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ABSTRACT: In this paper, we prove uniform convergence of the standard finite element method for a Schwarz 

alternating procedure for nonlinear elliptic partial differential equations in the context of linear subdomain problems 

and nonmatching grids. The method stands on the combination of the convergence of linear Schwarz sequences with 

standard finite element L


 -error estimate for linear problems.  
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   تحليل تقارب العناصر المحدودة لطريقة شوارز المتناوبة لأجهزة للمعادلات التفاضلية الإخطية الجزئية 

 بولبراشنمسعود 

لطريقة العناصر المحددة القياسية لإجراء تناوب شوارتز  للمعادلات التفاضلية الإخطية الجزئية في سياق  في هذه الورقة ، نثبت التقارب الموحد :صلخمال

وتقدير العناصر المحدودة للإرهاب في تكمن الطريقة في الجمع بين التقارب بين تسلسل شوارز  .مشاكل النطاق الفرعي الخطي والشبكات غير المتطابقة

 المشكلات الخطية.

 
  .، التقاربطريقة شوارز، العناصر المحدودة: مفتاحيةالكلمات ال

 
1. Introduction 

he Schwarz alternating method can be used to solve elliptic boundary value problems on domains that consist of 

two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions that 

results from solving a sequence of elliptic boundary value problems in each of the subdomains.  

There has been extensive analysis of the Schwarz alternating method for nonlinear elliptic boundary value 

problems [1-4] and the references therein). Also, the effectiveness of Schwarz methods for these problems (especially 

those in fluid mechanics) has been demonstrated by many authors.   

In this paper, we are concerned with the finite element convergence analysis of overlapping Schwarz alternating 

methods in the context of nonmatching grids for nonlinear PDEs, where the Schwarz sub problems are linear. This 

study constitutes, to some extent, an improvement of the one achieved in [5], on a Schwarz method with nonlinear sub 

problems. 

For that, we develop an approach which combines the convergence result of Lui [6], with standard finite element 

error estimate for linear elliptic equations. 

For other works on finite element convergence analysis in the maximum norm of overlapping nonmatching 

Schwarz method, we refer to [7-12].   

The rest of the paper is organized as follows. In section 2, we state the continuous alternating Schwarz sub 

problems and define their respective finite element counterparts in the context of nonmatching overlapping grids. In 

section 3, we give  L


 - convergence analysis of the method. 
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2. Preliminaries 

We begin by laying down some definitions and classical results related to linear elliptic equations. 

2.1 Linear elliptic equations 

Let Ω be a bounded polyhedral domain of R²or R³ with sufficiently smooth boundary ∂Ω. We consider the 

bilinear form 

Ω

( , ) u vdxa u v                                                                        (1) 

the linear form 

                               , = ( ) ( )f v f x v x dx


                                                                 (2) 

the right hand side:  

   f  is a regular function,                                                                 (3) 

the space  

    
    g 1

= v  such that =  on ΩV H v g                                                (4) 

where g is a regular function defined on   . 

We consider the linear elliptic equation: Find 
( )g

V   such that 

               1

0
a( , )+c , ,  v v f v v H                                                     (5) 

where  

              such that ,  0 0c R c c                                                        (6) 

Let hV  be the space of finite elements consisting of continuous piece-wise linear functions, 

,  1, 2,..., ( )
s

s m h   be the basis functions of hV , and ( )m h  denote the number of vertices of the triangulation in 

Ω. Let also 
0

hV  be the subspace of hV   defined by 

           
0

such that  0 on h
h

V v V v                                                 (7) 

      The discrete counterpart of (.,.) consists of finding
g

h hV  } such that 

                 
0

a( , )+c , ,  hh hv v f v v V                                                          (8) 

where 
g

hV  is the space of 

             
   g

such that= v   =  on Ωh h hV V v g                                                  (9) 

and h  is the Lagrange interpolation operator on ∂Ω. 

Theorem 1. [13] Under suitable regularity of the solution of problem (5), there exists a constant c  independent of h  

such that 

                                                     
2

( )
lnh L

Ch h   
   

Lemma 1. [5] Let    1
w H C     satisfy ( , ) ( , ) 0a w c w    ∀ non-negative φ∈  1

0
H  , and 0w   

on ∂Ω. Then 0w   on   . 

    The proposition below establishes a Lipschitz continuous dependency of the solution with respect to the data.  

Notation 1. Let    , , ,  f g f g  be a pair of data, and  ,f g   and  ,f g   be the corresponding 

solutions to (5). 

Proposition 1. Under the conditions of lemma 1, we have: 

             
( )( ) ( )

1
max ,

LL L
f f g g 


   

 
    

 
                                         (10) 

Proof. First, set 

( )( )

1
max ,

LL
f f g g
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Then 

( )L
f f f f

 
    

( )L

c
f f f


 

    

( )( )

1
max ,

LL
f c f f g g


 

 
    

 
 

f c   

So 

     1

0a( , )+ , a( , ) , ( , ) 0,  c c H                   

    a( + , )+c + , ,f c           

 On the other hand, we have 

0 on        

So 

( , ) ( , ) 0

0 on  

a c       

  

      


   

 

Thus, making use of lemma 1, we get 

0      On   

  Similarly, interchanging the roles of the couples    , , ,f g f g , we obtain 

0 on        

which completes the proof. 

Remark 1. Lemma 1 holds true in the discrete case. 

    Indeed, assume that the discrete maximum principle (d.m.p) holds, i.e.  the matrix resulting from the finite element 

discretization is an M-Matrix. Then we have: 

Lemma 2. Let hw V  satisfy  , ,( 0 1,2,..., () )
s s

s ma c w hw       and 0w  on Ω . Then 0w  

on .  

  Proof.   The proof is a direct consequence of the discrete maximum principle. 

Let  ,f g and  ,f g be a pair of data and  ,h h f g   and  ,h h f g   be the corresponding solutions 

to problem (8). 

Proposition 2. Let the d.m.p hold. Then, under conditions of lemma 2, we have  

( )( )
( )

1
 max ,h h LL

L

f f g g 









 
    

 
 

Proof. The proof is similar to that of the continuous case. Indeed, as the basis functions s > 0 of the space hV  are 

positive, it suffices to make use of the discrete maximum principle. 

 

 

Let  ,f g and  ,f g be a pair of data and  ,h h f g   and  ,h h f g   be the corresponding solutions 

to problem (8). 

3.  Schwarz Alternating Methods for Nonlinear PDEs 

3.1 The nonlinear PDE 

    Consider the nonlinear PDE: Find  2
u C  such that 

 

                
( )  in    

  
0                    on   

u cu f u

u

   


 
                                                               (11) 
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or in its weak form: Find  1

0 u H   such that 

 

                                1

0, , ( ),  a u v c u v f u v v H                                                    (12) 

where 

                                             (.)f  is a non-decreasing nonlinearity  

We assume that (.)f  is Lipschitz continuous, that is 

( ) ( )  ,f x f y k x y x y    R  

  such that 

k    

where   is defined in (6).  

Theorem 2. [14] Under the above assumptions, Problem (11) has a unique solution.  

3.2  The Linear Schwarz Sub problems 

    We decompose Ω into two overlapping smooth subdomains 1  and 2  such that: 

 

                                   1 2                                                                             (13) 

 

We denote by i  the boundary of i , i i j    , and i i   . We assume that the 

intersection of  i   and j  ; i j   is empty. Let 
0

2u  be an initial guess. We define the alternating Schwarz 

sequences (
1

1

nu 
) on 1  such that  1 2

1 1

nu C    solves 

 

                          

1 1

1 1 1 1

1

1 1

1 1

1 2 2

( )  in   

0                         on  

                     on    

n n n

n

n n

u cu f u

u

u u 

 



 

   


 




                                                         (14) 

and the sequence  1

2

nu 
 such that   1 2

2 2

nu C    solves 

                     

1 1

2 2 2 2

1

2 2

1 1

2 1 2

( )  in   

0                         on  

                     on    

n n n

n

n n

u cu f u

u

u u 

 



 

   


 




                                                            (15) 

Note that Schwarz subdomain problems (14) and (15) are linear. 

Theorem 3. [6] The sequences (14) and (15) converge uniformly in  2

1C  and  2

2C  , respectively, to  

/ ,  1,2i iu u i   , where u  is the solution of (11). 

3.3 The variational Linear Schwarz Sub problems 

The corresponding variational problems read as follows: 
1

1 1

nu V   solves  

                   
    

0
1

11 1 1

1

1 1 2 1

, ,  

/ /

n n

n n

b u v f u v v V

u u 






  


 

                                                      (16) 
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and 
1

2 2

nu V   solves  

                  
    

0
1

22 2 2

1

2 2 2 2

, ,  

/ /

n n

n n

b u v f u v v V

u u 






  


 

                                           (17) 

where  

                             1

i iV H  ;  
0

1

0i iV H                                                                 (18) 

 

                                ,

i

ib u v u v cuv dx


                                                                 (19) 

                                       , ( ) ( )

i

i
u v u x v x dx



                                                                      (20) 

3.4  The Discretization  

For 1, 2i  , let be ih  be a standard regular and quasi-uniform finite element triangulation in i ; ih , being the 

mesh size. The two meshes being mutually independent on 1 2  , a triangle belonging to one triangulation does 

not necessarily belong to the other.  

    Let us define the discrete analog of spaces iV  and
0

iV , respectively, that is 

 1( )such that /  i

i i

h

h KV v C v P K       

 

 
0

 such that 0 on 
i

i ih hV Vv v     

 

and let 
ih denote the Lagrange interpolation operator on i  

The discrete Maximum principle (see [15,16]).  

We assume that the respective matrices resulting from the discretization of problems (16) and (17) are M-matrices. 

 

 

 

3.5 The Finite Element Linear Schwarz Sub problems 

Let 
2

0

hu  be the discrete analog of 
0

2u that is,  
2 2

0 0

2h hu r u  where 
2hr  denotes the finite element interpolation 

operator in Ω. We define the sequence  
1

1n

hu 
such that 

1 1

1n

hhu V   solves 

                                                 
    

 

1
1 1

1 1 2

0
1

1

1

1

, ,  

/

n n
hh h

n n

h h h

b u v f u v v V

u u 






  


 


                            (21) 

and the sequence (
2

1n

hu 
) such that 

2 2

1n

hhu V  solves 

                                                    
    

 

2
2 2

2 2 1

0
1

2

1 1

2 2

, ,  

/ /

n n
hh h

n n

h h h

b u v f u v v V

u u  



 


  


 


                       (22) 

4. L
- Convergence Analysis 

This section is devoted to the proof of the main result of the present paper. To that end, we begin by introducing 

two discrete auxiliary Schwarz sequences and prove a fundamental lemma. 
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4.1 Auxiliary Discrete Schwarz Sub problems 

We construct a sequence   
1

1n

h


 such that 
11

1n

hh V   solves 

                                    
    

 

1
1

1 2

1

1

1
0

1

1

1 1

, ,  

/ /

n
h

n n

h

h

h

nb v f u v v V

u u



  






  


 


                                        (23) 

and the sequence  
2

1n

h


 such that 
22

1n

hh V   solves 

 

                         
    

 

2
2

2 1

2

2

1
0

2

1 1

2 2

, ,  

/ /

h

n
h

h

n

n n

h

b v f u v v V

u u  

 

 


  


 


                                                  (24) 

Then, it is clear that 
1

1n

h


and 
2

1n

h


are the finite element approximation of 
1

1nu 
and 

1

2

nu 
defined in (16) and 

(17), respectively.  

Notation 2. From now on, we shall adopt the following notations: 

 

                                       1 21 2
. ,  .L L                                                                   (25) 

                           1 21 2
. ,  . , .L L L                                                            (26) 

                                           
1 2h h h                                                                               (27) 

4.2 The Main Result 

The following lemma will play a key role in proving the main result of this paper. 

 

Lemma 3.  
1

1 1 1 1 2 21 1 2
0 0

n n
n n i i i i

h h h

i i

u u u u 


 

       

2 2 1 1 2 22 1 2
0 0

n n
n n i i i i

h h h

i i

u u u u 
 

       

 

Proof. The proof will be carried out by induction. For n=1, we have in 1 . 

 
1 1 1 1 1 1

1 1 1 1 1 11 1 1h h h hu u u u       

  and, making use of Proposition 2, we obtain 

 

1 1 1 1 0 0 0 0

1 1 1 1 1 1 2 21 1 1 1

1
 max ( ) ( ) ,h h h h h hu u u f u f u u u  



 
      

 
 

1 1 0 0 0 0

1 1 1 1 2 21 1 2
 max ,h h h

k
u u u u u



 
     

 
 

  We then have to distinguish between two cases 

 

0 0 0 0 0 0

1 1 2 2 1 11 2 1
1: max ,h h h

k k
u u u u u u
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and 

   0 0 0 0 0 0

1 1 2 2 2 21 2 2
2 : max ,h h h

k
u u u u u u



 
    

 
 

Case 1. implies that 

1 1 1 1 0 0

1 1 1 1 1 11 1 1h h h

k
u u u u u


      

and hence 

1 1 1 1 0 0

1 1 1 1 1 11 1 1h h hu u u u u      

Case 2. implies that 

1 1 1 1 0 0

1 1 1 1 2 21 1 2h h hu u u u u      

and, in both cases, we have 

                           
1 1 1 1 0 0 0 0

1 1 1 1 1 1 2 21 1 1 2h h h hu u u u u u u                                                      (28) 

Similarly, we have in 2  

1 1 1 1 1 1

2 2 2 2 2 22 2 2h h h hu u u u       

1 1 0 0 1 1

2 2 2 2 1 12 2 2
max ,h h h h h

k
u u u u u  



 
     

 
 

1 1 0 0 1 1

2 2 2 2 1 12 2 1
max ,h h h

k
u u u u u



 
     

 
 

Here also we need to consider the following two cases: 

 

     1:   
0 0 1 1 0 0

2 2 1 1 2 22 1 2
max ,h h h

k k
u u u u u u

 

 
    

 
 

2:   
0 0 1 1 1 1

2 2 1 1 1 12 1 1
max ,h h h

k
u u u u u u



 
    

 
 

Case 3. implies that 

1 1 1 1 0 0

2 2 2 2 2 22 2 2h h h

k
u u u u u


      

so 
1 1 1 1 0 0

2 2 2 2 2 22 2 2h h hu u u u u      
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Case 4. implies that 
1 1 1 1 1 1

2 2 2 2 1 12 2 1h h hu u u u u      

1 1 1 1 0 0 0 0

2 2 1 1 1 1 2 22 1 1 2h h h hu u u u u u          

Thus, in both cases, we have 

                    
1 1 1 1 1 1 0 0 0 0

2 2 2 2 1 1 1 1 2 22 2 1 1 2h h h h hu u u u u u u u                              (29) 

For n = 2 

2 2 2 2 2 2

1 1 1 1 1 11 1 1h h h hu u u u       

 
2 2 1 1 1 1

1 1 1 1 2 21 1 1

1
 max ( ) ( ) ,h h h h hu f u f u u u  



 
     

 
 

2 2 1 1 1 1

1 1 1 1 2 21 1 2
 max ,h h h

k
u u u u u



 
     

 
 

Case 1. 

1 1 1 1 1 1

1 1 2 2 1 11 2 1

1
max ,h h h

k
u u u u u u

 

 
    

 
 

2 2 2 2 1 1

1 1 1 1 1 11 1 1h h h

k
u u u u u


      

2 2 1 1

1 1 1 11 1h hu u u     

    
2 2 1 1 0 0 0 0

1 1 1 1 1 1 2 21 1 1 2h h h hu u u u u u          

Case 2. 

1 1 1 1 1 1

1 1 2 2 2 21 2 2

1
max ,h h hu u u u u u



 
    

 
 

 

2 2 2 2 1 1 1 1 0 0 0 0

1 1 1 1 2 2 1 1 1 1 2 21 1 2 1 1 2h h h h h hu u u u u u u u u              

 

So in both cases 

 

                
2 2 2 2 1 1 1 1 0 0 0 0

1 1 1 1 2 2 1 1 1 1 2 21 1 2 1 1 2h h h h h hu u u u u u u u u                            (30) 

 

or 
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2 1
2 2

1 1 1 1 2 21 1 2
0 0

i i i i

h h h

i i

u u u u 
 

                                         (31) 

On the other hand 
2 2 2 2 2 2

2 2 2 2 2 22 2 2h h h hu u u u       

2 2 1 1 2 2

2 2 2 2 1 12 2 2
max ,h h h

k
u u u u u



 
     

 
 

Case 1. 

2 2 2 2 1 1

2 2 2 2 2 22 2 2h h h

k
u u u u u


      

 
2 2 1 1

2 2 2 22 2h hu u u     

 
2 2 1 1 1 1 0 0 0 0

2 2 2 2 1 1 1 1 2 22 2 1 1 2h h h h hu u u u u u u             

Case 2. 
2 2 2 2 2 2

2 2 2 2 1 12 2 1h h hu u u u u      

 
2 2 2 2 1 1 1 1 0 0 0 0

2 2 1 1 2 2 1 1 1 1 2 22 1 2 1 1 2h h h h h hu u u u u u u u                

 

 So in both cases 

 

2 2 2 2 2 2 1 1 1 1 0 0 0 0

2 2 2 2 1 1 2 2 1 1 1 1 2 22 2 1 2 1 1 2h h h h h h hu u u u u u u u u u                 

 

or 

                                              

2 2
2 2

2 2 1 1 2 22 1 2
0 0

i i i i

h h h

i i

u u u u 
 

                                                     (32) 

Now assume that 
1

1 1 1 1 2 22 1 2
0 0

n n
n n i i i i

h h h

i i

u u u u 


 

       

and 

2 2 1 1 2 22 1 2
0 0

n n
n n i i i i

h h h

i i

u u u u 
 

       

and let us prove that 
1

1 1

1 1 1 1 2 21 1 2
0 0

n n
n n i i i i

h h h

i i

u u u u 


 

 

       

and 

1 1
1 1

2 2 1 1 2 22 1 2
0 0

n n
n n i i i i

h h h

i i

u u u u 
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 Indeed, we have 

1 1 1 1 1 1

1 1 1 1 1 11 1 1

n n n n n n

h h h hu u u u            

1 1

1 1 1 1 2 21 1 1
max ,n n n n n n

h h h h h

k
u u u u u  



   
     

 
 

1 1

1 1 1 1 2 21 1 2
max ,n n n n n n

h h h

k
u u u u u



   
     

 
 

 and, as above, we need to distinguish between two cases: 

1: 
1 1 2 2 1 11 2 1

max ,n n n n n n

h h h

k k
u u u u u u

 

 
    

 
 

and 

2: 1 1 2 2 2 21 2 2
max ,n n n n n n

h h h

k
u u u u u u



 
    

 
 

 Case 1. implies that 

1 1 1 1

1 1 1 1 1 11 1 1

n n n n n n

h h h

k
u u u u u



         

1 1

1 1 1 11 1

n n n n

h hu u u      

1
1 1

1 1 1 1 2 21 1 2
0 0

n n
n n i i i i

h h h

i i

u u u  


 

 

        

while Case 2. implies that 
1 1 1 1

1 1 1 1 2 21 1 2

n n n n n n

h h hu u u u u         

1 1

1 1 1 1 2 21 1 2
0 0

n n
n n i i i i

h h h

i i

u u u   

 

        

So in both cases 

1 1 1 1

1 1 1 1 1 1 2 21 1 1 2
0 0

n n
n n n n i i i i

h h h h

i i

u u u u u     

 

         

 
1

1 1 2 21 2
0 0

n n
i i i i

h h

i i

u u 


 

      

Likewise 
1 1 1 1 1 1

2 2 2 2 2 22 2 2

n n n n n n

h h hu u u u u           

1 1 1 1

2 2 2 2 1 22 2 2
max ,n n n n

h h h h h

k
u u u u u  



   
     

 
 

1 1 1 1

2 2 2 2 1 12 2 1
max ,n n n n n n

h h h

k
u u u u u
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Here also we need to discuss two cases: 

 

Case 1: 
1 1

2 2 1 1 2 22 1 2
max ,n n n n n n

h h h

k k
u u u u u u

 

  
    

 
 

 

implies 
1 1 1 1

2 2 2 2 2 22 2 2

n n n n n n

h h hu u u u u         

1 1

2 2 1 1 2 22 1 2
0 0

n n
n n i i i i

h h h

i i

u u u   

 

        

Case 2: 
1 1 1 1

2 2 1 1 1 12 1 1
max ,n n n n n n

h h h

k
u u u u u u



    
    

 
 

implies 
1 1 1 1 1 1

2 2 2 2 1 12 2 1

n n n n n n

h h hu u u u u           

1 1 1 1

2 2 1 1 1 1 2 22 1 1 2
0 0

n n
n n n n i i i i

h h h h

i i

u u u u      

 

          

Then, in both cases, we have 

 

1 1 1 1 1 1

2 2 2 2 1 1 1 1 2 22 2 1 1 2
0 0

n n
n n n n n n i i i i

h h h h h

i i

u u u u u u        

 

           

1 1

1 1 2 21 2
0 0

n n
i i i i

h h

i i

u u 
 

 

      

which completes the proof. 

 

Theorem 4. There exists nh > 0 with lim 0n
n

h


 , such that 

 1 1lim 0,  1,2
i

i i

h Ln
u u i

 
    

Proof. Let us give the proof for i=1, the case i=2 being similar.  

Indeed, as 
1

1 1 1 1 2 21 1 2
0 0

n n
n n i i i i

h h h

i i

u u u u 


 

       

and 

2

1 1 1
lnn n

hu Ch h   

2

2 2 2
lnn n

hu Ch h   

Then, 

                                     2

1 1 1
2 1 ln

n n

h
u u n Ch h                                                              (33) 
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Also 

1 1 1 1 1 11 1 1

n n n n n

h hu u u u u u      

Let ε>0. Theorem 3 implies that there exists 
0n N  such that, ∀ 0n n  

 

1 1 1 2

nu u


   

  

Taking account of (33), the Theorem follows by choosing nh > 0 such that 

 

 
2

0
ln ,  

2 1
n n

h h n n
n C


  


 

Conclusion  

We have proved convergence of the standard finite element approximation for alternating Schwarz procedure in 

the context of nonmatching grids. Other type of discretizations may also be considered like mixing finite elements and 

finite differences. Also, the knowledge of a rate of convergence of the Schwarz procedure will enable derivation of 

error estimate, in each subdomain, between the discrete Schwarz sequence and the exact solution of the nonlinear PDE. 
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