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  مع تطبيق X-المحمولة بعناصر المجموعة الوقوع للبيانات مصفوفات 

 جاسم . وضاح س

بعض التحسينات على تعريف مصفوفات الوقوع للبيانات الموجهة من أجل أن تكون أكثر ب  قمنافي بحثنا هذا :خلاصة
 .  نكولص–ه التحسينات استطعنا وصف برنامج لخوارزمية بهذ . X –مة للبيانات المحمولة بعناصر المجموعة ءملا

 
ABSTRACT: In this work, we have made some modifications to the definition of the incidence 
matrices of a directed graph, to make the incidence matrices more suitable for X – Labeled 
graphs.  The new incidence matrices are called the incidence matrices of  X – Labeled graphs, 
and  we have used the new definition to give a computer program for Nickolas` Algorithm . 
 
KEYWORDS: Incidence matrix, Directed graph, X -labeled graph, Spanning tree, Cyclomatic 
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 1.   Introduction 

n Abdu (1999), Nickolas described an algorithm to change two core graphs of one type of branch points to 
core graphs with two or more types of branch points. Since incidence matrices of directed graphs do not deal 

with labeled graphs, from this point we worked to make the incidence matrices to be more suitable for X  – 
Labeled graphs. This work is divided into three sections. In section 1, we give basic concepts about free groups 
and graphs. In section 2, we give the definition of the incidence matrices of X – Labeled graphs, and some 
definitions and results on incidence matrices of X – Labeled graphs. In section 3, we apply the concept of 
incidence matrices of  X  – Labeled graphs to give a computer program for Nickolas` Algorithm. 

1.1   Basic concepts: 

 Let F  be a group and X  be a subset of F . Then we say that F  is a free group on X , if for any 
group G and any mapping : ,f X G→ there is a unique homomorphism : F Gψ → , such that 

)()( xfx =ψ for all x X∈ . Two free groups F and K  are called isomorphic if and only if F and K  have 
the same rank.   

I 
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If a graph Γ  is a collection of two sets,  ( ) ( )( )is not empty setV VΓ Γ  and ( )E Γ , called the set of 

vertices and edges respectively of the graph Γ ,together with two functions : ( ) ( ), : ( ) ( )i E V t E VΓ → Γ Γ → Γ , 

we say that the edge e  joins the vertex ( )i e to the vertex ( )t e . The vertex ( )i e  is called the initial vertex of 

e  and ( )t e  is called the terminal vertex of e . Moreover for each e  in ( )E Γ  there is an element ee ≠  in 

( )E Γ , which  is called the inverse of e , such that )()(),()( eietetei ==  and ee = . A subgraph Ω  of a 

graph Γ is a graph with ( ) ( )V VΩ ⊆ Γ and ( ) ( )E EΩ ⊆ Γ  such that, if )(Ω∈ Ee , then )(eiΩ ,  )(etΩ  and 
e  have the same meaning in Γ  as they do in Ω .  If Ω ≠ Γ ,  then we call Ω  a proper subgraph. A component 
of a connected graph Γ is a maximal connected subgraph of Γ . The number of edges incident with the vertex v  
is called the degree of the vertex v and denoted by ( )d v . The vertex v  is called a branch point if  3)( ≥vd .  

Now let F be a group and X  be a subset of F .  Then the graph ( , )F XΓ  is called the Cayley graph of 
the group F with respect to X , if ( , )F XΓ  has vertex set F and set of edges 

( ){ }, : , ,F X w x w F x X× = ∈ ∈ such that the initial vertex of  the edge ( ),w x is ( ), ,i w x w=  the 

terminal vertex of the edge ( ),w x  is ( ),t w x wx=  and x  is the labeled of the edge ( ),w x . The inverse 

edge of ( ),w x  is ),( 1−xwx . The quotient graph or Cayley coset  graph ( , ) /F X HΓ for a subgroup H of F 

has set of vertices { : , }Hw w F H F∈ ≤ and set of edges {( , ) : , }Hw x w F x X∈ ∈ such that an edge 
( , ) ( , ) /Hw x F X H∈Γ  takes the vertex Hw  to Hwx . It is also denoted by ( )HΓ . The Core of a coset 

graph )(HΓ  is the smallest subgraph containing all cycles. It is denoted by ( )H∗Γ  . For example, if F is a 
free group on generators a  and  b ,  then 

  
                              ( )F∗Γ :    a                              b 

 

The number of cycles in ∗Γ ( )H is called the cyclomatic number and the cyclomatic number of ∗Γ ( )H  
is the minimal number of edges that we can delete to make a tree. The rank of the finitely generated subgroup 
H of a free group on X  is the cyclomatic number of  ∗Γ ( )H  and denoted by  ( )r H .   

Definition 1.1  A consistent graph is a directed X – Labeled graph Γ on { , }X a b= , such that no reduced path 

in Γ  with labeled 1−aa  , aa 1− , 1−bb   or  bb 1−  ever occurs in consistent graphs. Therefore ( , )F XΓ , 

( )HΓ  and  ( )H∗Γ  are consistent graphs. 

Now if ( )H∗Γ  has vertices of degree 2, 3, 4, then as in [5] we can reduce the degree of the vertices into 

vertices of degree 2 and 3 only, by isomorphic embedding of F into a free group K on { },u v , via the map 

: F Kθ →  with 21 )(,)( vbuva == − θθ  and taking the graph into a new set of labels },{ vu . 
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Proposition 1.2:  If  ( )H∗Γ  has vertices of degree 2, 3 only, then 
# ( ( ))

( ) 1
2

Br H
r H

∗Γ
= + , where 

# ( ( ))Br H∗Γ  is the number of branch points in ( )H∗Γ . 

Proof: ( ) 2 # ( ( ))d v E H∗= Γ∑ .  

( ( ) 2) 2(# ( ( )) # ( ( )))d v E H V H∗ ∗− = Γ − Γ∑ , and the number of edges in the spanning tree of ( )H∗Γ  = 

# ( ( )) 1V H∗Γ − . Therefore we have the following : ( ( ) 2)d v −∑  = (the number of edges in )(H∗Γ  - the 

number of edges in the spanning tree of ( )H∗Γ - 1). Since ( )r H =  the number of edges in )(H∗Γ  - the 

number of edges in the spanning tree of ( )H∗Γ , so ∑ − )2)(( vd  =  )1)((2 −Hr  )1( , and also 

2)( −vd ) = 
int

0
1 pobranchaisv

otherwise
if

⎩
⎨
⎧

. 

Thus  

∑ =− )2)(( vd ))((# HBr ∗Γ . Therefore 1
2

))((#)( +
Γ

=
∗ HBrHr . 

Definition 1.3: For any two branch points u  and v  in )(H∗Γ ,  we say that u  and v  are neighboring branch 
points if they are connected by a (reduced) path which does not contain any branch point. 
Definition 1.4: The product of core graphs )(* HΓ  and )(* KΓ  is the graph )(~)( ** KH Γ×Γ  with set of 

vertices ))}(()),((:),{())(())(( **** KVvHVuvuKVHV Γ∈Γ∈=Γ×Γ  

and edges })),((),()),((),(:)),,{(( ** XyKEyvHEyuyvu ∈Γ∈Γ∈ .  

If ∗Γ (H), )(K∗Γ and )(* KH ∩Γ are the core graphs of the finitely generated subgroups ,H k  and 

KH ∩ respectively of a free group F on },{ baX =  and )(~)( ** KH Γ×Γ  is the product of core graphs 

)(* HΓ  and )(* KΓ defined above, then )(* KH ∩Γ  may identified with a core of a connected component 

of )(~)( ** KH Γ×Γ  and )(* HΓ  has only four types of branch points as follows: 

 
                              b – sources                      b – sinks                 a – sources               a - sinks   

2.  Incidence matrices of  X  –Labeled graphs 

 In this section we will give the definition of incidence matrices of X – Labeled graphs and some 
definitions and results related to it. As we know there are two types of matrices to describe graphs, which are 
called adjacency (or vertex incidence) matrices and incidence matrices. Recall that the incidence matrices of 
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directed graphs  Γ are without loops and with n  vertices and m  edges ( i.e. it is mn×  matrices ][ ijx , where 

mjni ≤≤≤≤ 1,1 ) such that : 

⎪
⎩

⎪
⎨

⎧

=−

=
=

)(1
0

)(1

ji

ji

ji

ij

evif
ewithincedencenotisvif

eivif
x

τ
 

All edges e  in X – Labeled graphs ( )),(~)(),,(),(),( …KHXFHH ∗∗∗ Γ×ΓΓΓΓ are labeled 
1−∪∈ XXx  and the incidence matrices of directed graphs do not deal with the labels of edges, so we will put 

more conditions on the incidence matrices of directed graphs as  below. 
Definition 2.1:  Let Γ be any X – Labeled graph without loops ( where },{ baX = ) , then the incidence 

matrix of  the X – Labeled graph  Γ  is an mn×  incidence matrix  ][ ijx , where mjni ≤≤≤≤ 1,1 ) with 

ijx   entries such that   

Xxlabelese
ewithincident

Xxlablese

ande
notisv
andei

v
if
v

if

if

x

x
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j

j

j
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=

=
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⎩

⎪
⎨

⎧
=

− )(

)(
0

1 τ
 

N.B.  Incidence matrices of  X – Labeled graphs Γwill be denoted by )(ΓXM .  
Now if },{ baX =  and the X –Labeled graph Γ has loops with labeling a  or b , then choose a mid 

point on all edges labeled a  or b to make all of them two edges labeled aa  or bb  respectively. Therefore in 
the rest of this work we will assume that all X – Labeled graphs Γ are without loops.  
Definition 2.2:  Let )(ΓXM  be an incidence matrices of X – Labeled graphsΓ .  If )(ΓXM  does not contain  

any row ir  with non zero entries ijx and ikx  in 1−∪ XX  such that  ikij xx = , then )(ΓXM  is called  a 

consistent incidence matrix of X – Labeled graphs Γ .  
Now let  )(ΓXM be an mn×  incidence matrix  ][ ijx   of X – Labeled graphs Γ and let  ir  and jc  be  a 

row and a column in )(ΓXM  respectively. If ijx  is a non – zero entry in the row ir , then ir  is called  an 

incidence row with  the column jc  at the non – zero entry ijx 1−∪∈ XX  and if Xxij ∈  , then the row ir  is 

called the starting row ( denoted by ))( jcs of the column jc and the row ir  is called the ending row ( denoted 

by )( jce  )  of the column jc  if 1−∈ Xxij . If the rows ir  and kr  are incident with column jc  at the non – 

zero entries ijx  and kjx  respectively, then we say that the rows ir  and kr  are adjacent. If jc  and hc are two 

distinct columns in )(ΓXM  such that the row ir  is incident with the columns jc  and hc   at the non – zero 

entries ijx  and ihx respectively (where 1, −∪∈ XXxx hij ), then we say that jc  and hc  are adjacent columns. 

For each column c there is an inverse column denoted by c  such that )()(),()( cscececs == and cc = . 

The degree of a row ir  of )(ΓXM  is the number of the columns incident on ir and is denoted by )deg( ir . If 
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the row ir  is incident with at least three distinct columns jc , hc  and kc  at the non – zero entries, then the row 

ir  is called a branch row. If the row ir  is incident with only one column jc  at the non zero entry 

ijx 1−∪∈ XX  and all other entries of ir  are zero, then the row ir  is called isolated row.  A scale in )(ΓXM  

is a finite sequence of form kkk rcrcrcrS k ,,,,,,, 121
112211
−∈
−−

∈∈= … , where ,1≥k ,∓∈=  jj rcs j =∈ )(  and 

kjcsrce jjj
j ≤≤== ++

∈ 1),()( 11 . The starting row of a scale kkk rcrcrcrS k ,,,,,,, 121
112211
−∈
−−

∈∈= …  is the 

starting row 1r of the column 1c  and the ending row of the scale S is the ending row kr of the column 1−kc   and 

we say that S is a scale from 1r  to kr  and  S  is a scale of length k  for   21 −≤≤ kj . If )()( SeSs = , 

then the scale is called closed scale.  If the scale S is reduced and closed, then S is called a circuit or a cycle. If  
)(ΓXM  has no cycle, then  )(ΓXM  is called a forest incidence matrix of  X – Labeled graph Γ . Two rows  

ir  and kr in )(ΓXM  are called connected if there is a scale S  in )(ΓXM  containing ir  and kr . Moreover, 

)(ΓXM  is called connected if any two rows ir  and kr  in )(ΓXM are connected by a scale S . If )(ΓXM  is 

connected and forest, then )(ΓXM is called a tree incidence matrix of X – Labeled graph Γ . Let Ω  be a 

subgraph of Γ , then )(ΩXM is called a subincidence matrix of )(ΓXM , if the set of rows and columns of  

)(ΩXM   are subsets of )(ΓXM  and if c  is a column in )(∆XM . Then )(),( cecs  and c have the same 

meaning in )(ΓXM  as they do in )(ΩXM . If  )()( Γ≠Ω XX MM , then )(ΩXM   is called a proper 

subincidence matrix of )(ΓXM . A component of )(ΓXM is a maximal connected subincidence matrix of 

)(ΓXM . If )(ΩXM is a subincidence matrix of )(ΓXM , and every two rows ir  and kr in )(ΓXM  are 

joined by at least one scale S  in )(ΩXM , then )(ΩXM is called a spanning incidence matrix  of )(ΓXM , 

and )(ΩXM   is called a spanning tree of )(ΓXM  if )(ΩXM is a spanning and tree incidence matrix. The 

inverse of  )(ΓXM is an incidence matrix of 1−X  - labeled graph Γ .  
Now by direct calculations and the definition above, we can prove the following results. 

Lemma 2.3: If )(ΓXM is a tree incidence matrix of X – Labeled graph Γwith n  rows, then  )(ΓXM  has 
n  – 1 columns.  
Lemma 2.4: If )(ΓXM  is an incidence matrix of X – Labeled graph Γwith n  rows and m  columns, then 

mr
n

i
i 2)deg(

1

=∑
=

, where  ni ≤≤1 .  

Corollary 2.5: If )(ΓXM is a finite incidence matrix of X – Labeled graph Γ , then )(ΓXM has even 
number of rows of odd degree.  
Lemma 2.6:  The cyclomatic number ))(( ΓXMC  of a finite incidence matrix  of  X – Labeled graph Γ is 
equal to r k+#c-#  , where c# , r#  and k  are the number  of columns, the number of rows and the 

number of components of )(ΓXM  respectively.  

Corollary 2.7: If )(ΓXM  is a connected incidence matrix of X – Labeled graph Γ  with r  rows and c  

columns, then 1##))(( +−=Γ rcMC X .  
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3.  An application of incidence matrices of X – Labeled graphs  

In this section we will represent the core graphs )(H∗Γ  of finitely generated subgroups H of a free 

group F generated by },{ baX =  in the form of incidence matrices of core graphs ))(( HM X
∗Γ and then 

we will describe Nickolas` Algorithm (Nickolas, 1985) in the form of incidence matrices of X – Labeled 
graphs, but before that we give some results and definitions that will be used in the rest of the paper. 

Since the core graphs )(H∗Γ of finitely generated subgroups H of a free group F generated by 
},{ baX = are X – Labeled graphs, they may be represented by incidence matrices of X – Labeled graphs Γ  

which are denoted by ))(( HM X
∗Γ . 

Lemma 3.1: Let ))(( HM X
∗Γ be an incidence matrix of a core graph )(H∗Γ of a finitely generated subgroup 

H of a free group F generated by },{ baX =  with n rows of degree two and three only and m  columns , 

then 1
2

)))(((#)))((( +
Γ

=Γ
∗

∗ HMBrHMC X
X , where )))(((# HMBr X

∗Γ is the number of branch 

rows of ))(( HM X
∗Γ . 

Proof: Since ∑
=

=
n

i
i mr

1
2)deg( , so ∑ −=− )(2)2)(deg( nmri .  

But ∑ ∗Γ=− )))(((#)2)(deg( HMBrr Xi  and nmHMC X −=−Γ∗ 1)))((( .  

Therefore 1
2

)))(((#)))((( +
Γ

=Γ
∗

∗ HMBrHMC X
X .  

Corollary 3.2: Let ))(( HM X
∗Γ be an incidence matrix of a core graph )(H∗Γ of a finitely generated 

subgroup H of a free group F generated by },{ baX =  with n  rows of degree two and three only, then 

( )r H =  1
2

)))(((#
+

Γ∗ HMBr X .  

Definition 3.3: Let ))(( HM X
∗Γ and ))(( KM X

∗Γ be the incidence matrices of core graphs )(H∗Γ  

and )(K∗Γ  respectively, of a finitely generated subgroup H of a free group F generated by },{ baX = . The 

product of ))(( HM X
∗Γ and ))(( KM X

∗Γ is the incidence matrix  ))((~))(( KMHM XX
∗∗ Γ×Γ of X – 

Labeled graph of the product of )(H∗Γ  and )(K∗Γ  with set of rows vuv :),{(  and u are rows in 

))(( HM X
∗Γ and ))(( KM X

∗Γ respectively } and set of columns :),{( ji cc  ic  and jc  are columns in 

))(( HM X
∗Γ and ))(( KM X

∗Γ ,respectively} , and they have the same non – zero entries 1−∪∈ XXx .  

Lemma 3.4: Let ))(( HM X
∗Γ and ))(( KM X

∗Γ be the incidence matrices of core graphs )(H∗Γ  

and )(K∗Γ  respectively, of a finitely generated subgroup H of a free group F generated by },{ baX = . Then 
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the incidence matrices of the product )(~)( KH ∗∗ Γ×Γ (denoted by ))(~)(( KHM X
∗∗ Γ×Γ ) is the same as 

the product ))((~))(( KMHM XX
∗∗ Γ×Γ .  

Proof: By the definition of the product of core graphs and definition 3.3 the result follows.  
Lemma 3.5: Let ))(( HM X

∗Γ be defined as above and have 2n branch rows. If all branch rows of 

))(( HM X
∗Γ  are of one type b – sources, say , then there are at least n rows with only two non – zero entries 

axbx ikij == − ,1  and all other entries are zero.  

Proof: Since all possibilities of scales joining two neighboring branch rows are 654321 ,,,,, SSSSSS  such 

that 
122111 +

=
kkk ijijiji rcrcrcrS ; where 

1i
r  is the starting row of the column 

1j
c  at the non – zero entry 

bx ji =
11

 and 
1+ki

r  is the ending row of the columns 
kj

c  at the non – zero entry 1
11

−=
++

ax
kk ji , 

122112 +
=

mmm ijijiji rcrcrcrS ; where 
1i

r  is the starting row of the column 
1j

c  at the non – zero entry 

bx ji =
11

 and 
1+mi

r is the ending row of the column 
mj

c at the non–zero entry ax
mm ji =

+1
, 

122113 +
=

ttt ijijiji rcrcrcrS ; where 
1i

r  is the starting row of the column 
1j

c  at the non – zero entry bx ji =
11

 

and 
1+ti

r  is the ending row of the columns 
kj

c  at the non–zero entry bx
tt ji =

+1
;  

12114 +
=

ggg ijiiji rcrrcrS ; 

where 
1i

r  is the starting row of the column 
1j

c  at the non – zero entry ax ji =
11

 and 
1+gi

r  is the ending row of 

the columns 
gj

c  at the non–zero entry 1
1

−=
+

ax
gg ji , 

12115 +
=

hhh ijiiji rcrrcrS ; where 
1i

r  is the starting row 

of the column 
1j

c  at the non–zero entry ax ji =
11

 and 
1+ti

r  is the ending row of the columns 
kj

c  at the non- 

zero entry ax
tt ji =

+1
,  and 

12116 +
=

ddd ijiiji rcrrcrS ; where 
1i

r  is the starting row of the column 
1j

c  at the 

non – zero entry 1
11

−= ax ji  and 
1+ti

r is the ending row of the columns 
kj

c  at the non–zero entry 1
1

−=
+

ax
tt ji .   

Since ))(( HM X
∗Γ  is a consistent incidence matrix of X – Labeled graph Γ , so  the scales 

54321 ,,,, SSSSS   and 6S  must contain rows 
fir with a non – zero entries 1−= bx

vf ji , and ax
uf ji =  or 

1−= ax
uf ji  only and all other entries are zero. Also ))(( HM X

∗Γ  has 2n branch rows and all of them are of 

one type b – source row, so suppose that ))(( HM X
∗Γ  has 1s  scales of type 1S , 2s  scales of type 2S , 3s  

scales of type 3S , 4s  scales of type 4S , 5s  scales of type 5S  and 6s  scales of type 6S . Therefore we have 

nssssss 3654321 =+++++  )1( . Since each branch row ir  of ))(( HM X
∗Γ  has exactly one non – 

zero entry axij = , and the scale of type 2S  ending with the row 
mi

r   at the non - zero  entries ax
mm ji = , 

scales of types 4S  starting with the row 
1i

r  at the non – zero entry ax ji =
11

 and scales of types 5S  starting 

and ending with the rows 
1i

r  and 
hi

r  at the non – zero entries ax ji =
11

 and ax
hji =

1
 respectively. Therefore 

))(( HM X
∗Γ  has 2 4 5 2 2)2 (s s s n+ + = . Hence from (2) we have 2 4 5 32 ( )s s s n+ + < . From (3) 

and (1) we have nsss >++ 631  , since each of the scales 31, SS  and 6S  has at least one row with non – 

zero entries 1−= bxij  and axiz = , and all other entries are zero.   
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Nickolas [5] gave an algorithm to change core graphs )(H∗Γ and )(K∗Γ  of two finitely generated 
subgroups H  and K  of a free group F generated by },{ baX = , which have only one type of branch points ,  
b – sources,say,  into new core graphs with two or more types of branch points. Therefore we will represent 
Nickolas` algorithm in the form of incidence matrices of X –Labeled graphs in order to give a computer 
program to change the type of branch points of core graphs with only one type of branch points into two or more 
types of branch points.  

Now let ))(( HM X
∗Γ and ))(( KM X

∗Γ be incidence matrices of X –Labeled core graphs 

)(H∗Γ and )(K∗Γ  respectively, such that ))(( HM X
∗Γ  and ))(( KM X

∗Γ  have branch rows of one type,  

b – sources, say, then we will use the representation of  Nickolas` algorithm to change ))(( HM X
∗Γ  and 

))(( KM X
∗Γ  into two incidence matrices of X –Labeled core graphs ))(( HM kX

∗Γ and ))(( KM kX
∗Γ with 

two types or more of branch rows, after k – times . The steps are given below:  
0) Delete all zero columns and zero rows if they appear;  

)0∗ If the branch rows are not of one type, then stop. Otherwise, change the non – zero entries to make all 
branch rows of type b – sources by reversing the labeling of the columns and then proceed to step 1;   
1 ) If  ir  is the ending and the starting row of the columns jc  and kc  at 1−= bxij  and bxik =  respectively 

and all other entries of ir  are zero, and tr  is the ending row of the column kc , then add tr  and ir  to a new row 

tr ′ , and if there is no such a row ir , then proceed to step II;  

II ) If  gi rr ,  and tr  are rows such that ir  is the ending and the starting row of the columns jc  and kc  at 
1−= bxij  and axik =  respectively, and gr  is the ending row of the columns kc  and hc  at 1−= axgk  and 

1−= bxgh  respectively and all other entries of ir  and gr  are zero, and also tr  is the starting row of the column 

hc  at bxth = , then add it rr ,  and gr  to have a new row tr ′ , and if there is no such rows, then proceed to step 
III;  

III ) If  ir   is the ending and the starting row of the columns jc  and kc  at 1−= bxij  and axik =  respectively 

and all other entries of ir  are zero, and tr  is the ending row of the column kc  at 1−= axtk , then add tr  and ir  

to have a new row tr ′ , and if there is no such a row then return to step 0 above.  

Note: In the program of the above Algorithm we will consider 1−a  and 1−b  as a−  and b−  respectively and 
then will represent a  and b  by  1 and 2  respectively.  The representation of  Nickolas` Algorithm in the form 
of incidence matrices of X –Labeled graphs is well defined,  which means the representation of  Nickolas` 
Algorithm satisfying the following conditions:  
1) At each step of the representation of  Nickolas` Algorithm, we get consistent incidence matrices of  X –
Labeled graphs because step I is applied to non – branch rows ir  and tr  to give a non – branch row tr ′ with non 

– zero entries 1−
′ = bx jt  and ax ht =′  or 1−

′ = ax ht , so step I always gives  consistent incidence matrices of  

X –Labeled graphs . Also step II is applied on non – branch rows of ))(( HM X
∗Γ  which do not contain non 

– branch rows ir  with non – zero entries 1−= bxij  and bxih =  so step II always gives, either  non – branch  
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rows tr ′  with non – zero entries 1−
′ = ax jt  and 1−

′ = bx ht  or a branch row with non – zero entries 1−
′ = bx ht , 

ax jt =′  and 1−
′ = ax lt . While step III is applied on non – branch row ir  with non – zero entries 1−= bxij  

and  axik = , and the row tr  which is either a non – branch row  with non – zero entries 1−= axtk  and 

bxth =  or axth = , or tr  is a branch row of type b – sources , so when we apply step III  either we have a 

non - branch row tr ′ with non zero entries 1−
′ = bx jt  and bx ht =′  or 1−

′ = bx jt and ax ht =′ , or tr ′ is a 

branch row with non – zero entries 1−
′ = bx jt , bx ht =′  and ax lt =′ . Therefore step III always gives 

consistent incidence matrices of  X –Labeled graphs.  
2) The representation of Nickolas` Algorithm preserves the number of branch rows in ))(( HM X

∗Γ , because  
it is applied on non – branch rows, so apply steps I, II and III reduce the non – branch rows  only and then the 
number of branch rows in ))(( HM X

∗Γ will be still the same as before and the type of branch rows may 
change only.   
3)The representation of Nickolas` Algorithm preserves the number of branch rows in 
 ))((~))(( KMHM XX

∗∗ Γ×Γ , because  each row in ))((~))(( KMHM XX
∗∗ Γ×Γ  comes from the  

product  of two rows ir  and tr  in  ))(( HM X
∗Γ  and ))(( KM X

∗Γ respectively and the removed rows are 

non – branch rows which contain a non zero entries 1−= bxij , and ))(( HM X
∗Γ  and ))(( KM X

∗Γ  have no 

branch row with non –zero entry 1−= bxij . Therefore whatever happens to ))(( HM X
∗Γ and ))(( KM X

∗Γ , 

then will happen to the maximum connected submatrix of ))((~))(( KMHM XX
∗∗ Γ×Γ .  

4) Each time we return to step ∗0  of the representation of  Nickolas`  Algorithm,  we must apply one of the 
steps 1, 2 or 3 , because if step 1 and 2 do not apply , the step 3 must apply by Lemma 3.5.  
5) In each time we return to step ∗0 we have fewer rows ; this comes from reducing  at least two rows to a single 
row.  
6) The algorithm must stop after a finite time, because each time we reduce the total number of rows by at least 
one row, and then we have at least two different types of branch rows of ))(( HM X

∗Γ  and ))(( KM X
∗Γ  . 
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