e* be an idempotent of *S* and *e'* any inverse of *e*. By (2), we have that $e'e^2e' = e^2$, that is, e' = e. Thus, we can conclude that each idempotent in *S* has a unique inverse. Now, considering an element *x* in *S* and *x', x''* inverses of *x*, we have that xx' and xx'' are idempotents and inverses of each other, as well as x'x and x''x. Thus, xx' = xx'' and x'x = x''x and we can deduce that xx' = x'(xx') = x'(xx'') = (x'x)x'' = (x''x)x'' = x''

The result follows, since by [1, Theorem 5.1.1], a regular semigroup where each element has a unique inverse is an inverse semigroup.

Theorem 8. Let S be a BZS commutative semigroup. Then,

- (1) *E* is a subsemigroup of *S*;
- (2) N is an ideal of S;
- (3) If S is inverse then $x^3 = x$, for every $x \in S$.

Proof. Consider any elements $x, y \in S$.

(1): If, on one hand, both belong to *E*, we have $x^2 = x$ and $y^2 = y$, and therefore $(xy)^2 = (xy)(xy) = x(yx)y = x(xy)y = (xx)(yy) = x^2y^2 = xy$

which means that $xy \in E$, and therefore *E* is a subsemigroup of *S*.

(2): If, on the other hand, for example $x \in N$, we have that

$$(xy)^{2} = (xy)(xy) = x(yx)y = x(xy)y = (xx)(yy) = x^{2} \cdot y^{2} = 0 \cdot y^{2} = 0$$

Thus, $xy \in N$ and we can conclude that N is an ideal of S.

(3): If S is an inverse commutative semigroup, any $x \in S$ has a unique inverse, x^{-1} , and we have by Theorem 7 (2), that

$$x = xx^{-1}xx^{-1}x = x(x^{-1}xxx^{-1}) = x \cdot x^2 = x^3$$

We have seen previously that $x^3 = x$ for all $x \in S$ holds in any BZS semigroup that it is also a band, or a commutative inverse semigroup. It also holds for a BZS completely 0-simple semigroup, where the sandwich matrix has no zero entries. However, this property does not hold for all the BZS semigroups. To see this, let us consider

$$T = \{I, E_{11}, E_{12}, E_{21}, E_{22}, O\}$$

of Example 4, which is an inverse BZS semigroup. Note that we have

$$\begin{array}{ll} I^3 = I, & E_{11}^3 = E_{11}, & E_{22}^3 = E_{22}, \\ E_{12}^3 = 0 \neq E_{12}, & E_{21}^3 = 0 \neq E_{21} \end{array}$$

from which, we can deduce that the mentioned property does not hold in all the BZS semigroups.

4. Conclusion

In this paper, we introduce a new class of ordered semigroups: BZS - Boolean Zero Square semigroups. Several basic properties on Green's relations are obtained. Necessary and sufficient conditions for a BZS semigroup to be a band and to be an inverse semigroup are obtained. A characterisation of a special type of BZS completely 0-simple semigroup is presented.

Conflict of interest

The author declares no conflict of interest.

Acknowledgment

I thank Sultan Qabbos University for providing facilities and to the referees for their comments that improved the qulity of this paper.

BOOLEAN ZERO SQUARE (BZS) SEMIGROUPS

References

- 1. John, M. Howie, *Fundamentals of Semigroup Theory*, L.M.S. Monographs, **12**, Oxford University Press, Oxford, 1995.
- 2. Farag, M. and Tucci, R. BZS Rings, Palestine Journal of Mathematics 2019, 8(2), 8-14.doi:10.7151/dmgaa.1243.
- 3. Farag, M. BZS Rings II, 2020 (preprint).
- 4. Bhavanari, S., Lungisile, G. and Dasari, N. *Ideals and direct product of zero square rings, East Asian Mathematics Journal* 24, 2008, **4**, 377-387.
- 5. Blyth, T.S. and McFadden, R. *Naturally ordered regular semigroups with a greatest idempotent, Proceedings of the Royal Soc*iety of Edinburgh, **91A**, 1981, 107-122. doi:10.1017/S0308210500012671.
- 6. Blyth, T.S. Lattices and Ordered Algebraic Structures, (Springer 2005). doi:10.1007/b139095.
- 7. Clifford, A.H. and Preston, G.B. *The Algebraic Theory of Semigroups, volume* II, A.M.S. Mathematical Surveys, 1967. doi: 10.1090/surv/007.2.

Received 25 June 2020 Accepted 18 January 2021