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 حول تقديرات الإنحدار باستخدام العينات القصوى المرتبة

 هاني سماوي، أحمد السامرائي و عبيد السعيدي 

 الانحدار قد استخدم لتقدير الوسط الحسابي للمجتمع للمتغير المعتمد )ص( في حالتين. أسلوب خلاصة :
س( معلوماً وفيي الحالية النانيية عنيدما يكيون في الحالة الأولى عندما يكون الوسط الحسابي للمتغير المساعد المستقل )

. أيضا فيي الحالية النانيية لقيد اسيتخدمنا طريقية العينية المتدوجية لتقيدير الوسيط الحسيابي للمتغيير المسيتقل م غير معلو
 .(1996)س(. لقد تحققنا من أداء الطريقتين باستخدام العينات القصوى المرتبة كما جاء في بحث سماوي وتملاءه )

م عرض الناحية النظرية والرقمية بواسطة المحاكاة والتطبيق في هذا البحيث. ولقيد أظتيرت النتيانه أنيح فيي حالية لقد ت
التوتيعيات المتمانليية فيان طريقيية اسيتخدام العينييات القصيوى المرتبيية لتقرييرات الانحييدار هيي اكنيير فعاليية ميين طريقيية 

   العينات المرتبة العادية والعينات البسيطة.
 

ABSTRACT: Regression is used to estimate the population mean of the response 

variable, Y , in the two cases where the population mean of the concomitant (auxiliary) 

variable, X , is known and where it is unknown. In the latter case, a double sampling 

method is used to estimate the population mean of the concomitant variable. We 

invesitagate the performance of the two methods using extreme ranked set sampling 

(ERSS), as discussed by Samawi et al. (1996). Theoretical and Monte Carlo evaluation 

results as well as an illustration using actual data are presented. The results show that if 

the underlying joint distribution of X and  Y is symmetric, then using ERSS to obtain 

regression estimates is more efficient than using ranked set sampling (RSS) or  simple 

random sampling (SRS). 

 

KEYWORDS:  Extreme ranked set sample, ranked set sample, relative efficiency,  

regression estimators, two-phase sampling. 

1. Introduction 

In many experimental situations the response variable Y is related to a non-stochastic concomitant 

variable, X . For instance, let Y be the Bilirubin level in jaundice babies who stay in neonatal intensive 
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care and let X be the weight of the baby at birth. By obtaining simultaneous observations on  X  and  Y , 

we can use information contained in the X-measurements to estimate the mean value of  .Y  This can be 

done by using either ratio estimation or regression estimation.  

       Herein, we are interested in the regression estimation method used to obtain increased precision in 

estimating the population means or totals of the variable of interest, Y , by taking advantage of its 

correlation with the auxiliary variable X . The two cases where the mean, x , of X  is known and where 

it is unknown are considered.  

In many cases the sampling units in a study are easier ranked than actually quantified.  McIntyre 

(1952) proposed to use the mean of n  units obtained from a ranked set sample (RSS) to estimate a 

population mean. Patil et al. (1993) compared the precision of ranked set sampling with the regression 

estimator. They showed that using RSS is superior to regression estimator under SRS in most of the cases. 

Yu and Lam (1997) used the RSS regression estimation method to estimate the population mean and 

showed that using RSS provides a more efficient estimator than using SRS. For more details on RSS see, 

for example, Kaur et al. (1995) and Patil et al. (1999). Samawi et al. (1996) investigated the use of extreme 

ranked set sampling (ERSS) in reducing the ranking error and in improving the precision in estimating the 

population mean in the case of a symmetric underlying distribution. They showed that if the underlying 

distribution is the uniform distribution, then the highest magnitude of the relative savings occur when only 

the extreme ordered units are measured with equal proportion. However, in the case of other unimodal 

symmetric distributions the highest gain is achieved when the units possessing the middle rank are 

measured. For this reason, Yanagawa and Chen (1980) did not consider the uniform distribution while 

investigating various symmetric distributions to develop a better ranked set sample estimator of the 

population mean.  

As in Samawi et al. (1996) we obtain an extreme rank set sample by first choosing r independent sets, 

each of which contains r bivariate elements drawn randomly from an infinite population. Rank the 

elements in each set with respect to one of the variables  Y or X . Suppose that the ranking is done on the 

variable X . From the first set an actual measurement is taken of the X element with the smallest rank, 

together with the value of Y associated with this smallest element of X . From the second set an actual 

measurement is taken of the element with the largest rank of X , together with the associated  Y value. 

From the third set an actual measurement is taken of the element with the smallest rank of X , together 

with the associated  Y value, and so on. In this way we obtain the first 1r   measured elements using the 

first 1r   sets, together with the associated values of the Y  variable. The choice of the thr   element 

from the thr   (i.e., the last) set depends on whether r is even or odd :           

(a) If r is even the largest ranked X element is measured, together with the value of the associated 

variable Y . ERSSa will denote such a sample.  

(b) If r is odd we measure the median of X , together with the value of variable Y associated with the 

median of X . ERSSb will denote such a sample.   

The cycle may be repeated m times until n rm  bivariate elements have been measured. 

In this paper we propose to use ERSS to improve the precision of the two methods of regression 

estimation. We study the properties of these estimators and compare them under different settings. In 

Section 2, we obtain the regression estimator of the mean of  Y using extreme ranked set sampling when 

x  is known. The mean and variance of the estimator are derived. Comparisons between the various 

estimators are discussed in terms of efficiencies. In Section 3, we obtain the regression estimator using 

extreme ranked set sampling when x  is unknown using a double sampling method. Again, we derive the 

mean and variance of the estimator and some comparisons between the various estimators are discussed in 

terms of efficiencies. An illustration of the methods using real data about the Bilirubin level in jaundice 

babies is given in Section 4.  
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2.     Regression Estimators when 


X  is Known 

Like ratio estimation, linear regression estimation of the mean is designed to increase the precision of 

the estimator by using an auxiliary variable X that is correlated with  Y . When the relationship between 
Y and X  is examined, it may be found that although the relation is approximately linear, the line does not 

go through the origin. This suggests that an estimator based on the linear regression of  Y on X is better 

than an estimator that is based on the ratio of the two variables. 

2.1   Regression Estimator Using SRS 

Let 
 ,i iX Y

, 
1, 2,...,i n

 be a bivariate random sample from 
 ,F x y

 and assume that 

 
 i y i x iY X      

                                                   (2.1) 

where 
and 

x
 

y  are the means of X and  Y respectively, and for a fixed iX
, the 

'si , 
1, 2,...,i n

 

are i.i.d. with mean zero and variance 
 22 2 1y   

, where 


 is the correlation coefficient between 

X and  Y . 

When the population mean x  is known, the regression estimator of the mean of  Y is given by:  

 ˆ
reg xY Y X   

,                                             (2.2) 

where       

1
iX X

n
 

, 

1
iY Y

n
 

, 

  

 
2

ˆ
ii i

i

X X Y Y

X X


 







, and   

n m r
. 

When the joint underlying distribution of 
 ,X Y

 is assumed to be a bivariate normal, the regression 

estimator 
regY

 is an unbiased estimator for y  and its variance is given by 

                                                   

   
2

2 1
1 1

3

y

regVar Y
n n




 
   

                                               (2.3) 

(see Tikkiwal (1960) or Sukhatme and Sukhatme, 1970.) However, if the assumption of the linear 

relationship in (2.1) is invalid, then the SRS regression estimator in (2.2) is in general a biased estimator of 
y

. 

2.2   Regression Estimator Using RSS 

Consider a bivariate RSS where the relationship between  
   and    

i ki k
Y X

 is  

                
      y xi ki k i k

Y X      
,   and1,2,..., 1,2,..., .i r k m 

         (2.4) 

Then the regression estimator 
RegY

based on RSS as in Yu and Lam (1997) is given by  

 
 ˆ

Reg RSS RSSxY Y X   
.                                                    (2.5) 
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Using basic properties of conditional moments, Yu and Lam (1997) showed that under (2.4), 
RegY

 is an 

unbiased estimator of y  and its variance is 

                                               

   
2 2

2

2
1 1

y RSS
Reg

ZR

Z
Var Y E

n S




  
     

   ,                    (2.6) 

where,  
 

1
RSS i k

i i

Z Z
mr

 
,

 
 





x

xki

ki

X
Z




,   and  
  

2
2 1

RSSZR i k
k i

S Z Z
rm

 
. 

 

Again, if the assumption of the linear relationship is invalid, the RSS regression estimator in (2.5) is in 

general a biased estimator for


y .  

2.3   Regression Estimator Using ERSS 

Assuming that both variables, X and Y , have symmetric underlying distributions, let 
   ,  
i jk i jk

X Y
 

be respectively, the i th  smallest value of X  and the corresponding value of Y obtained from the 
j th

 sample and the k th  cycle. Then regressing   
 i jk

Y
 on 

 i jk
X

 we have  

         
     ,

y

y X ijki jki jk

x

Y X


   


   

                                        (2.7)          

where 
1, ; 1,2,..., / 2i r j r 

 and  
1,2,..., ,k m

 when r  is even, 
 1, , 1,2,...,i r j 

 

1

2

r 

 and 

1,2,...,k m
  when r  is odd,  and ijk

 has the same distributional assumptions as in (2.1).  In what 

follows we discus in details the case when r  is even. The case when r is odd is similar and it will only be 

presented in the numerical results. 

When the population mean 


x  is known, we have the difference estimator, 

 Da ERSSa x ERSSaY Y X   
                                              (2.8) 

where,  

  
     

/ 2

1 1 2
1 1

1 m r

ERSSa j k r jk
k j

Y Y Y
n


 

 
, 

     
/ 2

1 1 2
1 1

1 m r

ERSSa j k r jk
k j

X X X
n


 

 
, and 


 is a 

constant to be determined. Under the assumption of symmetric underlying distribution functions of X  and 

Y , ERssaY
and ERssaX

are unbiased estimators for 


y  and x  respectively, see Samawi et al. (1996). 

Therefore, it can easily be shown that DaY
 is an unbiased estimator of 

.y  Furthermore, 

       2var var 2 var varY
Da ERSSa ERSSa ERSSa

X

Y X X Y


 


  

 

where, 
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   1

2

var
X

ERSSaX
n




, 
   1

2

var
Y

ERSSaY
n




, 
  

 1

2

1
var XX 

, 
  

 1

2

1
var YY 

 and 

n r m
.  Note that by the symmetry of the underlying distributions,     1

2 2

nX X 
and [1] [ ]

2 2

nY Y 
, see 

Samawi et al. (1996). 

Since for any value of 


, aD   is an unbiased estimator of 
y

, the optimal value of 


 can be obtained 

by minimizing the variance of aD . Doing so gives 

* Y

X


 




 as the optimal value of


.  However, 

*
 is unknown but can be estimated by       
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1 1
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i jk rm
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k j i

X X
C
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. 

Now, define the ERRSa  regression estimator for y  as 

 ˆ
Ereg ERSSa a x ERSSaY Y X   

.                                               (2.9) 

Then using basic properties of conditional moments, we have the following theorem:   

Theorem 2.1:  Under (2.2) and assuming that the underlying marginals distributions of X  and of Y are 

symmetric, the regression estimator of y  as defined in (2.9) has the following properties: 

(a) 
 E YEreg Y

 

(b) 

   
22

2

2
Y 1 1

E

ERSSY
Ereg

Z

Z
Var E

n S




  
    

           

where,                                           
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1 2 1 2
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1
,
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/ 2 / 22 2
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, 

with  
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Proof:   To prove Theorem 2.1, we first show that  

(1) 
 ˆ
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 and  

(2) 
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Proof of (1):    From the definition of   
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Proof of (2):    Similarly, since 
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Proof of Theorem 2.1 (a):  Using (2.7) and the proof of (1), we have that 
    XYEEYE EregyxEreg 
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Therefore, 
  ,Ereg yE Y 

 and hence 
EregY

 is an unbiased estimator of y . 

Proof of Theorem 2.1 (b):   Using properties of conditional moments, 

     Ereg x y Ereg x y EregVar Y E Var Y X Var E Y X    
    . 

First note that, 
    ˆ x y Ereg x y ERSSa a x ERSSaVar E Y X Var E Y X X      

        and from the proof of 

part (a), 
  yEreg μ XYE 

, then 
  0x y Ereg x yVar E Y X Var        .                  

Also,  

    

     

  

2

ˆ 

ˆ                            
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Clearly this implies that,  
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and hence, 
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2.4    Comparison with Naïve Estimators 

 Using Theorem (2.1) and the above results, the relative precision of the ERSS regression estimator, 

EregY
, relative to the ERSS naive estimator, ERSSY

, is      
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                        (2.10) 

whereas the relative precision of ERSS regression estimator,
YEreg  relative to the RSS naive estimator RSSY   

is given by  
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 .                    (2.11) 

 

For the variances of the naïve RSS and ERSS estimators, see for example Samawi et al. (1996).  As it is 

known that 
   ERSS SRSVar VarY Y

, Samawi et al. (1996), we only compare EregY
 to ERSSY

 and 

RSSY
. Using (2.10), EregY

 has the a greater precision than  ERSS

Y
 whenever     

 1
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2
2

2
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Therefore, the regression method of estimating y  based on ERSS is most preferable if 


 is large. 

Similarly, from (2.11), EregY
 has a greater precision than RSSY

 whenever 
 

1

2

2

1

2
2

2

1

1
1

2
1

i

E

r

Y

i

ERSS
y

Z

r

Z

S









 
 
 

  
   
     

    



. 

2.5    Comparisons with Regression Estimators 

2.5.1   Comparisons with SRS Regression Estimator 

We consider the relative precision of our proposed ERSS regression estimator relative to the SRS 

regression estimator. Table 2.1 presents the relative precision when 
 ,X Y

 has a bivariate normal 

distribution with a correlation coefficient of zero. From the table we see that the relative precision is always 

greater than 1 when 
0 

. Since the relative precision as given in (2.12) is independent of 
,

 the ERSS 

regression estimator is always superior to the SRS regression estimator, regardless of the value of 


. 

 

                    Table  2.1.  Relative precision of ERSS regression estimator relative to the SRS  

                     regression estimator. 

 
  when, 0Erg regRP Y Y  

 

/m r

 

4 5 6 7 8 

1 1.771401 1.396518 1.282631 1.213074 1.17554 

4 1.054236 1.043639 1.038408 1.032832 1.02938 

8 1.023997 1.019787 1.017815 1.015426 1.01390 
  1 1 1 1 1 

 

2.5.2    Comparisons with RSS Regression Estimator 

Finally, we consider the relative precision of our proposed ERSS regression estimator relative to the 

RSS regression estimator, as presented by Yu and Lam (1997). Following, Yu and Lam (1997), since ERSSY
 

does not utilize any information on the concomitant variable X , it is fair to compare ERSS regression 

estimator, EregY
, with the regression estimator, regY

, based on a SRS, (see Hedayat and Sinha, (1992)) and 

with the regression estimator, RegY
 based on RSS. When the sample is drawn from a bivariate normal 

population the relative precision of EregY
 relative to regY

 is                                           
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  2
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1
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  .                                   (2.12) 

and the relative precision of 
EregY

 relative to 
Re gY

 is  

 
 
 

2

2

2

2

1

,

1

R

E

RSS

ZReg
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Z

Z
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RP Y Y

Var Y Z
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  .                                    (2.13)  

Table 2.2 presents the relative precision for a bivariate normal distribution with zero correlation coefficient. 

The table shows that the relative precision is always greater than 1 when 
0 

. Since the relative 

precision given in (2.13) is independent of


, we can again conclude that the ERSS regression estimator is 

always superior to the RSS regression estimator regardless of the value of 


. 

                                 

                      Table 2.2.  Relative precision of ERSS regression estimator relative to the RSS  

                      regression estimator 

 
  when, 0Erg regRP Y Y  

 

/m r  4 5 6 7 8 

1 1.096072 1.038646 1.029965 1.018206 1.015733 

4 1.008527 1.004899 1.004976 1.003545 1.003144 

8 1.003801 1.002274 1.00236 1.001684 1.001516 
  1 1 1 1 1 

 

2.6    Evaluation of Departure from the Linearity Assumption 

Generally, if the assumption of the linear relationship in (2.7) is invalid, the ERSS regression 

estimator is a biased estimator. In such a case, we define the relative precision to be the ratio of the MSEs of 

the estimators compared. As in Yu and Lam (1997), we evaluate the performance of the regression 

estimator under the departure from the linearity assumption by using Plackett’s class of bivariate 

distributions with fixed marginal distribution functions 
 F x

 and 
 G y

. The joint cdf is given by 

 

         

 

   

1/ 2
2, , 4 1

, 2 1

s x y s x y F x G y

x y

F x G y

 



     
  


    

1

1,

if

if








 

where 
       , 1 1s x y F x G y       and the parameter 


 governs the dependence between 

X  and Y .   
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Table 2.3. Relative precision of ERSS regression estimator relative to ERSS naive estimator when the 

linearity assumption is violated (bold numbers indicate  RP < 1). 

 
r = 4 

Y 

  N(  ,1 ) 

         M 

U ( 0,1 ) 

          M   

X 


 1 4 8 1 4 8 

N( ,1 ) 0.05 1.3437 1.4061 1.5112 1.2469 1.3043 1.3604 

0.3 0.9467 1.0188 1.0351 0.9099 1.0178 1.0343 

1 0.8878 0.9735 0.9897 0.8741 0.9786 0.9909 

3 0.9444 1.0183 1.0382 0.914 1.0149 1.0294 

10 1.1241 1.2085 1.2466 1.0167 1.1686 1.1649 

U( 0,1 ) 0.05 1.3481 1.4636 1.4963 1.3333 1.4565 1.4647 

 0.3 0.9589 1.0303 1.0452 0.9511 1.0305 1.0464 

 1 0.9127 0.9913 0.9919 0.8908 0.9839 0.9929 

 3 0.9717 1.0289 1.0316 0.9411 1.0255 1.0438 

 10 1.1652 1.1947 1.2164 1.1018 1.1886 1.2483 

r = 5 
Y 

                       N( ,1 ) 

         M 

U ( 0,1 ) 

           M 

X 


 1 4 8 1 4 8 

N( ,1 ) 0.05 1.3485 1.3797 1.4031 1.2057 1.2991 1.2878 

 0.3 0.9692 1.0241 1.0395 0.975 1.0261 1.0355 

 1 0.9305 0.9836 0.9959 0.9336 0.9833 0.9962 

 3 0.9473 1.0165 1.0262 0.9627 1.0261 1.0336 

 10 1.1455 1.1612 1.1627 1.0535 1.1489 1.1671 

U( 0,1 ) 0.05 1.3668 1.3565 1.3876 1.3086 1.4015 1.4203 

 0.3 1.0039 1.0363 1.0383 0.9848 1.036 1.0529 

 1 0.9452 0.9885 0.9937 0.9508 0.9884 0.9956 

 3 0.9973 1.0291 1.028 0.9834 1.0306 1.0387 

 10 1.1845 1.1734 1.2056 1.1509 1.2088 1.2089 

 
The reason for choosing this class of bivariate distributions is that it covers the full range of dependence:  

(a) 
   yGxF  10

                                                                                                                                          

(b) 
1  

 X and Y  are independent 

(c) 
   F x G y  

. 

In general, the relationship between X  and Y  is not linear. However, their relationship might be 

close to linear when 


 is close to 0 or   and their marginal distributions are the same and symmetric if 
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 is close to 0. For a more detailed description of Plackett’s distribution and its random generation, see 

Johnson (1987), (P. 191-197).  

         First, we fix the set size r to be 4 and 5, and examine m = 1, 4, 8. Five types of dependence from 

strongly negative to strongly positive corresponding to 
  = 0.05, 0.3, 1, 3, 10, and two marginal 

distributions, normal ( , 1), uniform (0,1), are considered here. Table 2.3 gives the relative precision of the 

ERSS regression estimator relative to the ERSS naive estimator based on simulations of size 100,000. 

The main conclusions from Table 2.3 are: 

1. Clearly, if both X and Y have symmetric marginal distributions and 
  is 0.05 or 10, the ERSS regression 

estimator is superior to the ERSS naive estimator since the Plackett’s distribution in these cases is close to a 

bivariate distribution with linearly related marginal. 

2. The efficiency decreases as the value of 
  increases from 0.05 to 1, and starts to increase as 

  

increases from 1 to 10 for any given value of m and  for r = 4 and 5.  

3.  For any fix 
  and any value of r, we note that as m increases the efficiency increases. 

In general when 
  is close to 1, the performance of the ERSS regression estimator is poor. This may 

be due to the fact that when 
  is close to 1, the two variables X  and Y are independent. 

3.    Regression Estimators when x   is Unknown  

In this Section, we discuss how to obtain the extreme ranked set sample regression estimator by using 

the method of double sampling (or two-phase sampling), when 
 x  is unknown.  

3.1    Regression Estimation Using Two-phase Sampling 

The regression estimators Ereg
, Reg

and reg
 involve the population mean x of the 

concomitant variable X , which is usually unknown in practical settings. If x  is unknown, the method of 

double sampling can be used to obtain an estimate of x . This involves the drawing of a large random 

sample of size 
,n

 which is used to estimate x . A sub-sample of sizeis then selected from the n 
 

original ( n  ) selected units to study the primary characteristics of Y .  Under an Extreme Ranked Set 

Sampling setting,phase sampling is SRS and the second -.  Note that the first rmn  and  mrn 2  

phase sampling is ERSS. 

Let X   be the sample mean of X  based on mr 2

 observation of X  in the first-phase.  Clearly, X   

is an unbiased estimator for x . If  ERSS is the second phase sampling, the double sampling regression 

estimator of the population mean y  is defined as 

 

                    
 ˆ ,Eds ERSSa a ERSSaY Y X X   

                                               (3.1) 

where, 
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/ 2

[1`]2 1 [ ]2

1 1

1 m r

ERSSa j k r jk

k j

Y Y Y
n



 

 
,

 
/ 2

(1)2 -1 ( )2

1 1

1

 


m r

ERSSa j k r jk

k j

X X X
n
=

,  
2

1 1

m r

jk

k j

X

X
nr

  



 , 
ˆ

a   is as in (2.9) and  n mr . 

Again, using basic properties of conditional moments, we have the following theorem.   

 

Theorem 3.1: Assume that the model in (2.7) is satisfied and that the underlying marginals distribution 

functions of Y and X are symmetric. Then the double sampling regression estimator for y  defined in 

(3.1) has the following properties: 

(a) 
 Eds Y 

,  

(b) 

   
 

2
2 2

2 2

2
1  1Var Y

n S rn

 
 

    
     
  

  E

ERSSY Y
Eds

Z

,            

where,            

                         
 

jk
i

, 
ERSS

and  

2S
EE as in Section 2  

 and                 

X

X

X 




 

. 

Proof of Theorem 3.1:   From the proof of Theorem 2.1, we have  

(1) 
 ˆ

aE  
 and  

(2) 

 
  

2

2 2

1 1

ˆ | e
a rm

ERSSai jk
k j i

Var X

X X




 




. 

 

 Proof of (a):       
    XYEEYE EdsyxEds 

 

    

 

     

/ 2

[ ]

1 1

1 1

ˆ  

1 ˆ                       ,        

1 ˆ                    ,

y Eds y ERSSa a ERSSa

m r

y i jk a ERSSa

k j i

m k

y y x a ERSSai k
k j i

E Y X E Y X X X

E Y X X X
n

E X X X X
n





   

 

 

  

 
   

 

 
     

 




 

 

then by the proof of part (1) of Theorem 2.1, we have that  
     X .y Eds y ERSSa x ERSSaE Y X X X        
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Since 
 ERSSaX

is an unbiased estimator for x  (under the symmetry assumption, see Samawi et al. 

(1996)) 
and X

 is also an unbiased estimators for x , then  

   ( | ) { X } ,x y Eds y x ERSSa x ERSSa yE E Y X E X X         
 

 and hence EdsY
 is an unbiased estimator of y .  

Proof of Theorem 3.1 (B): Similar to the proof of Theorem 2.1,  

        .XYEVarXYVarEYVar EdsyxEdsyxEds 
 

First from the proof of part (a) above, 

 
    ˆ x y Eds x y ERSSa a ERSSaVar E Y X Var E Y X X X     

     . 

From (1) we know that   
      XXXYE ERSSaxERSSayEds  X

. 

Also,  

    

     

  

2

ˆ 

ˆ                            

ˆ                             2 ,    .

x y Eds x y ERSSa a ERSSa

x y ERSSa ERSSa y a

ERSSa a ERSSa

E Var Y X E Var Y X X X

E Var Y X X X Var X

Cov Y X X X







     
    

   


 
  

Similar to the proof of Theorem 2.1, we can show that  

 
  XXXYCov ERSSaaERSSa  ˆ , 

 = 0,  and   hence 

         




  XVarXXEXYVarEXYVarE ayERSSaxERSSayxEdsyx ̂ 

2

, 

    

    

 
 
 

2
22

2

x / 2 2
2

( )

1 1

2

2 2

x 2

           

X

1
           1 .

x ERSSa x xe
e m r

i jk x ERSSa x x

k j i

ERSS

y

E

X X
E

rm
X

Z Z
E

rm rm S
z

  


  

 

 

 
     
   
      
 

  
    

  
    



 

      

  .X                               

}X{  

2

2
2
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Var

XXVarXYEVar
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Therefore,               

   
 

22 2

2 2

x 2
 1 1 .

ERSSy y

Eds

E

Z Z
Var Y E

n S rn
z

 
 

  
     

  
      

 

For the double sampling regression estimator ds  based on SRS, Sukhatme and Sukhatme (1970) showed 

that, when 
 ,X Y

 follows a bivariate normal distribution, dsY
 is an unbiased estimator of y  with 

variance  
 

2
2 21 1 1

1
3

Yds

r
Var

n r n r n

  
 

      . 

3.2    Relative Efficiency 

Again since ERSSY
 did not use any information on the concomitant variable X , we can compare the 

two-phase ERSS regression estimator, EdsY
, to the two-phase regression estimator dsY

 based on SRS, and 

to the two-phase regression estimator RdsY
 based on RSS. The relative precision of EdsY

 relative to dsY
 

when 
 ,X Y

 has a bivariate normal distribution (see Tikkiwal, 1960) is   
 

 

 

 
 

2
2

2
2

2

2

1 1
1 1

3
,

1 1
E

ds

Eds ds

Eds
ERSS

r

Var r n r
RP

Var

rS










  

 
     

  
     
  

                              (3.2)                                    

 

and the relative precision of EdsY
 relative to RdsY

 is  
 

 
 

 
 

 
 

2
2

2

2

2
2

2

2

1 1

,

1 1

R

E

RSS

Rds

Eds Rds

Eds
ERSS

rSVar Y
RP Y Y

Var Y

rS












  


  

  
  

  
  

 
    
  

   .                        (3.3)                                                                      

3.3     Numerical Comparison 

Assuming that 
 ,X Y

 has a bivariate normal distribution, we compute various expressions for the 

relative efficiencies obtained in the previous section. The set sizes examined are r = 4, 5, 6, 7 and 8 with 

cycles of m = 1, 4, 8 and  . A simulation size of 100,000 is used to evaluate the values of   
  2

2

EERSS S  
 and 

  2
2

RRSS S  
. In the case of double sampling, note that the 



HANI M. SAMAWI, AHMED Y. AL-SAMARRAIE and OBAID M. AL-SAIDY 

 82 

relative precision is less than the relative precision of the case when x  is known. This is due to the extra 

variation introduced when estimating the mean x .   

Table 3.1 shows the relative precision of EdsY
 relative to dsY

 for an underlying bivariate normal 

distribution. From the table we see that all the relative precision values are at least 1 indicating again in 

precision when using ERSS instead of SRS.   

The main conclusions from Table 3.1 are: 

1. When ranking is done on the variable X , the relative precision is best at 
0 

. The efficiency 

increases as the value of 


 decreases from .99 to 0. 

2. For a fixed value of the set size, r , we note that as m increases the efficiency converges rapidly to 1. 

3. The efficiency decreases with increasing set size 
 r

, for any given value of  m .  

4. For a given value of r , there is no change in the efficiency when the cycle is repeated more than 8, 

(Efficiency stability). This may be due to the fact that when the sample size is large enough to 

represent the population, the ranking has less impact on the regression estimator.  

5. The double sampling ERSS regression estimator is always superior to the double sampling SRS 

regression estimator no mater how large the correlation coefficient, 


 is. 

 

                                    Table 3.1.  The relative precision of double sampling ERSS regression estimator  

                                    relative to double sampling SRS regression estimator. 

 
  when, 0Eds RdsRP Y Y  

 

/m r  4 5 6 7 8 

1 1.63416 1.34607 1.24611 1.19055 1.15995 

4 1.04718 1.03945 1.03428 1.03009 1.02665 

8 1.02100 1.01802 1.01588 1.01399 1.01269 

  1 1 1 1 1 

  when, 0.9Eds RdsRP Y Y  
 

/m r  4 5 6 7 8 

1 1.3124 1.189 1.1501 1.1206 1.1029 

4 1.0226 1.0212 1.0197 1.0186 1.0176 

8 1.0100 1.0096 1.0093 1.0087 1.0082 
  1 1 1 1 1 

 

Table 3.2 presents the relative precision under the assumption of an underlying bivariate normal 

distribution. Again, the table shows that the relative precisions are all at least 1. We also note that the 

double sampling ERSS regression estimator is always slightly better than the double sampling RSS 

regression estimator no mater how large the correlation coefficient, 


 is. 
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                                            Table 3.2. The relative precision of double sampling ERSS regression estimator  

                                            relative to double sampling RSS regression estimator. 

 
  when, 0Eds RdsRP Y Y  

 

/m r  4 5 6 7 8 

1 1.02771 1.00935 1.00749 1.0046 1.00405 

4 1.00192 1.00111 1.0011 1.00079 1.00071 

8 1.00081 1.00053 1.00052 1.00035 1.00034 
  1 1 1 1 1 

  when, 0.9Eds RdsRP Y Y  
 

/m r  4 5 6 7 8 

1 1.0083 1.0063 1.0047 1.0029 1.0025 

4 1.0008 1.00064 1.00061 1.0004 1.0004 

8 1.0003 1.0002 1.0002 1.0002 1.0002 
  1 1 1 1 1 

 
4.     Application to Bilirubin level in Jaundice Babies 

We illustrate the methods discussed above using real data on bilirubin level in jaundice babies who 

stay in neonatal intensive care. Hyper Bilirubinemia is defined as a total serum Bilirubin above 1.5 mg/dl 

while neonatal jaundice is defined as yellowish discoloration of skin and sclera and it occurs if Bilirubin 

level is more than 5 mg/dl. (see Nelson et al., 1994). Jaundice is observed during the first week of life in 

approximately 60% of term infants (from 37 to less than 42 completed weeks) and 80% of pre-term infants 

(less than 37 completed weeks) (see Nelson  et al., 1994).   

Neonatal jaundice is a common problem in full-term infants (42 completed weeks or more (294 days 

or more)) and pre-term babies. It is possible that the generally accepted levels are too high and may produce 

some high tone hearing loss. Most experts accept that 18.82 mg/dl to 20 mg/dl should not be exceeded in 

full-term babies, who are less than three days of age, but that a mature baby can tolerate levels of up to 

21.18 mg/dl or 22.35 mg/dl by the fifth day without evidence of damage. Pre-mature babies are probably 

more susceptible and 17.64mg/dl should not be exceeded. Since most cases of neonatal jaundice appear on 

the second day of life and most of normal newborn babies leave the hospital after 24 hours of life, our 

primary concern will be on babies staying in neonatal intensive care.  

Physicians are interested in jaundice because of its importance and risk on hearing, brain and death. It 

will be really helpful to the physicians if we can estimate the populations mean of the amount of Bilirubin 

in the blood for jaundice pre-term, mature, and full term babies. However, estimating the population mean 

can be expensive and time consuming. Therefore, there is a need for a sampling scheme which can give 

more accurate population mean estimates with a smaller sample size, and hence results in saving money and 

time. 

       All babies who appear significantly jaundiced on clinical examination should have their plasma 

Bilirubin estimated. This is done in a laboratory test that needs about half an hour or more to find the level 

of Bilirubin in the blood. This test is expensive and time consuming.  However, by using the regression 

estimator calculated based on extreme rank set sample, we will show that the population mean of plasma 

Bilirubin for babies who stay in neonatal intensive care, can be estimated with more precision without 

measuring all units.   
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4.1     Data Collection 

The data were collected by Samawi and Al-Sagheer (2001) from five hospitals in Jordan.  These 

hospitals are Al-Qawasmeh Hospital, Prince Rahma Hospital, Irbid Specialty Hospital, Ibin al-Nafies 

Hospital, and Queen Zein Al-Sharaf Hospital.        

          The data were limited to deliveries in the first six months of 1997. Herein, we find the population 

mean estimate for the Bilirubin level for neonatal jaundice. Jaundice is measured by the level of Bilirubin in 

the blood. This level is determined via a blood test (tsb). The unit of measurement is mg/dl. The test is 

conducted on neonatal infants twice daily during the period of the neonatal in the intensive care. One 

hundred and twenty cases are included in the study. The weight at birth is taken as the concomitant variable. 

Since ranking on the concomitant variable X  (weight) is easier and measuring X  is less expensive than 

ranking and measuring Y  (tsb), we will rank on the variable X . 

4.2    Parameters 

The following are the exact population values of the data: 

 X  2 87.
,  
 X  0 71.

,   

120

1

344.73i

i

X



,   

120
2

1

1049.62i

i

X



,
 Y  1118.

, 
 Y  508.

, 
120

1

1341.06i

i

Y



, 

Yi

i

2

1

120

18062 12


  .

,

XY
i

 
1

120

3877 27.

, 
  0 06.

. 

 

4.3    Using ERSS, RSS and SRS 

ERSS and RSS and SRS sampling methods are used to obtain the samples shown in Table 4.1. The 

following results are obtained from the samples:  

 

1) Based on the ERSS sample, the regression estimate is 
ˆ 11.46y 

, with 
  675.0ˆ EregarV

 and the 

naïve estimate is 
47.11ERSSY

with 
634.0)(ˆ ERSSYarV

.  

2) Based on the RSS sample the regression estimate is 
44.11ˆ Y with 

 ˆ 0.685RegVar  
 

and the naïve estimate is 
81.11RSSY

 with 
560.0)(ˆ RSSYarV

. 

3) Based on the SRS sample, the regression estimate is 

 
ˆ 11.67y 

with 
  962.0ˆ regarV

 and the naïve estimate is 
42.11SRSY

 with 

746.0)(ˆ RSSYarV
. Note that 

   ˆ ˆ
reg EregVar Y Var Y

 also 
   Re

ˆ ˆ
g EregVar Y Var Y

.  

 

For the data at hand, the naïve estimators are doing better than the regression estimators. This may be 

due to the fact that the correlation between the weight and TSB is very small. Although this is only an 

illustration of the computations, the results confirm our earlier conclusions: 
 , , 1.42Ereg regeff Y Y 

, 

 Re, , 1.01Ereg geff Y Y 
   .   
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                                Table 4.1.  The drawn samples. 

 

 ERSS RSS SRS 

Cycle Wt Tsb Wt Tsb Wt Tsb 

1 2.83 6.67 2.83 6.67 2.83 6.67 

3.50 11.94 2.45 8.71 2.45 8.71 

1.50 8.51 4.15 2.06 1.80 16.94 

3.45 8.00 3.45 8.00 3.00 5.50 

2 2.00 10.94 2.00 10.94 2.50 10.58 

2.60 16.76 2.50 16.60 2.50 19.79 

1.50 5.90 2.75 5.60 2.75 5.60 

3.50 12.59 3.50 12.59 3.50 12.59 

3 1.95 15.76 1.95 15.76 4.40 16.60 

3.70 12.28 3.40 8.00 3.70 12.82 

2.50 25.12 3.25 5.60 2.85 15.20 

3.00 6.90 3.00 6.90 2.70 14.20 

4 1.80 22.94 1.80 22.94 3.00 22.94 

3.60 7.20 2.70 14.20 2.00 10.94 

1.90 8.00 2.70 15.47 2.50 15.19 

3.70 5.50 3.70 5.50 2.50 10.58 

5 2.45 13.76 2.45 13.76 2.45 13.76 

3.30 9.53 3.10 12.30 3.15 7.80 

1.95 15.76 2.83 6.67 1.95 15.76 

4.40 10.94 4.40 10.94 1.90 11.88 

6 2.50 12.76 2.50 12.76 3.25 5.60 

3.60 16.46 3.20 11.60 3.20 11.60 

1.85 9.20 2.60 22.52 2.60 22.52 

3.15 11.53 3.15 11.53 3.15 11.53 

7 2.75 5.60 2.75 5.60 4.45 2.06 

2.85 15.20 2.45 8.71 2.45 13.76 

1.75 8.53 2.30 18.29 1.75 8.53 

3.6 16.46 3.60 16.46 2.20 7.60 

8 2.00 11.00 2.00 11.00 3.40 8.00 

3.50 11.94 2.70 7.45 2.85 13.94 

3.00 5.90 3.25 8.90 3.65 7.50 

2.60 22.52 2.60 22.52 1.80 16.94 

9 2.70 7.45 2.70 7.45 2.70 7.45 

3.75 8.20 3.40 16.50 3.40 16.50 

1.50 5.90 3.50 22.12 3.10 10.18 

3.40 16.50 3.40 16.50 2.10 14.59 

10 1.20 8.76 1.20 8.76 3.20 11.60 

3.85 14.27 2.50 7.06 3.85 14.27 

3.00 12.3 3.20 8.53 3.20 8.53 

3.30 3.30 3.30 3.30 3.00 5.50 
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