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ABSTRACT: In this work, the extended homogeneous balance method is used to derive exact solutions of nonlinear 

evolution equations. With the aid of symbolic computation, many new exact travelling wave solutions have been 

obtained for Fisher’s equation and Burgers-Fisher equation. Fisher’s equation has been widely used in studying the 

population for various systems, especially in biology, while Burgers-Fisher equation has many physical applications 

such as in gas dynamics and fluid mechanics. The method used can be applied to obtain multiple travelling wave 

solutions for nonlinear partial differential equations. 
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  وسعةلمعادلة فيشر باستخدام طريقة التوازن المتجانس الم الحلول الموجية

 محمد فارس، أسامة محمد عبدالسلام و فايزة محمد اللحياني محمد

 . بمساعدةالتفاضلية الجزئيةلمعادلات ا )التحليلية( لبعض ي هذا العمل ، تم استخدام طريقة التوازن المتجانس الموسعة لاشتقاق الحلول الدقيقةف :صلخمال

الدقيقة الجديدة لمعادلة فيشر ومعادلة برجر فيشر. تم استخدام معادلة فيشر على نطاق الموجية حلول ال، تم الحصول على العديد من بعض البرامج الحسابية 

أن معادلة برجر فيشر لها العديد من التطبيقات الفيزيائية مثل ديناميكيات الغاز  كمافي علم الأحياء ،  كذلكواسع في دراسة السكان لأنظمة مختلفة ، و

 للمعادلات التفاضلية الجزئية غير الخطية الموجيةحلول التطبيق الطريقة المستخدمة للحصول على العديد من  وميكانيكا الموائع. يمكن
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1. Introduction 

he exact travelling wave solutions of nonlinear evolution equations play an important role in the study of nonlinear 

physical phenomena, for example, the wave phenomena observed in fluid mechanics, plasma physics, optical 

fibers, solid state physics, chemical kinematics, chemical physics and geochemistry. Explicit solutions to the 

mathematical modelling of physical problems are of fundamental importance. Many methods have been developed for 

finding the exact solutions of nonlinear evolution equations, such as the inverse scattering method [1, 2], bilinear 

transformation [1, 3, 4], the tanh-function method [5, 6], extended tanh method [7-10], sine-cosine method [11, 12], F-

expansion method [13], general expansion method [14, 15], and (𝐺′/𝐺) method [16-18]. The homogeneous balance 

(HB) method, which is a direct and effective algebraic method for the computation of exact traveling wave solutions, 

was first proposed by Wang [19, 20]. Later [21,22], the HB method was extended to search for other kinds of exact 

solutions. Fan [23] used the HB method to search for Backlund transformation and similarity reduction of nonlinear 

PDEs. He also showed that there is a close connection among the HB method, Weiss, Tabor, Carnevale (WTC) method 

and Clarkson, Kruskal (CK) method. The extended homogeneous balance method is used to solve many nonlinear 

evolution equations [24-28]. 

The Fisher’s equation [29,30] is a nonlinear partial differential equation of second order.  

 𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢(1 − 𝑢). 

Fisher proposed this equation as a model for the propagation of a mutant gene with 𝑢(𝑥, 𝑡) denoting the density 

of advantages. This equation is encountered in chemical kinetics, population dynamics, flame propagation, 

autocatalytic chemical reactions and branching Brownian motion processes. The aim of this work is to propose an 

extension of the homogeneous balance method to construct more other kinds of exact solutions to nonlinear PDEs. In 

order to illustrate the effectiveness and convenience of the method, the method is applied to Fisher’s equation and 

Burgers-Fisher equation. 

In the following section, let us simply describe the extended homogeneous balance method.  

2.  Proposed analytical method 

In general, consider a given PDE, say in two variables  

 

 𝐻(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥 , . . . . ) = 0. (1) 

 

 We seek for the special solution of Eq. (1), the travelling wave solution, in the form  

 

 𝑢(𝑥, 𝑡) = 𝑢(𝜁),        𝜁 = 𝑥 − 𝜆 𝑡, (2) 

 

where 𝜗 and 𝐿 are constants to be determined later. Using the transformation (2), Eq. (1) reduces to a nonlinear 

ordinary differential equation (ODE). The next crucial step is that the solution we are looking for is expressed in the 

form  

 𝑢(𝜁) = ∑  
𝑛

𝑖=0
𝑎𝑖𝜔

𝑖 + ∑  
𝑛

𝑖=1
𝑏𝑖[1 + 𝜔]−𝑖 , (3) 

 and  

 𝜔 ′ = 𝑘 + 𝑀𝜔 + 𝑃𝜔2, (4) 

 

 where 𝑎𝑖 and 𝑏𝑖 are constants, while 𝑘, 𝑀 and 𝑃 are parameters to be determined later, 𝜔 = 𝜔(𝜁), and 𝜔 ′ = 𝑑𝜔/𝑑𝜁. 

The mechanism for solitary wave solutions to occur is the fact that different effects (such as, the dispersion and 

nonlinearity) that act to change the wave forms in many nonlinear physical equations have to balance each other. 

Therefore, one may use the above fact to determine the parameter 𝑛, which must be a positive integer, and can be 

found by balancing the highest-order linear term with the nonlinear terms [26]. Substituting (3) and (4) in the relevant 

ODE will yield a system of ODEs with respect to 𝑎0, 𝑎𝑖, 𝑏𝑖, 𝑘, 𝑀, 𝑃 and 𝜆 (where 𝑖 = 1, . . . , 𝑚), because all the 

coefficients of 𝜔𝑗 (where 𝑗 = 0,1, . ..) have to vanish. With the aid of MATHEMATICA, one can determine 𝑎0, 𝑎𝑖, 𝑏𝑖, 𝑘, 

𝑀, 𝑃 and 𝜆. 

 It is to be noted that the Riccati equation (4) can be solved using the homogeneous balance method as follows: 

Case I: when P = 1, M = 0, the Riccati Eq. (4) has the following solutions  

 

 𝜔 = {[𝑐]𝑙𝑙 − √−𝑘 tanh[√−𝑘𝜁],   𝑤𝑖𝑡ℎ𝑘 < 0, −√−𝑘 coth[√−𝑘𝜁], 𝑤𝑖𝑡ℎ < 0,               (5) 

 

 

 𝜔 = −
1

𝜁
,                with   𝑘 = 0, (6) 

T 



MOHAMMAD M. FARES  ET AL. 

 

24 

 

 

 and  

 𝜔 = {[𝑐]𝑙𝑙√𝑘 tan[√𝑘𝜁],    𝑤𝑖𝑡ℎ 𝑘 > 0, −√𝑘 cot[√𝑘𝜁],                      𝑤𝑖𝑡ℎ  𝑘 > 0.           (7) 

 

Since coth- and cot-type solutions appear in pairs with tanh- and tan-type solutions, respectively, they are omitted in 

this paper. 

 

Case II:, Let 𝜔 = ∑  𝑚
𝑖=0 𝐴𝑖tanh𝑖(𝑝1𝜁). Balancing 𝜔′ with 𝜔2 leads to 

 

 𝜔 = 𝐴0 + 𝐴1tanh(𝑝1𝜁). (8) 

 

 Substituting equation (8) into (4), we have the following solution of Eq. (4)  

 

 𝜔 = −
𝑝1

2𝑃
tanh(

𝑝1

2
𝜁) −

𝑀

2𝑃
, with  𝑃𝑘 =

𝑀2−𝑝1
2

4
 . (9) 

  

Similarly, let 𝜔 = ∑  𝑚
𝑖=0 𝐴𝑖coth𝑖(𝑝1𝜁), then we obtain the following solution: 

 

 𝜔 = −
𝑝1

2𝑃
coth(

𝑝1

2
𝜁) −

𝑀

2𝑃
 

with 𝑃𝑘 =
𝑀2−𝑝1

2

4
 . 

 

Case III:, We suppose that the Riccati Eq. (4) has the following solutions of the form  

 

 𝜔 = 𝐴0 + ∑  𝑚
𝑖=0 (𝐴𝑖𝑓

𝑖 + 𝐵𝑖𝑓𝑖−1𝑔), (10) 

 with  

 𝑓 =
1

cosh𝜁+𝑟
,    𝑔 =

sinh𝜁

cosh𝜁+𝑟
, (11) 

 

 Substituting equations (10) and (11) into (4), we have the following solution of Eq. (4)  

 

 𝜔 = −
1

2𝑃
(𝑀 +

sinh(𝜁)+√𝑟2−1

cosh(𝜁)+𝑟
) , with  𝑃𝑘 =

𝑀2−1

4
 (12) 

 

 where 𝑟 is an arbitrary constant. It should be noticed that solution (12), as 𝑟 = 1, degenerates to  

 

 𝜔 = −
1

2𝑃
[𝑀 + tanh (

𝜁

2
)] (13) 

 

Case IV:, We suppose that the Riccati Eq. (4) has the following solutions of the form  

 

 𝜔 = 𝐴0 + ∑  𝑚
𝑖=0 sinh𝑖−1(𝐴𝑖sinh𝜂 + 𝐵𝑖cosh𝜂), (14) 

  

 

where 𝑑𝜂/𝑑𝜁 = sinh𝜂 or 𝑑𝜂/𝑑𝜁 = cosh𝜂 Balancing 𝜔′ with 𝜔2 leads to 𝑚 = 1 

 

 𝜔 = 𝐴0 + 𝐴1sinh𝜂 + 𝐵1cosh𝜂. (15) 

 

When 𝑑𝜂/𝑑𝜁 = sinh𝜂, we substitute (15) and 𝑑𝜂/𝑑𝜁 = sinh𝜂 into (4) and set the coefficient of sinh𝑖𝜂cosh𝑗𝜂, 𝑖 =
0,1,2, 𝑗 = 0,1 to zero and solve the obtained set of algebraic equations to get 

 

 𝐴0 =
−𝑀

2𝑃
, 𝐴1 = 0, 𝐵1 =

1

𝑃
, (16) 

 where 𝑘 =
𝑀2−4

4𝑃
  , while  

𝐴0 =
−𝑀

2𝑃
, 𝐴1 = ±√

1

2𝑃
, 𝐵1 =

1

𝑃
,                                                  (17) 

 where 𝑘 =
𝑀2−1

4𝑃
. To 𝑑𝜂/𝑑𝜁 = sinh𝜂 we have  

 sinh𝜂 = −𝑐𝑠𝑒𝑠ℎ𝜁, cosh𝜂 = −coth𝜁. (18) 

 From (16)-(18) we obtain  

 𝜔 = −
𝑀+2coth𝜁

2𝑃
. (19) 
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 where 𝑘 =
𝑀2−4

4𝑃
, and 

 

 𝜔 = −
𝑀±𝑐𝑠𝑒𝑠ℎ𝜁+coth𝜁

2𝑃
. (20) 

 where 𝑘 =
𝑀2−1

4𝑃
 

 

3.  Applications of the proposed method 

In this section, we will illustrate the above approach for a class of nonlinear evolution equations namely, Fisher’s 

equation. 

3.1  Example 1. Fisher’s equation 

We apply the extended homogeneous balance method to construct the traveling wave solutions for Fisher’s 

equation [24,25]. The Fisher’s equation is a nonlinear partial differential equation of second order, of the form  

 

 𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢(1 − 𝑢). (21) 

  

Applying the transformation 𝑢(𝑥, 𝑡) = 𝑈(𝜁), 𝜁 = 𝑥 − 𝜆𝑡 to Eq. (21) we find 𝑉 satisfies the following ordinary 

differential equation  

 −𝑈 + 𝑈2 − 𝜆𝑈′ − 𝑈′′ = 0. (22) 

 

Balancing 𝑈′′ with 𝑈2 yields |𝑚| = 2.Therefore, we are looking for the solution in the form  

 

 𝑈 = 𝑎0 + 𝑏0 + 𝑎1𝜔 + 𝑏1(1 + 𝜔)−1 + 𝑎2𝜔2 + 𝑏2(1 + 𝜔)−2, (23) 

 

Substituting Eqs. (23) and (4) in Eq. (22), we get a polynomial equation 𝜔. Hence, equating the coefficient of 

𝜔𝑗   (i.e., 𝑗 = 0,1,2, . ..) to zero and solving the obtained system of overdetermined algebraic equation using symbolic 

manipulation package MATHEMATICA, results in:  

 

The first set:  

 

𝑎1 = 0, 𝑃 ≠ 0, 𝑎0 =
1

2
(−12𝑃2 + 12𝑘𝑃 + 1), 𝑏1 =

1

2
√3√−384𝑃4 + 576𝑘𝑃3 − 192𝑘3𝑃 + 1, 𝑎2 = 0, 

 𝑏2 = 6(𝑘2 − 2𝑃𝑘 + 𝑃2), 𝜆 = −480(𝑘𝑃2𝑏1 − 𝑃3𝑏1). (24) 

 

The second set:  

 𝑏2 = 0, 𝑃 ≠ 0, 𝑘 =
𝑀2−1

4𝑃
, 𝑎0 =

1

2
(𝑀2 + 8𝑘𝑃 + 1), 𝑏1 = 0, 𝑎2 = 6𝑃2, 𝑀 ≠ 0, 

 

 

=
−36𝑃𝑀6 + 432𝑘𝑃2𝑀4 − 1728𝑘2𝑃3𝑀2 + 211𝑃𝑀2 + 2304𝑘3𝑃4 − 424𝑘𝑃2 − 35𝑃 + 70𝑃𝑎0

35𝑀
, 

𝜆 =
6

7
(36𝑀9 − 432𝑘𝑃𝑀7 + 1728𝑘2𝑃2𝑀5 − 73𝑀5 − 2304𝑘3𝑃3𝑀3 + 160𝑘𝑃𝑀3 + 70𝑎0𝑀3 − 35𝑀3 

 −1152𝑘2𝑃2𝑀 + 280𝑘𝑃𝑀 − 560𝑘𝑃𝑎0𝑀 + 2𝑀 + 560𝑘2𝑃𝑎1). (25) 

 

For the first set (24), if 𝑀 = 0, 𝑃 = 1 we get the solutions satisfying case I for 𝑘 > 0. Therefore, the solutions of 

Fisher’s equation of the type (21), will be 

 

 𝑢1(𝑥, 𝑡) = 𝑎0 +
𝑏2+𝑏1(√𝑘tan(√𝑘𝜁)+1)

(√𝑘tan(√𝑘𝜁)+1)
2 , (26) 

 

 

 𝑢2(𝑥, 𝑡) = 𝑎0 +
(√𝑘cot(√𝑘𝜁)+1)𝑏1+𝑏2

(√𝑘cot(√𝑘𝜁)+1)
2 . (27) 

 

For 𝑘 < 0,  

 𝑢3(𝑥, 𝑡) = 𝑎0 +
𝑏2+𝑏1(1−√−𝑘tanh(√−𝑘𝜁))

(√−𝑘tanh(√−𝑘𝜁)−1)
2 , (28) 
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 𝑢4(𝑥, 𝑡) = 𝑎0 +
(1−√𝑘coth(√𝑘𝜁))𝑏1+𝑏2

(√𝑘coth(√𝑘𝜁)−1)
2 , (29) 

  

Now for the solutions satisfying cases II & III & IV, we have the compatibility condition,  

 

 𝑃𝑘 =
𝑀2−𝑝1

2

4
. 

 (30) 

  

Therefore, substitute for 𝑃 and 𝑘, from Eq. (24) into Eq. (30) and solve for 𝑝1. It is found that  

 

 𝑝1 = −
√1−2𝑎0

√3
      or   

√1−2𝑎0

√3
. (31) 

 

Hence, for case II, we get the following solutions: 

 

 𝑢5(𝑥, 𝑡) = 𝑎0 +
2𝑃(2𝑃𝑏2+𝑏1(2𝑃−𝑝1(𝑀+2tanh(𝜁𝑝1))))

(𝑝1(𝑀+2tanh(𝜁𝑝1))−2𝑃)
2 , (32) 

 

 
 

Figure 1. 3D and contour plots of the solution (32) with 𝑎0 = −2 𝑃 = 5 and 𝑘 = 5. 

 

and  

 𝑢6(𝑥, 𝑡) = 𝑎0 +
2𝑃(2𝑃(𝑏1+𝑏2)−(𝑀+2coth(𝜁𝑝1))𝑏1𝑝1)

((𝑀+2coth(𝜁𝑝1))𝑝1−2𝑃)
2 , (33) 

 In the same manner case III, results in the solution 

 

 𝑢7(𝑥, 𝑡) = 𝑎0 +
4𝑃2𝑏2(𝑟+cosh(𝜁))2

(𝑀𝑟−2𝑃𝑟+(𝑀−2𝑃)cosh(𝜁)+sinh(𝜁)+√𝑟2−1)
2 

 −
2𝑃𝑏1(𝑟+cosh(𝜁))

𝑀𝑟−2𝑃𝑟+(𝑀−2𝑃)cosh(𝜁)+sinh(𝜁)+√𝑟2−1
, (34) 

 

with the condition that 𝑝1 = 1. 
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Figure 2.  3D and density plots of the solution (35) with 𝑎0 = −2, 𝑃 = 5 and 𝑘 = 5. 

 

For case IV, the solution form is 

 

 𝑢8(𝑥, 𝑡) = 𝑎0 +
2𝑃((𝑀+2𝑃+coth(𝜁)+csch(𝜁))𝑏1+2𝑃𝑏2)

(𝑀+2𝑃+coth(𝜁)+csch(𝜁))2 , (35) 

 with the condition that 𝑝1 = 1, 

 

 𝑢9(𝑥, 𝑡) = 𝑎0 +
2𝑃((−𝑀+2𝑃−2coth(𝜁))𝑏1+2𝑃𝑏2)

(𝑀−2𝑃+2coth(𝜁))2 , (36) 

 with the condition that 𝑝1 = 2. 

 

For the second set we are left only with solutions satisfying cases II & III & IV. Since, the main criteria for these 

cases to be applicable is the compatibility condition,  

 

 𝑃𝑘 =
𝑀2−𝑝1

2

4
. (37) 

 From (25), it is found that  

 𝑝1 = 1. (38) 

 

  

Therefore, solutions to equation of the type (21), will be  

 

 𝑢10(𝑥, 𝑡) = 𝑎0 +
3

2
𝑝1

2(𝑀 + 2tanh(𝜁𝑝1))
2

−
𝑎1𝑝1(𝑀+2tanh(𝜁𝑝1))

2𝑃
, (39) 

 and  

 𝑢11(𝑥, 𝑡) = 𝑎0 +
3

2
(𝑀 + 2coth(𝜁𝑝1))

2
𝑝1

2 −
(𝑀+2coth(𝜁𝑝1))𝑎1𝑝1

2𝑃
, (40) 

 

In the same manner case III, results in the solution 

 

 𝑢12(𝑥, 𝑡) = 𝑎0 +
3

2
(𝑀 +

sinh(𝜁)+√𝑟2−1

𝑟+cosh(𝜁)
)

2

−
𝑎1(𝑀+

sinh(𝜁)+√𝑟2−1

𝑟+cosh(𝜁)
)

2𝑃
, (41) 

 where 𝑝1 = 1, 

 

For case IV, the solution form is  

 

 𝑢13(𝑥, 𝑡) =
3

2
(𝑀 + coth(𝜁) + csch(𝜁))2 +

𝑎1(𝑀+coth(𝜁)+csch(𝜁))

2𝑃
+ 𝑎0, (42) 

 with 𝑝1 = 1. 

3.2  Example 2. Burgers-Fisher equation 

Consider Burgers-Fisher equation [24,25]. 

 

 𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢𝑢𝑥 + 𝑢(1 − 𝑢). (43) 

 

Apply the transformation 𝑢(𝑥, 𝑡) = 𝑈(𝜁), 𝜁 = 𝑥 − 𝜆𝑡 to Eq. (43) Then it is reduced to the following ordinary 

differential equation:  
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 −𝑈 + 𝑈2 − 𝜆𝑈′ + 𝑈𝑈′ − 𝑈′′ = 0. (44) 

 

Balancing 𝑈′′ with 𝑈𝑈′ yields m=1. Therefore, we are looking for the solution in the form  

 

 𝑈 = 𝑎0 + 𝑏0 + 𝑎1𝜔 + 𝑏1(1 + 𝜔)−1, (45) 

 

substituting Eqs. (45) and (4) in Eq. (44), we get a polynomial equation 𝜔. Hence, equating the coefficient of 𝜔𝑗  (i.e., 

𝑗 = 0,1,2, . ..) to zero and solving the obtained system of overdetermined algebraic equations using the symbolic 

manipulation package MATHEMATICA, results in : 

 

 𝑀 = 2𝑃 + 1, 𝑘 = 𝑃 + 1, 𝑎1 = 0, 𝑃 ≠ 0, 𝑏1 =
𝑎0

𝑃
, 𝑏1 ≠ 0, 𝜆 = −𝑎0 + 𝑃𝑏1 + 2. (46) 

 

For the first set, as in the previous example , we apply the compatibility condition, in using the solutions 

satisfying cases II & III & IV.  

 𝑃𝑘 =
𝑀2−𝑝1

2

4
. (47) 

  

Therefore, substitute for 𝑃 and 𝑘, from Eq. (46), into Eq. (47) and solve for 𝑝1. It is found that  

 

 𝑝1 = 1    or    𝑝1 = −1. (48) 

 

 Therefore, the solution to the equation of the type (43), will be  

 

 𝑢1(𝑥, 𝑡) = 𝑎0 (1 −
1

1+2tanh(𝑥−𝜆𝑡)
), (49) 

 and  

 𝑢2(𝑥, 𝑡) = 𝑎0 (1 −
1

1+2coth(𝑥−𝜆𝑡)
), (50) 

 

 
Figure 3. 3D and contour plots of the solution (51) with 𝑎0 = 0.03 𝑃 = 1 and 𝑟 = 

 

In the same manner, case III results in the solution 

 

 𝑢3(𝑥, 𝑡) =
(−𝑟−cosh(𝜁)+sinh(𝜁)+√𝑟2−1)𝑎0

𝑟+cosh(𝜁)+sinh(𝜁)+√𝑟2−1
, (51) 

 with the condition that 𝑝1 = 1. 

 

For case IV, the solution form is  

 

 𝑢4(𝑥, 𝑡) =
(4𝑃+coth(𝜁)+csch(𝜁)+3)𝑎0

4𝑃+coth(𝜁)+csch(𝜁)+1
, (52) 

 with 𝑝1 = 1, 

 

4.  Conclusion 

In summary, an extended homogeneous balance method with computerized symbolic computation is developed 

to deal with nonlinear partial differential equations (PDEs). Traveling wave solutions were formally derived for 

Fisher’s equation and Burgers-Fisher equation. This method can be also applied to other nonlinear evolution equations. 
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