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ABSTRACT: Random matrix theory (RMT) provides a successful model for quantum systems, 

whose classical counterpart has chaotic dynamics. It is based on two assumptions: (1) matrix-element 

independence, and (2) base invariance. The last decade witnessed several attempts to extend RMT to 

describe quantum systems with mixed regular-chaotic dynamics. Most of the proposed 

generalizations keep the first assumption and violate the second. Recently, several authors have 

presented other versions of the theory that keep base invariance at the expense of allowing 

correlations between matrix elements. This is achieved by starting from non-extensive entropies 

rather than the standard Shannon entropy, or by following the basic prescription of the recently 

suggested concept of superstatistics. The latter concept was introduced as a generalization of 

equilibrium thermodynamics to describe non-equilibrium systems by allowing the temperature to 

fluctuate. We review here the superstatistical generalizations of RMT and illustrate their value by 

calculating the nearest-neighbor-spacing distributions and comparing the results of calculation with 

experiments on billiards modeling systems in transition from order to chaos. 
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 الإحصاء الفائق في نظرية المصفوفة العشوائية 

 عادل يحيى أبو المجد

 دٌنامٌاكٌة الكلاسٌكً على  ٌحتوي نظٌره الكم الذي لأنظمة نموذجا ناجحا عشوائٌةال المصفوفة تقدم نظرٌة :خصمل
العقد  شهدلقد  عدة الثابتة.القا (2) و مصفوفةعناصر ال استقلال (7): التالٌتٌن فرضٌتٌنال على ٌعتمد هذا النظام .الارتباك
 لفوضىل العادٌة دٌنامٌاكٌةوجود ال معٌة نظمة الكملأا لوصف عشوائٌةال المصفوفة نظرٌةتعمٌم محاولات عدة ل الماضً

العدٌد من قدم حدٌثا  الثانً. الافتراض خالفتو الافتراض الأول بقت علىقد أ ةحالمقتر التعمٌمات معظمن إ المختلطة.
 المصفوفة. الثانً مع السماح بوجود ارتباط بٌن عناصر بقت على الافتراضأالتً  هذه النظرٌةلخرى أات الباحثٌن تعمٌم

باتباع الوصفات الحدٌثة  شانون، أولى إالتً ترجع  نتروبٌاالا بدلا من وسعةم غٌر نتروبٌابا من خلال البدء هذا وٌتحقق
عن طرٌق  عدم التوازن لوصففً الدٌنامٌكا الحرارٌة  توازنلل تعمٌم بمثابة المفهوم الأخٌر تم إدخال. وصاءاتحلإل

 حسابب متهاٌونوضح ق عشوائٌةال المصفوفة صاءات فً نظرٌةحللإ تعمٌمات هنا نستعرض. فً التقلبحرارة السماح لل
 ى الفوضى.لإ النظام الانتقال من فً البلٌاردو نظم نماذج تجارب على حساب مع ومقارنة النتائج الأقربللفضاء  توزٌعات

1.   Introduction 

n classical mechanics, integrable Hamiltonian dynamics is characterized by the existence of as many 

conserved quantities as degrees of freedom. Each trajectory in the corresponding phase space evolves on an I 
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invariant hyper-torus (Lichtenberg and Lieberman, 1983). In contrast, chaotic systems are ergodic; almost all 

orbits fill the energy shell in a uniform way. Physical systems with integrable and fully chaotic dynamics are 

exceptional. Typical Hamiltonian systems show a mixed phase space in which regions of regular motion and 

chaotic dynamics coexist. These systems are known as mixed systems. Their dynamical behavior is by no means 

universal. If we perturb an integrable system, most of the periodic orbits on tori with rational frequencies 

disappear. However, some of these orbits persist. Elliptic periodic orbits appear surrounded by islands. They 

correspond to librational motions around these periodic orbits and reflect their stability. The Kolmogorov-Arnold 

(KAM) theorem establishes the stability with respect to small perturbations of invariant tori with a sufficiently 

incommensurate frequency vector. When the perturbation increases, numerical simulations show that more and 

more tori are destroyed. For large enough perturbations, there are locally no tori in the considered region of 

phase-space. The break-up of invariant tori leads to a loss of stability of the system, to chaos. Different scenarios 

of transition to chaos in dynamical systems have been considered. There are three main scenarios of transition to 

global chaos in finite-dimensional (non-extended) dynamical systems: via the cascade of period-doubling 

bifurcations, Lorenz system-like transition via Hopf and Shil'nikov bifurcations, and the transition to chaos via 

intermittences (Eckmann and Ruelle, 1985; Elnashaie and Elshishini, 1996; Bunimovich and Venkatuyiri, 1997). 

It is natural to expect that there could be other (presumably many more) such scenarios in extended (infinite-

dimensional) dynamical systems. 

In quantum mechanics, the specification of a wave function is always related to a certain basis. In 

integrable systems eigenbasis of the Hamiltonian is known in principle. In this basis, each eigenfunction has just 

one component, which  obviously indicates the absence of complexity. In the nearly ordered regime, mixing of 

quantum states belonging to adjacent levels can be ignored and the energy levels are uncorrelated. The level-

spacing distribution function obeys the Poissonian,  exp ,s  where s is the energy spacing between adjacent 

levels normalized by the mean level spacing. On the other hand, the eigenfunctions of a Hamiltonian with a 

chaotic classical limit are unknown in principle. In other words, there is no special basis to express the 

eigenstates of a chaotic system. If we try to express the wave functions of a chaotic system in terms of a given 

basis, their components become on average uniformly distributed over the whole basis. They are also extended 

in all other bases.  For example, Berry (1977) conjectured that the wavefunctions of chaotic quantum systems 

can be represented as a formal sum over elementary solutions of the Laplace equation in which real and 

imaginary parts of coefficients are independent identically-distributed Gaussian random variables with zero 

mean and variance computed from the normalization.  

Bohigas et al. (1984) put forward a conjecture (strongly supported by accumulated numerical evidence) 

that the spectral statistics of chaotic systems follow random-matrix theory (RMT) (Mehta, 1991; Guhr et al., 

1998). This theory models a chaotic system by an ensemble of random Hamiltonian matrices H that belong to 

one of the three universal classes, orthogonal, unitary and symplectic. The theory is based on two main 

assumptions: the matrix elements are independent identically-distributed random variables, and their distribution 

is invariant under unitary distributions. These lead to a Gaussian probability density distribution for the matrix 

elements. The Gaussian distribution is also obtained by maximizing the Shannon entropy under constraints of 

normalization and existence of the expectation value of  †Tr ,H H  where Tr denotes the trace and †H stands 

for the Hermitian conjugate of H. The statistical information about the eigenvalues and/or eigenvectors of the 

matrix can be obtained by integrating out all the undesired variables from distribution of the matrix elements. 

This theory predicts a universal form of the spectral correlation functions determined solely by some global 

symmetries of the system (time-reversal invariance and value of the spin). Time-reversal-invariant quantum 

systems are represented by a Gaussian orthogonal ensemble (GOE) of random matrices when the system has 

rotational symmetry and by a Gaussian symplectic ensemble (GSE) otherwise. Chaotic systems without time 

reversal invariance are represented by the Gaussian unitary ensemble (GUE). Among several measures 

representing spectral correlations, the nearest-neighbor level-spacing distribution function  P s  has been 

extensively studied so far. For GOE, the level spacing distribution function in the chaotic phase is approximated 

by the Wigner-Dyson distribution, namely, 
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Analogous expressions are available for GUE and GSE (Mehta, 1991). The assumptions that lead to RMT 

do not apply for mixed systems. The Hamiltonian of a typical mixed system can be described as a random matrix 

with some (or all) of its elements randomly distributed. Here the distributions of various matrix elements need 

not be the same, may or may not be correlated and some of them can be non-random too. This is a difficult route 

to follow. So far in the literature, there is no rigorous statistical description for the transition from integrability to 

chaos. There have been several proposals for phenomenological random matrix theories that interpolate between 

the Wigner-Dyson RMT and banded RM ensemble with the (almost) Poissonian level statistics, in which the 

level spacing distribution is given by the Poisson distribution 

( ) sP s e  

The standard route of the derivation is to sacrifice basis invariance but keep matrix-element independence. 

The first work in this direction is that of (Rosenzweig and Porter, 1960). They modeled the Hamiltonian of the 

mixed system by a superposition diagonal matrix of random elements having the same variance and a matrix 

drawn from a GOE. Therefore, the variances of the diagonal elements total Hamiltonian are different from those 

of the off-diagonal ones, unlike the GOE Hamiltonian in which the variances of diagonal elements are twice of 

the off-diagonal ones. Hussein and Pato (1993) used the maximum entropy principle to construct such ensembles 

by imposing additional constraints. Ensembles of band random matrices whose entries are equal to zero outside a 

band of width b along the principal diagonal have often been used to model mixed systems (Casati et al., 1990).  

Another route for generalizing RMT is to conserve base invariance but allow for correlation of matrix 

elements. This has been achieved by maximizing non-extensive entropies subject to the constraint of fixed 

expectation value of  †Tr H H  (Evans and Michael, 2002). Recently, an equivalent approach is presented in 

Abul-Magd (2006), which is based on the method of superstatistics (statistics of a statistics) proposed by Beck 

and Cohen (2003). This formalism has been applied successfully to a wide variety of physical problems (Beck 

and Cohen, 2003). In thermostatics, superstatistics arise as weighted averages of ordinary statistics (the 

Boltzmann factor) due to fluctuations of one or more intensive parameters (e.g. the inverse temperature). Its 

application to RMT assumes the spectrum of a mixed system to be made up of many smaller cells that are 

temporarily in a chaotic phase. Each cell is large enough to obey the statistical requirements of RMT but has a 

different distribution parameter   associated with it, according to a probability density  .f   Consequently, the 

superstatistical random-matrix ensemble that describes the mixed system is a mixture of Gaussian ensembles 

with a statistical weight  .f  Therefore one can evaluate any statistic for the superstatistical ensemble by 

simply integrating the corresponding statistic for the conventional Gaussian ensemble. 

2.  Beck and Cohen's superstatistics 

Consider a complex system in a nonequilibrium stationary state. Such a system will be, in general, 

inhomogeneous in both space and time. Effectively, it may be thought to consist of many spatial cells, in each of 

which there may be a different value of some relevant intensive parameter. For instance, a system with 

Hamiltonian H at thermal equilibrium is well represented by a canonical ensemble. The distribution function is 

given by 
1( ) ( ) ,HF H z e    

where   is the inverse temperature. Beck and Cohen (2003) assumed that this quantity fluctuates adiabatically 

slowly, namely that the time scale is much larger than the relaxation time for reaching local equilibrium. In that 

case, the distribution function of the non-equilibrium system consists of Boltzmann factors  exp H  that are 

averaged over the various fluctuating inverse temperatures 
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where  1z   is a normalizing constant, and  g   is the probability distribution of .  Let us stress that 1   

is a local variance parameter of a suitable observable, the Hamiltonian of the complex system in this case. 

Ordinary statistical mechanics are recovered in the limit    .g       In contrast, different choices for 

the statistics of may lead to a large variety of probability distributions  .F H  Several forms for  g   have 

been studied in the literature (Beck and Cohen, 2003; Beck et al., 2005). Beck and Cohen (2003) have argued 

that typical experimental data are described by one of three superstatistical universality classes, namely, 2 ,  

inverse 2 ,  or log-normal superstatistics. The first is appropriate if   has contributions from   Gaussian 

random variables 1, ,X X  due to various relevant degrees of freedom in the system. As mentioned before, η 

needs to be positive; this is achieved by squaring these Gaussian random variables. Hence, 2
i    is 2  

distributed with degree ,  
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The average of   is  0 .f d      The same considerations are applicable if 1,  rather than ,  is the 

sum of several squared Gaussian random variables. The resulting distribution  f   is the inverse 2  

distribution given by 

/2
/2/2 20 0 0( ) ,
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where again 0  is the average of .  Instead of being a sum of many contributions, the random variable   may 

be generated by multiplicative random processes. Then 2ln ln i    is a sum of Gaussian random variables. 

Thus it is log-normally distributed, 

 
2 2ln / 21

( ) ,
2

f e
  




              (3) 

which has an average w  and variance  2 1 ,w w   where  2exp .w   

3.  RMT within superstatistics 

The assumptions of RMT stated in the introduction lead to the following joint probability distribution 

function for the matrix elements in a random-matrix ensemble 

 

 
†1 Tr( )( ) ( ) ,H HP H Z e    

where   is a parameter related the mean level density and  1Z   is a normalizing constant. To apply the 

concept of superstatistics to RMT, assume the spectrum of a (mixed) system to be made up of many smaller cells 

that are temporarily in a chaotic phase. Each cell is large enough to obey the statistical requirements of RMT but 

is associated with a different distribution of the parameter   according to a probability density  .f   

Consequently, the superstatistical random-matrix ensemble used for the description of a mixed system consists 

of a superposition of Gaussian ensembles. The joint probability density distribution of its matrix elements is 
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obtained by integrating the distribution of the random-matrix ensemble over all positive values of   with a 

statistical weight  ,f   

†1 Tr( )
0( ) ( ) ( ) H HP H f Z e d          (4) 

 

Despite the fact that it is hard to make this picture rigorous, there is indeed a representation which comes 

close to this idea (Caër and Delannay, 1999). 

The new framework of RMT provided by superstatistics should now be clear. The local mean spacing is no 

longer uniformly set to unity but allowed to take different (random) values at different parts of the spectrum. The 

parameter   is no longer a fixed parameter but it is a stochastic variable with probability distribution  .f   

Instead, the observed mean level spacing is just the expectation value of the local values. The fluctuation of the 

local mean spacing is due to the correlation of the matrix elements which disappears for chaotic systems. In the 

absence of these fluctuations,    0f       and we obtain the standard RMT. Within the superstatistics 

framework, we can express any statistic  E  of a mixed system that can in principle be obtained from the 

joint eigenvalue distribution by integration over some of the eigenvalues, in terms of the corresponding statistic 

 ,G E   for a Gaussian random ensemble. The superstatistical generalization is given by 

 
( )

0(E) ( ) (E, )Gf d           (5) 

 

The remaining task of superstatistics is the computation of the distribution  .f   The time series analysis 

in (Abul-Magd et al., 2008) allows us to derive a parameter distribution  ,f   as we shall show now. 

4.  Time-series representation 

In this section, we use the time series method for the study of the fluctuations of the resonance spectra of 

mixed microwave billiards. Representing energy levels of a quantum system as a discrete time series has been 

probed in a number of recent publications (Relaño et al., 2002). Billiards are often used as simple models in the 

study of Hamiltonian systems. A billiard consists of a point particle which is confined to a container of some 

shape and reflected elastically on impact with the boundary. The shape determines whether the dynamics inside 

the billiard is regular, chaotic or mixed. The best-known examples of chaotic billiards are the Sinai billiard        

(a square table with a circular barrier at its center) and the Bunimovich stadium (a rectangle with two circular 

caps) (Bunimovich, 1974). Neighboring parallel orbits diverge when they collide with dispersing components of 

the billiard boundary. Elliptic and rectangular billiards are examples of regular billiards. The Quantum-Chaos 

group in Darmstadt University carried out a series of experiments with microwave billiards (Abul-Magd et al., 

2008; Relaño et al., 2002; Bunimovich, 1974; Dietz et al., 2006). Here we summarize the time-series analysis of 

the resonance spectra of the so-called Limaçon billiard. 

The "time-series" analysis of the spectra of billiards of both families manifests the existence of two 

relaxation lengths in the spectra of mixed systems, a short one defined as the average length over which energy 

fluctuations are correlated, and a long one that characterizes the typical linear size of the heterogeneous domains 

of the total spectrum. This is done in an attempt to clarify the physical origin of the heterogeneity of the matrix-

element space, which justifies the superstatistical approach to RMT. The second main result of this section is to 

derive a parameter distribution  f  . 
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4.1  Limaçon billiard 

The Limaçon billiard is a closed billiard whose boundary is defined by the quadratic conformal map of the 

unit circle z to w, 2,w z z   1.z   The shape of the billiard is controlled by a single parameter   with 

0   corresponding to the (regular) circle and 1 2   to the cardioid billiard, which is chaotic. For 

0 1 4,   the Limaçon billiard has a continuous and convex boundary with a strictly positive curvature and a 

collection of caustics near the boundary (Robnik, 1983). At 1 4,   the boundary has zero curvature at its point 

of intersection with the negative real axis, which turns into a discontinuity for 1 4.  Accordingly, there the 

caustics no longer persist (Gutiérrez et al., 2007). The classical dynamics of this system and the corresponding 

quantum billiard have been extensively investigated by Robnik and collaborators (Prosen and Robnik, 1994). 

They concluded that the dynamics in the Limaçon billiard undergoes a smooth transition from integrable motion 

at 0  via a soft chaos KAM regime for 0 1 4  to a strongly chaotic dynamics for 1 2.   

 In the Darmstadt experiment (Abul-Magd et al., 2008), three de-symmetrized cavities with the shape of 

billiards from the family of Limaçon billiards (see Figure 1) were reported. They have been constructed for the 

values 0.125,   0.150, 0.300 and the first 1163, 1173 and 942 eigenvalues were measured, respectively. The 

latter billiard is chaotic while the other two have mixed dynamics. More details on these experiments are given 

in Dembowski et al. (2001). 

 

 

 

 

 

 

 

 
Figure 1. Schematic representation of the billiards subject to the Darmstadt experiment. 

 

4.2   Two spectral-correlation lengths 

The results of the previous subsection confirm the assumption that the spectrum consists of a succession of 

cells with different mean level densities. Each cell is associated with a relaxation length ,  which is defined as 

that length-scale over which energy fluctuations are correlated. Our basic assumption is that the level sequence 

within each cell is modeled by a random-matrix ensemble. The relaxation length   may also be regarded as an 

operational definition for the average energy separation between levels due to level repulsion. In the long term, 

the stationary distributions of this inhomogeneous spectrum arise as a superposition of the "Boltzmann factors" 

of the standard RMT, i.e. 
 †Tr .H He   The parameter   is approximately constant in each cell for an 

eigenvalue interval of length T (see Figure 2). In superstatistics this superposition is performed by weighting the 

stationary distribution of each cell with the probability density  f   to observe some value   in a randomly 

chosen cell and integrating over .  Of course, a necessary condition for a superstatistical description to make 

sense is the condition ,T   because otherwise the system is not able to reach local equilibrium before the next 

change takes place. 

The long time scale: First, let us determine the long time scale T. For this we divide the level-spacings 

series into N equal level-number intervals of size n. The total length of the spectrum is Nn. We then define the 

mean local kurtosis  n  of a spacing interval of length n by 
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denotes a summation over an interval of length n, starting at level spacing 

in, and s  is either the local average spacing in each spacing interval or the global average 1s   over the entire 

spacing series. We chose the latter. In probability theory and statistics, kurtosis is a measure for the "flatness" of 

the probability distribution of a real-valued random variable. Higher kurtosis means that a larger part of the 

contributions to the variance is due to infrequent extreme deviations, as opposed to frequent modestly sized ones. 

A superposition of local Gaussians with local flatness three results in a kurtosis 3.   We define the 

superstatistical level-number scale T by the condition 

  3T  ,                      (6) 

that is, we look for the simplest superstatistics, a superposition of local Gaussians (Beck et al., 2005). If n is 

chosen such that only one value of s is contained in each interval, then of course  1 1.   If on the other hand n 

comprises the entire spacing series, then we obtain the flatness of the distribution of the entire signal, which will 

be larger than 3, since superstatistical distributions are fat-tailed. Therefore, there exists a level-number scale T 

which solves (6). Figure 2 shows the dependence of the local flatness of a spacing interval on its length for the 

two mushroom and the three Limaçon billiards. In the case of the chaotic Limaçon billiard, in which 0.300,   

the quantity   does not cross the line of 3   for the considered values of n. It is expected that T N in this 

case, since the fluctuations in a chaotic (unfolded) spectrum are uniform. The values of T for the mixed billiards 

with 0.125   and 0.150 are 12.5 and 15.4 respectively. For the chaotic billiard 0.300,   the curve of  n  

and the line 3   do not intersect as expected. 

 
Figure 2. Determination of the long correlation length T from (6) as the point of intersection of the curve of 

 n  with the line 3  . 
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Figure 3. Determination of the short correlation length   from the autocorrelation function  C n . 

 

The short time scale: The relaxation time associated with each of the N intervals, was estimated by Beck et 

al. (2005) from the small-argument exponential decay of the autocorrelation function 

 

        21 1 ,C n s i s i n s     

 

of the time series under consideration. Figure 3 shows the behavior of the autocorrelation functions for the series 

of resonance-spacings of the two families of billiards. 

Quite frequently, the autocorrelation function shows single-exponential decays,    exp ,C n n    where 

0   defines a relaxation "time". A typical example is the velocity correlation of Brownian motion (Reif, 1984). 

The autocorrelation functions studied here clearly do not follow this trend. For the systems with mixed 

dynamics, they decay rapidly from a value of  0 1,C   change sign at some n becoming negative, then 

asymptotically tend to zero. In an attempt to quantify the dependence of C on n, we parameterized its empirical 

value in the form of a superposition of two exponentially decaying functions 

     1 1 2 2exp exp ,C n A n A n      

and (arbitrarily) fixed the superposition coefficient as 1 1.5A   and 2 0.5.A    The curves in Figure 3 show the 

resulting parameterization. The best fit parameters are  1 2,    (0.51, 1.9), (0.44, 2.1) and (0.2, 1.36) for. We 

may estimate   as the mean values of 1 and 2  and conclude that   has a value slightly larger than 1 for each 

billiard. This is sufficient to conclude that the ratio T   is large enough in each billiard to claim two well 

separated "time" scales in the level-spacings series, which justifies describing them within the framework of 

superstatistics. 
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Figure 4. The values extracted from the time series for the superstatistical parameter  . 

 

 
Figure 5. The parameter distributions obtained from the time-series analysis of the mixed Limaçon billiards 

compared with the distributions in (1-3). 
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4.3  Estimation of the parameter distribution 

We represent the spectra of the three Limaçon billiards as discrete time series, in which the role of time is 

played by the level ordering. The distribution  f   is determined by the dynamics of the entire time series 

representing the spectrum of each billiard. Next, we need to determine which of these distributions fits best that 

of the slowly varying stochastic process  n  described by the experimental data. Since the variance of 

superimposed local Gaussians is given by 1,  we may determine the process  t  from the series 

22
,,

1
i

i Ti T
s s

 


 

The result for the 1 2   billiard is shown in Figure 4. 

Figure 5 suggests that the extracted value of   (and thus the level density) shows rapid fluctuations 

superimposed over slower ones. This agrees with the picture described by the assumptions of the superstatistical 

RMT that the spectrum of the mixed system is composed of segments with different mean level density. 

The probability density  f   is determined from the histogram of the  i  values for all i. The resulting 

experimental distributions are shown in Figure 5. We compared them with the log-normal, the 2  and the 

inverse 2  distributions with the same mean   and variance 
22 .   The inverse 2  distribution fits the 

data significantly better than the other two distributions.  

5.  Nearest-neighbor spacing distribution 

This section focuses on the question whether the inverse 2  distribution of the superstatistical parameter η 

in (2) is suitable for describing the nearest-neighbor spacing distribution (NNSD) of systems in the transition out 

of chaos within the superstatistical approach to RMT. As mentioned above, the NNSD of a chaotic system is 

well described by that of random matrices from the GOE, which is well approximated by the Wigner surmise, if 

the system is chaotic and by that of Poisson statistics if it is integrable. Numerous interpolation formulas 

describing the intermediate situation between integrability and chaos have been proposed (Guhr et al., 1998). 

One of the most popular NNSDs for mixed systems is elaborated by Berry and Robnik (1984). This distribution 

is based on the assumption that semi-classically the eigenfunctions are localized either in classically regular or 

chaotic regions in phase space. Accordingly, the sequences of eigenvalues connected with these regions are 

assumed to be statistically independent, and their mean spacing is determined by the invariant measure of the 

corresponding regions in phase space. The largest discrepancy between the empirical NNSDs of mixed systems 

and the Berry-Robnik (BR) distribution is observed for level spacing s close to zero. While the empirical NNSDs 

of mixed systems almost vanish for 0,s   the Berry-Robnik (BR) distribution approaches a constant and non-

vanishing value for 0.s   

It follows from (5) that the statistical measures of the eigenvalues of the superstatistical ensemble are 

obtained as an average of the corresponding  -dependent ones of standard RMT weighted with the parameter 

distribution  .f   In particular, the superstatistical NNSD is given by  

0( ) ( ) ( , ) ,wp s f p s d                                          (7) 

 

where  ,wp s  is the Wigner surmise for the Gaussian orthogonal ensemble with the mean spacing depending 

on the parameter ,  
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For a 2  distribution of the superstatistical parameter ,  one substitutes (1) and (8) into (7) and integrates 

over .  The resulting NNSD is given by 
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The parameter 0  is fixed by requiring that the mean-level spacing 0 ( )s s p s ds  equals unity. For an 

inverse 2  distribution of ,  given by (2), one obtains the following superstatistical NNSD 
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where  
mK x  is a modified Bessel function (Gradshteyn and Ryzhik, 1980),  x  is a gamma function and 

0  again is determined by the requirement that the mean-level spacing 1.s   Finally, if the parameter   has a 

normal distribution (3), then the NNSD for this distribution, 

 

 
2 2ln / 2

log-norm 0

1
( ) ( , ) ,

2
wp s e p s d

  
 



         (11) 

cannot be evaluated analytically and has to be calculated numerically. 

 

 
 

Figure 6. Experimental NNS distributions for the two mixed Limaçon billiards compared with the superstatistical 

distributions. 
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We have compared the resulting NNSDs given in (9), (10) and (11) with the experimental ones for the two 

Limaçon billiards with mixed dynamics. In Figure 6 the experimental results are shown together with the 

superstatistical and the BR distributions (Berry and Robnik, 1984). 

 

6.  Summary 

Superstatistics has been applied to study a wide range of phenomena, ranging from turbulence to 

econophysics. Among these applications is RMT, in which the parameter distributions of the random-matrix 

ensembles have been obtained by assuming suitable forms or applying the principle of maximum entropy. In this 

paper we use the time-series method to show that the spectra of mixed systems have two correlation scales as 

required for the validity of the superstatistical approach. The time-series analysis also shows that the best choice 

of the superstatistical parameter distribution for a mixed system is an inverse 2  distribution. We calculate the 

corresponding NNS distribution of the energy levels and compare it with the spectrum of two microwave 

resonators of mushroom-shaped boundaries and two of the family of Limaçon billiards, which exhibit mixed 

regular-chaotic dynamics. Resonance-strength distributions for the Limaçon billiards are also analyzed. In all 

cases the experimental data are found in better agreement with the corresponding distributions with inverse-χ² 

superstatistics than all the other considered distributions including the celebrated Brody NNS distribution and the 

resonance-strength distribution that follows from the Alhassid-Novoselsky Gamma distribution of transition 

intensities. 
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