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         الإعاقة الزمنيةىشار المزدوج ذاستقرار وثبوت التوافق في نظام الانت

   واسًك .م.أدو أ

و قد تـم اسـتخدام      . درسنا في هذه الورقة التوافق في إطار المتنوعات اللا متغيرة للأنظمة ذات الإعاقة الزمنية              :خلاصة
يجاد نتائج عامة عـن     خواص الزائدية الطبيعية و ثبوتها في الأنظمة الحركية ذات البعد اللا متناهي في فضاءات باناخ لإ               

 .التوافق و ثباته
 

ABSTRACT: We study synchronization in the framework of invariant manifold theory for 
systems with a time lag.  Normal hyperbolicity and its persistence in infinite dimensional 
dynamical systems in Banach spaces is applied to give general results on synchronization and its 
stability.   
  
KEYWORDS: Normal hyperbolicity; Synchronization; Robustness; Lyapunov numbers.  

1.   Introduction 

S ynchronization phenomena of oscillators and diffusively coupled oscillators has been a subject of great 
interest by physicist, engineers, and mathematicians, see for instance (Afraimovich, et.al., 1986; Chow and  

Liu, 1997; Fujisaka and  Yamada, 1983; Hale, 1997; Wasike, 2002; Wasike, 2003; Wasike and Rotich (2007). 
Basic to the study of synchronization, two fundamental questions are of interest. The first is to do with the 

stability of the synchronization state of the system and the second is its robustness. Robustness of the 
synchronization state is its ability to be insensitive to small perturbations in the system that generates it. The two 
questions have been done for diffusively coupled systems without a time lag in the coupling. Normal 
hyperbolicity and the generalized Lyapunov exponents have been used to establish conditions for the stability 
and persistence of synchronization manifold for lattice  dissipative systems each with a compact global attractor,  
see for example (Chow and  Liu, 1997; Wasike, 2002; Wasike, 2003; Josica, K, 2000; Wasike and Rotich, 2007). 

The subject of stability and persistence of synchronization in a system with a diffusive-time-lag coupling 
has received less attention. Grasman and Jansan (1979) have studied synchronization in oscillators coupled in 
only one variable with a time lag in which phase differences have been used to detect synchrony. Numerical 
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results have also been used to determine the Lyapunov exponents in order to exhibit stability of the 
synchronization manifold, see for instance (Pyragas, 1998; Rossoni, 2005). To the best of my knowledge, no 
rigorous mathematical results in the framework of robustness of invariant manifolds for delay differential 
equations have been reported. 

This is how we approach this problem. We set the problem in the framework of dynamical systems and 
then consider the two aspects of synchronization based on invariant manifold theory for systems with a time lag. 
For the theory of invariant manifold for systems with a time lag, see for instance Halanay (1967), Kurzweil 
(1967). Normal hyperbolicity is exactly the right condition for persistence of invariant manifolds (see Bates et. 
al., 1998). In particular, we shall apply the theory of normally hyperbolic invariant manifolds for semiflows in 
Banach spaces as defined in Bates et al., (1998, 1999, 2000). This approach will enable us to compare the rate of 
growth in the transversal direction to the synchronization manifold and that along the manifold.  

This is our road map. Most of the definitions and terminologies will be given in § 2 while in § 3 we present 
the main results on the robustness of a synchronization manifold where normal and tangential growth rates are 
compared. In § 4 we give an example of an all-to-all coupled system. §5 is the conclusion. 

2.  Definitions and terminologies 

Let [ ]( , 0 xn mX C r= − )  be the space of continuous functions from [ ], 0r−   to endowed 
with the usual supremum topology. Consider the following system  

xn m
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For any ( ),c s ,Xϕ ϕ ϕ= ∈  equation (1) has a unique solution ( ) ( )( ), , ,x t y tϕ ϕ which is continuous for 

and coincides with t r≥ − ϕ  on [ ], 0 .r−  Let ( )( )( ) ( )( ) [ ], , , 0tT t x rϕ θ θ ϕ θ= ∈ −  and assume all 

solutions are uniquely defined for , then  is a - semigroup on 0t ≥ ( )T t 0C .X  Suppose that the system in 

equation (1) is dissipative, then there exists a global attractor .  A
 

The following definition is motivated by the works of  Halanay (1967) and also Kurzweil (1967). 
 
2.1  Definition.  System (1) is synchronized  for y with respect to x, if there exists a map 1C : ,mH C→   

where n is the dimension of x and [ ]( ), 0 , ,mC C r= −   with m  the dimension of y such that the graph of H 
denoted graph (H), is invariant and  globally attracting. 
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In this case, for any ( ),c s Xϕ ϕ ϕ= ∈  has 

( ) ( )( ) 0t ty H xϕ ϕ− →  as  ;t → ∞
 
exponentially.  In particular, if ,Aϕ ∈  then ( )s cHϕ ϕ=  and ( ) ( )( )t ty H x ϕϕ =  for all  and this H is 
unique (see Halanay 1967; p. 209). 

0,t ≥

 
In case,   equation (1) is mutually synchronized  if  H is invertible.  m n=
 
For the system with ( ){ }, :D x y x y= =

)

invariant, for example, in coupled identical systems or any system 
symmetric with respect to D, the synchronization occurs for H = I. In this case, the diagonal in X that consists of 
the set of functions ( ,c sϕ ϕ ϕ=  for which c sϕ ϕ=  is an invariant set for equation (1). 
 
In many applications, we are interested in local synchronization. We are interested in the local attractivity of 
graph (H); that is, the graph of (H) is exponentially attracting in the neighbourhood of D,  
 

( ) ( )( ) ( ) ,t s c
t ty H x ke Hαϕ ϕ ϕ ϕ−− ≤ −  

where ,k α  are positive constants. 
 
2.2 Definition. Suppose equation (1) is locally synchronized with map H. The synchronization is stable if for 

any    

1C
0,∈>

there is a 0δ >  such that for any 11 2 1 1
, , cf f f f δ− <  and 12 2 cf f δ− < , the system 

 
( ) ( )
( ) ( )

1

2

,

,
t t

t t

x t f x y

y t f x y

=

=
,                                   (2) 

is locally synchronized with map and H
1c

H H− <∈  see  (Bates et .al ;1998  p. 119). 

3.  Main Results: Robustness of a synchronized manifold 

Let us recall some of the invariant manifold theory for infinite dimensional systems in a Banach space. Let X 
represent a Banach space with norm ⋅ ⋅  In subspaces the same norm symbol is used. The notation ⋅ ⋅  will be 
reserved for the linear operator norm  

L ≡ sup ( ){ }: 1, ,Lx x x D L= ∈ ( ) } where means the domain of the 
operator L. 

( )D L( ){min : 1,m L Lx x x D L= = ∈

For any ,Xϕ∈  there is a unique solution ( ),z t ϕ  to equation (1) that defines  a semiflow on  X ; that  is,  1C

( ),tT z tϕ ϕ=  

is continuous on [ )0, X∞ × , and for each  is   and 0, :tt T X X≥ → 1C ( ) (t s t sT T T )ϕ ϕ+=  for all 
 and , 0t s ≥ , .Xϕ ∈  
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Suppose, for System (1), there exists a smooth connected invariant manifold M = graph  that is, 

for each Consider the linearization of equation (1) along 

( ) ;H X⊂

( )tT M M⊂ 0.t ≥ M  
 

( ) ( )( ), ,tz t A z t zϕ=                       (3) 
 
where ( ,z t )ϕ is  the solution of Equation (1) with ( )0,z Mϕ ϕ= ∈  and ( )( ),A z t ϕ is Jacobian of  f  at 

( ), .z t ϕ  Let be the linearized semiflow associated with equation (3). ( )tDT m M is said to be normally 
hyperbolic if the following are satisfied: 
 
(H1) The tangent bundle of X restricted to M splits into two continuous subbundles 
 

,
M

c sTX X X= ⊕  
 
 where cX  is the tangent bundle of M and sX  is transversal to cX . The superscripts c and s stand for “center”, 
and “stable”, respectively. 
 
(H2) This splitting is invariant under  that is, for each ;tDT m M∈  and if , and 0,t ≥ ( )1

tm T m=

( ) ( ) , ,
t t

pp X p c sm
DT m DT m

=
= , then  

( )
1

: p pt
p m mDT m X X→  

 
and is an isomorphism from ( )t

pDT m p
mX onto 

1

p
mX  , where p

mX  denote the fibers for the vector bundles 

, ,pX p c s=  at  .m M∈
 
(H3) There exists  and 0 0t ≥ ( )0,1λ ∈ such that for all  and 0t t≥ ,m M∈  
 

( )

( ){ }{ }min 1,inf : , 1
.

t

X sm
t c c c c

m

DT m

DT m x x X x
λ<

∈ =
                    (4) 

 
For this definition see Bates et al., (1998, 1999).  A few remarks on the above definition of normal hyperbolicity 
are useful. 
 
Remark.  Inequality (4) suggests that near  contracts in the direction of, tm M T∈ s

mX  , and at a rate greater 
than that on M. Furthermore (4) suggests that for an invariant splitting to persist we need both 
 

( ) 1t
sDT m <  

and  
      ( ) ( ){ }inf : , 1 1,t t c c c c

sDT m DT m x x X xm< ∈ = <     (5) 
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to be satisfied, see for instance Bates et al. (1998, pages 124 and 11, respectively). 

3.1  Generalized Lyapunov-type numbers 

For the purpose of calculation it will prove convenient to phrase inequalities (5) and (6) more 
quantitatively in terms of rates of growth. By the equivalence of norms,  

 
( ){ } ( ), 1inf : .m

cx
t c c c t

cDT m x x X DT m=∈ ≤                              (6)  
Thus inequality (6) reduces to  

( )

( )
1.

t
s
t

c

DT m

DT m
<                                                    (7) 

 
Let us now compare the growth bounds of the two semigroup operators. The growth bound of the linear operator 

is a real number ( )t
cDT m 0ω defined by 

 
{0 inf 1cMω ω= ∃ ≥  such that  ( ) ,t t  for t                             (8) c cDT m M eω≤ }0 .≥

This is the same as  

( ) ( )0 0

1
inf ln lim ln ,t

ct t
DT m DT m

t
ω

> →∞
= = t

c                                                  (9) 

see for instance Diekmann et al (1995, p. 470). We also know that the ( )t
sDT m  satisfies 

( ) tt
sDT m M es

α≤                                                                    (10) 

for  where and 0,t ≥ 0sM > α  are real constants. Without loss of generality, we can take cM and sM each 
equal to 1. This is possible by the use of the next lemma. 
Lemma 3.1  The spaces c

mX  and ,
s
mX  for all  can be renormed so that in equations (8) and (10) ,m M∈ cM  

and  sM  can be taken to be 1. 

Proof . Define a new norm ′⋅  on s
mX  by  

( )
0

sup t t
s

t
x e DT m xα−

≥

′ =  for .s
mx X∈  

Clearly, x x ′≤  and by equation (10) ,sx M x′ ≤ so ⋅  and ′⋅ are equivalent norms on s
mX . Let ′⋅ be the 

operator norm on s
mX equipped with ′⋅ . Then for s
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Hence, ( ) tt
sDT m x eα′ ≤ for 0.τ ≥  The proof for c

mX  is similar. 

We now define some generalized Lyapunov exponents for  semiflows. 
 
3.2  Definition. The generalized Lyapunov exponents for m M∈ are defined as follows 
 

( ) ( )1
lim sup ln ,t

s
t

m DT
t

α
→∞

= m                           (12) 

and  

( )
( )
( )( )

ln
lim sup

ln
.

t
s

t
t c

DT m
m

m DT m
β

→∞
=                            (13) 

 
The generalized Lyapunov exponents were introduced for the study of normally hyperbolic invariant manifolds 
in finite dimensional systems, see for instance (Chow and  Liu, 1997; Fenichel, 1971; Hirsch et al., 1977; 
Wiggins, 1994). No similar results exist for semiflows.  
 
The results we have are: 
 
Theorem 3.3  Consider System (1).  Suppose the graph (H) is invariant. If ( ) 0mα < for  graph (H), then 
graph (H) is attracting, and hence  equation (1) is locally synchronized. 

m ∈

Theorem 3.4  Suppose that graph (H) is locally synchronized. The synchronization is stable if  and 

 for all  graph (H). 

1C ( ) 0mα <

( ) 1mβ < m∈
 
Proof.  The proof makes use of equations (9), (10) and Lemma 3.1. We have that 

( )mα α=  and ( )
0

.m
α

β
ω

=  

For the stability of the synchronized manifold, we require that inequality (5) be satisfied. This requirement 
translates to  for all ( ) 0mα < .m M∈  For persistence, inequality (7) implies that ( ) 1.mβ <  

4.  Example: Synchronization of all-to-all coupled systems  

In this part, the theorems are applied to the study of synchronization of all-to-all coupled systems. 
Let  

( ) ( )( ) ,z t g z t=                                             (14) 

,dz ∈ be a dissipative processes and A be the attractor. Consider the coupled system 
 

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( )

1 2 1 1

2 1 2 2

,

.

z t k z t r z t g z t

z t k z t r z t g z t

= − − +

= − − +
                                       (15) 

Let [ ]( , 0 , x .d dX C r= − )  Equation (15) subject to ( )1 1, Xϕ ϕ ϕ= ∈  has a unique solution 

 which coincides with ( ) ( )1 2, , , 0z t z t tϕ ϕ ∀ ≥ , ϕ  on [ ], 0 .r−  
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Equation (15) is synchronized if its solution belongs to a compact inertial manifold ,kM M⊂  

                                                    ( ){ }1 1 1 1, .M Xϕ ϕ ϕ ϕ= ∈ =     
 

To show synchronization, we show that M is attracting; that is, ( ) ( )1 2, , 0  as t . For this 

purpose, we need to study the semiflow tangential and transversal to .M We thus make the change of variables  

z t z tϕ ϕ− → .→ ∞

 

( )
( ) ( )

( )
( ) ( )1 2 1 2,

2 2
.

z t z t z t z t
w t y t

− +
= =                                               (16) 

 
With the transformation (16) in equation (15), we get 

( ) ( ) ( )[ ] ( ) ( )) ( ( ) ( )( )[ ]

( ) ( ) ( )[ ] ( ) ( )) ( ( ) ( )( )[ ]

1
,

2
1

.
2

w t k w t r w t g w t y t g y t w t

y t k y t r y t g w t y t g y t w t

= − − + + + − −

= − − + − + +

                         (17) 

 
Synchronization is equivalent to the fact that ( ){ }, 0w t ϕ = is attracting.  By the linearization of equation (15) 

along ( ){ }, 0w t ϕ = ;  that is, along ( )( ), ( ) ,kw t y t M M∈ ⊂  equation (17) becomes 
 

( ) ( ) ( )[ ] ( )( ) ( )
( ) ( ) ( )[ ] ( )( ) ( )

0

0

,

,
z

z

w t k w t r w t D g y t w t

y t k y t r y t D g y t y t

= − − + +

= − − +
                   (18) 

where is the Jacobian of ( )( 0zD g y t ) ( )( )g z t at ( )( )0y t , the solution is obtained from  
 

                        ( ) ( ) ( )[ ] ( )( ) .y t k y t r y t g y t= − − +  

Notice that there is a continuous invariant splitting ,
s cX X⊕ where 

 

                                       
( )( ) ( ){ }
( )( ) ( ){ }

, , ( , ) | , 0 ,

, , ( , ) | , 0 .

s

c

X w t y t y t

X w t y t w t

ϕ ϕ ϕ

ϕ ϕ ϕ

= =

= =
 

Let us now look at the attractivity of sX . Clearly ( ) ,
t

d

s
W t I eλ= where sλ satisfies the characteristic equation 

 , is the fundamental matrix solution of the first equation in equation  (18); that is, ( ) ( ): 1 rsh k e λλ λ −= + + = 0

( ) ( ) ( )[ ].W t k W t r W t= − − +  

By the variation-of-constants formula, the solution ( ,w t )ϕ to the first equation in equation (18) is given by 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 1
00

, 0 0
t

zw t W t W W D g y w d .ϕ ϕ τ τ τ− −= + τ⎡ ⎤
⎣ ⎦∫  

By the Gronwall's Inequality  

( ) ( )
( )( )( )00

., 0
z d

st D g y I d
w t e

τ λ τ
ϕ ϕ

−∫
≤  
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Let Mλ  and mλ  be the maximum and minimum Lyapunov exponents of the trajectory defined by 

 Then for as we require  ( ) ( )( ) ( )0 .zy t D g y t y t= ( ), 0w t ϕ → ,t → ∞

( ){ }max 0.s
M Reλ λ+ <  

Since all roots of  for have negative real parts (see for instance Bose; 1986), this would mean ( ) 0sh λ = 0k >

( )max , .s
M MRe k kλ λ λ< = >  

Indeed  
( )2 2 , 2 2 , 0,1, 2, .......s krk i r m kre m mλ π π π π= − + + = + =  

 
By Theorem 3.2 ( ){ },w t ϕ 0= is attracting and the coupled system is locally synchronized. 
 
  The solution ( ,y t )ϕ of the second equation in equation (18) is given by 
 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 1
00

, 0 0
t

zy t Y t Y Y D g y y dϕ ϕ τ τ τ− −= + τ  for  ⎡ ⎤
⎣ ⎦∫ 0,t ≥

where  ( ) ,
ct c

dY t I eλ λ= satisfies the characteristic equation ( ) ( ): 1c rh k e 0λλ λ −= + − = , is the 
fundamental matrix solution of the second equation in (18) that is, 
 

( ) ( ) ( )[ ].Y t k Y t r Y t= − −  
Indeed  

( )( ) ( )2 2 1 , 2 2 1 , 0,1, 2, .....krc i r m kre m mk π π π πλ + + + = + + == −  
For persistence we have  

( ){ } ( ){ }max Re min Re ,s
mMλ λ λ λ− ≤ − c                     (19) 

 
where cλ satisfies the characteristic equation whose roots except ( ) 0ch λ = 0λ = lie to the left of the complex 

plane(see for instance Bose, 1986). Equation (19) gives .mMk λ λ> −  By  Theorem 3.3, the synchronization 
manifold is robust. 

5.  Conclusion 

Time delay in the coupling does not always destabilize synchronization states of similar systems with delay 
 0.r =
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