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     انسياب الحمل الإنزلاقي لمائع متغير الخصائص ، ناتج عن دوران قرص مسامي    

  رحمان. محمد م

في هذا البحث ندرس خصائص الانتقال الحراري بالحمل في الانسياب ألانزلاقي المستتب لمائع حول قرص  :خلاصة
ل الحراري علي درجة الحرارة، و في وجود مسامي دوار، آخذين في الاعتبار اعتماد كل من الكثافة و اللزوجة والتوصي

لتحويل " فون كارمان"نستخدم تحويلات التشابه ل  ".جول"و تبديد طاقة عبر اللزوجة، و كذلك تسخين " هول"تيار 
 .المعادلات الحاكمة لمسألتي الحركة و الانتقال الحراري إلي نظام مترابط من المعادلات التفاضلية العادية عالي اللاخطية

و قد أظهرت ". سفيجرت"و " ناختسهايم"م حل المعادلات اللابعدية المتحصل عليها عدديا باستخدام الطريقة التكرارية ل يت
النتائج إن نموذج الطبقة الحدية الحرارية في المائع ذي الخصائص المعتمدة علي الحرارة لا يؤدي إلي نتائج مقبولة 

كما تبين النتائج إن معامل الانزلاق يتحكم .  و لذلك يجب اعتباره متغيرا داخلهاثابتا في الطبقة،" براندل"عندما يؤخذ عدد 
 .بشكل جوهري في خصائص الانزلاق و النقل الحراري

 
ABSTRACT: In this paper we investigate convective heat transfer characteristics of steady 
hydromagnetic slip flow over a porous rotating disk taken into account the temperature 
dependent density, viscosity and thermal conductivity  in the presence of  Hall current, viscous 
dissipation and Joule heating. Using von-Karman similarity transformations we reduce the 
governing equations for flow and heat transfer into a system of ordinary differential equations 
which are highly nonlinear and coupled. The resulting nondimensional equations are solved 
numerically by applying Nachtsheim-Swigert iteration technique. The results show that when 
modeling a thermal boundary layer, with temperature dependent fluid properties, consideration 
of Prandtl number as constant within the boundary layer, produces unrealistic results.   
Therefore it must be treated as variable throughout the boundary layer. Results also show that 
the slip factor significantly controls the flow and heat transfer characteristics. 
 
KEYWORDS:  Rotating disk; Heat transfer; Convection; Slip flow; Variable properties.  
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1.   Introduction 

n recent years, the flow dynamics due to a rotating disk, originating from the early formulation of von Karman 
(1921), has been a popular area of research. Since then many researchers (Cochran, 1934; Roger and Lance, 

1960; Benton, 1965;  Kuiken, 1971; Owen and Rogers, 1989; Herrero et al 1994; Kelson and Desseaux, 2000; 
Andrsson and Korte, 2002; Takhar et al 2002) have studied and reported results on disk-shaped bodies with or 
without heat transfer. Flow due to a rotating disk is encountered in many industrial, geothermal, geophysical, 
technological and engineering applications.  A few of them are rotating heat exchangers, rotating disk reactors 
for bio-fuels production, computer disk drives, and gas or marine turbines.  
 

Nomenclature 
 

 
a          constant 
b          constant 
B         magnetic field vector 

0B         applied magnetic field  
Cf         skin friction coefficient 

pC  specific heat at constant pressure 
d            constant 
E          electric field 
Ec        Eckert number 

e−        charge of electron 
F  dimensionless radial velocity  
G  dimensionless tangential velocity  
H  dimensionless axial velocity  
Ha       Hartman number 
J          electric current density 
Kn       Knudsen number 
m         Hall current parameter 
Nu       Nusselt number 

en         electron concentration per unit volume  
p          pressure within the boundary layer 

p∞         pressure of the ambient fluid 

ep         electronic pressure 
Pr          variable Prandtl number 
Pr∞        ambient Prandtl number 
q           velocity vector 

wq         surface heat flux  
Re        rotational Reynolds number  
r          cylindrical radial coordinate 
T          temperature within boundary layer             

tU       target velocity  
u         velocity along radial direction  
v         velocity along tangential direction   
w        velocity along axial direction  

sw       non-dimensional suction velocity 

ww       suction velocity x , y , z Cartesian   
            coordinates  
Greek Symbols 
β         Hall factor 
γ          relative temperature difference  
            parameter 
ρ        density of the fluid 

∞ρ       density of the ambient fluid                           
µ          coefficient of dynamic viscosity    

µ∞         dynamic viscosity of the ambient  
               fluid  
υ∞  kinematic viscosity of the ambient             
               fluid 
σ   electric conductivity 
κ   thermal conductivity  
κ∞          thermal conductivity of the   
               ambient fluid  
η  similarity parameter 
ξ  target momentum accommodation       
              coefficient 
λ           mean free path 
θ  dimensionless temperature 
φ           tangential coordinate 
Ω          angular velocity 
ε         slip factor 

I 
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wT  temperature at the surface of the disk  

∞T  temperature of the ambient fluid  
Φ        viscous dissipation function 
τ         shear stress 

 
The effects of an applied magnetic field on the steady flow due to the rotation of a disk of infinite or finite 

extent were studied by El-Mistikawy et al. (1991) and  El-Mistikawy and Atia (1990). Atia and Aboul-Hassan 
(1997) studied steady hydromagnetic flow due to an infinite disk rotating with uniform angular velocity in the 
presence of an axial magnetic field. In their analysis they neglected the induced magnetic field but considered 
Hall current. Attia (1998) studied the effects of suction as well as injection in the presence of a magnetic field on 
the unsteady flow past a rotating porous disk. It was found that the combined effect of a magnetic field with 
strong injection may stabilize the growth of the boundary layer.  

Sparrow et al. (1971) studied the flow of Newtonian fluid due to the rotation of a porous-surfaced disk 
with a set of linear slip-flow conditions. A substantial reduction in torque then occurred as a result of surface 
slip. Miklavcic and Wang (2004) further revisited the problem of Sparrow et al. and pointed out that the slip-
flow boundary conditions could also be used for slightly rarefied gases or for flow over grooved surfaces. 
Arikoglu and Ozkol (2006) studied MHD slip flow over a rotating disk with heat transfer. It is observed that both 
the slip factor and the magnetic flux decrease the velocity in all directions and thicken the thermal boundary 
layer. Recently, Osalusi et al. (2008) studied thermal-diffusion and diffusion-thermo effects on MHD slip flow 
due to a rotating disk. 

In classical treatment of thermal boundary layers, fluid properties (such as density, viscosity, thermal 
conductivity) are assumed to be constant; however, experiments indicate that this assumption only makes sense 
if temperature does not change rapidly for the application of interest. To predict the flow behavior accurately, it 
may be necessary to take into account these variable properties.  Zakerullah and Ackroyd (1979) investigated 
free convection flow above a horizontal circular disk considering variable fluid properties. In the case of fully 
developed laminar flow in concentric annuli, the effect of the variable property has been investigated by Herwig 
and Klemp (1988). Atia (2006) studied unsteady hydromagnetic flow due to an infinite rotating disk, considering 
temperature dependent viscosity in a porous medium with Hall and ion-slip currents. Maleque and Sattar (2005a) 
studied the effect of variable properties on the steady laminar convective flow due to a rotating disk while 
Maleque and Sattar (2005b) further investigated the same problem in the presence of Hall current. Osalusi and 
Sibanda (2006) revisited the problem of Maleque and Sattar (2005a), considering magnetic effect.  

When fluid properties such as viscosity and thermal conductivity vary with temperature, Prandtl number 
(see section 2) varies too. All of these afore-mentioned works considered Prandtl number as constant within the 
boundary layer, although viscosity and thermal conductivity depends on temperature. Hence one of the 
motivations behind this study is also to investigate how variable Prandtl number affects the flow and heat 
transfer characteristics.  

In the present study we extend the work of Maleque and Sattar (2005b) and analyze the flow and heat 
transfer characteristics in the presence of viscous dissipation and Joule heating, considering slip flow boundary 
condition at the surface of a uniformly heated rotating disk. The resulting governing equations are solved 
numerically applying Nachtsheim-Swigert (1965) iteration technique. Graphical results for non-dimensional 
velocity and temperature profiles including skin-friction coefficient and the Nusselt number in tabular form are 
presented for a range of values of the parameters characterizing the flow. The accompanying discussion provides 
physical interpretations of the results. 

2.   Mathematical Model  

Let us consider a steady hydromagnetic laminar flow of an electrically conducting fluid due to a porous 
rotating disk of infinite extent in the presence of an external uniform magnetic field directed perpendicular to the 
disk. The fluid properties are taken as strong functions of temperature. A uniform suction or injection through 
the disk is considered for the whole range of suction or injection velocities.  
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2.1  Basic Equations 

The equations governing the steady hydromagnetic laminar convective flow are:  
Equation of continuity: 

.( ) 0ρ∇ =q ,                              (1) 
 
Navier–Stokes equation: 

[ ]( . ) .( ) ( )pρ µ∇ = −∇ + ∇ ∇ + ×q q q J B ,           (2) 
 
Ohm’s law for a moving conductor with Hall currents: 

[ ]( ) epσ β β= + × − × + ∇J E q B J B ,     (3) 
 
Maxwell electromagnetic equations: 

. 0, , . 0∇ = ∇× = ∇ =J E 0 B ,                  (4) 
 
Energy equation: 

2

( . ) .( )p
JC T Tρ κ µ
σ

∇ = ∇ ∇ + + Φq ,    (5) 

2 2 22 2

2 u v w u v v w
x y z y x z y

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞Φ = + + + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

      ( )
2

22 .
3

w u
x z

∂ ∂⎛ ⎞+ + − ∇⎜ ⎟∂ ∂⎝ ⎠
q .                                                                                   (6) 

 
Here q  is the velocity vector, B  is the magnetic field vector, E  denotes the electrical field vector which 
results from charge separation and is in the z -direction, J  is the current density vector, p  is the pressure, ρ  
is the density of the fluid, µ  is the viscosity of the fluid, σ  is the electrical conductivity of the fluid,  κ  is the 

thermal conductivity of the fluid, pC  is the specific heat of the fluid, T  is the temperature of the fluid, and Φ  

is the viscous dissipation function. In equation (3) the term ( )σβ ×J B  denotes the Hall effects where 

1

een
β =  designates the Hall factor, e−  is the charge of electron, en  is the electron concentration per unit 

volume and ep  is the electronic pressure. In equation (5) the term 
2J
σ

 represents Joule heating whereas µΦ  is 

the viscous dissipation or frictional heating effects. 

2.2   Governing equations 

In  non-rotating cylindrical polar coordinates ( , , )r zφ , let us consider a disk which rotates with constant 
angular velocity Ω  about the z -axis. The disk is placed at 0z = , and the fluid occupies the region 0z > , 
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where z  is the vertical axis in the cylindrical coordinates system with r  and φ  as the radial and tangential axes 
respectively. The components of the flow velocity q  are ( , , )u v w  in the directions of increasing ( , , )r zφ  

respectively. The surface of the rotating disk is maintained at a uniform temperature wT  and far away from the 

wall, the free stream is kept at a constant temperature T∞  and at a constant pressure p∞ . The fluid is assumed to 
be Newtonian, viscous and electrically conducting. An external uniform magnetic field is applied in the z -
direction. The electron–atom collision frequency is assumed to be relatively high so that the Hall effect cannot 
be neglected. Ion-slip effects are however ignored in the present analysis.  

From equation (4), using the relation 0∇⋅ =B  for the magnetic field ( , , )x y zB B B=B , we obtain that 

0  (constant)zB B=  everywhere in the fluid. This assumption is valid only when the magnetic Reynolds 
number is very small so that magnetic induction effects can be ignored. For the current density 

( , , )x y zJ J J=J  we obtain from the relation 0∇⋅ =J  that constantzJ = . Hence we consider that the disk 

is non-conducting and therefore 0zJ =  at the disk and hence zero everywhere. Finally we consider the case of 

a short circuit problem in which the applied electric field =E 0  and also assume that the induced magnetic field 
is negligible in comparison with the applied magnetic field. 

In the absence of electric field E  and electron pressure ep  equation (3) becomes  
 

0 0
2 2

( ) ( ), ,0
1 1

B v mu B mv u
m m

σ σ+ −⎡ ⎤= ⎢ ⎥+ +⎣ ⎦
J ,      (7) 

 
where 0m Bσβ=  is called Hall current parameter. It can be further shown that 
  

2 2
0 0

2 2

( ) ( ), ,0
1 1

B mv u B v mu
m m

σ σ⎡ ⎤− +
× = −⎢ ⎥+ +⎣ ⎦

J B .           (8) 

 
We also assume that the fluid properties, viscosity (µ ), thermal conductivity (κ ) and density ( ρ ) are 

functions of temperature alone and obey the following laws (see Jayaraj, 1995; later used by Malek and Sattar, 
1995b; Osalusi and Sibanda, 2006) 

 

[ ]/ aT Tµ µ∞ ∞= , [ ]/ bT Tκ κ∞ ∞= , [ ]/ dT Tρ ρ∞ ∞= ,   (9)    
 
where a , b  and d  are arbitrary exponents while µ∞ ,  κ∞  and ρ∞   are the viscosity, thermal conductivity 
and  density of the ambient fluid respectively.  

The flow configurations and geometrical coordinates are shown in Figure 1. Due to steady axially 
symmetric, compressible hydromagnetic laminar flow of a homogeneous fluid the governing equations take the 
following form (see Malek and Sattar, 1995b): 

( ) ( ) 0ru rw
r z
ρ ρ∂ ∂

+ =
∂ ∂

,      (10) 
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22
0 ( ),2(1 )

Bu v u p u u u
u w mv u

r r z r r r r r z z m

σ
ρ µ µ µ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + = − + + + + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
       (11) 

2
0 ( ),2(1 )

Bv uv v v v v
u w v mu

r r z r r r r z z m

σ
ρ µ µ µ

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

            (12) 

 
 

 
Figure 1. Flow configurations and coordinate system 

 
 

( )1 ,w w p w wu w w
r z z r r r r z z

ρ µ µ µ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = − + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
   (13) 

2 2

p
T T T T T u v

C u w
r z r r r z z z zr

ρ κ κ
κ µ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

    

2
2 20

2 ( )
(1 )

B u v
m

σ
+

+
                                                                                    (14) 

 
If the mean free path of the fluid particles is comparable to the characteristic dimensions of the flow field 

domain, the assumption of continuum media is no longer valid, and as a consequence Navier–Stokes equation 
breaks down. In the range 0.1 10Kn< <  of Knudsen number, the high order continuum equations (Burnett 
equations) should be used. For the range of 0.001 0.1Kn< < , no-slip boundary conditions cannot be used and 
should be replaced with the following expression (Gad-el-Hak, 1999): 

2
t

uU
z

ξ λ
ξ
− ∂

=
∂

,                               (15) 

φ
rΩ

z

wT

T∞

0B w
uv

P∞

x

y
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where tU  is the target velocity, ξ  is the target momentum accommodation coefficient and λ  is the mean free 

path. For 0.001Kn < , the no-slip boundary condition is valid; therefore, the velocity at the surface is equal to 
zero. In this study the slip and the no-slip regimes of the Knudsen number that lies in the range 0 0.1Kn< <  
are considered.  

2.3   Boundary conditions 

By using equation (15), the appropriate boundary conditions for our model are 
(i) On the surface of the disk ( 0z = ): 

tu U= , tv r U= Ω + , ww w=  (slip flow and permeable surface conditions),              (16a) 

wT T=   (uniform surface temperature).    (16b) 
(ii) Matching with the quiescent free stream ( z →∞ ): 

0u = , 0v = , T T∞= , p p∞= .    (16c) 

3.   Transformation of the model  

To obtain the solutions of the governing equations (10)-(14) together with the boundary conditions (16) we 

introduce a dimensionless normal distance from the disk, ( )1/2zη υ∞= Ω  along with the von-Karman 
transformation 

( )1/2( ), ( ), ( ),
2 ( ), ( ),

u rF v rG w H
p p P T T T

η η υ η
ρ υ η θ η

∞

∞ ∞ ∞ ∞

⎫= Ω = Ω = Ω ⎪
⎬

− = Ω − = ∆ ⎪⎭
            (17) 

 
where υ∞  is the kinematic viscosity of the ambient fluid and wT T T∞∆ = − .   
Now substituting (17) into (10)-(14) we obtain the following nonlinear ordinary differential equations  

12 (1 ) 0H F dHγ θ γθ −′ ′+ + + = ,               (18) 
2

1 2 2
2(1 ) [ ](1 ) ( )(1 ) 0

1
d a aHaF a F F G HF mG F

m
γ γθ θ γθ γθ− − −′′ ′ ′ ′+ + − − + + + − + =

+
,     (19) 

2
1

2(1 ) [2 ](1 ) ( )(1 ) 0
1

d a aHaG a G FG HG G mF
m

γ γθ θ γθ γθ− − −′′ ′ ′ ′+ + − + + − + + =
+

,   (20) 

2
1 2 2 2

2(1 ) Pr (1 ) Pr (1 ) ( )
1

d b bHab H Ec F G
m

θ γ γθ θ θ γθ γθ− − −
∞ ∞′′ ′ ′+ + − + + + + +

+
 

                                                                  2 2Pr (1 ) ( ) 0a bEc F Gγθ −
∞ ′ ′+ + = ,                                      (21) 

where ( )1/ 2
0Ha B σ ρ∞= Ω  is the Hartmann number, Pr pCµ κ∞ ∞ ∞=  is the ambient Prandtl number, 

2( ) pEc r C T= Ω ∆  is the Eckert number and T Tγ ∞= ∆  is the relative temperature difference parameter, 
which is positive for a heated surface, negative for a cooled surface and zero for uniform properties. Thus by 
using (17) boundary conditions (16) become  

, 1 , , 1  at 0,sF F G G H wε ε θ η′ ′= = + = = =    (22a) 
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0, 0, 0, 0  as ,F G P θ η= = = = →∞     (22b) 

where 1/22 ( )ξε λ υ
ξ ∞
−

= Ω  is the slip factor and 1/2( )sw w υ −
∞= Ω  represents a uniform suction when 

0sw <  and uniform injection when 0sw >  at the surface of the disk. 

3.1   Particular cases 

A number of special cases can be derived from the full transformed momentum and energy equations (18)-(21) 
with the boundary conditions (22) which are as follows: 

i 0swγ = =  without heat transfer  no-slip 
condition 

Hassan and Attia (1997) 

ii 2 0Ha m Ecγ = = = =  heat transfer without 
Joule heating 

no-slip 
condition 

Kelson and Desseaux 
(2000) 

iii 2 0Ha mγ = = =  without heat transfer slip condition Miklavcic and Wang 
(2004) 

iv 0sw m Ecγ = = = =  heat transfer without 
Joule heating 

slip condition Arikoglu and Ozkol 
(2006) 

v  2 0Ha m Ec= = =  heat transfer without 
Joule heating 

no-slip 
condition 

Maleque and Sattar 
(2005a) 

vi  0m Ec= =  heat transfer without 
Joule heating 

no-slip 
condition 

Osalusi and Sibanda 
(2006) 

vii  0Ec =  heat transfer without 
Joule heating 

no-slip 
condition 

Maleque and Sattar 
(2005b) 

 

4.  Variable Prandtl Number 

The Prandtl number is a function of viscosity and as viscosity varies across the boundary layer, the Prandtl 
number varies, too. The assumption of constant Prandtl number inside the boundary layer may produce 
unrealistic results. Therefore, Prandtl number related to the variable viscosity is defined by  

(1 )
Pr (1 ) Pr (1 )

(1 )

a
p p p a b a b

b

C C Cµ µ γθ µ
γθ γθ

κ κ γθ κ
∞ ∞ − −

∞
∞ ∞

+
= = = + = +

+
         (23) 

At the surface ( 0η = ) of the disk, this can be written as 

Pr Pr (1 )a b
w γ −

∞= + .                 (24) 

From equation (23) it can be seen that for 0γ → , the variable Prandtl number Pr equals the ambient 

Prandtl number Pr∞ . For η →∞  that is outside the boundary layer, ( )θ η  becomes zero. Therefore Pr  equals 

Pr∞  regardless of the values of γ . 
 Table 1 shows the variation of the Prandtl number at the surface of the disk for several values of γ  for a 

fixed value of the ambient Prandtl number Pr 0.64∞ =  and the exponents 0.7a = , 0.83b = .  From this 

table we see that for a positive value of γ , Prandtl number at the surface of the disk Prw  decreases as γ  

increases. The opposite effect is observed when γ  is negative. It must be noted that for 1γ ≤ −  no physically 
viable solutions exist.  
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Table 1. Values of Pr  versus γ  for Pr 0.64∞ = , 0.7a = , 0.83b =  at 0η = . 
 

γ -0.8 -0.5 -0.2 0.0 0.2 0.5 1.0 3.0 5.0 

Pr 0.789 0.700 0.659 0.640 0.625 0.607 0.585 0.534 0.507 
 
In light of the above discussions, using (23) the non-dimensional temperature equation (21) can be 

rewritten as  
                           1 2(1 ) Pr(1 )d ab Hθ γ γθ θ γθ θ− −′′ ′ ′+ + − + +     

                   2 2 2 2 2 2(1 ) Pr (1 ) ( ) Pr ( ) 0aHa m Ec F G Ec F Gγθ − ′ ′+ + + + + = .  (25)            
Equation (25) is the corrected non-dimensional form of the energy equation in which Prandtl number is 

treated as variable. It is mentionable that this correction does not appear in the literature. 

5.   Parameters of engineering interest 

The parameters of engineering interest for the present problem are the skin-friction coefficient (Cf ) and 
the Nusselt number ( Nu ) which indicate physically wall shear stress and rate of heat transfer respectively.  The 
action of the variable properties in the fluid adjacent to the disk sets up a tangential shear stress, which opposes 
the rotation of the disk. As a consequence, it is necessary to provide a torque at the shaft to maintain a steady 
rotation. The radial shear stress rτ  and tangential shear stress tτ  are defined by: 

1/2

0

(1 ) Re (0)a
r

z

u w F
z r

τ µ µ γ∞
=

⎡ ⎤∂ ∂⎛ ⎞ ′= + = + Ω⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
,   (26) 

1/2

0

1 (1 ) Re (0)a
t

z

v w G
z r

τ µ µ γ
φ ∞

=

⎡ ⎤⎛ ⎞∂ ∂ ′= + = + Ω⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦
.   (27) 

Hence the skin-frictions ( 2 2Cf rτ ρ∞= Ω ) along radial and tangential directions are obtained as 
1/2(1 ) Re (0)a

rCf Fγ − ′= + ,              (28) 
1/2(1 ) Re (0)a

tCf Gγ − ′= + .                           (29) 
The rate of heat transfer from the disk surface to the fluid is computed by the application of Fourier’s law 

as given below 
1/2

0

(1 ) (0).b
w

z

Tq T
z

κ κ γ θ
υ∞

= ∞

⎛ ⎞∂ Ω⎛ ⎞ ′= − = − ∆ + ⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠
   (30) 

Hence the Nusselt number ( wrqNu
Tκ∞

=
∆

) is obtained as  

1/2(1 ) Re (0),bNu γ θ ′= − +               (31) 

where 2Re r υ∞= Ω  is the rotational Reynolds number. Thus from equations (28), (29) and (31) we see that 

skin-friction coefficient and Nusselt number are proportional to the numerical values of (0)F ′ , (0)G′  and 
(0)θ′−  which are calculated in the process of integration when solving the corresponding differential 

equations. 
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6.   Method of solutions 

The set of equations (18)-(20) and (25) are highly nonlinear and coupled and therefore the system cannot 
be solved analytically. The system of transformed governing equations (18)-(20) and (25) with boundary 
conditions (12) is solved numerically using shooting method similar to that described by Nachtsheim-Swigert 
(1965). In equation (22) there are three asymptotic boundary conditions and hence three unknown surface 
conditions ( )0F ′ , ( )0G′  and ( )0θ ′ .  Nachtsheim-Swigert developed an iteration technique to overcome the 
difficulties of determining the guess values of the unknown surface boundary conditions required for the 
shooting method. Within the context of the initial value method and the Nachtsheim-Swigert shooting iteration 
technique the outer boundary conditions may be functionally represented by 

( )max( ) (0), (0), (0) , 1, 2 6,j j jF G jη θ δ′ ′ ′Ψ = Ψ = =       (26) 

where 1 FΨ = , 2 GΨ = , 3 θΨ = , 4 F ′Ψ = , 5 G′Ψ = , 6 θ ′Ψ = . The last three of these represents 
asymptotic convergence criteria. 

Choosing ( ) 10F g′ = , ( ) 20G g′ =  and ( ) 30 gθ ′ =  and expanding in a first-order Taylor’s series after 
using equations (26) yields 

3

max , max
1

( ) ( ) ,j
j j C i j

i i

g
g

η η δ
=

∂Ψ
Ψ = Ψ + ∆ =

∂∑  62,1=j       (27) 

where subscript ‘C’ indicates the value of the function at maxη determined from the trial integration. 
Solution of these equations in a least-square sense requires determining the minimum value of  

6
2

1
j

j
δ

=

∏ =∑                            (28) 

with respect to ig  ( 3,2,1=i ). 

Now differentiating ∏  with respect to ig  we obtain 

∑
=

=
∂

∂6

1

0
j i

j
j g
δ

δ .                (29) 

Substituting equation (27) into (29) after some algebra we obtain 
3

1
, 1, 2, 3,ik k i

k
a g b i

=

∆ = =∑          (30)  

where                              
6 6

,
1 1

. , ; , 1, 2, 3. j j j
ik i j C

j ji k i

a b i k
g g g= =

∂Ψ ∂Ψ ∂Ψ
= = − Ψ =

∂ ∂ ∂∑ ∑                   (31) 

 
Now solving the system of linear equations (30) we obtain the missing (unspecified) values of ig  as 

i i ig g g≅ + ∆ .               (32) 
Thus adopting this numerical technique aforementioned, a computer program was set up for the solutions 

of the governing non-linear ordinary differential equations (18)-(20) and (25) of our problem where the 
integration technique was adopted as a sixth-order Runge-Kutta method of integration. The velocity and 
temperature are determined as a function of the coordinate η  and displayed graphically.  
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Figure 2. Variation of (a) radial velocity, (b) tangential velocity, (c) axial velocity, (d) temperature profile, and 
(e) variable Prandtl number for several values of sw . 
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6.1   Numerical experiment 

In this paper, the effects of Hall current, viscous dissipation and Joule heating on a steady hydromagnetic 
convective slip flow of a viscous, Newtonian, electrically conducting fluid with variable properties over a 
rotating porous disk have been investigated numerically by using Nachtsheim-Swigert shooting iteration 
technique. It can be seen that the solutions are affected by the seven parameters, namely suction (or injection) 
parameter sw , magnetic field parameter (or Hartmann number) Ha , Hall current parameter m , relative 

temperature difference parameter γ , Prandtl number Pr , Eckert number Ec  and slip parameter ε . Since 
experimental data of the physical parameters are not available, in the numerical simulations the choice of the 
values of the parameters was dictated by the values chosen by the previous investigators.  

 
 
For the present investigation we considered our working fluid as flue gas. For flue gases (ambient Prandtl 

number, Pr 0.64∞ = ) the values of the exponents a , b  and d  are taken as 0.7a = , 0.83b =  and 

1.0d = −  (see Jayaraj, 1995). The default values of the other parameters which we considered are 1.0sw = − , 
2 0.5Ha = , 0.5m = , 0.2γ = , Pr 0.625= , 0.2Ec = , and 0.2ε =  unless otherwise specified.  

6.2  Code verification 

To assess the accuracy of the present code, we reproduced the values of (0)F ′ , (0)G′ , ( )H ∞  and 
(0)θ ′ for constant property models of Kelson and Desseaux (2000) (herein and after referred as KD2000) (see 

case-ii in section 3.1) and Arikoglu and Ozkol (2006) (herein and after referred as AO2006) (see case-iv in 
section 3.1). Tables 2-4 show the comparisons of the data produced by the present code and those of KD2000 
and AO2006. In fact the results show a close agreement, and hence justify the use of the present code for the 
current model.  
 
Table 2. Numerical values of (0)F ′ , (0)G′−  and (0)θ ′−  for various values of  sw  with 

2 0Ha m Ec γ= = = =  and Pr 0.71= . 
 

(0)F ′ (0)G′− (0)θ′−  

sw Present KD2000 Present KD2000 Present KD2000 
4 0.24304404 0.243044 0.02892121 0.0289211 0.00001075 0.0000107 
3 0.30914768 0.309147 0.06028945 0.0602893 0.00057793 0.000576 
2 0.39893387 0.398934 0.13595275 0.135952 0.01103604 0.011013 
1 0.48948057 0.489481 0.30217432 0.302173 0.08504687 0.084884 
0 0.51022378 0.510233 0.61592380 0.615922 0.32637889 0.325856 
-1 0.38954065 0.389569 1.17526180 1.175222 0.79393633 0.793048 
-2 0.24241310 0.242421 2.03859590 2.038527 1.43876482 1.437782 
-3 0.16558828 0.165582 3.0122231 3.012142 2.13677058 2.135585 
-4 0.12475268 0.124742 4.00526266 4.005180 2.84369011 2.842381 

 
 
 



CONVECTIVE HYDROMAGNETIC SLIP FLOW   

 67

Table 3. Numerical values of (0)F ′  and (0)G′−  for various values of ε  with 
2 0sw Ha m Ec γ= = = = =  and Pr 0.71= . 

 
 

(0)F ′ (0)G′−  
ε Present AO2006 Present AO2006 

0.0 0.51022378 0.51023261 0.61592380 0.61592201 
0.1 0.42144560 0.42145363 0.60583699 0.60583524 
0.2 0.35257377 0.35258100 0.58367858 0.58367676 
0.5 0.22384294 0.22384820 0.50281179 0.50280970 
1.0 0.12792035 0.12792364 0.39492982 0.39492759 
2.0 0.06100834 0.06101009 0.27337241 0.27337013 
5.0 0.01858796 0.01858852 0.14339025 0.14338820 
10 0.00681240 0.00681255 0.08103175 0.08103008 
20 0.00236161 0.00236159 0.04378973 0.04378846 

Table 4. Numerical values of ( )H− ∞  and (0)θ ′−  for various values of  ε  with 
2 0sw Ha m Ec γ= = = = =  and Pr 0.71= . 

 

( )H− ∞ (0)θ′−  
ε Present AO2006 Present AO2006 

0.0 0.88344324 0.8844741 0.32637889 0.32586063 
0.1 0.88055012 0.8813642 0.33402796 0.33349695 
0.2 0.87334256 0.8739572 0.33732324 0.33678090 
0.5 0.84230103 0.8423926 0.33521597 0.33465287 
1.0 0.79003973 0.7894772 0.32099888 0.32043299 
2.0 0.71185974 0.7103133 0.29357940 0.29299798 
5.0 0.58730981 0.5837646 0.24466400 0.24440461 
10 0.49317208 0.4875846 0.20570012 0.20504924 
20 0.40816322 0.3999758 0.16953552 0.16882963 

6.3  Effect of step size   

To see the effects of the integration step size η∆ , we ran the code for our model with three different step 
sizes namely ,01.0=∆η ,005.0=∆η  and 001.0=∆η . In each case, we found excellent agreement among the 

results. It was also found that 001.0=∆η  provided sufficiently accurate (error less than 610− ) results and 
further refinement of the grid size was therefore not warranted. 

7.   Results and discussion 

For the purpose of discussing the results, the numerical calculations are presented in the form of non-
dimensional velocity (radial, tangential and axial) and temperature profiles. In the calculations the values of the 
parameters namely suction (or injection) parameter sw , magnetic field parameter (or Hartmann number) Ha , 

Hall current parameter m , relative temperature difference parameter γ , Prandtl number Pr , Eckert number 
Ec  and slip parameter ε  are varied.  
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Figure 3. Variation of (a) radial velocity, (b) tangential velocity, (c) axial velocity, (d) temperature profile, and 
(e) variable Prandtl number for several values of Ha . 
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The effects of the suction (or injection) parameter ( sw ) on the radial, tangential and axial velocity profiles 
are shown in Figures 2 (a)-(c) respectively. From Figures 2(a)-(b) we see that radial and tangential velocity 
profiles decrease very rapidly as the suction velocity ( 0sw < ) intensifies. The maximum of the radial velocity 
profiles moves towards the surface of the disk. It is also apparent that the thickness of the boundary layer 
decreases as suction velocity increases. Therefore, suction stabilizes the boundary layer growth. From Figure 
2(c) we found that for strong suction, inward axial velocity is nearly constant. Figure 2(d) depicts the variation of 
the temperature profiles for various values of the suction parameter.  The effect of the suction parameter on the 
thermal boundary layer is found to be similar to those of the radial and tangential velocity boundary layers. 
Applying suction, one can control the flow and heat transfer characteristics. In Figure 2(e) we have plotted 
variable Prandtl number as a function of η  to show the variation of the Prandtl number throughout the boundary 
for several values of the suction parameter. From this Figure we see that within the boundary layer for a fixed 
value of η  variable Prandtl number increases as the suction parameter increases while far away from the surface 

of the disk Pr  equals its ambient value Pr∞ . An opposite effect is found for the case of fluid injection 

( 0sw > ). 

The influence of the magnetic field parameter (Hartmann number) Ha  on F , G , and H−  distributions 
is depicted in Figures 3(a)-(c). An increase in Ha  induces a significant decrease in radial and tangential 
velocity profiles throughout the boundary layer; this is due to fact that imposition of a magnetic field to an 
electrically conducting fluid creates a drag force called the Lorentz force that has a tendency to slow down the 
flow around the disk at the expense of increasing its temperature. From Figure 3(c) it is also apparent that inward 
axial velocity decreases substantially with the increase of the Hartmann number. An increase in Hartmann 
number increases temperature profiles and hence increases the thermal boundary layer as can be seen from 
Figure 3(d). The variation of the Prandtl number within the boundary layer for different values of the Hartmann 
number is depicted in Figure 3(e). This Figure reveals that variable Prandtl number decreases with the increase 
of the Hartmann number. 

In Figures 4(a)-(d), the influence of Hall current parameter ( m ) on F , G , H−  and θ  distributions 
across the boundary layer are given. The parameter m  has remarkable effect on the velocity profiles. It is 
observed that radial as well as inward axial velocity profiles increase as the Hall current parameter increases up 
to a certain value of 1m < . Beyond this value of m  , profiles of F  and H−  decrease with the further 
increase of m . It can be explained as follows: From equation (19) we see that the radial velocity term with Hall 

current is 
2

2 (1 )
1

aHa F
m

γθ −− +
+

. An increase in m ( 1< ) will induce very minor alterations in the expression 

2

1
1 m+

. However in equation (20), the term 
2

2 ( )(1 )
1

aHa mF G
m

γθ −− + +
+

 gives an effective contribution to 

the radial velocity through 
2

2 (1 )
1

aHa mF
m

γθ −− +
+

 indicating that an increase in m ( 1< ) causes a direct 

increase in the radial velocity. But for 1m >  an opposite scenario is observed. Conversely we observe that the 
tangential velocity ( G ) increases with an increase in Hall current parameter. From equation (20) we see that the 

tangential velocity is affected via the term 
2

2 (1 )
1

aHa G
m

γθ −− +
+

, thus a change in m  produces very little 

effect, due to the inverse relationship of m  and the tangential velocity G . This effect will impede the tangential  
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Figure 4. Variation of (a) radial velocity, (b) tangential velocity, (c) axial velocity, (d) temperature profile, and 
(e) variable Prandtl number for several values of m . 
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Figure 5. Variation of (a) radial velocity, (b) tangential velocity, (c) axial velocity, (d) temperature profile, and 
(e) variable Prandtl number for several values of γ . 
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flow. However it will be swamped out by 
2

2 (1 )
1

aHa mG
m

γθ −+
+

, the much greater direct proportionality 

in the factor affecting the tangential velocity in given equation (19). This positive term accelerates the flow for 
increase in m , explaining the rise in tangential velocity with increase in m . The mechanism by which Hall 
currents influence hydromagnetic disk flow is therefore via secondary effects and coupling in the momentum 
equations. Figure 4 (d) reveals that the thickness of the thermal boundary layer decreases as m  increases. The 
variation of the variable Prandtl number for different values of m  within the boundary layer is shown in Figure 
4(e). It is clearly observed that an increase in m  increases Pr  within the boundary layer. For very large values 

of m , increasing the effect of m  on Pr is less pronounced due to the fact that  2

1
1 m+

 approaches to its 

limiting value 0 when m →∞ , and  as a consequence resistive effect of the magnetic field on the flow and 
temperature field is diminished. 

Figures 5(a)-(d) explain the variation of the nondimensional radial, tangential, axial velocity and 
temperature profiles for various values of the relative temperature difference parameter γ .  From Figure 5(a), 
we see that due to the existence of the centrifugal force the radial velocity increases and attains its maximum 
value for all values of γ . It is also observed that the maximum values of the radial velocity are 0.07276499, 
0.08221263, 0.09128975 and 0.09893225 for 0γ = , 0.2, 0.5 and 1.0,  respectively, and occur at 0.390η = , 
0.494, 0.643 and 0.871, respectively.  It is seen that the maximum velocity increases by 36% when γ  increases 
from 0 to 1.0. The case 0γ =  corresponds to constant property of the working fluid. It is also seen that the 
smallest maximum value of the radial velocity is found for the case of constant property ( 0γ = ), which 
contradicts directly the findings of Maleque and Sattar (2005b). From Figure 5(b), it is found that the tangential 
velocity increases with the increasing values of γ . It can be seen from Figure 5(c) that inward axial velocity 
decreases with the increase of γ . It is also observed that close to the surface of the disk the effect of γ gives rise 
to the familiar inflection point profile, which indicates that fluid with variable property on a highly heated 
surface, may lead to the destabilization of the laminar flow resulting in the development of the viscous sub-layer. 
Figure 5(d) depicts that temperature profile increases significantly with the increase of γ . Quantitatively, at 

8.0η =  the value of θ  increases by 6026.8% when the value of γ  increases from 0 to 1.0. Thus the thickness 
of the thermal boundary layer increases markedly with the increase of γ  which is a direct contradiction to the 
findings of Maleque and Sattar (2005b), and Osalusi and Sibanda (2006). Studying a limited set of parameter 
values such as 0γ = , 0.5 (Maleque and Sattar, 2005b) and 0γ = , 0.01 (Osalusi and Sibanda, 2006) and 
considering Prandtl number as constant within the boundary layer, they concluded that an increase in γ  does not 
change the thickness of the thermal boundary layer. Figure 5(e) shows that variable Prandtl number Pr  
decreases very rapidly within the boundary layer for the increase of γ . For 0γ =  variable Prandtl number Pr  

equals  the ambient Prandtl number Pr∞ .  For a fixed value of γ  ( 0)> , Pr increases as η  increases and for 

η →∞ ,  i.e. outside the boundary layer, it converges to its ambient value Pr∞ . From this figure it is also clear 

that at the surface of the disk (at 0η = ), 0γ = , 0.2, 0.5, and 1 corresponds to Pr 0.64= , 0.625, 0.607, 0.585 
when other parameter values are fixed. Thus the effects of Pr on the velocity and temperature functions give the 
reverse effect of  γ  on them. 
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Figure 6. Variation of (a) radial velocity, (b) tangential velocity, (c) axial velocity, (d) temperature profile, and 
(e) variable Prandtl number for several values of ε . 
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Figure 7. Variation of (a) radial velocity, (b) tangential velocity, (c) axial velocity, (d) temperature profile, and 
(e) variable Prandtl number for several values of ε . 
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In Figures 6(a)-(d) we displayed velocity and temperature profiles for various values of the slip factor (ε ). 
Here 0ε =  represents no-slip condition at the surface of the disk. From Figure 6(a) we see that the radial 
boundary layer decreases very rapidly with the increase of the slip factor. The thickness of the radial boundary 
layer is higher for no-slip flow compared to the slip flow. Fig. 6(a) further indicates that for large values of ε  
i.e. ε →∞ , the rotating disk does not cause rotation of the fluid particles.  Because in this range of ε  the flow 
becomes entirely potential, there will be no motion in the fluid. This can be further explained as follows: the 
centrifugal force acting on the rotating disk (as like a centrifugal fan) will throw out the fluid that sticks to it. On 
the other hand, the flow in the axial direction will come forward to compensate for this thrown fluid. But 
increasing the slip on the surface of the disk reduces the amount of fluid that can stick on it; as a consequence the 
efficiency of the rotating disk is reduced substantially and is unable to transfer its circumferential momentum to 
the fluid particles. A reduction in the circumferential velocity results in a reduction in the centrifugal force which 
in turn decreases the inward axial velocity substantially as can be seen from Figure 6(c). From Figure 6(d) we 
see that the thermal boundary layer increases as slip factor ε  increases. Figure 6(e) shows a decreasing effect of 
ε  on the variable Prandtl number throughout the boundary layer. 

In Table 5 we present skin-friction in radial and tangential directions and rate of heat transfer for various 
values of the pertinent parameters for a fixed value of Pr .  It can be seen that skin-friction in the radial direction 
decreases while skin-friction in the tangential direction increases with the increase of the suction parameter 

( 0)sw < . On the other hand, the rate of heat transfer increases with the increase of the suction parameter. An 

opposite effect is observed for the case of injection ( 0)sw > .   
Table 5 also shows that skin-friction in the radial direction increases for all increasing values of the 

Hartmann number except in the range of 0 0.707Ha≤ <  (not precisely determined). In this range of Ha , 
radial skin-friction decreases as  Ha  increases. Tangential skin-friction increases while the rate of heat transfer 
decreases for all increasing values of the Hartmann number. 

The effects of the Hall current parameter on the radial and tangential skin-frictions and the rate of heat 
transfer can be seen from Table 5. Skin-friction in the radial direction increases within the range of 0 1m≤ ≤ . 
Outside of this range of m an opposite behavior is observed. Tangential skin-friction decreases when m  
increases within the range of 0 1m≤ ≤ , and outside this range of  m  tangential skin-friction increases with 
the further increase of m .  The rate of heat transfer increases with the increase of m  for some cm m< . But 

for the existence of strong Hall current i.e. cm m>  the rate of heat transfer decreases with the further increase 
of m . 

The effect of increasing Eckert number Ec  has a decreasing effect on the radial skin-friction and on the 
rate of heat transfer whereas it has a very minor increasing effect on the tangential skin-friction as can be seen 
from Table 5. 

 
The variation of the radial and tangential skin-frictions and the rate of heat transfer for some selected 

values of the slip factor ε  are shown in Table 5. From here we see that skin-friction in both directions decreases 
with the increase of the slip factor. The largest skin-friction is found for the case of no-slip at the surface. On the 
other hand the rate of heat transfer increases with the increase of slip factor within the range of 0 1ε≤ ≤ . But 
outside of this range of ε , the rate of heat transfer decreases with the further increase of the slip factor. Thus the 
rate of heat transfer can be strongly controlled by controlling the slip on the disk.  
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Table 5. Numerical values of (0)F ′ , (0)G′−  and (0)θ ′−  for various values of  sw , 2Ha , m , Ec ,  and ε  

with  0.2γ = , Pr 0.625= , 0.7a = , 0.83b = , 1.0d = − . 
 

sw 2Ha m Ec ε (0)F ′ (0)G′− (0)θ ′− 

0.5 0.5 0.5 0.2 0.2 0.30626574 0.57918115 0.05772346 
0.0 0.5 0.5 0.2 0.2 0.28341282 0.69042730 0.16076663 
-0.5 0.5 0.5 0.2 0.2 0.24952322 0.81807709 0.30083407 
-1.0 0.5 0.5 0.2 0.2 0.20853272 0.96222468 0.47057060 
-2.0 0.5 0.5 0.2 0.2 0.12995186 1.28487051 0.86659713 
-1.0 0.0 0.5 0.2 0.2 0.21477746 0.78866948 0.49905518 
-1.0 0.5 0.5 0.2 0.2 0.20853272 0.96222468 0.47057060 
-1.0 0.8 0.5 0.2 0.2 0.20907598 1.04165765 0.45885733 
-1.0 1.0 0.5 0.2 0.2 0.21011307 1.08825472 0.45234655 
-1.0 0.5 0.0 0.2 0.2 0.13956413 0.95761163 0.43868718 
-1.0 0.5 0.5 0.2 0.2 0.20853272 0.96222468 0.47057060 
-1.0 0.5 1.0 0.2 0.2 0.24406352 0.93179389 0.49107437 
-1.0 0.5 10 0.2 0.2 0.23051412 0.80677029 0.50468008 
-1.0 0.5 50 0.2 0.2 0.21822032 0.79212583 0.50044457 
-1.0 0.5 0.5 0.0 0.2 0.20858805 0.96208379 0.53127404 
-1.0 0.5 0.5 0.2 0.2 0.20853272 0.96222468 0.47057060 
-1.0 0.5 0.5 0.4 0.2 0.20847731 0.96236597 0.40974692 
-1.0 0.5 0.5 0.8 0.2 0.20836700 0.96264871 0.28795509 
-1.0 0.5 0.5 1.0 0.2 0.20831208 0.96279014 0.22698731 
-1.0 0.5 0.5 0.2 0.0 0.36777423 1.17657272 0.43706560 
-1.0 0.5 0.5 0.2 0.2 0.20853272 0.96222468 0.47057060 
-1.0 0.5 0.5 0.2 1.0 0.05117315 0.53881089 0.48991829 
-1.0 0.5 0.5 0.2 4.0 0.00578668 0.20435375 0.47419596 
-1.0 0.5 0.5 0.2 8.0 0.00158190 0.11227042 0.46583227 

 
 
Finally, the significance of the relative temperature difference (γ ) on the rate of heat transfer for both 

variable Prandtl number ( PrV ) and constant Prandtl number ( PrC ) is tabulated in Table 6. From this table we 
see that in both cases the rate of heat transfer from the surface of the disk to the fluid decreases for all increasing 
values of γ . We also see that rate of heat transfer for the variable property case is lower than the constant 
property case and the relative error between them increases significantly with the increase of γ . Therefore, 
consideration of Prandtl number as constant within the boundary layer for variable property is unrealistic. It is 
also mentionable that for our studied parameter values the relationship between the relative temperature 
difference parameter and the variable Prandtl number is an inverse relationship. So, the effect of Pr  on the 
radial and tangential skin-frictions and on the rate of heat transfer is just the reverse of the effect of  γ  on them. 
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Table 6. Numerical values of (0)θ ′−  for various values of γ  for 1.0sw = − , 2 0.5Ha = , 0.5m = , 

0.2Ec = , and 0.2ε =  with  0.7a = , 0.83b = , 1.0d = − . 

 
(0)θ ′−  

γ 
PrV  PrC  

Pr PrError = 100
Pr

V C
V
−

× 

0.0 0.64904702 0.64904702 0.0% 

0.2 0.47057060 0.47627008 1.2% 

0.5 0.31906666 0.32769165 2.7% 

1.0 0.19338897 0.20237407 4.6% 

3.0 0.05065792 0.05674936 12.0% 

5.0 0.01661496 0.02066049 24.3% 

8.   Conclusions 

In this study we experiment numerically on the effects of Hall current, viscous dissipation and Joule 
heating on hydromagnetic slip flow over a porous rotating disk taking into account the variable properties of the 
fluid. We illustrate the flow and heat transfer characteristics in terms of non-dimensional velocity and 
temperature profiles and tabulate skin-friction and rate of heat transfer, and show how the flow fields are 
influenced by the material parameters entering into the problem. As a result of computations the following 
conclusions can be drawn: 

 
 

1. Suction stabilizes the boundary layer’s growth. 
2. Slip factor significantly controls the flow and heat transfer characteristics. 
3.  Increasing slip factor forces  decrease of the Prandtl number within the boundary layer. 
4. Hall parameter markedly controls the radial and axial flows. For strong Hall current (large 1)m >  flow 

along these directions decreases.  
5. Hall current strongly controls the rate of heat transfer from the disk to the fluid. Very strong Hall 

current may reduce the heat transfer rate. 
6. Hall current increases variable Prandtl number within the boundary layer. 
7. The resistive effect of an applied magnetic field (Lorentz force) on the velocity and temperature profiles  

is apparent. 
8. Increasing viscous dissipation parameter (or Eckert number) decreases the rate of heat transfer from the 

disk to the fluid. 
9. The rate of heat transfer in a fluid of constant property is higher than   in a fluid of variable property.  
10. The thickness of the thermal boundary layer is lower for a fluid of constant property than  for a  

corresponding fluid of variable property.  
11. For modeling thermal boundary layers with temperature dependent viscosity, Prandtl number must be 

treated as variable inside the boundary layer. 
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