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        نموذج مركوفى للفرق بين الأسعار في سوق المال

 محمد اللواتيو مالكولم، الأخضر عقون . ب.و 

طور نموذج يحتوي على سلسلتان من نوع مركوف تقوم بالتأثير على نموذج يقوم بدراسـة حركـة                 هذا البحث ي   :خلاصة
غير معروفة لكن ذات تأثير علـى       صيف أحداث   السلسلتان من نوع مركوف تقوم بتو     . للفرق بين الأسعار في سوق المال     

 . وتستعمل في هذا البحث طرق تغيير القياس لتقدير التوزيع الشرطي المتكرر. الأسعار في سوق المال
 

ABSTRACT: In this paper we develop a stochastic model incorporating a double-Markov 
modulated mean-reversion model. Unlike a price process the basis process X can take positive 
or negative values. This model is based on an explicit discretisation of the corresponding 
continuous time dynamics. The new feature in our model is that we suppose the mean reverting 
level in our dynamics as well as the noise coefficient can change according to the states of some 
finite-state Markov processes which could be the economy and some other unseen random 
phenomenon. 
 
KEYWORDS: Double-Markov Modulated Mean-Reversion Model; Filtering; Smoothing. 

 1.   Introduction 

T he main contribution of this article is to further extend the primary ideas presented in Elliott C. et al. (2005). 
The subject matter of our work is the dynamics that describe the difference between two prices, for example 

the prices of two different stocks. What we would like to do, is construct the dynamics which model price 
differences, and in addition to this, capture important but unseen random phenomena. To do this, we consider 
regime switching mean reversion. Mean-reverting models are well known in quantitative finance and were 
introduced by Vasicek. The extension of Vasicek’s ideas to Markov-modulated mean reversion has been 
investigated for interest rate models (see Elliott R.J.  et al., 1999).  

One common domain of application for price difference models is in the natural gas market. In the natural 
gas market the basis is the difference in the price of gas at two delivery points. The usual reference in the U.S.A. 
for a basis differential is NYMEX. For example, if the May Henry Hub price is 5 25$ .  and the May NYMEX 
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price is  then the basis differential for May NYMEX is 5 45$ . 0 20$ .  to Henry. The usual reference for Canada 
is the price at the AECO facility.  

In this article we propose to model the basis as a mean reverting diffusion, { tX X t 0}= , ≥ . Unlike a price 
process the basis process X can take positive or negative values. The new feature in our model is that we 
suppose the mean reverting level in our dynamics can change according to the state of the economy. The 
economy is modeled as a finite state Markov chain  and the economy can perhaps be in two states 
(’good’ and ’bad’), or possibly three states. Our continuous time model is discretized and the results of Elliott 
R.J. et al (2005), are adapted to obtain a recursive filter for the state of the economy given observations of 

{ tZ Z t= , ≥ 0}

X . In 
turn, this allows predictions to be made of the basis at the next time. If the observed basis is then higher or lower 
than the predicted value, it suggests one price is possibly higher than it should be and the other lower. 
Consequently, a trading strategy can be implemented based on these predictions.  

2.  Stochastic dynamics 

All models are, initially, on the probability space ( )F PΩ, , . Write { 0u }X X u t= , ≤ ≤ , for the basis 

(price difference) process. tX R∈ . Suppose  is a mean reversion level and L Rα
+

∈  is the rate-parameter, that 
is, a parameter determining how fast the level  is attained by the process L X .  X  has dynamics:  

 0 0
( )

t

t u t
X X L X duα= + − + Wσ .∫                                                         (1) 

where  W  is a standard Wiener process, and Rσ ∈ .  
 
Remark 1. The dynamics at (1) exhibit a mean reversion1 character of the model when written in stochastic 
differential equation form:  

                                                               (2) ( )t udX L X dt dWα σ= − + t .

Ignoring the noise , if tdWσ tX L>  then , while if ( )tL Xα − < 0 tX L<  then , and so the 
right-hand side of (2) is continually trying to reach the level L . 

( )tL Xα − > 0

Now suppose that parameters  and L σ  are stochastic and can switch between different levels 
 and 1 2 mL L … L, , , 1 n…σ σ, , , respectively. We assume here that these levels are determined by the states of two 

Markov chains Z  and A , respectively. Without loss of generality, we take the state spaces of our Markov 
chains to be the canonical basis 1 2{ }  of  and the canonical basis  of 1 2{ }nS f f … f= , , , nR , 
respectively. Write  

mL e e … e= , , , mR

 

 
( ) 1

( ) 1

( /

( /
j i k j k i

s r k s k r

P Z e Z e

p P f f

π
, +

, +

)

)

= = = ,

= = =A A ,
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                                                             (3) 

 

( ) 1 ( ) 1

1

[ ] [ ]
j i j m s r s n

i m r n

P pπ
, ≤ ≤ , ≤ ≤

≤ ≤ ≤ ≤

Π = , = .

                                                           (4) 

 
1 Modelling a mean reversion process is widely used in finance, for example in interest rates models such as the 
Vasicek Model. This class of models assumes an (static) average value will be attained, not unlike the notion of 
an equilibrium state, or steady state of a dynamical system in the physical sciences 
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Write   { 0t u u }Z u tσ= , , ≤ ≤Z A . Then  

                                                                      (5) 1

1 1

k k k

k k k

Z Z M

P m
+

+ +

= Π + ,

= +A A

1+

.

Here, M  and  are martingale increments.  The scalar-valued Markov processes taking values  and m 1 mL … L, ,

1 n…σ σ, , , are obtained by  

 
{ : ( ) }

1

{ ( ) }
1

1

1

t

t i

m

t Z

n

t f
i

e

i

Z Lω ω

ω ω σ

=
=

: =
=

〈 , 〉 = ,

〈 , 〉 = .

∑

∑

L

S
A

A

                                                            (6) 

Here  , 1 2( )mL L … L ′= , , ,L 1 2( ) ;  denotes an inner product and  denotes an indicator 

function for the event .  
{ }1 A

A
n…σ σ σ ′= , , ,S 〈⋅, ⋅〉

What also we wish to impose is that the two Markov chains Z  and  are not independent, that is, 
information on the behavior of one conveys some knowledge on the behavior of the other. More precisely, we 
assume the dynamics:  

A

                                                        (7) 1 1k k k k kZ Z
+ +
⊗ = ⊗ +P MA A 1+ .

where ( )js ir,=P p denotes a mn mn×  matrix, or tensor, mapping m n×  into m n×   and 

( )1 1 / 1 1js ir k j k s k i k rP Z e f Z e f r s n i j m
, + +
= = , = = , = , ≤ , ≤ , ≤ , ≤p A A .

t t

 Again   is a martingale 
increment. The dynamics at (1) take the form  

1k +M

 0 0
( )

t

t u u
X X Z L X du Wα= + 〈 , 〉 − + 〈 , 〉∫ S A .                                            (8) 

 
Remark 2.  We defined Z  and  as inherently discrete-time. Here, we "read" A Z  and  as the output of a 
sample and hold circuit, or CADLAG processes.  

A

What we wish to do now, is discretise the dynamics at (8) and then compute a corresponding filter and detector. 
We will use an Euler-Maruyama discretisation scheme to obtain discrete-time dynamics, although many other 
schemes can be used.  
 
For all time discretisations we will consider a partition, on the interval [0 ]T,  and write  

 ( )

0 1{0 }K

KM t t … t T= , , , = .                                                                 (9) 

This partition is strict, , regular and the 0 1t t …< < 1t k kt t
−

∆ = −  are identical for indices . Applying the Euler-
Maruyama scheme to (8), we get,  

k

 1 1( )k k k t k t k k

k k k k

kX X Z L X W W

aX b Z L c v

α α
+ +
= + 〈 , 〉∆ − ∆ + 〈 , 〉 −

= + 〈 , 〉 + 〈 , 〉 .

S

S

A

A
                                      (10) 

Here  
 (1 )ta α− ∆ ,                                                                         (11) 

 tb α∆ ,                                                                              (12) 
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 tc ∆ .                                                                              (13) 

The Gaussian process v is an independently and identically distributed (0 1)N , . Our stochastic system now, 
under the measure , has the form:  P

1

1 1

1 1 1

1

k k k

k k k

k k k k k

k k k k

Z Z M

P
P

Z Z

k
X aX b Z L c v

+

+ +

+ + +

+

= Π +

= +

⊗ = ⊗ +

= + 〈 , 〉 + 〈 , 〉

⎧
⎪⎪
⎨
⎪
⎪⎩

P M

S

A A M

A A

A .

.
k

)

                                                   (14) 

Write  

                
0 1 0 1

0 1

0 1 1 0 1 2

{ }

{ }

{ }

k k k

k k

k k k

Z Z Z … Z …

F X X … X

G Z Z … Z X … X … X

σ

σ

σ

= , , , , , , ,

= , , ,

= , , , , , , , , , , ,

A A A

A A A

1.  State estimation filters 

The approach we take to compute our filters is the so-called reference probability method. This technique 
is widely used in Electrical Engineering, (Elliott et al., 1995 and more recently Aggoun et al., 2004). We define 
a probability measure  on the measurable space†P ( FΩ, , such that, under , the following two conditions 
hold :  

†P

1. The state processes Z  and  are Markov processes with transition matrices  and  and initial 
distributions  and  , respectively.  

A Π P

0p 0p
2. The observation process X is independently and identically distributed and is Gaussian with zero 
mean and unit variance.  

With  defined, we construct , such that under  the following hold:  †P P P
3. The state processes Z  and  are Markov processes with transition matrices  and  and initial 
distributions  and , respectively.  

A Π P

0p 0p

4.   The sequence 1 2{v v …}, , , where  

 1
1

X aX b Z L
v

c
+

+

− − 〈 , 〉
= ,

〈 , 〉SA
                                                             (15) 

is a sequence of independently and identically distributed Gaussian (0 1)N ,  random variables.  

Write                                                      
1 1

22
( ) exp(

π
)φ ξ ξ− .  ξ ′

Definition  1.  For   1 2 …= , , ,

 

1

1

( )

( )
k

X aX b Z L

c

X

φ
λ

φ

+
− − 〈 , 〉

〈 , 〉

+

=
〈 , 〉

S

S

A

A
                                                                  (16) 

 0
0

1
k

k λ λ
=

Λ = , = .∏                                                                   (17) 

The "real world" probability  is now defined in terms of the probability measure  by setting P †P
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† tG k

dP

dP
| = Λ .   

Lemma 1. Under , the sequence  is a sequence of independently and identically distributed 
 random variables, where 

P 1 2{v v v …= , , }
(0 1)N ,

           1
1

,

,k k k
k

k

X aX b Z L
c

ν +
+

− −
=

SA
 .    

That is, under P ,  
 1 ,,k k kX aX b Z L c 1kν+ += + + SA                                                        (18) 

Lemma 2. Under the measure , the process P Z  remains a Markov process, with transition matrix  and 
initial distribution 

Π

0p .  
The proofs of Lemma 1 and 2 are routine.  
Remark 1. The objective in estimation via reference probability is to choose a measure  which facilitates 
and or simplifies calculations. In Filtering and Prediction, we wish to evaluate conditional expectations.  

†P

Under the measure , our dynamics have the form:  †P

                      

1

1 1

1 1

1 1

k k k

k k k

k k k k

k k

Z Z M

P M

Z Z

X v

+

+ +

1k+ + +

+ +

= Π +

= +

⊗ = ⊗ +

=

⎧
⎪⎪
⎨
⎪
⎪⎩

P M

A A

A A  

In what follows we shall use the following version of Bayes' rule. 

1

†
1 1

†
1 1

[ / ] (
(1)[ / ]

[ / ]
k k k

k k k k k k

k k

E Z F Z
E F

E Z F
σ

σ+

+ +

+ +

Λ ⊗ ⊗

Λ
⊗ = .=A A

A
)

1 ]
+

 

Note that 
† †

1 1 1
1 1 1 1

†

1 1

[ / ] [ /

[ / ]

m n m n

k k k k r k k k r k
r r

k k

E Z F e f E Z e f F

E F

+ + +
= = = =

+ +

〈 Λ ⊗ , ⊗ 〉 = Λ 〈 ⊗ , ⊗ 〉

= Λ .

∑∑ ∑∑A A
 

Theorem 1. Information State Recursion. Suppose the Markov chain Z and  are observed through the unit-
delay discrete-time dynamics at (10). The information state for the corresponding filtering problem is computed 
by the recursion: 

A

 †

1 1 1 1( ) [ / ] (k k k k k k k k kZ E Z F Zσ σ
+ + + − 1 )

−
⊗ Λ ⊗ = Γ ⊗PA A .A

1k +

                                   (19) 
Here 

1 1 1 2

1 1 1diag{ }m n

k k k …γ γ γ, , ,

+ + +
Γ = , , , ,                                                              (20) 

and  

                                                                 (21) 
( )

1

,
1

1

k k

r r
k

r

X aX bL

X

c
φ

σ
γ

σ φ

+

+

+

− −⎛ ⎞
⎜ ⎟
⎝ ⎠=
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Proof of Theorem 1 
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Hence  
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r
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f= Λ ⊗ + , ⊗ ⊗

= ⊗ , ⊗ ⊗

=Γ ⊗
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∑∑
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P M

P

P

A

A

A

A

                           (23) 

 
The recursion given in Theorem 1 provides a scheme to estimate the conditional probabilities for events of the 
form { : ( ) }k k rZ e fω ω⊗ = ⊗A , given the information 1kF

+
. In practice, one would use the vector-valued 

information state , to compute an estimate for the state . In general two approaches are 
adopted; one computes either a conditional mean, that is  

( k kZσ ⊗A ) kkZ ⊗A

 

1 1 1 1

1
( ) (1 1)

{ ( ) ( ) }

k k
k k

k k k k m n m n

Z
Z …

Z e f e f … Z e f e f

σ

σ σ

⊗ =
〈 ⊗ , , , 〉

× 〈 ⊗ , ⊗ 〉 ⊗ , , 〈 ⊗ , ⊗ 〉 ⊗

A
A

A A

                (24) 

or the so-called Maximum-a-Posteriori (MAP) estimate, that is  

1 1 1 1

1

( ) (1 1)

argmax{ ( ) ( ) }

k k

k k

k k k k m n m n

Z
Z …

Z e f e f … Z e f e f

σ

σ σ

⊗ =
〈 ⊗ , , , 〉

× 〈 ⊗ , ⊗ 〉 ⊗ , , 〈 ⊗ , ⊗ 〉 ⊗

A
A

A A

            (25) 

Marginal distributions for kZ  and kZ  are obtained by multiplying ( k k )Z Zσ ⊗  on the right-hand side with the 
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n -dimensional row vector (1 1)…, ,  or on the left-hand side with the -dimensional column vector (1 , 
respectively.  

m 1)…, ,

2.    Prediction/Forecasting 

What we would like to do is to predict the difference X in the next time period, and with this information, 
develop a trading strategy. Let us first compute the n -step predictor, where  {0}n N∈ .  
Lemma 3.  ( -Step Predictor)  n
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                                                          (26) 

Proof of Lemma 1  

 

1 1 1

1 1 1

1 2 1 1 1

2

2 2 1

1

[ / ] [ /

[ / ]

[ / ] [ /

[ / ]

[ / ]

( )

( ) 1

k n k n k k n k n k n k

k n k n k

k k k n k

k n k n k

n

k k k

n k k

k k

E Z F E Z F

E Z F

E Z F E M F

E Z F

E Z F

Z

Z

σ

σ

+ + + + − + − + +

+ − + − +

+ − + + − +

+ − + − +

+

⊗ = ⊗ +

= ⊗

= +

= ⊗

= ⊗

⊗
=

〈 ⊗ , 〉

P M

P P

P P

P P

P

P

A A

A

A

A

A

A

1
]

]
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                                            (27) 

Recall now our discrete-time dynamics modeling a price difference process, viz  
 

                                                             X aX b Z L c v
+ +
= + 〈 , 〉 + 〈 , 〉 .SA

The one-step prediction of the price difference is computed as follows: 
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                                     (28) 

Remark 2.  Here the usual issue of MAP/conditional-mean-estimate is irrelevant, as the price difference is 
continuously-valued.  
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3.   Trading strategies 

• The estimate   is the predicted value of the basis at the next time , given observations 1|
ˆ

k kX
+

1k +

0 1 kX X … X, , , .  

• If  is greater than the observed difference 1|
ˆ

k kX
+ 1k

X
+

, it suggests the higher price is too high and/or the 
lower price too low.  
• Conversely, if  is smaller than the observed difference 1|

ˆ
k kX
+ 1kX

+
, the higher price is possibly too low 

and/or the lower price too high.  
• These observations might suggest trading strategies.  
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