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        نموذج مركوفي للفرق بين الأسعار في سوق المال

  مالكولم. ب.و و الأخضر عجون، محمد اللواتي

هذا البحث يطور نموذج يحتوي على سلسلتان من نوع مرآوف تقوم بالتأثير على نموذج  يقوم بدراسة حرآة للفرق  :خلاصة
ى الأ           تقوم بتو السلسلتان من نوع مرآوف     .لأسعار في سوق المال   ابين   أثير عل في سعار صيف أحداث غير معروفة لكن ذات ت

   .وتستعمل في هذا البحث طرق تغيير القياس لتقدير التوزيع الشرطي المتكرر.  سوق المال
    

ABSTRACT: In an earlier paper we developed a stochastic model incorporating a double-Markov 
modulated mean-reversion model. The model is based on an explicit discretisation  of the corresponding 
continuous time dynamics. Here we discuss parameter estimation via the technique of M-ary detection. 
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1.   Introduction 

he model we developed in Malcolm et al.  (2004) is a stochastic model incorporating a double Markov 
modulated mean reversion model. Unlike a price process the basis process  can take positive or negative 

values. This model is based on an explicit discretization of the corresponding continuous time dynamics. In that 
model we suppose the mean reverting level in our dynamics as well as the noise coefficient can change 
according to the states of some finite-state Markov processes which could be the economy and some other 
unseen random phenomenon. In this paper we wish to discuss -ary detection for this model. The term -ary 
detection is used in Electrical Engineering to describe sequential hypothesis testing for more than two candidate 
model hypotheses. Here we are interested in model-parameter hypotheses. In effect our formulation is something 
like a discrete and finite version of the EM algorithm by Baum and Petrie (1966),  Dempster et al. (1977) where, 
rather than considering an uncountable collection of model parameter sets in the space of all admissible models, 
we consider a finite collection in this space. 

T 
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We assume that we have a list of  candidate models, from which to choose, describing the model dynamics 
over time. These candidate models will be denoted by , . Let  be a simple random variable 
denoting a specific model, with states indexed by . We assume that  is taking on values in the 
canonical basis  of . We suppose  is an indicator random variable such that , that is 

 if and only if hypothesis  holds. Here  is the usual inner product. We shall be interested in 
computing the posterior probabilities , where  denotes information contained in some 
observation process. It will be shown that this problem separates into a pure filtering component and a pure 
estimation component. In the context of -ary detection, this is known as the Separation Theorem (Poor 1988). 
This paper is organized as follows. In §2 & §3 we recall the model dynamics as well as the construction of a new 
probability measure under which all processes are independent. In §4 M-ary Detection Filters are derived. In §5 
& §6 our results are adapted to continuous time dynamics. 

2.  Stochastic Dynamics 

All models are, initially, on the probability space ( )F PΩ, , .  

Write { 0 }uX X u t= , ≤ ≤ , for the basis (price difference) process. tX R∈ . Suppose L  is a mean 

reversion level and Rα +∈  is the rate-parameter, that is, a parameter determining how fast the level L  is 

attained by the process X .   
X  has dynamics:  

 0 0
( )

t

t u tX X L X du Wα σ= + − + .∫                              (2.1) 

 
Here  W  is a standard Wiener process, and Rσ ∈ .  
 
Remark 1. The dynamics at (2.1) exhibit a mean reversion1 character of the model when written in stochastic 
differential equation form:  

 ( )t u tdX L X dt dWα σ= − + .                                               (2.2) 
 
Ignoring the noise tdWσ , if tX L>  then ( ) 0tL Xα − < , while if tX L<  then ( ) 0tL Xα − > , and so 
the right side of is continually trying to reach the level L .  
Now suppose that parameters L  and σ  are stochastic and can switch between different levels 1 2 mL L … L, , ,  

and 1 n…σ σ, ,  respectively. We assume here that these levels are determined by the states of two Markov 

chains Z  and   respectively.   
 
Without loss of generality, we take the state spaces of our Markov chains to be the canonical basis 

1 2{ }mL e e … e= , , ,  of mR  and the canonical basis 1 2{ }nS f f … f= , , ,  of nR  respectively.  
 
 

                                                 
1 Modeling a mean reversion process is widely used in finance, for example in interest rates models such as the 
Vasicek Model. This class of models assumes an (static) average value will be attained, not unlike the notion of 
an equilibrium state, or steady state of a dynamical system in the physical sciences. 
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Write  

  (2.3) 

 

   

  (2.4) 
Write                                                   .  
Then  

  (2.5) 

Here,  and  are martingale increments.   
The scalar-valued Markov processes taking values 1 mL … L, ,  and 1 n…σ σ, , , are obtained by  

  (2.6) 

Here  1 2( )mL L … L ′= , , ,L , 1 2( )n…σ σ σ ′= , , ,S , 〈⋅, ⋅〉  denotes an inner product and { }1 A  denotes an 

indicator function for the event A .  
 
What also we wish to impose is that the two Markov chains Z  and  be not independent, that is, information 
on the behavior of one conveys some knowledge of the behavior of the other. More precisely, we assume the 
dynamics:  
  (2.7) 

where js ir
⎛ ⎞
⎜ ⎟,⎝ ⎠

=P p  denotes a mn mn×  matrix, or tensor, mapping   into  

and  
 

 Again 1k +M  is a martingale increment.  
The dynamics at (1) take the form  

  (2.8) 

 
Remark 2.  We defined Z  and  as inherently discrete-time. Here, we "read" Z  and  as the output of a 
sample and hold circuit, or CADLAG processes.  

• What we wish to do now, is discretise the dynamics at (8) and then compute a corresponding filter and 
detector.  
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• We will use an Euler-Maruyama discretisation scheme to obtain discrete-time dynamics, although many 
other schemes can be used; see, for example, Numerical Solution of Stochastic Differential Equations by   
Kloeden and Platen (1992).  

For all time discretisations we will consider a partition, on some given time interval [0 ]T,  and write  

  (2.9) 

This partition is strict, 0 1t t …< < , and regular, the 1t k kt t −∆ = −  are identical for indices k . Applying the 
Euler-Maruyama scheme to (8), we get,  

 

  (2.10) 

Here  

  
 
The Gaussian process v is an independently and identically distributed (0 1)N , .  
Our stochastic system now, under the measure P , has the form:  
 

  (2.11) 

Write 

 

3.   State Estimation Filters 

The approach we take to compute our filters is the so-called reference probability method. This technique 
is widely used in Electrical Engineering, see Elliott et al. (1995) and more recently Aggoun and Elliott (2004).  
We define a probability measure †P  on the measurable space ( )FΩ, , such that, under †P , the following two 
conditions hold.  

1.  The state processes Z and  are Markov chains initial distributions 0p  and 0p  respectively.  

2.  The observation process X , is independently and identically distributed and is Gaussian with zero mean 
and unit variance.  

With †P  defined, we construct P , such that under P  the following hold:  
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3. The state processes Z and  are again Markov chains with initial distributions 0p  and 0p  
respectively.  
4. The sequence v, where  

                                                                      (3.1) 

is a sequence of independently and identically distributed Gaussian (0 1)N ,  random variables.  
 

Write                                                          . 
 
Definition  1.  For 1 2 …= , , ,   

                                                            (3.2) 

                                                      (3.3) 

  
The "real world" probability P , is now defined in terms of the probability measure †P  by setting  

† tG k
dP
dP

| = Λ .   

 
Lemma 1.   Under P , the sequence v, is a sequence of independently and identically distributed (0 1)N ,  
random variables, where 

              .       
 

That is, under  P ,  
                                         (3.4) 

 
Lemma 2. Under the measure P , the process Z  remains a Markov process, with transition matrix Π  and 
initial distribution 0p . The proofs of  Lemma 1 and 2 are routine.  

Remark  1. The objective in estimation via reference probability is to choose a measure †P  which facilitates 
and/or simplifies calculations. In Filtering and Prediction, we wish to evaluate conditional expectations.  
Under the measure †P , our dynamics have the form:  

                                        (3.5) 

 
In what follows we shall use the following version of Bayes' rule. 
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                           (3.6) 

Note that 

 

 
The following result is proven in Malcolm et al. (2008). 
Theorem  1.  Information  State Recursion.   Suppose the Markov chains Z and  are observed though the unit-
delay discrete-time dynamics at (2.10). The information state for the corresponding filtering problem is 
computed by the recursion:  

 
                     (3.7) 

Here  
 ,                                                 (3.8) 

and  

                                                            (3.9) 

The recursion given in Theorem 1, provides a scheme to estimate the conditional probabilities for events of the 
form , given the information up to time k+1. In practice, one would use the 
vector-valued information state  , to compute an estimate for the state . In general two 
approaches are adopted; one computes either a conditional mean, that is  

 

     (3.10) 

 
or the so-called Maximum-a-Posteriori (MAP) estimate, that is  

  (3.11) 

 
Marginal distributions for  the Markov chains are obtained by multiplying  on the right with the 
n -dimensional row vector (1 1)…, ,  or on the left with the m -dimensional column vector (1 1)…, ,  
respectively.  

 
4.  M-ary   Detection Filters 
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 To denote a specific model hypothesis for the discrete-time dynamics given at  
(2.5), (2.7) and (2.10) we write, 

                                                  (4.1) 

Here . Using the simple random variable , as before, we are interested to compute the 
detector expectation 

                                                           (4.2) 

Here the sigma algebra  is taken as generated by a model with parameter set , and similarly the Radon-
Nikodym derivative , is constructed according to . Further, to make a clear distinction between the filter 
information state defined for specific model , and the corresponding un-normalised detector probability for 
model , we write, respectively 
  

 
 
Theorem 2   (M-ary Detection Filter) 
The M-ary detection filter for the model hypothesis  is computed by the recursion 
 

 
Proof:  
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The expectation in the last line of the calculation is 
 

 

 
The normalized probabilities  are computed by the normalized one step 
predictor information state, that is, for the model hypothesis  and the event  , we 
compute 

 

 
Here  is the information state for the filter computed earlier. Since we need the normalised form of the  
expectation at (4.2), the -ary detector has the form: 

 

 
5.  Continuous-Time Dynamics 

We consider here a continuous time Markov chain . Again we use the canonical representation of an 
arbitrary Markov chain. That is, without loss of generality we take the state space for  to be the set 

, whose elements  are column vectors with unity in the  position and zero elsewhere. 
The key benefit of this representation is that it admits the dynamics: 
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Here  is a -martingale and  is a time invariant rate matrix, whose elements 
are the infinitesimal intensities of . To denote an element of the matrix  at row  and column , we write 

. Here  denotes an inner product. 
Now we consider the continuous-time dynamics 

 
                                        (5.1)

 

Under  the state and observation process dynamics have the form: 
 

  

Let 

 

where  is given by equation (5.1). 
Then the ‘real world’ probability  is defined via 
 

  

Under  the dynamics have the form: 
 

  

Notation:  Suppose  is any -adapted process and we wish to estimate . Using 
Bayes’ rule (Elliott et al. 1995) 

  

6. Continuous-Time Detection Schemes 

State Estimation Filters 
With                              
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Then                                                        . 

-ary Detection Filters  

 

 

The process Z  takes values on a canonical basis of matrix-valued indicator functions, each of which jointly 
indicates a particular model hypothesis, and a particular value taken by the state process.  
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The corresponding normalized detection probabilities are computed, for example, by 
 

  

Write 

                               (6.1) 

define 

 

The process , defined by equation  ( 6.1)  satisfies the dynamics 

 

The symbol  in the previous equation denotes a point-wise matrix product, where for two matrices of the same 
dimensions, the point-wise product is 
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Write  

  

Recalling the numerator in Bayes’ rule, we note that 
 

  

So, by computing the numerator in Bayes’ rule, we can readily compute the normalizing denominator  
. The matrix quantity , defined at (6.1), is an un-normalized conditional expectation, so, the 

corresponding normalized conditional expectation is computed by 
 

 

To recover the normalized -ary detection probabilities from the quantity  , one computes 
 

 

The corresponding normalized detection probabilities are computed, for example, by 
 

 

Write 

                                        (6.1) 

define 

 

The process , defined by equation  ( 6.1)  satisfies the dynamics 
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The symbol  in the previous equation denotes a point-wise matrix product, where for two matrices of the same 
dimensions, the point -ise product i 
 

 

Write  

 

Recalling the numerator in Bayes’ rule, we note that 
 

  

So, by computing the numerator in Bayes’ rule, we can readily compute the normalising 
denominator . The matrix quantity , defined at (6.1), is an un-normalized conditional expectation, 
so, the corresponding normalized conditional expectation is computed by 
 

 

To recover the normalized -ary detection probabilities from the quantity  , one computes 
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