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ABSTRACT: In this paper, the space fractional wave equation (SFWE) is numerically studied, 

where the fractional derivative is defined in the sense of Caputo. An explicit finite difference 

approximation (EFDA) for SFWE is presented. The stability and the error analysis of the EFDA are 

discussed. To demonstrate the effectiveness of the approximated method, some test examples are 

presented.   
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 تحليل خطأ تقريب الفروق المحدودة الظاهرة عند حل المعادلات الموجية في فضاء الرتب الكسرية

 ناصر حسن سويلم و تغريد عبدالرحمن عسيري 

الرتب الكسرية، حيث تم  تعريف المشتقة من  لقد تم في هذا البحث دراسة عددية لمعادلات موجية في فضاء :ملخص
ة للمعادلة الموجية. كما ييجاد حلول تقريبلإرة ظاهتب الكسرية باستخدام تعريف كابوتو. وتم استخدام الفروق المحدودة الالر

بعض الأمثلة ة، فقد تم عرض يالتقريب فعالية هذه الطريقة توضيحل الفروق.الاستقرار وتحليل الخطأ لتلك تم مناقشة 
   الاختبارية.

1. Introduction 

ractional derivatives in mathematics are natural extension of integer-order derivatives, where the order is 

non integer. Fractional order differential equations have been the focus of many studies due to their frequent 

appearance in various applications especially in the fields of fluid mechanics, viscoelasticity, biology, physics 

and engineering (Bagley and Torvik, 1984; Mainardi, 1995; Mainardi and Paradisi, 1997; Podlubny, 1999; 

2002). Consequently, considerable attention has been given to the solutions of fractional ordinary/partial 

differential equations (Sweilam et al., 2011). Numerical approximations are the main tool to simulate and study 

the behaviour of the solutions of such model problems (Fix and Roop, 2004; Meerschaert and Tadjeran, 2004; 

Sweilam et al., 2007; Sweilam and Khader, 2010; Tenreiro Machado, 2003; Yuste, 2011; Yuste and Acedo, 
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2005). Difference methods and, in particular, explicit finite difference methods, are an important class of 

numerical methods for solving fractional differential equations (Morton and Mayers, 1994; West and Seshadri, 

1982; Xu et al., 2001). The usefulness of the explicit method and the reason why they are widely employed is 

based on their particularly attractive features (Yuste, 2011; Yuste and Acedo, 2005).   

In this paper, an EFDA scheme is designed for solving a fractional order wave equation where the 

fractional derivative is in the Caputo sense. Moreover, since the explicit methods may be unstable, then, it is 

crucial to determine under which conditions, if any, these methods are stable. We will use here a kind of 

fractional von Neumann stability analysis to derive the stability conditions. We consider in this paper the 

following SFWE model: 
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where the variable coefficient ( , ) 0.d x t 
 
The parameter   refers to the fractional order of spatial derivatives, 

and the Caputo's fractional derivative ( ),xD u x  is defined as follows (Podlubny, 1999). 
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where  .
 
is the gamma function.

 

2. Explicit finite difference approximation for SFWE 

Let us consider ,h L K  where K is a positive integer, by using a second order difference approximation 

and (4), we get for 2m   that 
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Let 0t     be the grid step in time, ,nt n 0 ,nt T  0, , 1,n N  N T   and
 

0x h  
 
be 

the grid step in space, ,kx kh 0 ,kx L  1, , 1,k K   so that  ,n
ku u kh n  and  , 0 .k kd d x  

Applying the forward finite difference formula to the initial conditions (2), we obtain 
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Now the discrete form of (1) using the explicit finite difference scheme can be written as  
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The general form of (5) with initial conditions, can take the following form  

 

 1 0 1 1
2 , ,n n n

kU U f x U AU U                                                    (6) 

where  1 2 1, , ,
T

n n n n
kU u u u  and A is the coefficients matrix with elements ija obtained from (5).

 

3. Stability analysis of EFDA  

It is well known that the explicit difference schemes are not always stable for integer order differential 

equations. Then, for any ,  there are always choices of t  and x for which the numerical schemes may 

become unstable. Therefore, it is important to determine under which conditions, if any,  the explicit method 

presented here is stable. To analyze the stability of the numerical scheme (6), we will use here a kind of 

fractional von Neumann stability analysis. 

 

Theorem 1  The explicit finite-difference scheme (6) for SFWE is conditionally stable if  

 

   

  

1 3

1

2 2 2 2
.

3
xs s

   







 
 

 
 

 

Proof. Let us analyze the stability of (5) by substituting in a separated solution n iqj x
j nU e 

 
where

 
q is a real 

spatial wave-number. Inserting this expression we get   

1 1 1 1 1
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        ,  

where ( )x  means the Riemann zeta function. The stability will be determined by the behaviour of .n  If
 
we 

write 1n n   
 
and assume that ( )q 

 
is independent of time, then we can obtain 

1 1 1

1

2 ( 2 ) ( 2 )
k

j j j iq x iq x
j

j

s g s e e           



        .  

Inserting the extrema value 1  
 
into this equation, we obtain the following stability bound on s: 



N.H. SWEILAM and T.A. ASSIRI 

542 

2 2 2

1

sin ( ) 1 ( 1) [( 1) ]
2

nn j
x

j

q x
s s j j  




      ,  

with   

   
2 2

1

1 1 ,
j

x
j

s j j
 

  



        

or, in terms of the Riemann zeta function 

   32 1 2 2 .xs       

Then, the method is stable when 
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Table 1. The exact and EFDA solutions at 0.05t   when 0.005, 0.0025.h  
 

 

ix  2   1.8   

0.0000 0.00000000 0.00000000 

0.0500 0.43696211 0.49019405 

0.1000 0.83115133 0.92270888 

0.1500 1.14398166 1.25716135 

0.2000 1.34483109 1.46300554 

0.2500 1.41403909 1.52125246 

0.3000 1.34483109 1.42692326 

0.3500 1.14398166 1.18975019 

0.4000 0.83115133 0.83331667 

0.4500 0.46696211 0.39279598 

0.5000 0.00000000 -0.08846503 

0.5500 -0.43696211 -0.56317267 

0.6000 -0.83115133 -0.98470522 

0.6500 -1.14398166 -1.31166940 

0.7000 -1.34483109 -1.51194717 

0.7500 -1.41403909 -1.56583600 

0.8000 -1.34483109 -1.46797473 

0.8500 -1.14398166 -1.22786629 

0.9000 -0.83115133 -0.86894593 

0.9500 -0.43696211 -0.43396401 

1.000 -0.00000000 0.00000000 

 

Theorem 2  The truncation error of SFWE is      2
, .T x t O t O x     

 

Proof. Evaluating (1) at the point  ,k nx t
 
gives
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Neglecting the truncation error term  , ,k nT x t  we get the explicit difference scheme (5). From (1) and (7), we 

get 
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From this result and from (8), we claim that
         2

, .T x t O t O x                                                              □                                                              

4. Numerical results 

Example 1.  Consider the space fractional wave equation 
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(instead of 1.8 in (9)), the exact solution is 
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Figure 1. EFDA solutions when 0.005h   and 0.0025  : (left)  comparison with the exact solution 

for 2   at 0.05t  , (right) for 1.8   at 0.125.t   
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The numerical studies are given as follows: the exact solutions for 2 
 
(as given by (10)) and the EFDA 

solution for 1.8   at 0.05t   when 0.005h 
 
and 0.0025   are given in Table 1. In order to test the 

numerical scheme, we also plot in Figure 1 the exact and approximate solutions for integer case 2.   

Moreover, the approximate solution for 1.8 
 
at 0.125t 

 
when 0.005h 

 
and 0.0025   is also shown in 

Figure 1. To study the behaviour of these solutions, Figure 2 is plotted to show the 3D-EFDA solutions for 

2   and 1.8   respectively. Figure 3 shows the unstable solutions behaviour when 0.157h 
 

and , 

0.001  where the value of s is larger than the stability bound .xs  For more details see Theorem 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. 3D-EFDA solutions for: (left) 2,   (right) 1.8.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Unstable EFDA solutions when 0.157h 
 
and 0.001  : (left) comparison with the exact 

solution, (right) 3D-EFDA solutions. 
   

 
 

Example 2.  Consider the space fractional wave equation 
2 1.6
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( , 0) sin , ( , 0) 0,tu x x u x        (0, ) 0, (5, ) sin 5 cos .u t u t t   
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When 2   (instead of 1.6 in (11)) the exact solution is
 

                                                      ( , ) sin cosu x t x t .                                                         (12)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 4. EFDA solutions when 0.002h   and 0.001  : (left)  comparison with the exact solution 

for 2   at 0.01,t   (right) for 1.6   at 0.01.t                  

 

                    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 3D-EFDA solutions for: (left) 2  , (right) 1.6.   

 

The numerical studies for Example 2 can be presented as follows: the exact solutions for 2   (as given 

by (12)) and the EFDA solution for 1.6   at 0.01t   where 0.002h   and 0.001  are given in Table 2. In 

order to test the numerical scheme, we also plot in Figure 4 the exact and approximate solutions for integer case 

2. 
 
Moreover, the approximate solution for 1.6   at 0.01t   when 0.002, 0.001h    is also shown in 

Figure 4. To study the behaviour of these solutions, Figure 5 is plotted to show the 3D-EFDA solutions for 

2   and 1.6 
 

respectively. Figure 6 shows the unstable solutions’ behaviour when 0.008h 
 

and 

0.001,   where the value of s is larger than the stability bound .xs  For more details see Theorem 1.  



N.H. SWEILAM and T.A. ASSIRI 

525 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Unstable EFDA solutions when 0.008h 
 
and 0.001  : (left) comparison with the exact 

solution, (right) 3D-EFDA solutions. 

 

 

Table 2. The exact and EFDA solutions at 0.01t   when 0.002, 0.001.h  
 

 

ix  2   1.6   

0.0000 0.00000000 0.00000000 

0.2000 0.19866128 0.19866128 

0.4000 0.38940257 0.38940432 

0.6000 0.56461961 0.56462215 

0.8000 0.71732704 0.71733027 

1.0000 0.84143691 0.84144069 

1.2000 0.93200134 0.93200553 

1.4000 0.98540982 0.98541426 

1.6000 0.99953312 0.99953762 

1.8000 0.97380819 0.97381257 

2.0000 0.90926060 0.90926469 

2.2000 0.80846366 0.80846730 

2.4000 0.67543582 0.67543886 

2.6000 0.51548049 0.51548281 

2.8000 0.33497458 0.33497609 

3.0000 0.14111429 0.14111493 

3.2000 -0.05837178 -0.05837204 

3.4000 -0.25553075 -0.25553190 

3.6000 -0.44250252 -0.44250451 

3.8000 -0.61183311 -0.61183586 

4.0000 -0.75677158 -0.75677525 
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5. Conclusions 

An explicit finite difference approximation for SFWE has been explored, where the fractional derivative 

was in the Caputo sense. Error analysis and stability of the explicit numerical method for SFWE were discussed 

by means of a fractional version of the von Neumann stability analysis. Finally, some numerical results of EFDA  

were presented. These numerical results demonstrate that the EFDA is a computationally simple and efficient 

method for SFWE. 
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