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 k-ary  n-cubeالقطر المختل المشروط لشبكات  

  خالد داي وعبدالرزاق توزان  

  المختلة مع افتراض توزيعـات مشـروطة    k-ary n-Cubeنحصل في هذا البحث على قطر شبكات : خلاصة
. لنقاط الخلل حيث أننا نفترض أن لكل نقطة سليمة في الشبكة ما لا يقل عن نقطة مجاورة سـليمة مـن الخلـل                  

 وتحت الشرط المذكور لتوزيع نقاط الخلل ، ،  2n التي يساوي مقدار الربط فيها k-ary n-Cube برهن أن شبكةن
-kكما نستنتج أن القطر المختل المشروط لشـبكات   .خلل بدون قطع الاتصال بينها نقطة 4n-3  تتحمليمكن أن 

ary n-Cubeمن هذه النتيجة أنه إذا وجد ما لا يزيد نستخلص.   يساوي القطر في غياب أي خلل زائداً وحدتان 
وإذا كان لكل نقطة سليمة مالا يقل عن نقطة مجاورة سليمة ، k-ary n-Cube  نقطة خلل في شبكة الn4-3عن 

تبين في هذا البحـث     . فلابد أن يكون هنالك طريق موصل خال من الأعطال في الشبكة بين كل نقطتين سليمتين              
 إلى مجموعـة   k-ary n-Cube   بهذه النتيجة تنضم شبكة.وصل الخالي من الأعطالكيفية بناء هذا الطريق الم

والتي يساوي القطـر المختـل      ) star-graph وشبكات   hypercubeالتي تحتوي على شبكات     (شبكات التوصيل   
 .المشروط فيها القطر السليم زائداً وحدتان

 
ABSTRACT: We obtain the conditional fault diameter of the k-ary n-cube 
interconnection network. It has been previously shown that under the condition of 
forbidden faulty sets (i.e. assuming each non-faulty node has at least one non-faulty 
neighbor), the k-ary n-cube, whose connectivity is 2n, can tolerate up to 4n-3 faulty nodes 
without becoming disconnected. We extend this result by showing that the conditional 
fault-diameter of the k-ary n-cube is equal to the fault-free diameter plus two. This means 
that if there are at most 4n-3 faulty nodes in the k-ary n-cube and if every non-faulty node 
has at least one non-faulty neighbor, then there exists a fault-free path of length at most 
the diameter plus two between any two non faulty nodes. We also show how to construct 
these fault-free paths. With this result the k-ary n-cube joins a group of interconnection 
networks (including the hypercube and the star-graph) whose conditional fault diameter 
has been shown to be only two units over the fault-free diameter. 

 
KEYWORDS: Fault-tolerance, multiprocessor systems, interconnection architectures, k-
ary n-cube, torus. 
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1. Introduction 

he node connectivity and the fault diameter have been used as measures of the fault-tolerance of 
interconnection networks. These measures however do not reflect the real resilience of these 

networks. It is true that when the number of faulty nodes is equal to the connectivity the network may 
become disconnected. However, this is very unlikely to happen since only very special fault 
distributions of these faults cause disconnection. For instance, in the k-ary n-cube, the node-
connectivity is 2n and 2n faulty nodes may cause disconnection. But the network becomes 
disconnected only when all the 2n faults are adjacent to the same node which is very improbable. 

In an attempt to better quantify the fault resilience of a network, the concept of forbidden faulty 
sets has been introduced by Esfahanian (1989). The idea is to assume that each node has at least one 
non-faulty neighbor. Under this forbidden faulty set condition, the number of tolerable faulty nodes is 
significantly larger with a slight increase in the fault diameter. Esfahanian (1989) has proven that for 
the binary n-cube, whose connectivity is n, 2n-3 nodes can fail (under the forbidden faulty set 
condition) without disconnecting the network. Latifi (1993) has then showed that the corresponding 
conditional fault diameter increases only by 2 over the fault-free diameter. In Rouskov et al. (1996) 
similar results for the star graph network have been established. Latifi et al. (1994) have generalized 
this idea by assuming that each node has at least k non-faulty neighbors. Similar results for the m-ary 
generalized n-cube network have also been obtained in Wu (1998). 

It has been previously shown (Day, 2004) that for k ≥ 4 and n ≥ 2, the k-ary n-cube, whose 
connectivity is 2n, can tolerate up to 4n-3 faulty nodes without becoming disconnected. The 
corresponding conditional node connectivity is therefore 4n-2. The result for the remaining small 
values of k and n has also been obtained in Day (2004). We extend these results in this paper by 
showing that the conditional fault-diameter of the k-ary n-cube is equal to / 2 2n k⎢ ⎥⎣ ⎦ + . We therefore 
establish that the k-ary n-cube, like the hypercube and the star-graph, has conditional fault diameter 
equal to two plus the fault-free diameter. 

This paper is organized as follows: section 2 presents some notations; section 3 obtains some 
preliminary results useful for the derivation of the conditional fault diameter in section 4. Section 5 
concludes the paper. 

2.     Notations 

The k-ary n-cube k
nQ  has N = kn nodes each of the form X = x

n-1
x

n-2
...x

0
,  0 ≤ xi< k, for 0≤i<n. 

Two nodes X = x
n-1

x
n-2

... x
0
 and Y = y

n-1
y

n-2
... y

0
 in k

nQ  are connected if, and only if, there exists 
exactly one value of  i, 0 ≤ i < n, such that xi = yi ± 1 (mod k) and xj = yj , for i≠j. It is shown in Bose et 
al. (1995) that k

nQ  has degree 2n and diameter / 2n k⎢ ⎥⎣ ⎦ . Given two nodes X = x
n-1

x
n-2

...x
0
 and Y = y

n-

1
y

n-2
...y

0
 in Q n

k , we denote by d
H 

(X,Y) the Hamming distance between X and Y, i.e., the number of 
dimensions in which X and Y differ. For the k-ary n-cube, d

H 
(X,Y) is not the length of a shortest path 

between X and Y. The length of a shortest path between X and Y is equal to the Lee distance (Bose et 
al. 1995) given by: d

L 
(X,Y) = Σ i

n
=
−
0
1 wi, where wi =  min (|xi-yi|, k-|xi-yi|). 

The k-ary n-cube k
nQ can be partitioned into k disjoint k-ary (n-1)-cubes. Let ,

1
k i
nQ −  be the sub-

graph of  k
nQ  containing all k

nQ  nodes whose addresses are of the form  X = i x
n-2

... x
0
. Clearly, ,

1
k i
nQ −  

T 
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is a k-ary (n-1)-cube and the sub-graphs ,0
1

k
nQ − , ,1

1
k
nQ − ,…, , 1

1
k k
nQ −
−  form a partition of k

nQ . For any node 

A = a
n-1

 a
n-2

...a
0
 in k

nQ  we denote by pA , 0 ≤ p < k, the node of the form pA = p a
n-2

... a
0
 obtained 

from  A by replacing its leftmost digit a
 n-1

 by p.   
Definition 1: The node-connectivity C(G) (or point-connectivity) of a graph G is the minimum 
number of nodes of G whose removal results in a disconnected or trivial graph. It has been shown in  
Day and Al-Ayyoub (1997) that C( k

nQ ) = 2n. 
 
Definition 2: The fault-diameter FD(G) of a graph G is the maximum distance between any two 
nodes of G in the presence of at most C(G)-1 faulty nodes. It has been shown in Day and Al-Ayyoub 
(1997)  that  FD( k

nQ ) = / 2 1n k⎢ ⎥⎣ ⎦ + . 
 
Definition 3: The conditional node connectivity CC(G) of a graph G is the minimum number of nodes 
of G whose removal results in a disconnected or trivial graph, provided that each of the remaining 
nodes has at least one adjacent node in G that is not removed. 
 
Definition 4: The conditional fault diameter CFD(G) of a graph G is the maximum distance between 
any two nodes of G in the presence of at most CC(G)-1 faulty nodes, provided that each of the non-
faulty nodes has at least one non-faulty adjacent node in G. 

We use the abbreviation FFSC for denoting the forbidden faulty set condition which 
corresponds to the requirement that each non-faulty node must have at least one non faulty neighbor.  

3.     Preliminary Results 

In this section we present some preliminary results that will be used in the next section for the 
derivation of the conditional fault diameter of the k-ary n-cube. We start by the following result which 
has been proven in by Day (2004): 
Theorem 1.  The conditional node connectivity of the k-ary n-cube for n ≥ 2 and k ≥ 4 is: CC( k

nQ ) = 
4n-2. 

We will denote by *
k
nQ

π (X,Y) a minimum-length path between nodes X and Y in k
nQ . The 

following theorem established in by Bose et al. (1995) about the existence of a complete set of node 
disjoint paths between any two nodes of the k-ary n-cube k

nQ  will be used in the next section for 

establishing the conditional fault diameter of k
nQ . Additional results about node disjoint paths in the 

k-ary n-cube can be found in Day and Al-Ayyoub (1997). 
Theorem 2.   Let X = x

n-1
x

n-2 
... x

0
 and Y = y

n-1
y

n-2 
... y

0
 be two nodes in k

nQ  of Hamming distance h = 
d

H 
(X,Y) and of Lee distance l = dL(X,Y). There are a total of 2n node-disjoint paths between  X and Y 

of which: 
1) h paths have length l, 
2) 2n-2h paths have length l+2, and 
3) for each i such that wi > 0, there is a path of length l+k-2wi (h paths). 

In preparation for the proof of the conditional fault-diameter of the k-ary n-cube given in the 
next section, we present the corresponding result for the special case of the k-ary 2-cube (also called 
the k-torus). The k-torus is a wrap-around mesh which consists of k rows and k columns. Each row 
and each column consists of a cycle of k nodes. There are four node-disjoint paths connecting any two 
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nodes of the k-torus. The connectivity of the k-torus is therefore equal to 4. Any two nodes on the 
same cycle (row or column) are connected by two paths along the cycle. One is called the shortest 
path on the cycle and the other is called the longest path. We show that under the FFSC, the k-torus, 
whose connectivity is 4, can tolerate up to 5 faulty nodes without becoming disconnected. The 
conditional node connectivity of the k-torus is therefore 6. We also show that the conditional fault-
diameter of the k-torus is equal to its fault-free diameter plus two.  

The proof of the following theorem consists of a lengthy manual construction of fault-free paths 
between any two non faulty nodes of the k-torus considering all possible relative locations of the 
source and destination nodes and those of the 5 faulty nodes. For brevity, we omit this lengthy 
construction here. Interested readers can find it in Touzene and Day (2005). 
Theorem 3.   The conditional fault diameter of the k-torus under the FFSC is 2 / 2 2k⎢ ⎥⎣ ⎦ + .  

The next result states that it is always possible to construct between any two non-faulty nodes of 
k
nQ  a fault-free path of length at most the diameter if the number of faults does not exceed two. This 

result will be used in the next section to prove the conditional fault diameter of k
nQ .  

Lemma 1. In k
nQ , if k ≥ 4, n ≥ 2 and if there are two or less faulty nodes, then there exists between 

any two non-faulty nodes at least one fault-free path of length at most / 2n k⎢ ⎥⎣ ⎦ . 

Proof. Let X and Y be any two distinct non-faulty nodes in k
nQ . By Theorem 2, there exist between X 

and Y in k
nQ  a first set of h = d

H 
(X,Y) paths each of length d

L 
(X,Y) (which is at most / 2h k⎢ ⎥⎣ ⎦ ) and a 

second set of 2n-2h paths each of length d
L 

(X,Y)+2 (which is at most / 2 2h k⎢ ⎥⎣ ⎦ + ). Hence we have 

in total 2n-h paths between X and Y in k
nQ  each of length at most / 2 2h k⎢ ⎥⎣ ⎦ + . We distinguish the 

following cases: 
• If h = 1 then  2n-h = 2n-1 ≥ 3, and / 2 2 / 2 2 / 2h k k n k⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦+ = + ≤  (since n≥2 and k≥4). 
Hence we have at least 3 paths each of length at most / 2n k⎢ ⎥⎣ ⎦  and at least one of these paths 
must be fault-free. 
• If h = 2 and n = 2, the result is derived from the proof of the fault-diameter of the 2-ary n-cube 
(k-torus) available in Touzene and Day (2005). 
• If h =2 and n ≥ 3 then  2n-h = 2n-2 ≥ 4 and / 2 2 2 / 2 2 / 2h k k n k⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦+ = + ≤  (since n≥3 
and k≥4). Hence we have at least 4 paths each of length at most / 2n k⎢ ⎥⎣ ⎦ , one of which must be 
fault-free. 
• If h ≥ 3 then at least one of the first set of h paths each of length at most / 2 / 2h k n k⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦≤  is 
fault-free.  

4.   The Conditional Fault Diameter of the k-Ary n-Cube 

The following result establishes a lower bound on the conditional fault-diameter of k
nQ . 

Lemma 2. CFD ( k
nQ ) ≥ / 2 2n k⎢ ⎥⎣ ⎦ + , for k ≥ 4, n ≥ 2. 

Proof. Let X and Y be two nodes in k
nQ  at the maximum distance equal to the diameter / 2n k⎢ ⎥⎣ ⎦ . Let 

Z be a neighbor of Y and let T be a neighbor of Z other than Y (see Figure 1). Assume that all 2n-2 
neighbors of Z other than Y and T are faulty and that all 2n-1 neighbors of T other than Z are faulty. 
Notice that the former set of  2n-2  faults and the latter set of  2n -1 faults must be disjoint since  k ≥ 4  
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(otherwise, if F were a faulty node appearing in both sets then  Z F T  would form a cycle of length 3 
which is impossible for k ≥ 4). Assume there are no other faults. The total number of faults is 
therefore 4n-3. A path from T to X must first go through Z then through Y then from Y to X in at least 

/ 2n k⎢ ⎥⎣ ⎦  moves and, hence, will be of length of at least / 2 2n k⎢ ⎥⎣ ⎦ + . Therefore, the conditional fault 

diameter satisfies: CFD ( k
nQ ) ≥ / 2 2n k +⎢ ⎥⎣ ⎦ . Now we establish an upper bound on the conditional 

fault-diameter of k
nQ . 

Lemma 3. CFD ( k
nQ ) ≤ / 2 2n k +⎢ ⎥⎣ ⎦ , for k ≥ 4, n ≥ 2. 

Proof . We proceed by induction on n. The induction basis (n = 2) is given by Theorem 3. Now we 
prove the result for n ≥ 3 assuming it is true for smaller n values. Consider two arbitrary non-faulty 
nodes X = x

n-1
x

n-2
...x

0
 and Y = y

n-1
y

n-2
...y

0
 in k

nQ . Assume the number of faulty nodes is at most 4n-3 
and that the FFSC is satisfied. Our aim is to show that it is always possible to find a fault-free path 
between X and Y of length at most / 2 2n k⎢ ⎥⎣ ⎦ + . We distinguish the following cases: 
Case 1. there exists m, 0 ≤ m < n, such that x

m
= y

m
= i (assume without loss of generality m = n-1), 

then both nodes X and Y belong to the sub-graph  ,
1

k i
nQ − . 

Case 1.1.  ,
1

k i
nQ −  has at most 4(n-1)-3 = 4n-7 faults. By induction hypothesis there must exist a fault-

free path from X to Y in ,
1

k i
nQ −  of length at most [ ] [ ]/ 2 / 2( 1) 2 2k kn n− + ≤ + . 

Case 1.2.  ,
1

k i
nQ −  has more than 4n-7 faults. This means that there are at most 3 faults outside ,

1
k i
nQ − . 

Case 1.2.1.  each of X and Y has all its 2n-2 neighbors inside ,
1

k i
nQ −  faulty.  

There must exist at most one faulty node outside ,
1

k i
nQ − . Therefore either , 1

1
k i
nQ −
−  or , 1

1
k i
nQ +
−  is fault-

free (notice i-1 and i +1 are modulo k). Let X i-1 (respectively X i+1) denote the neighbor of X in , 1
1

k i
nQ −
−  

(respectively , 1
1

k i
nQ +
− ). Similarly for Y i-1 and Y i+1 (see Figure 2). 

Since either , 1
1

k i
nQ −
−  or , 1

1
k i
nQ +
−  is fault-free, at least one of the two paths: 

 
                                   X → X i-1 || *

1,
1
−

−
ik

nQ
π (X i-1, Y i-1) || Y i-1 → Y, or 

         X → Xi+1 || *
1,

1
+

−
ik

nQ
π (X i+1, Y i+1) || Yi+1 → Y 

YX Z T

2n-2 
faulty neighbors

of Z 

2n-1 
faulty neighbors 

of T 

X and Y 
at distance 

/ 2n k⎢ ⎥⎣ ⎦  

Figure 1. / 2 2n k⎢ ⎥⎣ ⎦ +  is a lower bound of CFD ( k
nQ ). 
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is fault-free and is of length at most ( 1) / 2 2n k⎢ ⎥⎣ ⎦− +  (since it is contained in a fault-free 1

k
nQ −  sub-

graph except for two edges). The symbol || is used to denote path concatenation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Case 1.2.2.  X or Y  has a non-faulty neighbor inside  ,

1
k i
nQ − .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

X

Y

X i-1 

Y i-1 

X i+1 

Y i+1 

1,
1
−

−
ik

nQ  ik
nQ ,

1−
1,

1
+

−
ik

nQ  

Figure 2. Path construction for Case 1.2.1. 

Figure 3. Path construction for Case 1.2.2.1. 

X

Y

X i-1

Y i-1

1,
1
−

−
ik

nQ ik
nQ ,

1−

X’X’i-1 

X

Y

X i-1

Y i-1

1,
1
−

−
ik

nQ ik
nQ ,

1−

Y’Y’ i-1 

Figure 4. Path construction for Case 1.2.2.3.1.
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Assume it is X which has a non-faulty neighbor X’ inside ,
1

k i
nQ −  (case of Y is similar). Since there are 

at most three faulty nodes outside ,
1

k i
nQ − , either , 1

1
k i
nQ −
−  or , 1

1
k i
nQ +
−  has at most one faulty node. 

Assume , 1
1

k i
nQ −
−  has at most one faulty node (the other case is similar). 

Case 1.2.2.1.  X i-1 is faulty (hence X i-1 is the only faulty node in , 1
1

k i
nQ −
− ). 

Let  X’ i-1 be the neighbor of X’ located in , 1
1

k i
nQ −
−  (see Figure 3). By Lemma 1, there exists at least 

one fault-free path π (X’ i-1,Yi-1) of length at most ( 1) / 2n k⎢ ⎥⎣ ⎦−  between X’ i-1 and Y i-1 in , 1
1

k i
nQ −
− . 

We have, therefore, a fault-free path: X → X’ → X’ i-1 || π (X’ i-1,Yi-1) || Yi-1 → Y of length at most 
( 1) / 2 3n k⎢ ⎥⎣ ⎦− +  which is less than or equal to  / 2 2n k⎢ ⎥⎣ ⎦ +  since  k ≥ 4. 
Case 1.2.2.2.  Xi-1 is non-faulty and Yi-1 is non-faulty. 
 

Figure 5. Path construction for Case 1.2.2.3.2.                            

X

Y

X i+1

Y i+1

ik
nQ ,

1−
1,

1
+

−
ik

nQ

X’
X’ i+1

X” X” i+1

Figure 6. Path construction for Case 2. 

X 

Y

X j

Y i 

X ’ X ’ j Y ’Y ’ i 

ΠX 

ΠY 

X 
j+1

Y j+1 

X ’ j+1 Y ’ j+1

Y j-1

X j-1

jk
nQ ,

1−
1,

1
+

−
jk

nQ  ik
nQ ,

1−  
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Since there is at most one fault in 1,

1
−

−
ik

nQ , Lemma 1 gives a path  π ( X i-1,Y i-1) of length at most 

( 1) / 2n k⎢ ⎥⎣ ⎦−  in 1,
1
−

−
ik

nQ  yielding the path: X → X i-1 ||π  ( X i-1,Y i-1) || Y i-1 → Y of length at most  

( 1) / 2 2 / 2n k n k⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− + ≤  (since k ≥ 4). 

Case 1.2.2.3.  Xi-1 non-faulty and Yi-1 faulty (the only fault in 1,
1
−

−
ik

nQ ). 

Case 1.2.2.3.1. Y has a non faulty neighbor Y’ in ik
nQ ,

1− . 

Let Y’ i-1 be the neighbor of Y’ located in 1,
1
−

−
ik

nQ  (Figure 4). By Lemma 1, there exists at least one 

fault-free path π (X i-1,Y’ i-1) of length at most ( 1) / 2n k⎢ ⎥⎣ ⎦−  from X i-1 to Y’ i-1 in 1,
1
−

−
ik

nQ . Therefore 
the path: X → X i-1 ||π (X i-1,Y’ i-1) || Y’ i-1 → Y i-1 → Y is fault-free and is of length at most 
( 1) / 2 3n k⎢ ⎥⎣ ⎦− +  ≤ / 2 2n k⎢ ⎥⎣ ⎦ +  (since k ≥ 4). 

Case 1.2.2.3.2.  all neighbors of Y in ik
nQ ,

1−  are faulty. 

In this case Y i+1 must be non-faulty (by the FFSC). We know that 1,
1
+

−
ik

nQ  has at most 2 faulty nodes. 

If it has only one faulty node then it is possible to enter 1,
1
+

−
ik

nQ  from  X going directly from X to X i+1 
or from  X to X’ then to X’ i+1 requiring in both cases at most two moves (see Figure 5). We can then 
use Lemma 1 in 1,

1
+

−
ik

nQ  to obtain a fault-free path of length at most ( 1) / 2n k− ⎢ ⎥⎣ ⎦  from X i+1 or from 
X’ i+1 to Y i+1 and then make a final move from Y i+1 to Y. Hence we have a fault-free path from X to Y 
of length at most  ( 1) / 2 3n k− +⎢ ⎥⎣ ⎦  which is at most  / 2 2n k +⎢ ⎥⎣ ⎦  since k ≥ 4. 

001 
006 

360 

Figure 7.  An Example of the 4n-2 node-disjoint paths in for 3 and 7.n kx yΠ ∪Π = =

0,7
2Q  

ΠX 

ΠY 

3,7
2Q  

X=000 
060 
010 

X 
3

=300 

301 
306 

310 

101 201 
106 206 

110 210 
160 260 

234 
132 

323 023 

134 
332 

034 
032 

Y 
0

=033 

043 

Y=333 
334 

343 

232 

133 233 
123 223 
143 243 

100 200 

7
3Q
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If, however, 1,
1
+

−
ik

nQ  has two faulty nodes, then X must have a second non-faulty neighbor X” inside 
ik

nQ ,
1−  (see Figure 5), otherwise the total number of faulty nodes would include 2n-2 faulty neighbors 

of Y inside ik
nQ ,

1− , 2n-3 faulty neighbors of X inside ik
nQ ,

1− , two faults inside 1,
1
+

−
ik

nQ  and one fault 

(namely Y i-1) inside 1,
1
−

−
ik

nQ  for a total of 4n-2 which exceeds 4n-3. Let X” i+1 denote the neighbor of 

X” located in 1,
1
+

−
ik

nQ .  At least one of the three nodes X i+1, X’ i+1 or X” i+1 must be non-faulty since 

there are only two faults in 1,
1
+

−
ik

nQ . Let X* i+1 denote this non-faulty node. So it is possible to enter 
1,

1
+

−
ik

nQ  starting from X in at most two moves. We can then use Lemma 1 in 1,
1
+

−
ik

nQ  to obtain a fault-

free path of length at most ( 1) / 2n k⎢ ⎥⎣ ⎦−  from X* i+1 to Y i+1 and then make a final move from Y i+1 to 
Y.  Hence we have in total a fault-free path from  X to Y of length at most ( 1) / 2 3n k⎢ ⎥⎣ ⎦− +  which is 
at most / 2 2n k⎢ ⎥⎣ ⎦ +  since k ≥ 4. 
Case 2.  x

m
 ≠ y

m
 for all m, 0 ≤ m < n. 

In this case, X and Y differ in all n dimensions. Let i = x
n-1

 and j = y
n-1

 (i ≠ j). We therefore have X ∈ 
ik

nQ ,
1−  and Y ∈ jk

nQ ,
1− . Hence X and Y are of the form: X = i x

n-2
 x

n-3
...x

0
 and Y = j y

n-2
 y

n-3
...y

0
. Assume 

without loss of generality that i, i+1, … j is the shortest path between i and j on the cycle 0, 1, 2, … k-
1. Let xΠ  be the set of 2n-1 minimum-distance paths each joining either X  to jX  or any of the 2n-

2 neighbors X’ of X in ik
nQ ,

1−  to its isomorphic node jX '  in jk
nQ ,

1−  (see Figure 6). The notations 

xπ (X, jX ) and xπ (X’, jX ' ) will be used to denote these 2n-1 paths of xΠ . Similarly, let yΠ  be 

the set of 2n-1 minimum-distance paths each joining either Y to iY  or any of the 2n-2 neighbors Y’ of 
Y in jk

nQ ,
1−  to its isomorphic node  iY '  in ik

nQ ,
1− . The notations yπ ( iY , Y) and yπ ( iY ' , Y’ ) will be 

used to denote these 2n-1 paths of yΠ . The 4n-2 paths in x yΠ ∪Π  are all minimum-distance 

paths. Each is of length equal to d
L 

(X, jX ) = d
L
( iY ,Y) which is at most / 2k⎢ ⎥⎣ ⎦  and they are all 

mutually node-disjoint. Figure 7 illustrates the 4n-2 paths of x yΠ ∪Π for n = 3, k = 7, X = 000, and 
Y = 333. These 4n-2 paths are mutually disjoint and therefore at least one of them must be completely 
fault-free (since the total number of faults is at most 4n-3). Let π  be this fault-free path and assume 
that π ∈ xΠ  (the case π ∈ yΠ  is symmetric). Let X* denote the end node of *X  located in jk

nQ ,
1−  

(i.e. X* is either jX or one of the 2n-2 nodes denoted jX ' ). From the previous discussion we have: 
|π | = d

L
(X, jX ) ≤ / 2k⎢ ⎥⎣ ⎦ . 

Notice also that at most one of the sub-graphs lk
nQ ,

1−  , 0 ≤ l < k, can possibly contain more than 4n-7 
faulty nodes otherwise the number of faults would exceed 4n-3 since n ≥ 3 (by assumption of the 
induction step). 
Case 2.1.  jk

nQ ,
1−  has at most 4n-7 faults. 



KHALED DAY and ABDEREZAK TOUZENE 

 72

We can build a path π || π (X*,Y) of length at most / 2 2n k +⎢ ⎥⎣ ⎦ , where π (X*,Y) is a fault-free path 

between X* and Y in jk
nQ ,

1−  of length at most ( 1) / 2 2n k− +⎢ ⎥⎣ ⎦  obtained using the induction 

hypothesis in jk
nQ ,

1− . 

Case 2.2. If jk
nQ ,

1−  has more than 4n-7 faults (hence at most 3 faults outside jk
nQ ,

1− ). 

Case 2.2.1.  If  yπ ( iY , Y) is fault-free. 

In this case we can build a path: π (X, iY ) || yπ ( iY , Y) of length at most / 2 2n k +⎢ ⎥⎣ ⎦ , where the 

path π (X, iY ) is a fault-free path of length at most ( 1) / 2 2n k⎢ ⎥⎣ ⎦− +  between X and iY  in ik
nQ ,

1−   

obtained using the induction hypothesis in ik
nQ ,

1− . Notice here that the induction hypothesis applies in 
ik

nQ ,
1−  since the number of faults outside jk

nQ ,
1−  (hence inside ik

nQ ,
1− ) is at most 3 which is less than 

4(n-1)-2  (since n ≥ 3, by induction step assumption). Furthermore, the FFSC is satisfied in ik
nQ ,

1−  

because it would take at least 2n-2 faults inside ik
nQ ,

1−  to make all the neighbors of one of its nodes 

faulty which is not possible since 2n-2 > 3 (because n ≥ 3) and there are at most 3 faults in ik
nQ ,

1− . 

Case 2.2.2.  yπ ( iY , Y) is faulty. 

Case 2.2.2.1. 1* +jX is not faulty and 1+jY  is not faulty. 
If  d

L 
(X,Y) < / 2n k⎢ ⎥⎣ ⎦ , we can build a path: π  || *X  → 1* +jX  || π ( 1* +jX , 1+jY ) || 1+jY  → Y 

of length at most / 2 2n k⎢ ⎥⎣ ⎦ + , where π ( 1* +jX , 1+jY ) is a fault-free path between 1* +jX and 
1+jY  of length at most ( 1) / 2n k⎢ ⎥⎣ ⎦−  obtained using Lemma 1 in 1,

1
+

−
jk

nQ . Notice that there are at 

most three faults outside jk
nQ ,

1−  and one of them is located on yπ ( iY , Y), therefore there are at most 

two faults inside 1,
1
+

−
jk

nQ  and hence Lemma 1 applies in 1,
1
+

−
jk

nQ . 

If, however, d
L
(X,Y) = / 2n k⎢ ⎥⎣ ⎦ , let '

1X  and '
2X  be neighbors of X in ik

nQ ,
1−  corresponding to 

minimum distance moves from  X to Y along two different dimensions (these neighbors exist since n ≥ 
3). Consider the 3 paths joining X to 1+jX , '

1X  to 1'
1

+jX , and '
2X  to 1'

2
+jX , corresponding to the 

sequence of moves i → i-1 → i-2 → … →  j+1 in dimension n-1. These paths are node-disjoint and 
each is of length at most / 2 1k⎢ ⎥⎣ ⎦ + . Therefore, it is possible to enter the sub-graph 1,

1
+

−
jk

nQ  from X in 

at most  / 2 2k⎢ ⎥⎣ ⎦ +  moves (in fact if we had started with the edge  X→ 1−iX  then we would enter the 

sub-graph 1,
1
+

−
jk

nQ  from  X in at most  / 2 1k⎢ ⎥⎣ ⎦ +  moves). Since in addition 1,
1
+

−
jk

nQ  has at most two 

faults, Lemma 1 can be used to go from one of the nodes 1+jX , 1'
1

+jX  or 1'
2

+jX  to 1+jY  in at most 

( 1) / 2n k⎢ ⎥⎣ ⎦−  moves (in fact in at most ( 1 / 2 1n k⎢ ⎥⎣ ⎦− −  moves if we had started with edge X → '
1X  

or edge X → '
2X  since the initial move is a minimum distance move) and then from 1+jY to Y 

yielding an overall path from  X to Y of length at most / 2 2n k⎢ ⎥⎣ ⎦ + .  

Case 2.2.2.2.  Both 1* +jX  and 1+jY  are faulty. 
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Case 2.2.2.2.1.  1−jY is not faulty. 
In this case, the only faulty nodes outside jk

nQ ,
1−  are 1* +jX , 1+jY  and one node other than 1−jY  on 

yπ ( iY , Y). In this case we can build a path: π -1 || π ( 1−jX , 1−jY ) || 1−jY  → Y, of length at most 

/ 2 2n k⎢ ⎥⎣ ⎦ + , where π ( 1−jX , 1−jY ) is a minimum distance fault-free path between 1−jX  and 
1−jY  in 1,

1
−

−
jk

nQ  (notice that there are no faults in 1,
1
−

−
jk

nQ  in this case)  and π -1 denotes the path 

obtained from π  by removing its last 1−jX → X* edge. 
Case 2.2.2.2.2.  1−jY is faulty. 
The only faulty nodes outside jk

nQ ,
1−  are 1* +jX , 1+jY  and 1−jY . In this case, Y must have at least 

one neighbor Y’ inside jk
nQ ,

1−  which is not faulty (by FFSC). We can, therefore, build a fault-free 

path: π ( X, iY ' ) || yπ ( iY ' , 'Y ) || 'Y  → Y of length at most / 2 2n k⎢ ⎥⎣ ⎦ +  where π ( X, iY ' ) is a 

minimum distance fault-free path between X and iY '  in ik
nQ ,

1−  (notice that there are no faults in ik
nQ ,

1−  
in this case). 
Case 2.2.2.3. 1* +jX  is not faulty and 1+jY  is faulty. Here 1+jY  is faulty and we have at least one 
fault located on yπ ( iY , Y) (condition of all sub cases under case 2.2.2). Therefore, there is at most 

one other fault outside jk
nQ ,

1− . Furthermore, node Y must have at least one non faulty neighbor (by 
FFSC). We distinguish the following two sub-cases: 
Case 2.2.2.3.1. Some neighbor Y’ of Y inside jk

nQ ,
1−  is not faulty. Hence, at least one of the following 

two paths must be fault-free: 
π ( X, iY ' ) || yπ ( iY ' , 'Y ) || 'Y → Y, (here |π ( X, iY ' )| ≤ ( 1) / 2n k⎢ ⎥⎣ ⎦−  (by Lemma 1) 

π  || *X  → 1* +jX  ||π ( 1* +jX , 1' +jY ) || 1' +jY  → 'Y  → Y (all moves are minimum distance 
moves except for the two moves *X  → 1* +jX  and 1' +jY  → 'Y ). 
The length of each of these two paths is clearly at most  / 2 2n k⎢ ⎥ +⎣ ⎦ . 

Case 2.2.2.3.2. The neighbor 1−jY  of Y is not faulty. 
Let 1' −jY  and 1" −jY  denote two neighbors of  1−jY  inside 1,

1
−

−
jk

nQ . Obviously 1' −jY  and 1" −jY  

cannot be on the path yπ (Y, iY ) since 1−jY  is the only node on this path that is located in 1,
1
−

−
jk

nQ  

(this is justified by the fact that the paths in yΠ  are minimum distance paths). Therefore, at least one 

of the following two paths must be fault-free and is of length at most / 2 2n k⎢ ⎥⎣ ⎦ + : 

π ( X, iY ' ) || yπ ( iY ' , 'Y )-1 || 1' −jY  → 1−jY  → Y 

π ( X, iY " ) || yπ ( iY " , "Y )-1 || 1" −jY  → 1−jY  → Y 

where π ( X, iY ' ) and π ( X, iY " ) are paths of length at most [ ]/ 2( 1) kn −  obtained using Lemma 1 

in ik
nQ ,

1− . 

Case 2.2.2.4.  1* +jX  is faulty and 1+jY  is not faulty. 



KHALED DAY and ABDEREZAK TOUZENE 

 74

If  Y has a non faulty neighbor other than 1+jY  then the same sub-cases 2.2.2.3.1 and 2.2.2.3.2 apply 
for this case too. If, however, all the 2n-1 neighbors of Y other than 1+jY  are faulty, then for at least 
one of the 2n-2 neighbors '*X of *X  inside jk

nQ ,
1−  we must have both '*X  and its neighbor 

1'* +jX  in 1,
1
+

−
jk

nQ  non-faulty. Otherwise, there will be at least 2n-1 (neighbors of Y) plus 2n-2 

(neighbors '*X  of *X  in jk
nQ ,

1−  or their corresponding 1'* +jX  in 1,
1
+

−
jk

nQ ) plus one ( 1* +jX ) faults 
for a total of 4n-2 faults which exceeds the number of faults 4n-3. In this case the path: 
 
π  || *X  → '*X  → 1'* +jX  ||π ( 1'* +jX , 1+jY ) || 1+jY  → Y 
 
is fault-free, where π ( 1'* +jX , 1+jY ) is a path of length at most ( 1) / 2n k− ⎢ ⎥⎣ ⎦  obtained applying 

Lemma 1 in 1,
1
+

−
jk

nQ . The overall length would not exceed / 2 2n k +⎢ ⎥⎣ ⎦  if the length of π  is strictly 

less than / 2k⎢ ⎥⎣ ⎦ . If however the length of π  is at its maximum value / 2k⎢ ⎥⎣ ⎦  (i.e. X and Y are 
diametrically opposite along dimension n-1) then a different path is needed. An alternative path can be 
built going first from  X to a non faulty neighbor iY '  of iY  following edges of a minimum distance 
path from X to iY  inside ik

nQ ,
1−  (this is possible making use of Theorem 2 inside ik

nQ ,
1−  and 

remembering that  X and Y differ in all dimensions and that ik
nQ ,

1−  contains at most one faulty node). In 

fact it is possible to find a non faulty neighbor iY '  of iY  such that 1' +jY  is also not faulty since we 
are left only with one fault outside jk

nQ ,
1−  other than 1* +jX  and 1−jY . The path can then continue 

going from iY '  to 1' +jY  correcting the digit at dimension n-1 along the opposite direction of that 
followed along yπ ( iY ,Y) (i.e. in the direction i → i-1 → i-2  … →  j+1). Going in this direction 
along dimension n-1 requires at most one extra move beyond the minimum distance since X and Y are 
diametrically opposite along dimension n-1. The alternative path can be completed by the two moves 
from 1' +jY  to 1+jY  and then from 1+jY  to Y . The overall length of this alternative path would not 
exceed / 2 2n k⎢ ⎥⎣ ⎦ +  since all moves are along minimum distance paths except possibly for the one 

extra move on the path from iY '  to 1' +jY  (the opposite direction path) and the last move from 1+jY  
to Y.  
Theorem 4. The conditional fault-diameter of the k-ary n-cube is equal to / 2 2n k⎢ ⎥⎣ ⎦ +  for k ≥ 4 and n 
≥ 2. 
Proof.  Derived from combining the results of Lemma 2 and Lemma 3.  

5.    Conclusion 

We have contributed to the study of the fault-tolerance of the k-ary n-cube interconnection 
network by establishing its conditional fault-diameter under the FFSC (i.e., assuming that each non-
faulty processor has at least one non-faulty neighbor). We have shown that under this condition and 
for k ≥ 4 and n ≥ 2, the conditional fault-diameter of the k-ary n-cube is / 2 2n k⎢ ⎥⎣ ⎦ + . This means that 
if there are less than 4n-2 faults in the k-ary n-cube and if every non faulty node has at least one non-
faulty neighbor, then there is a fault-free path of length at most / 2 2n k⎢ ⎥⎣ ⎦ +  between any two non-
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faulty nodes. We have shown how to construct these fault-free paths. With this result the k-ary n-cube 
joins a group of interconnection networks (including the hypercube and the star-graph) whose 
conditional fault-diameter have been proved to be only two units over the fault-free diameter. 
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