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ABSTRACT: 3-dimensional convex uniform polyhedra have been projected onto their corresponding 

Coxeter planes defined by the simple roots of the Coxeter diagram      . The projected vertices of a 

polyhedron onto its corresponding Coxeter plane constitute an orbit of the dihedral group   . In this paper, 

we use the quaternionic representations of the Coxeter group elements and the vertices of the polyhedra. 
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 كىزجر باسحخذام الرباعيات إسقاط محعذدات السطىح على سطخ

بىسلاسل بيث مظاهر العجمي و مهمث كىجا ودشيمة  

ٌتى باستخذاو ( Coxeter plane) عهى سطح كىكزتز ثلاثٍة الأبعادالإسقاط انعًىدي نهًجسًات الأفلاطىنٍة والأرخًٍذٌة وانكاتالانٍة  ملخص:

 (Coxeter). انًتجهات انساقطة  نهذه انًجسًات عهى سطح كىكزتز (Coxeter diagram I2(h))   انجذور انبسٍطة لأشكال كىكزتز 
نهتعبٍز عن عناصز  (quaternions). استخذينا انزباعٍات (dihedral group)ًجًىعات ثنائٍة الأسطح هتحتىي عهى انتًاثم اننقطً ن

 فً هذه انىرقة انبحثٍة.وعن رؤوس انًجسًات   (Coxeter) تزيجًىعة كىكز
 

 انزباعٍات، الاسقاط. نظزٌة انًجًىعات ، يجًىعة كىكزتز،  :مفحاح الكلمات

 

1. Introduction 

ymmetries of objects play a vital role in the analysis of structure, bonding and spectroscopy of molecules in several 
scientific disciplines. Group theory provides a great tool for understanding symmetry phenomena in physics. Using 

group theory to study the symmetry of polyhedra is helpful for physicists to develop an understanding of 

crystallography and quasi-crystallography. In this paper we use the rank-3 Coxeter-Dynkin diagrams, a special 

technique in Lie algebra, to construct the symmetries of polyhedra.  

A symmetry group may contain transformations such as reflections, rotations, rotary reflections and inversions 

which leave the object unchanged. Coxeter groups are abstractions of the symmetry groups only generated by 

reflections group elements. They are useful in describing the symmetry of regular and semi-regular polytopes in 

arbitrary dimensions [1].  

The list of convex uniform polyhedra contains Platonic solid, Archimedean solids and their duals, the Catalan 

solids.  These special polyhedra have been successfully used to describe the crystals in physics, molecular symmetry in 

chemistry and some viral structures in biology [2]. To describe the symmetry of all convex uniform polyhedra we use 

three main finite Coxeter groups  3,  3, and  3. 

Invoking quaternions is an efficient tool for representing elements of the Coxeter groups of rank-3 and rank-4. 

Quaternions have been used to represent rotations and reflections since their discovery in 1843 [3] and have now 

become used to represent the Coxeter groups [4].  They are also used to symbolize the simple roots and weights of 

Coxeter-Dynkin diagrams.  Furthermore the  vertices of polyhedra are written in terms of pure imaginary quaternions. 

Quaternions are used because of their compactness, stability and simplicity, which make this method easy to use when 

compared to other methods that are based on orthogonal matrices or Euler angles.  

The objective of this paper is to project the vertices of several 3D polyhedra onto their corresponding 2D Coxeter 

planes. We define a Coxeter plane by the simple roots of the Coxeter diagram       where   is the Coxeter number. 

When projected onto the Coxeter plane,  the vertices of any polyhedron form orbits of the dihedral group   . 
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Orthogonal projection of higher dimensional lattices onto 2 or 3 dimensional subspaces can be related to quasi-crystal 

structures. 

We organize the paper as follows. In section 2, definitions of finite reflection groups, quaternions, and Coxeter 

groups are given. We then describe the Platonic solids, the Archimedean solids and their duals with respectively their 

symmetry groups  in section 3. In section 4, we study the projections of the convex uniform polyhedra. Finally, section 
5 contains our  conclusive  remarks. 

2. Finite Reflection Groups 

The dihedral group    is the group which involves the rotation through an angle 
   

 
 , which is expressible as the 

product of two reflections    and    whose mirrors have an angle of  
 

 
 between them. Here, plane symmetries preserve 

a regular  -sided polygon where    . The reflections    and    generate a dihedral group   , which is a subgroup of 

the symmetric group of order   . 

A hypercomplex number    is defined as quaternion, which can be written in general as   

                      ∑     
 
                                                  (1) 

 with              ,   being the set of real numbers, and                   the quaternionic units which satisfy 

                  

 (i,j,k=1,2,3)                                                                        (2) 

where ij and ijk  are the Kronecker and Levi-Civita symbols, and where summation over the repeated indices is  

implicit. 

Any quaternion can be split into two parts, a scalar part:          , and a vector part:                  . The 

following definitions will be useful in our discussions. 

The conjugate of a quaternion is defined by  

 ̅                                                                          (3) 

 We define the inverse quaternion     as 

(
 

⌈ ⌉ 
)  ̅                                                                     (4) 

 The scalar product of two quaternions   and   is given by 

                         ,                                                (5) 

or as 

       
 

 
  ̅   ̅   .                                                             (6) 

 The product of   and  ̅ gives a real non-negative number called the norm of   . 

  ̅                  
    

    
    

          

        ∑   
  

    | |   ̅                                                                                     (7) 

The norm of   does not equal zero and is the length of the quaternion. The unit quaternion is a normalized quaternion 

when | |   . 

- The binary tetrahedral (BT) group   is represented by the following set of 24 quaternions [5].  

             ,               
 

 
             -                                                  (8) 

This set represents the vertices of the 24-cell. 

- The binary octahedral (  )  group consists of the union of set   and    [3] where 
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   {

 

√ 
        

 

√ 
         

 

√ 
        

 

√ 
         

 

√ 
        

 

√ 
        

}   .                                                                                          (9) 

The order of the group 

                                                                                        (10) 

is 48.  

- The binary icosahedral (  ) group is of order 60×2=120. The union of two sets   and   represents the set of 

quaternions of the binary icosahedral group   as 

 

      .                                                                                  (11) 

The set   in the quaterionic form is [6]: 

                  
 

 
            

 

 
              

 

 
              

 

 
            

 

 
            

 

 
                      

 

 
             

 

 
             

 

 
                        

 

 
              

 

 
                         

 

 
                                                                                                                                                      (12) 

where   
  √ 

 
   

  √ 

 
      the golden ratio and its algebraic conjugate respectively. 

The vertices of the 600-cell [7] consists of the set of quaternions  . However, the set   represents the vertices of the 

snub 24-cell [8]. 

A Coxeter group   is defined as an abstract group that is generated by elements                   subject to the 

relations 

(    )
   

                                                                                            (13) 

Where       and           for all              , so that    . The pair       is called a Coxeter system; it 

consists of a group   and a set of generators  .  

The Cartan matrix is defined by 

    
 (     )

(     )
                                                                                  (14) 

The matrix elements are scalar products of two simple roots and satisfy the following criteria: 

1. Every Cartan matrix has an inverse defined by  

              (     )                                                                            (15) 

where   is the fundamental weight defined as the basis vectors of the dual space. The real and the dual space are in the 
same space. 

2. The relation between   and   satisfies: 

      (      )                                                                                  (16) 

                                                                                              (17) 

             
                                                                                   (18) 

The summation over repeated indices is implicit. 
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Finite Coxeter groups are generated by simple reflections as finite Euclidean reflection groups.  

A reflection of a vector   in a finite dimensional Euclidean space is a linear transformation by a reflection generator r 

of the finite Coxeter group with respect to a hyperplane perpendicular to the root vector  . This can be defined by the 

formula [5] 

     
       

      
                                                                   (19) 

Here,   is a vector which is usually called the root vector or simply root. This root vector is called a simple root in Lie 

algebra. The norm of the simple root is fixed as √ . 

If   is an arbitrary simple root written in terms of quaternions, then the reflection of an arbitrary vector   with respect 

to the plane orthogonal to the simple root    can be written as the product of quaternions  

     
  

√ 
 ̅

  

√ 
                                                                  (20) 

 We then define this reflection operation by a different notation as  

    * 
  

√ 
  

  

√ 
+
 

                                                              (21) 

Here, the asterisk signifies that we take the conjugate of Λ. 

However, a rotation can be written in our notation as 

      ̅                                                                     (22) 

3. Polyhedra 

Platonic and Archimedean Solids 

Platonic solids are made of regular polygons (triangle, square or pentagon) meeting in identical vertices. On the 

other hand, the Archimedean solids are convex polyhedra whose faces are regular polygons.  One can obtain 5 of them 

by truncation of the Platonic solids and the others by expansion and snubification. The Archimedean solids are vertex-

transitive (vertices move to each other in any symmetry operation). The method explained in [4] gives only the vertices 

of 11 Archimedean solids. The other two chiral solid vertices are taken from [9]. The first Platonic solid is the 

tetrahedron and its polyhedral group is the tetrahedral group       where its group elements can be written as 

 

3( ) {[ , ] [ , ] }W A p p t t   ; ,  p T t T   .                                               (23) 

 

 The Coxeter-Weyl group       is represented by the Coxeter-Dynkin diagram shown in Figure 1 [6] 

 
Figure 1. Coxeter-Dynkin diagram of W(A3). 

To obtain the orbit of the group, corresponding to the vertices of the tetrahedron, we use the method described in [6]. 

We apply the group elements on the highest weight written in a general form:                          
     which can be written in terms of quaternionic imaginary units as 

 

             . 

 

In [6], the values of     and   are found from eq (18). Replacing these values in Λ, we obtain: 

  
 

 
          

 

 
          

  
 

 
             

 

The seven special cases of            are indicated by ones or zeros and called the Dynkin indices.  
The cube and the octahedron are dual of each other, and they also have the same polyhedral symmetry group, which is 

the octahedral group       with 48 elements given by  

3 3 4 2( ) ( )

{[ , ] [ , ] [ , ] [ , ] };

W B Aut A S C

p p p p t t t t 

   

  
 

,p T t T   .                                                                                                           (24) 
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The Coxeter group of this polyhedral symmetry group is represented by the Coxeter-Dynkin diagram shown in Figure 

2. 

 
Figure 2. Coxeter-Dynkin Diagram of W(B3). 

The other Platonic solids that are dual of each other are the icosahedron and the dodecahedron. Their polyhedral 

symmetry group is the icosahedral group       of order 120 given by  

 

3 5 2( ) {[ , ] [ , ] };W H A C p p p p p I                                                     (25) 

 

 The Coxeter-Dynkin diagram of the icosahedral group is shown in Figure 3. 

 
Figure 3. Coxeter-Dynkin diagram of W(H3). 

The five different Platonic solids are displayed in Table 1. 

Catalan Solids  

To construct the dual of a solid we connect vertices which go through the centers of the faces of each solid.  The 

set of new polyhedra is called the Catalan solids. They are not semi-regular since they have more than one set of 

vertices and their faces are not regular polygons in general. They are made of scalene triangles, isosceles triangles, 

rhombuses, kites or irregular pentagons. Obviously they are still convex. 

The symmetry groups of Catalan solids are the same as their Archimedean duals. Some of the Archimedean and 

Catalan solids do not have the full symmetry group of a Platonic solid but only the rotational symmetry group of the 
octahedron or the icosahedron. 

The Catalan solids are face-transitive (faces move onto each other in any symmetry operation). In this paper, we 

take vertices of the Catalan solid from [7]. 

The Archimedean and their dual Catalan solids are displayed in Tables 1-4. 

4. Projecting Polyhedra onto Their Coxeter Planes 

Coxeter plane 

The product of all reflections in a Coxeter group is called the Coxeter element:          and its order is called 

Coxeter number  . There is a unique plane   on which the Coxeter element acts as a rotation by an angle 
  

 
. This plane 

is called the Coxeter plane [1]. Every Coxeter group has a maximal subgroup isomorphic to the dihedral group of order 

2h. We use the following technique to determine the Coxeter planes of the three main polyhedaral symmetry groups. 

The Coxeter group       elements are given in eq. (8) and the group is represented by the Coxeter-Dynkin 

diagram shown in Figure 1. The Coxeter element of this group is          where its order (Coxeter number)     

since         
   . Let us define a dihedral group    as a Coxeter plane with generators    and     of        We 

define    as the product of generators    and    which are orthogonal to each other  

                                                                                        (26) 

 and the generator     as 

      .                                                                                   (27) 

 The dihedral group    〈     〉 is a subgroup of        where   
    

        
   . The dihedral group is    

and has 8 elements. The dihedral group    represented by the Coxeter-Dynkin diagram is shown in Figure 4, 
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Figure 4.  Coxeter-Dynkin diagram of         

where           are the simple roots and     
    

        
      

The norm and the scalar products are given as   ‖  ‖  ‖  ‖  √ , 

            (  
 

 
)   √                                                       (28) 

Using eq. (14) the Cartan matrix of    is      
 (   √ 

 √  
). 

Using eq. (19), the generators    and    of    correspond to a reflection at a hyperplane perpendicular to the root 

vectors     given as 

                                                                                (29) 

                                                                               (30) 

         √                                                                    (31) 

         √     .                                                                (32) 

In eqs (31 & 32) we use eq. (19), replacing α with γ. In eq. (29) we define    as a linear combination of    and   : 

                                                                              (33) 

where    equals zero, and in eq (30),    is defined as 

                                                                              (34) 

where    and    equal zero. Combining the equations above we can get the values of coefficients   ,    and   : 

      
 

√ 
, 

    . 

Then, eqs (33 & 34) become 

   √        

            

These simple roots     and    define the Coxeter plane. However    and    are not orthogonal to each other. So, we 

define an orthogonal set of vertices given by  

 ̂  
  

√ 
                                                                               (35) 

 ̂                                                                                     (36) 

where   ̂in x-axis ,   ̂in y-axis and  ̂  ̂    ̂  ̂   .  

Using the same argument as above, we define the Coxeter plane as   〈    〉 of       with generators    

and   where the Coxeter number of    equals 6. The dihedral group    represented by the Coxeter-Dynkin diagram is 

shown in Figure 5. 
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Figure 5.  Coxeter-Dynkin diagram of      . 

           are the simple roots and      
    

        
   .  

Using eq. (14) the Cartan matrix of D6 is         
 (   √ 

 √  
) 

Using the method explained above for the I2 (4),     and      for the I2 (6) can be written in terms of quaternions as  

   
 

√ 
                                                                           (37) 

                                                                                (38) 

where          ,         , and    √    [6]. The two components of   and     in the x-axis and y-axis are 

orthogonal to each other: 

 ̂  
  

√ 
 

 

√ 
                                                                   (39) 

 ̂  
 

√ 
                                                                         (40) 

where   ̂  ̂    ̂  ̂   . 

Using the argument introduced above, we define the Coxeter plane as      〈    〉  of        with generators 

   and    respectively. The Cartan matrix of     is  

    
 (   √   

 √    
) 

The coefficients    and    are 

   
 

√   
 

   
 

√   
 

and the coefficient       Then     and     can be written in terms of quaternions as       
√ 

 
        ,      

  √                                                                                                                              (41) 

    
 

√ 
                                                                                                               (42) 

From [4],       ,    
 

 
            , and       . The two orthogonal components of     and     are   ̂in x 

-axis and   ̂in y -axis 

 ̂  
  

√ 
 

 

 
                                                                                                                  (43) 

 ̂                                                                                               (44)  
Projection 

In our work we use the orthogonal projection of polyhedra in three-dimensions onto their corresponding Coxeter 

planes. By taking the scalar product of an arbitrary vector   of a polyhedron with   ̂and   ̂ of the Coxeter plane for 

     ,       and        we can determine the horizontal and vertical components of the projected vectors    and 

   of the orbit             onto the Coxeter plane.  
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Projection of polyhedra having tetrahedral symmetry. 

We can take the scalar product of the vertices of a polyhedron with   ̂        ̂ in eqs (31  32) to get    and    of 

vertices of the  polyhedra having tetrahedral symmetry. Let us now consider the tetrahedron which has tetrahedral 

symmetry. Here,                   . When the vertex  
 

 
           is multiplied (as a scalar product) with 

  ̂        ̂ the horizontal and vertical projections become respectively 

   .    
 

 
          /  

 

 
 

   .    
 

 
          /  

 

 
 

When this projection is applied to all vertices of        , we obtain the full projection of the tetrahedron in Figure 

6. The solid line shows the projection of the front faces and the dashed line represents the projection of the back faces, 

and this applies to all following figures. 

 

Figure 6.  Projection of the tetrahedron. 

The radius in this projection equals 
 

√ 
. The angle between all vertices of this polyhedron and the x-axis is 45. The 

lines between the vertices indicate the nearest neighbor pairs. We find the same result for the vector        . In the 

figure above it is clear that there are 4 vertices at the corners with but   no central vertex with 6 edges, and that the 

faces of the tetrahedron are triangular. The angle between the edges is 90. Therefore this polygon has 4-fold rotational 

symmetry. In the case of truncated tetrahedron                     the projected vectors result in two circles. 

The first one has a radius of  
 

√ 
  with 4 projected vertices each having an angle of 45 with the x-axis. The second one 

has a radius of √
 

 
 with 8 projected vertices of  

 

 
          and 

 

 
         . The projected vertices of  

 

 
     

     and  
 

 
           have angles equal to 71.56  and 18.4 with the x-axis respectively as shown in Figure 7.  

 

Figure 7.  Projection of the truncated tetrahedron. 

The projection shows us 18 edges of the truncated tetrahedron with 8 faces (4 triangles and 4 hexagons) and 12 

vertices. This projection  an “edge first” projection with 8-fold symmetry. 

We can apply a similar projection to the dual of the truncated tetrahedron which has a       symmetry group. The 

projected vertices are shown Figure 8.  
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Figure 8. “Edge first” projection of the dual of the truncated tetrahedron. 

Applying the same projection to the other vertices of tetrahedral solids we can get their projections. Table 1 lists 

the results of projecting the Platonic solids onto their Coxeter planes. Table 2 lists the results of projecting solids 

having       symmetry onto their Coxeter planes. 

We take the scalar product of the vertices of polyhedra that have the octahedral symmetry with    ̂        ̂ of 

      as defined in eqs. (39  40) to get their    and    components in the Coxeter plane. Table 3 lists the results of 

the projections of the Archimedean solids onto their Coxeter plane.  

Taking the scalar product of the vertices of each polyhedron having an icosahedral symmetry with   ̂        ̂ in eqs.  (43 

 44) we get their     and     onto the (x,y)-plane of      . The set of invariant points of the polyhedra having 

icosahedral symmetry projected onto the Coxeter plane of       is listed in Table 3. 

5. Conclusion 

In this paper we projected the Platonic, regular Archimedean and Catalan polyhedra in 3  onto the Coxeter 
plane. We defined the Coxeter plane by the root system of the dihedral group generated by Coxeter-Dynkin 

diagram   . Our projection preserves the h-fold symmetry of the root system which is a subgroup of its complete 

symmetry. Obviously, after projection, the regular polygons become irregular. However, it can be seen how the 

polygons still meet at the same vertices. The Dynkin indices  chosen were 0’s and 1’s for a general vector. This work 

can be extended for those polyhedra whose vertices can be constructed by choosing arbitrary integer values of Dynkin 

indices. 

Table 1. List of the Platonic solids and their projection onto Coxeter plane. 

Platonic 

solids 

Dynkin 

indices of   
Symmetry Group 

3D polyhedra Projection  
 vertices/ radius 

radius 

Tetrahedron 

 

            

  

(0,4) 

  

 

√ 
 

Octahedron 

 

            

 
 

(0,6) 

0 

 

√ 
 

Cube 

 

            

  

(2,6) 

0 

 

√ 
 

Dodecahedron              

  

(0,10,10) 

0 

√ 

   ⁄  

√  
 

√ 
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Platonic 

solids 

Dynkin 

indices of   
Symmetry Group 

3D polyhedra Projection  
 vertices/ radius 

radius 

Icosahedrons              

  

(2,10) 

0 

√ 

   ⁄  

 

Table 2. An Archimedean polyhedron having W(A3) symmetry and its projection onto its Coxeter plane. 

Polyhedron 3D polyhedron Projection  

 

vertices/ 

radius 
Radius 

Dual 

 
Projection 

 
vertices/ 

radius 

radius 

Truncated 

tetrahedron 
  

(0,4,8) 

 

0, 
 

√ 
, √

 

 
   

(0,4,4) 0,  √
 

 
, √

 

 
 

 

Table 3. List of the polyhedra (Archimedean & Catalan) having W(B3) symmetry and their projection onto Coxeter 

plane. 

Polyhedra 

(W(B3)) 

3D 

polyhedra 
Projection  

 

vertices 

/ radius 
Radius 

 

Dual 
Projection 

 

vertices 

/ radius 

radius 

 

Cub-octahedron 

 
  

(0,6,6) 

 

0 

√
 

 
 

√  

 

 
(2,12) 

0 

√
 

 
 

Truncated cube 

  

(0,6,6,12) 

 

0 

√
 

 
 

  √ 

√ 
 

√
  

 
  √  

 
 

(2,6,6) 

0 

√
 

 
 

 √  
 √ 

 
 

Truncated 

octahedron 
  

(0,12, 

12) 

0 

√  

√
  

 
 

 
 

(2,6,6) 

  

  

 √
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Polyhedra 

(W(B3)) 

3D 

polyhedra 
Projection  

 

vertices 

/ radius 
Radius 

 

Dual 
Projection 

 
vertices 

/ radius 

radius 

Small rhombi-

cubocta- 

hedron 
  

(0,6, 

12,6) 

0 

√
 

 
 

√
 

 
(  √ ) 

  √ 

√ 
 

 
 

(2,6,6,6,6) 

  

√
 

 
 

 

 
√  

 √ 

 
 

 

√ 
 

1 

Great 

rhombicub-octa 

hedron 
  

(0,12, 

12,12, 

12) 

0 

√  

√
  

 
  √  

√  
 √ 

 
 

√  
  √ 

 
 

 
 

(2,6,6,12) 

0 

√
 

 
 

 

 
√

  

 
  √  

 

 
√   

  √ 

 
 

 

 

Snub cube 

  

(0,6,6, 

 6, 6) 

0 

       √           

      
 

√
 

 
        

           

        
 

√
 

 
       

 

  
      

  

     
   

 √ 
 
     √             

     
 

where 

       √     ⁄  

 
 

(2,6,6,6 

6,6) 

  

     

 √ 
 

 

       √
 

       √            

 

 

√ 
 

 

       √
 

     √            

 

 √ 
 

     (    √     )

       
 

where 

       √     ⁄  
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Table 4. List of the polyhedra (Archimedean & Catalan) having W(H3) symmetry and their projection onto Coxeter 

plane. 

Polyhedra 

(W(H3)) 

 

3D polyhedra Projection 
# vertices/ 

radius Radius 

 

 

Dual 

 

Projecti

on 

# 

vertices/ 

radius 

Radius 

Icosi-

dodeca- 

hedron 
  

(0,10, 

10, 

10) 

0 

√ 

   ⁄  

√  
 

√ 
 

  

 
 

(2,12, 

10) 

  

√
 

  
(  √ ) 

√
 

  √ 
 

Truncated 

icosahe-

dron   

(0,10, 

10, 

20,20) 

 

0 

√ 

   ⁄  

√  
 

√ 
 

√
 

 
 

 

 √ 
 

√
 

 
 

  

 √ 
 

  

(2,10, 

10,10) 

  

√
 

  
(  √ ) 

√
 

  √ 
 

 

  
√   

  

√ 
 

 

Truncated 

dodeca-

hedron   

(0,20, 

10, 

10,20) 

0 

  

√
 

 
 

  

 √ 
 

 √  
 

√ 
 

√
 

 
 

  

√ 
 

 
 

(2,10, 

10) 

√
 

  √ 
 

 

  
√    √  

√
 
 

(  √ )

  √ 
 

Small 

 rhomb-

icosi- 

dodecahe-

dron 

  

(0,10, 

20, 

20,10) 

 

0 

√ 

   ⁄  

  

√
 

 
 

 

 √ 
 

 
 

(2,10, 

10, 

10,10, 

10,10) 

0 

√
 

  
(  √ ) 

√
 

  √ 
 

 

  
√   

  

√ 
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Polyhedra 

(W(H3)) 

 

3D polyhedra Projection 
# vertices/ 

radius Radius 

 

 

Dual 

 

Projecti

on 

# 

vertices/ 

radius 

Radius 

√
 

 
 

  

 √ 
 

 

 

 

  
√   

   

√ 
 

√
 

 
 

 

 √ 
 

1 

Great  

rhomb-

icosi- 

dodeca-

hedron 

  

(0,20, 

20, 

20,20, 

20,20) 

0 

  

√
 

 
 

  

 √ 
 

√
 

 
 

  

√ 
 

√
 

 
(    √ ) 

√
 

  
(     √ ) 

√
 

  
(     √ ) 

  

(2,10, 

10, 

10,10, 

20) 

√
 

  
(  √ ) 

√
 

  √ 
 

 

 
√  

 

√ 
 

 

 
√   

   

√ 
 

 

 
√   

  

√ 
 

1 
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Polyhedra 

(W(H3)) 

 

3D polyhedra Projection 
# vertices/ 

radius Radius 

 

 

Dual 

 

Projecti

on 

# 

vertices/ 

radius 

Radius 

Snub 

dodoca- 

hedron   

(10,10, 

10,10, 

10,10) 

√
         

 √ 
          

√
          

 √ 
          

√   
(              )

 

  √ 
 

√   
   √                

  √ 
  

√             
(             )

 

 √ 
 

          

 
 

(2,10, 

10, 

10,10, 

20,10, 

10,10) 

0 

 

   
√

    

 
 

     

√ 
 

 

   
√      

     

√ 
 

 

   
√      

     

√ 
 

 

   
√      

     

√ 
 

√
       √ 

    
 

√  
 

√ 
 

 

  
√   

   

√ 
 

√  
 

√ 
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