Boolean Zero Square (BZS) Semigroups

G.A. Pinto
Department of Mathematics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud, PC 123, Muscat, Sultanate of Oman. Email: goncalo@squ.edu.om

Abstract

We introduce a new class of semigroups, that we call BZS - Boolean Zero Square-semigroups. A semigroup S with a zero element, 0 , is said to be a BZS semigroup if, for every $x \in S$, we have $x^{2}=x$ or $x^{2}=0$. We obtain some properties that describe the behaviour of the Green's equivalence relations $\mathcal{R}, \mathcal{L}, \mathcal{H}$ and \mathcal{D}. Necessary and sufficient conditions for a BZS semigroup to be a band and an inverse semigroup are obtained. A characterisation of a special type of BZS completely 0 -simple semigroup is presented.

Keywords: BZS semigroup; Green's relations; Regular; Completely 0-simple; Inverse and band.
أشباه الزمر البولانية ذات المريع الصفري
ج. أ. بينتو

اللملص: لقد اوجدنا نو عا جديدا من اشباه الزمر و أطلقنا عليه اسم "اشباه الزمر البو لانيه ذات المربع الصفري". شبه الزمرة S الذي يحتوي على صفر 0,
 التكافؤية التوصيف الكامل تنوع خاص من اشباه الزمر البو لانيه ذات المربع الصفري وهو شبه الزمرة الصفري البسيط التام.

الكلمات المفتاحية: شبه زمرة البو لانيه ذو مربع صفري، علاقة جرين، منتظم، الصفري البسيط النام، معكوس و فرقة.

1. Introduction

We shall use standard semigroup notation, that can be found, for example, in [1]. If S is a semigroup, $E(S)$ represents the set of idempotents of S, and $V(x)$ denotes the set of inverses of an element x in S. We recall that the natural order \leq_{n} on the idempotents of a regular semigroup is defined by

$$
e \leq_{n} f \quad \Leftrightarrow \quad e=e f=f e
$$

In [2], Farag and Tucci introduced the notion of a Boolean Zero Square (BZS) ring as an associative ring, not necessarily commutative and not necessarily with identity, such that every non-zero element of R is either idempotent or nilpotent of index 2 , that is,

$$
(\forall x \in R) \quad x^{2}=x \quad \vee \quad x^{2}=0
$$

The structure of BZS rings is investigated, in [2] and in [3].
It is possible to find in the literature several papers in Boolean Zero rings, and as a sample we refer to [4] in order to several constructions in this structure.
Here we present a generalisation of these notions to semigroup theory, starting by introducing the following concept, that follows naturally from Ring theory.

Definition. A semigroup S, with element zero 0 , is said to be a BZS semigroup if, for every element x in S, we have $x^{2}=x$ or $x^{2}=0$.

In the ring case, there are more tools available due to the presence of two operations: addition and multiplication. This fact has, as a consequence, that the majority of the results obtained in [2] and [3] cannot be replicated to the semigroup case.

One of the results obtained in [2] is that in a BZS ring, the set of nilpotent elements, is an ideal of the ring. This property does not hold in a general BZS semigroup, as it can easily be seen in Example 2 below. This happens because the result only mentions the multiplicative operation, although its proof uses the additive operation heavily. We obtain in Theorem 8 that in a BZS commutative semigroup the set of its nilpotent elements, is an ideal of the semigroup.

In what follows, unless otherwise stated, S will always denote a BZS semigroup. We denote

$$
E=\left\{x \in S \mid x^{2}=x\right\} \quad \text { and } \quad N=\left\{x \in S \mid x^{2}=0\right\}
$$

respectively, the set of idempotent elements and the set of nilpotent elements of S.
Let us present some basic properties that hold in any such semigroup S.

$$
\begin{equation*}
(\forall x \in S) \quad x^{3}=x^{2} \tag{1}
\end{equation*}
$$

For any $x \in S$, we have two cases to consider:
i) $x^{2}=x \Rightarrow x \cdot x^{2}=x \cdot x \Rightarrow x^{3}=x^{2}$
ii) $x^{2}=0 \Rightarrow x \cdot x^{2}=x \cdot 0 \quad \Rightarrow \quad x^{3}=0 \quad \Rightarrow \quad x^{3}=x^{2}$
which proves the result.

$$
\begin{equation*}
(\forall x \in S) \quad x^{4}=x^{2} \quad \text { and } \quad x^{2} \in E(S) \tag{2}
\end{equation*}
$$

This follows immediately from (1).
$E \cap N=\{0\}$
In fact, if $x \in E \cap N$, we have $x=x^{2}=0$, and the result follows.

$$
\begin{equation*}
(\forall x, y \in S) \quad x y \in E \backslash\{0\} \quad \Leftrightarrow \quad y x \in E \backslash\{0\} \tag{4}
\end{equation*}
$$

Let us, assume that $x y \in E \backslash\{0\}$, that is, $(x y)^{2}=x y$, with $x y \neq 0$. If $y x=0$ then,

$$
\begin{aligned}
y x=0 & \Rightarrow x \cdot y x \cdot y=x \cdot 0 \cdot y \\
& \Rightarrow(x y)^{2}=0
\end{aligned}
$$

BOOLEAN ZERO SQUARE (BZS) SEMIGROUPS

which is a contradiction, and therefore we can conclude that $y x \neq 0$. Also, if $(y x)^{2}=0$ then, using (1), we have

$$
\begin{aligned}
(y x)^{2}=0 & \Rightarrow x(y x)^{2} y=x \cdot 0 \cdot y \\
& \Rightarrow(x y)^{3}=0 \\
& \Rightarrow(x y)^{2}=0 \\
& \Rightarrow x y=0
\end{aligned}
$$

which is also a contradiction. So, $(y x)^{2}=y x \neq 0$, which means that, $y x \in E \backslash\{0\}$.
Similarly, we prove the reverse implication.

$$
\begin{equation*}
(\forall x, y \in S) \quad x y \in N \quad \Leftrightarrow \quad y x \in N \tag{5}
\end{equation*}
$$

If $x y \in N$ then, by (3), $x y \notin E \backslash\{0\}$ and therefore by (4), $y x \notin E \backslash\{0\}$, that is $y x \in N$. The converse implication follows similarly.

Now, let us present some examples to illustrate this concept, which show that they can be found in a wide variety of very well-known classes of semigroups, such as bands, completely 0 -simple semigroups and inverse semigroups.
Example 1. Any band, B, with zero is clearly, a BZS semigroup, with $E=B$ and $N=\{0\}$.

Example 2. In a context of ordered semigroup theory, Blyth and McFadden presented in [5] a semigroup which has proved to be very helpful in describing several classes of ordered semigroups. More details of the relevance and properties of this semigroup can also be found in [6]. It can be defined by $N_{5}=\{u, e, f, a, b\}$ with the following Cayley table:

	u	e	f	a	b
u	u	u	f	f	b
e	e	e	a	a	b
f	u	b	f	b	b
a	e	b	a	b	b
b	b	b	b	b	b

It follows directly from the table that N_{5} is a BZS semigroup, b is its zero element, $N=\{a, b\}$ and $E=\{u, e, f, b\}$. This semigroup appears in a different context, as an example of a completely 0 -simple semigroup that it is not orthodox. Routine calculations show that it is 0 -simple

$$
N_{5}=N_{5} u N_{5}=N_{5} e N_{5}=N_{5} f N_{5}=N_{5} a N_{5}
$$

and, for example, f is a primitive idempotent. Since $e f \neq f e$, we can state that N_{5} is not an orthodox semigroup.

Example 3. Consider the completely 0-simple semigroup $S=(I \times G \times \Lambda) \cup\{0\}$ with operation

$$
\begin{aligned}
& (i, a, \lambda)(j, b, \mu)=\left\{\begin{array}{ccc}
\left(i, a p_{\lambda j} b, \mu\right) & \text { if } & p_{\lambda j} \neq 0 \\
0 & \text { if } & p_{\lambda j}=0
\end{array}\right. \\
& (i, a, \lambda) 0=0=0(i, a, \lambda)=00
\end{aligned}
$$

where $G^{0}=G \cup\{0\}$ is a zero group, with $G=\langle x\rangle$ an order two cyclic group, I, Λ are non-empty index sets and $P=\left[p_{\lambda i}\right]$ is a $\Lambda \times I$ sandwich matrix with entries in G^{0}, and all the non-zero entries of P are equal to x. Recall that every row and column of P has at least a non-zero entry.

Consider $T=\{(i, x, \lambda) \in S\} \cup\{0\}$ a subset of S, and let $(i, x, \lambda),(j, x, \mu) \in T$. We have the following possibilities for the element $p_{\lambda j}$:

$$
\begin{aligned}
& \text { If } p_{\lambda j} \neq 0 \text {, then }(i, x, \lambda)(j, x, \mu)=\left(i, x p_{\lambda j} x, \mu\right)=(i, x x x, \mu)=(i, x, \mu) \in T \\
& \text { If } p_{\lambda j}=0 \text {, then }(i, x, \lambda)(j, x, \mu)=0 \in T
\end{aligned}
$$

and we can say that T is a semigroup, with the induced semigroup operation. Also, for any $(i, x, \lambda) \in T$, we have that

$$
(i, x, \lambda)^{2}=\left\{\begin{array}{ccc}
(i, x, \lambda) & \text { if } & p_{\lambda i} \neq 0 \\
0 & \text { if } & p_{\lambda i}=0
\end{array}\right.
$$

Therefore, T is a BZS semigroup.

Example 4. Consider the following set of 2×2 real matrices

$$
S=\left\{I, A, E_{11}, E_{12}, E_{21}, E_{22}, O\right\}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\}
$$

It is well known that S with the usual matrix multiplication is an inverse semigroup (see, for example [7, Section 7.6, Exercise 1]). S is not a BZS semigroup, since $A^{2}=A A=I \neq A, O$.

But if we consider the subset

$$
T=\left\{I, E_{11}, E_{12}, E_{21}, E_{22}, O\right\}
$$

it gives us the following Cayley table

	I	E_{11}	E_{12}	E_{21}	E_{22}	O
I	I	E_{11}	E_{12}	E_{21}	E_{22}	O
E_{11}	E_{11}	E_{11}	E_{12}	O	O	O
E_{12}	E_{12}	O	O	E_{11}	E_{12}	O
E_{21}	E_{21}	E_{21}	E_{22}	O	O	O
E_{22}	E_{22}	O	O	E_{21}	E_{22}	O
O						

It follows immediately from the table that T is a subsemigroup of S which is a BZS inverse semigroup, with $E=\left\{I, E_{11}, E_{22}, O\right\}$ and $N=\left\{E_{12}, E_{21}, O\right\}$.

2. Green's Relations

Let us now obtain some basic properties on the Green's relations $\mathcal{R}, \mathcal{L}, \mathcal{H}, \mathcal{J}$ and \mathcal{D} on a BZS semigroup S.

$$
\begin{equation*}
R_{0}=L_{0}=H_{0}=D_{0}=J_{0}=\{0\} \tag{6}
\end{equation*}
$$

For any $x \in R_{0}$, we have that $x=x \cdot 1 \in x S^{1}=0 S^{1}=\{0\}$, which immediately implies that $R_{0}=\{0\}$. The other equalities follow similarly.

For $x, y \in E$ or $x, y \in N$

$$
\begin{equation*}
x \mathcal{R} y \quad \Rightarrow \quad x y \mathcal{R} y x \tag{7}
\end{equation*}
$$

In fact, if $x, y \in E$, then, since \mathcal{R} is a left congruence [1, Proposition 2.1.2],

$$
x \mathcal{R} y \Rightarrow\left\{\begin{array} { l }
{ x x \mathcal { R } x y } \\
{ y x \mathcal { R } y y }
\end{array} \Rightarrow \left\{\begin{array}{l}
x \mathcal{R} x y \\
y x \mathcal{R} y
\end{array} \Rightarrow x y \mathcal{R} y x\right.\right.
$$

and, if $x, y \in N$ then

$$
x \mathcal{R} y \Rightarrow\left\{\begin{array} { l }
{ x x \mathcal { R } x y } \\
{ y x \mathcal { R } y y }
\end{array} \Rightarrow \left\{\begin{array}{l}
0 \mathcal{R} x y \\
y x \mathcal{R} 0
\end{array} \Rightarrow_{(6)} \quad x y=0=y x \quad \Rightarrow \quad x y \mathcal{R} y x\right.\right.
$$

For $x, y \in E$ or $x, y \in N$
$x \mathcal{L} y \Rightarrow x y \mathcal{L} y x$
This follows similarly as in (7).

BOOLEAN ZERO SQUARE (BZS) SEMIGROUPS

Note that properties (7) and (8) do not hold if one element is in E and the other is in N. To see this, consider N_{5} in Example 2 , where the \mathcal{R} classes of N_{5} are $R_{u}=\{u, f\}, R_{e}=\{e, a\}$ and $R_{b}=\{b\}$, while its \mathcal{L} classes are $L_{u}=\{u, e\}, L_{f}=\{f, a\}$ and $L_{b}=\{b\}$. From property (7) we have that $e \in E, a \in N, e \mathcal{R} a$ but $e a=a$ which is not \mathcal{R} related with $a e=b$. Similarly, for property (8).

Theorem 1. Let S be a BZS semigroup.
(1) If $a \in E$, then $R_{a} \cap E$ is a subsemigroup of S, which is a right zero semigroup. In particular, if $R_{a} \subseteq E$ then R_{a} is a right zero semigroup.
(2) If $a \in N$, then $R_{a} \cup\{0\}$ is a subsemigroup of S.

Proof. (1): It is clear that $R_{a} \cap E$ is non-empty, since $a \in R_{a} \cap E$. For any $b, c \in R_{a} \cap E$, we have,
$b \mathcal{R} a$ and $c \mathcal{R} a \Rightarrow b \mathcal{R} c \Rightarrow b=b b \mathcal{R} b c \Rightarrow b c \in R_{b}=R_{a}$
which means that, R_{a} is a subsemigroup of S. Since b and c are idempotents, we have by [1, Proposition 2.3.3], that $b c=c$ and therefore R_{a} is a right zero semigroup.
(2): It is clear that $R_{0}=\{0\}$ is a subsemigroup of S. So, it is enough to consider $a \in N \backslash\{0\}$, that is, $a \neq 0$ and $a^{2}=0$. For $b, c \in R_{a}$, there exist $x, y, z, w \in S^{1}$ such that

$$
a=b x, \quad b=a y, \quad c=a z \quad \text { and } \quad a=c w
$$

If, on one hand $b^{2}=0$, then

$$
a=b x \quad \Rightarrow \quad b a=b(b x)=b^{2} x=0 \cdot x=0 \quad \Rightarrow \quad b a=0
$$

and

$$
b c=b(a z)=(b a) z=0 \cdot z=0
$$

If, on the other hand $b^{2}=b$, then by [1, Proposition 2.3.3], $b c=c \in R_{a}$.
Therefore, $R_{a} \cup\{0\}$ is a subsemigroup of S.
Note that in general, an \mathcal{R} class, R_{x}, is not a subsemigroup of S. In fact, if we consider the semigroup N_{5} of Example 2, and its \mathcal{R} class, $R_{e}=\{e, a\}$, where $e \in E$ and $a \notin E$, then we have that $a e=b \notin R_{e}$, which means that, R_{e} is not a subsemigroup of N_{5}.

Theorem 2. Let S be a BZS semigroup.
(1) If $a \in E$, then $L_{a} \cap E$ is a subsemigroup of S, which is a left zero semigroup. In particular, if $L_{a} \subseteq E$ then, L_{a} is a right zero semigroup.
(2) If $a \in N$ then, $L_{a} \cup\{0\}$ is a subsemigroup of S.

Proof. Similar to the proof of Theorem 1.
Like in the note to Theorem 2, we can use Example 2 to illustrate that an \mathcal{L} class of a BZS semigroup is not, in general, a subsemigroup of S.

Theorem 3. Let S be a BZS semigroup.
(1) If $a \in E$, then H_{a} is a group with only one element.
(2) If $a \in S \backslash E$, then $H_{a} \subseteq S \backslash E,\left(H_{a}\right)^{2}=\{0\}$ and $H_{a} \cup\{0\}$ is a subsemigroup of S.
(3) If a \mathcal{D} class of S contains an idempotent, all its \mathcal{H} classes are singleton.

Proof. (1): In fact, by [1, Corollary 2.2.6], H_{a} is a subgroup of S. We need to prove that H_{a} has a unique element. For $a=0$ this is obvious, by (6). Let us now assume that $a \in E \backslash\{0\}$, and consider $b \in H_{a}$. We have that

$$
b \mathcal{H} a \Rightarrow\left\{\begin{array} { l }
{ b \mathcal { R } a } \\
{ b \mathcal { L } a }
\end{array} \Rightarrow \left\{\begin{array} { c }
{ b b \mathcal { R } b a } \\
{ b a \mathcal { L } a a }
\end{array} \Rightarrow \left\{\begin{array}{c}
b^{2} \mathcal{R} b a \\
b a \mathcal{L} a
\end{array}\right.\right.\right.
$$

If $b^{2}=0$ then

$$
b \mathcal{H} a \Rightarrow\left\{\begin{array} { l }
{ 0 \mathcal { R } b a } \\
{ b a \mathcal { L } a }
\end{array} \Rightarrow \left\{\begin{array}{l}
b a=0 \\
a \in L_{b a}
\end{array} \Rightarrow a \in L_{b a}=L_{0}=\{0\} \Rightarrow a=0\right.\right.
$$

which is a contradiction. Therefore, we can conclude that $b^{2}=b$, and b is an idempotent. Using again [1, Corollary 2.2.6], we conclude that $b=a$, and H_{a} is a singleton subgroup of S.
(2): Let $a \in S \backslash E$, and consider $y \in H_{a}$, which cannot be equal to 0 , by (6). Then,

$$
y \mathcal{H} a \Rightarrow\left\{\begin{array} { l }
{ y \mathcal { R } a } \\
{ y \mathcal { L } a }
\end{array} \Rightarrow \left\{\begin{array} { c }
{ y y \mathcal { R } y a } \\
{ y a \mathcal { L } a a }
\end{array} \Rightarrow \left\{\begin{array}{c}
y^{2} \mathcal{R} y a \\
y a \mathcal{L} 0
\end{array} \Rightarrow y^{2} \in R_{0}=\{0\} \Rightarrow y \in N\right.\right.\right.
$$

and therefore $H_{a} \subseteq S \backslash E$.
Again, with $a \in S \backslash E$ we have that

$$
b \mathcal{H} a \Rightarrow\left\{\begin{array} { l }
{ b \mathcal { R } a } \\
{ b \mathcal { L } a }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ a b \mathcal { R } a a } \\
{ b a \mathcal { L } a a }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ a b \mathcal { R } 0 } \\
{ b a \mathcal { L } 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
a b=0 \\
b a=0
\end{array}\right.\right.\right.\right.
$$

Therefore, for $b, c \in H_{a}$, we can say that

$$
a b=0, \quad b a=0, \quad a c=0 \quad \text { and } \quad c a=0
$$

Since $b \mathcal{H} c$, we have that $b \mathcal{R} c$, and

$$
b \mathcal{R} c \mathcal{R} a \quad \Rightarrow \quad c b \mathcal{R} c c \mathcal{R} c a=0 \quad \Rightarrow \quad c b \mathcal{R} 0 \quad \Rightarrow \quad c b=0
$$

from which, we conclude that $\left(H_{a}\right)^{2}=\{0\}$ and that $H_{a} \cup\{0\}$ is a subsemigroup of S.
(3): This follows by [1, Lemma 2.2.3] and (1).

Note, that in Theorem 3(2) we verified that, for every $a \in N$, the \mathcal{H} class H_{a} is a subset of N. The same property does not hold for the \mathcal{R} and \mathcal{L} classes. In fact, the semigroup N_{5} of Example 2 is such that $a \in N$, but $R_{a}=\{e, a\} \not \subset N$, as well as $L_{a}=\{f, a\} \not \subset N$.

Theorem 4. Let S be a BZS semigroup.
(1) If $a \in S \backslash\{0\}$ and $D_{a} \subseteq E$, then D_{a} is a subsemigroup of S.
(2) If $a \in S \backslash E$, then $D_{a} \cup\{0\}$ is a subsemigroup of S.

Proof. (1): For any $a \in S \backslash\{0\}$, we have by (6), that $D_{a} \neq\{0\}$. The fact that $D_{a} \subseteq E$ therefore implies that $D_{a} \subseteq E \backslash\{0\}$.
Considering any $b, c \in D_{a}$, there exist $d \in S$, such that $b \mathcal{L} d \mathcal{R} c$. By [1, Propositions 2.1.2 and 2.3.3], we have that

$$
d \mathcal{R} c \Rightarrow b d \mathcal{R} b c \Rightarrow b \mathcal{R} b c \quad \Rightarrow \quad b c \in R_{b} \subseteq D_{a}
$$

Thus, D_{a} is a subsemigroup of S.
(2) Consider any $a \in S \backslash E$, that is, $a \neq 0$ and $a^{2}=0$. For any $b, c \in D_{a}$, there exist $d \in S$, such that $b \mathcal{L} d \mathcal{R} c$, which means, in particular, that $b=x d$ and $c=d y$ for some $x, y \in S^{1}$.
Also, $d \mathcal{R} c$ implies $b=x d \mathcal{R} x c$ and therefore $x c \in R_{b}$.
Then,

$$
b c=(x d)(d y)=x(d d) y
$$

If $d^{2}=d$, then $b c=x d^{2} y=x d y=x c \in R_{b} \subseteq D_{a}$.
If $d^{2}=0$, then $b c=0$.
Thus, $D_{a} \cup\{0\}$ is a subsemigroup of S.

3. Special classes of BZS semigroups

We now devote our attention to obtaining necessary and sufficient conditions for a BZS semigroup S to be a band or an inverse semigroup. A characterisation of some BZS completely 0 -simple is presented. Also, the commutativity property will be approached.

Theorem 5. Let S be a BZS semigroup. The following statements are equivalent:
(1) S is a band;
(2) $(\forall x \in S) x^{3}=x$.

Proof. (1) \Rightarrow (2): The definition of a band tells us that $x^{2}=x$ for all $x \in S$. Then,

$$
x^{3}=x^{2} \cdot x=x \cdot x=x
$$

and the result follows.
$(2) \Rightarrow(1)$: Take an element $x \in S$. Since S is BZS, $x^{2}=x$ or $x^{2}=0$. If $x^{2}=x$, there is nothing to prove. If $x^{2}=0$, then $x=x^{3}=x^{2} x=0 \cdot x=0$ which, immediately implies that $x^{2}=x$, for every element of S, that is, S is a band.

In the following Theorem and its proof, we use the identification provided from Rees Theorem [1, Theorem 3.2.3], for a completely 0 -simple semigroup S. Such S is isomorphic to $(I \times G \times \Lambda) \cup\{0\}$,

BOOLEAN ZERO SQUARE (BZS) SEMIGROUPS

where G is a group, I and Λ are non-empty index sets, and $P=\left[p_{\lambda i}\right]$ is a $\Lambda \times I$ sandwich matrix with entries in the zero group $G^{0}=G \cup\{0\}$. Also, every row and column of P has at least a non-zero entry. The semigroup operation is defined by

$$
(i, a, \lambda)(j, b, \mu)=\left\{\begin{array}{ccc}
\left(i, a p_{\lambda j} b, \mu\right) & \text { if } & p_{\lambda j} \neq 0 \\
0 & \text { if } & p_{\lambda j}=0
\end{array}\right.
$$

Theorem 6. Let S be a BZS semigroup. The following statements are equivalent:
(1) S is a completely 0 -simple semigroup with no zero entries in the sandwich matrix;
(2) S is a rectangular 0-band.

Proof. (1) $\Rightarrow(2)$: Let S be a completely 0 -simple semigroup. Considering an arbitrary element x in G, for any $\lambda \in \Lambda$ and $i \in I$, we have that $p_{\lambda i} \neq 0$. Then,

$$
(i, x, \lambda)^{2}=(i, x, \lambda)(i, x, \lambda)=\left(i, x p_{\lambda i} x, \lambda\right) \neq 0
$$

which therefore implies, since S is a BZS semigroup, that $(i, x, \lambda)^{2}=(i, x, \lambda)$. Thus,

$$
\begin{aligned}
(i, x, \lambda)(i, x, \lambda)=(i, x, \lambda) & \Leftrightarrow\left(i, x p_{\lambda i} x, \lambda\right)=(i, x, \lambda) \\
& \Leftrightarrow x p_{\lambda i} x=x \\
& \Leftrightarrow p_{\lambda i}=x^{-1}
\end{aligned}
$$

In particular, if we replace x by the identity element of the group 1_{G}, we obtain $p_{\lambda i}=1_{G}$, and therefore $x^{-1}=1_{G}$ which, is equivalent to $x=1_{G}$. So, G is the trivial group.
Then, S is isomorphic to $\left\{\left(i, 1_{G}, \lambda\right): i \in I\right.$ and $\left.\lambda \in \Lambda\right\} \cup\{0\}$, whose elements verify

$$
\left(i, 1_{G}, \lambda\right)\left(j, 1_{G}, \mu\right)=\left(i, 1_{G}, \mu\right) \quad \text { and } \quad\left(i, 1_{G}, \lambda\right) \cdot 0=0=0 \cdot\left(i, 1_{G}, \lambda\right)
$$

That is, S is a rectangular 0-band.
(2) $\Rightarrow(1)$: If S is a rectangular 0 -band, then
$(\forall a \in S)(\forall b \in S \backslash\{0\}) \quad a^{2}=a \quad$ and $\quad a b a=a \quad$.
Then, for any $a, b \in S$ and $b \in S \backslash\{0\}$, we have that, $a=a b a \in S b S$ which implies that $S \subseteq S b S$.
Since, the reverse inclusion is always true, we can conclude that S is a 0 -simple semigroup.
Also, if in $S \backslash\{0\}, a \leq_{n} b$, then $a b=b a=a$. We have that

$$
a b=b a \Rightarrow\left\{\begin{array} { l }
{ a b a = b a a } \\
{ b a b = b b a }
\end{array} \Rightarrow \left\{\begin{array}{l}
a=b a \\
b=b a
\end{array} \Rightarrow a=b\right.\right.
$$

which, means that all non-zero idempotents are primitive, and therefore S is completely 0 -simple.
Also, if $a, b \in S \backslash\{0\}$, then if $a b=0$ then $a b a=0 \neq a$, which is a contradiction. So, all the entries of the sandwich matrix are not zero.

It follows from the previous Theorem and its proof that for a BZS semigroup to be completely 0 -simple where the sandwich matrix has no zero entries, it is necessary to have a singular group in the middle component of the Rees representation.
In fact, we can say that a BZS semigroup is completely 0 -simple where the sandwich matrix has no zero entries if, and only if, it is a completely simple semigroup with a zero adjoined.

Theorem 7. Let S be a BZS semigroup. S is an inverse semigroup if, and only if, the following conditions hold:
(1) S is regular;
(2) $(\forall x \in S) x^{\prime} x^{2} x^{\prime}=x^{2}$, for any inverse x^{\prime} of x.

Proof. Let S be an inverse semigroup. Any element x in S has a unique inverse denoted by x^{-1}. By [1, Theorem 5.1.1], an inverse semigroup is a regular one, where the idempotents commute. So, by (2), x^{2} is an idempotent that, therefore, commutes with $x x^{-1}$ and with $x^{-1} x$. Thus,

$$
\begin{aligned}
x^{4}=x^{2} & \Rightarrow x^{-1} x^{4}=x^{-1} x^{2} \Rightarrow x^{-1} x \cdot x^{2} \cdot x=x^{-1} x^{2} \Rightarrow x^{2} \cdot x^{-1} x \cdot x=x^{-1} x^{2} \\
& \Rightarrow x\left(x x^{-1} x\right) x=x^{-1} x^{2} \Rightarrow x^{3}=x^{-1} x^{2} \Rightarrow x^{3} x^{-1}=x^{-1} x^{2} x^{-1} \\
& \Rightarrow x^{2} \cdot x x^{-1}=x^{-1} x^{2} x^{-1} \Rightarrow x x^{-1} \cdot x^{2}=x^{-1} x^{2} x^{-1} \Rightarrow x^{2}=x^{-1} x^{2} x^{-1}
\end{aligned}
$$

Conversely let us, assume that (1) and (2) hold. Let e be an idempotent of S and e^{\prime} any inverse of e. By (2), we have that $e^{\prime} e^{2} e^{\prime}=e^{2}$, that is, $e^{\prime}=e$. Thus, we can conclude that each idempotent in S has a unique inverse. Now, considering an element x in S and $x^{\prime}, x^{\prime \prime}$ inverses of x, we have that $x x^{\prime}$ and $x x^{\prime \prime}$ are idempotents and inverses of each other, as well as $x^{\prime} x$ and $x^{\prime \prime} x$. Thus, $x x^{\prime}=x x^{\prime \prime}$ and $x^{\prime} x=x^{\prime \prime} x$ and we can deduce that

$$
x^{\prime}=x^{\prime}\left(x x^{\prime}\right)=x^{\prime}\left(x x^{\prime \prime}\right)=\left(x^{\prime} x\right) x^{\prime \prime}=\left(x^{\prime \prime} x\right) x^{\prime \prime}=x^{\prime \prime}
$$

The result follows, since by [1, Theorem 5.1.1], a regular semigroup where each element has a unique inverse is an inverse semigroup.

Theorem 8. Let S be a BZS commutative semigroup. Then,
(1) E is a subsemigroup of S;
(2) N is an ideal of S;
(3) If S is inverse then $x^{3}=x$, for every $x \in S$.

Proof. Consider any elements $x, y \in S$.
(1): If, on one hand, both belong to E, we have $x^{2}=x$ and $y^{2}=y$, and therefore

$$
(x y)^{2}=(x y)(x y)=x(y x) y=x(x y) y=(x x)(y y)=x^{2} y^{2}=x y
$$

which means that $x y \in E$, and therefore E is a subsemigroup of S.
(2): If, on the other hand, for example $x \in N$, we have that

$$
(x y)^{2}=(x y)(x y)=x(y x) y=x(x y) y=(x x)(y y)=x^{2} \cdot y^{2}=0 \cdot y^{2}=0
$$

Thus, $x y \in N$ and we can conclude that N is an ideal of S.
(3): If S is an inverse commutative semigroup, any $x \in S$ has a unique inverse, x^{-1}, and we have by Theorem 7 (2), that

$$
x=x x^{-1} x x^{-1} x=x\left(x^{-1} x x x^{-1}\right)=x \cdot x^{2}=x^{3}
$$

We have seen previously that $x^{3}=x$ for all $x \in S$ holds in any BZS semigroup that it is also a band, or a commutative inverse semigroup. It also holds for a BZS completely 0 -simple semigroup, where the sandwich matrix has no zero entries. However, this property does not hold for all the BZS semigroups. To see this, let us consider

$$
T=\left\{I, E_{11}, E_{12}, E_{21}, E_{22}, O\right\}
$$

of Example 4, which is an inverse BZS semigroup. Note that we have

$$
\begin{array}{llll}
I^{3}=I, & E_{11}^{3}=E_{11}, & E_{22}^{3}=E_{22}, & O^{3}=0, \\
E_{12}^{3}=0 \neq E_{12}, & E_{21}^{3}=0 \neq E_{21} &
\end{array}
$$

from which, we can deduce that the mentioned property does not hold in all the BZS semigroups.

4. Conclusion

In this paper, we introduce a new class of ordered semigroups: BZS - Boolean Zero Square semigroups. Several basic properties on Green's relations are obtained. Necessary and sufficient conditions for a BZS semigroup to be a band and to be an inverse semigroup are obtained. A characterisation of a special type of BZS completely 0 -simple semigroup is presented.

Conflict of interest

The author declares no conflict of interest.

Acknowledgment

I thank Sultan Qabbos University for providing facilities and to the referees for their comments that improved the qulity of this paper.

BOOLEAN ZERO SQUARE (BZS) SEMIGROUPS

References

1. John, M. Howie, Fundamentals of Semigroup Theory, L.M.S. Monographs, 12, Oxford University Press, Oxford, 1995.
2. Farag, M. and Tucci, R. BZS Rings, Palestine Journal of Mathematics 2019, 8(2), 8-14.doi:10.7151/dmgaa.1243.
3. Farag, M. BZS Rings II, 2020 (preprint).
4. Bhavanari, S., Lungisile, G. and Dasari, N. Ideals and direct product of zero square rings, East Asian Mathematics Journal 24, 2008, 4, 377-387.
5. Blyth, T.S. and McFadden, R. Naturally ordered regular semigroups with a greatest idempotent, Proceedings of the Royal Society of Edinburgh, 91A, 1981, 107-122. doi:10.1017/S0308210500012671.
6. Blyth, T.S. Lattices and Ordered Algebraic Structures, (Springer 2005). doi:10.1007/b139095.
7. Clifford, A.H. and Preston, G.B. The Algebraic Theory of Semigroups, volume II, A.M.S. Mathematical Surveys, 1967. doi: 10.1090/surv/007.2.

Received 25 June 2020
Accepted 18 January 2021

