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 التبديلية التحكم الأمثل للنظم الخطية 

 علي بن مرزوقة

). 1997( بإستخدام إقتران مراقبة محدود من طرف بن مرزوقة          ادليةلقد أعطي حلين للنظم الخطية التب     : خلاصة  
في هذه الدراسة نتطرق لإيجاد سلسلة المراقبة أو التحكم المثالية  التي            . لكن الحلول المقدمة هناك لم تكن الوحيدة      

بإستعمال النظام المـأخوذ مـن تجزئـة النظـام          ) أو قريبة منها  (ومة إلى نهاية معلومة     تنقل النظام من بداية معل    
بإستخدام طريقة البرمجة المتحركة و نتحصل علـى الحـل الأمثـل و             . المتواصل مع تقليل إقتران كلفة التشغيل     

بين صعوبة الحسابات   كذلك ن ). 1997(الوحيد لكل من الطريقتين التعدادية و الجديدة المذكورتين في بن مرزوقة            
 .  و نعطي عددها للطريقة المعدلة في هذه الورقة

 
ABSTRACT: A solution to the control of switching linear systems with input 
constraints was given in Benmerzouga (1997) for both the conventional enumeration 
approach and the new approach. The solution given there turned out to be not unique. 
The main objective in this work is to determine the optimal control sequences {Ui(k) ,  i 
= 1,..., M ;  k = 0, 1, ...,  N -1} which transfer the system from a given initial state  X0  to 
a specific target state  XT  (or to be as close as possible) by using the same discrete time 
solution obtained in Benmerzouga (1997) and minimizing a running cost-to-go function. 
By using the dynamic programming technique, the optimal solution is found for both 
approaches given in Benmerzouga (1997). The computational complexity of the 
modified algorithm is also given. 
 
KEYWORDS : Controllability; Bilinear Systems; Dynamic Programming; Switching 
Linear Systems; Optimization. 

1.   Introduction 

ne of the most important objectives of dynamical systems in control theory is to find the optimal 
control U(t). Most of the work done is primarily in the area of control and analysis of continuous 

bilinear systems described as  
O 
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1

( ) ( ) ( )
M

i i
i

dX t =  U t A X t
dt =

∑ ,                             (1.1) 

where ( ) nX t ∈R ,  iA   are  n n×   matrices,  [ ]: 0,iU ∞ →U  where  ⊆U R .  
The work that has been done in bilinear systems considers the control U(t) as a scalar belonging to a 

compact set  U such that  ( )U t δ≤ . The case where ( )U t   takes just two values as an ON-OFF system 

( )( )i.e., 0 1U t or=  is given by Benmerzouga (1985, 1997). A discrete solution to the continuous 
dynamical system is given in Benmerzouga (1997). For both the conventional enumeration approach and 
the new approach, the solution found was not unique. 

Most of the work and emphasis in this case has been on the structural aspects of bilinear systems as 
given in  Aslanis (1983) where ( ) 2X t ∈R  and ( )  {0, 1}U t ∈ . Tarn, et al. (1973) tested the 
controllability of discrete bilinear systems. Goka, et al.  (1973) gave necessary and sufficient conditions for 
the controllability of a class of discrete bilinear systems. All the work done in discrete bilinear systems 
considers the control ( )U t  as a scalar belonging to a compact set  U  such that ( )U t δ≤ . The case 

where ( )U t  takes just two values as an ON-OFF system ( )( )i.e., 0 or 1U t =  as shown by 
Benmerzouga (1985), has had limited treatment. 

The major focus in this work is to determine optimal control sequences ( ){ }, 1,...,iU t i M=  

which transfer the system from a given initial state  0X   to a specific target state  TX   (or to be as close to 
it as possible). In both the conventional enumeration approach and the new approach treated in 
Benmerzouga (1997), the properties of the discrete solution, which is derived by sampling (or discretizing) 
the continuous solution of the continuous dynamical system described by equation (1.1), are conserved and 
used in this paper. The solution found by Benmerzouga (1997) steers the system from an initial state 0X  to 

a final state TX  through more than one path. That is due, of course, to the performance index used. The 

only criterion used in Benmerzouga (1997) is the magnitude of the gap between the final state NX  and the 

target state TX  . There was no restriction whatsoever on how much it would cost to steer the system from 
the initial state to the final state. Hence, there are no restrictions on the paths which are found to be optimal. 
A dynamic programming technique is used to find the optimal path through which the control sequence will 
steer the system. Various studies and algorithms used are described in Section 2. The cost-to-go function 
and the dynamic programming approach used in the modified algorithm are given in Section 3. Section 4 
includes the step-by-step procedure used to solve the problem optimally by using dynamic programming 
and the computational complexity of the modified algorithm. Finally some concluding remarks are given in 
Section 5. 

2.    Dynamics of  Switching Control Systems  

The dynamics of switching control systems can be studied for both continuous and discrete time 
systems as mentioned in Benmerzouga (1985) and (1997). The emphasis, in this paper, is mainly about 
discrete time systems obtained by sampling (or discretizing) a continuous system given by equation (1.1). 
This choice is made because of the following two main reasons that were mentioned in Benmerzouga 
(1997): (i) most control algorithms are implemented on a digital computer, and (ii) when discretizing a 
continuous system the discrete system obtained will have a non-singular characteristic matrix. For more 



SWITCHING LINEAR SYSTEMS 

 43

details see Wismer and Chattergy (1978). Such ground will make the computations of the switching 
controls much easier, as will be shown in the subsequent sections. 

2.1    Solution of the Continuous Switching System 

As stated earlier, the dynamics of the continuous switching system is given by equation (1.1) in 
addition to the constraints, 

( ) ( ) 0i j U t  . U t  =  ,   i  j ,≠  and  ( ) 1,
M

i
i  1

 U t  =  
=
∑                     (2.1) 

where M is the number of systems that can be used when steering the system from the initial state 0X  to 

the target state TX .  

The solution of such a dynamical system, with only one active system, in the interval [ ]0,t  is   

( ) (0) ( (0) is given)B tX t   = . X  ,    X   .e                        (2.2) 

where the n n×  matrix B  is equal to any of the given state matrices isA ′ , depending on which control 

( )iU t  is equal to 1, i.e., which system is actually ON or active. (For more details see Brockett (1970), 
Kailath (1980) and Sandell and Athans (1974)). 

2.2    The Discrete Solution for the Switching System 

The discrete solution of the switching system is obtained by sampling (or discretizing) the continuous 
solution given by Equation (2.2). Since the initial state ( )0X  is given, then the discrete solution of the 
switching system at each stage k is given by the following difference equation: 

( 1) ( ) 0, 1, 1B TX k +  =  . X k ,     k =  ..., N   .e ∆ −                    (2.3) 

Since there are M systems in the above dynamics, and since the initial state 0X  is given, and in view of 
the details given by Benmerzouga (1997), the discrete time solution of the switching system with a single 
state matrix is now completely defined by the difference equation   

1

( 1) ( ) ( )
M

ii
i

X k +  =  U k .  . X k ,P
=
∑            (2.4) 

where iP are n n×  matrices and have the same definitions and properties given in Benmerzouga (1997). 
Having the discrete solution of the switching system given by (2.4), the main purpose of this work is 

to find a computationally efficient approach that will optimally steer the system from an initial state 0X  to 

a target state TX   (or to be as close as possible). In addition to that, we should find the optimal control 

sequence ( ){ }, 1, 2,..., , 0,1,..., 1iU k i M k N= = −  that will achieve such goal in a given number 
of steps. Therefore, the first objective is to minimize the total running gap (or cost) accumulated when 
steering the system from an initial state 0X  to the target state TX  in a given number of steps and the 

second objective is to find the optimal control sequence ( ){ }, 1, 2,..., , 0,1,..., 1iU k i M k N= = − . 
The accumulated gap (or costs) can be computed using different measures depending on the system we are 
actually using. This measure could be a distance, a quadratic form, or something different that will quantify 
and measure the cost. The form of the gap (or cost) used in this work and how to minimize it are described 
in detail in Section 4. 
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3.     Previous Methods 

Since Equation (2.4) gives the discrete solution of the switching system, the main purpose of the 
previous methods is only to minimize the gap (or cost) between the final state of the system ( )X N  and 

the target state TX , when steering the system from an initial state 0X  to the target state TX  in a given 

number of steps. In addition to that, the control sequence { ( ) } N  -  1 
i k  =  0 U k   that will achieve this goal in a 

given number of steps has to be found. The gap (or cost) used as a criterion for optimality is given by 
2[ ( )] ( ) .Tg X N  =   X NX −                (3.1) 

3.1    Method 1: The Conventional Method  

By using the conventional enumeration approach, all the states at all stages are computed and stored 
in order to reach the last stage as shown on Figure 3.1. 
           
   |  |   | (P1)3.X(0) |   … 

   |  | (P1)2.X(0) |   |   …  

   |  |   | P2(P1)2.X(0) |   …  

   | P1.X(0) |   |   |   …  

   |  |   | P1.P2.P1.X(0) |   …  

   |  | P2.P1.X(0) |   |   …  

   |  |   | (P2)2.P1.X(0) |   …  

  X(0) |  |   |   |   …  

   |  |   | (P1)2.P2.X(0) |   …  

   |  | P1.P2.X(0) |   |   …  

   |  |   | P2.P1.P2.X(0) |   …  

   | P2.X(0) |   |   |   …  

   |  |   | P1.(P2)2.X(0) |   …  

   |  | (P2)2.X(0) |   |   …  

   |  |   | (P2)3.X(0) |   …  
             ---------------------------------------------------------------------------------------------------------------------------- 

  X(0) | X(1) | X(2)  | X(3)  |   …  

Figure 1.   All Possible Stages and States for  k =3 and N = 2. 
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When solving Example 5.1 in Benmerzouga (1997), the final cost was obtained by two different 
control sequences, namely, ( ) ( ) ( )( ) ( )0 , 1 , 2 0,1,1U U U =  and ( )1,1,0 , respectively. In addition to 
that, the solution to the conventional problem was found to be not unique. The value of the terminal cost, 
namely. ( ) ,g X N    is found to be equal to zero through two different trajectories. All the details of the 

computations are fully executed and presented in Benmerzouga (1997). 

3.2    Method 2: The New Approach  

The new approach description, mathematical development and solution are completely given in detail 
in Benmerzouga (1997). When solving the same example, the minimum gap (or cost) was found to be equal 
to 1 and is given by two different paths through the two different control sequences (0, 1, 1) and (1, 1, 0). 
This is exactly what we obtained in subsection 3.1. It was shown is Benmerzouga (1997) that the new 
approach is much better than the enumeration method from the storage and computations point of view and 
from the very simple way used to get the control sequence corresponding to the minimum final cost. As we 
can see in the previous two methods we are getting more than one control sequence as a solution. In other 
words, there is more than one trajectory to steer the system from an initial state 0X  to a final state NX . 
The question that remains open is which of the above paths is really the best to go through from a cost point 
of view. This is will be fully explained and illustrated in the next section. 

4.     The Cost-to-Go Function 

The performance index used in Benmerzouga (1997) was basically focusing on the smallest terminal 
or final cost ( )g X N    and not on the smallest overall running cost. The procedure used in 

Benmerzouga (1997) was kind of memoryless of what is happening between steps and through those 
trajectories. The only objective in Benmerzouga (1997) was to pick the path with minimum terminal cost 
and not the overall running cost. This was the main reason for having more than one path as solutions to the 
problem.  

The performance index used in this analysis is the one that minimizes the total running cost incurred 
while steering the system from the initial state 0X  to the target state TX  in a given number of steps, N , 

or the one that will give the minimum cost-to-go when being as close as possible to the target state TX . 
The cost-to-go function is defined by the recurrent formula given by  

∑
−

=

+=
1

0
)]([)](),([

N

k
NXgkXkUFV ,               (4.1) 

where V   is the final running cost, ( )U k  is the control sequence which takes the values 0 or 1 and 

( ) ( ),F U k X k   ,  and  ( )g X N   are given by 

   

( ) ( ) ( ) ( ) ( )2
, ,

T
T T TF U k X k X X k X X k X X k= − = − −                 (4.2) 

( ) ( ) ( ) ( )2
.

T
T T Tg X N X X N X X N X X N= − = − −                            (4.3) 

Equation (4.1) has a structure that requires the use of a dynamic programming approach for its 
minimization. More details about dynamic programming are given in Dreyfus and Law (1977). All the 
criteria, structures and restrictions, mentioned in Benmerzouga (1997), are conserved and used in this paper. 
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4.1   The Modified Algorithm 
This modified algorithm is built on the basis of the details of the algorithm provided in Benmerzouga 

(1997). As mentioned earlier, one of the objectives in this work is to steer the system from an initial state 

0X  to a target state TX  (or as close as possible) in a given number of stages, N , with minimum running 
cost (or distance) and not a minimum terminal cost. Therefore the required steps are: 
 
Step 1: Given the number of stages N and an initial state 0X , a matrix ( ),S I J  is generated 

which will contain all different values of ( )Z N , where I  is the space dimension  and J  

the number of states at stage N . This step is the same as Step 1 in the old algorithm given 
by Benmerzouga (1997).  

Step 2:           When searching for the minimum running distance it is necessary to go back from Z space 
to X space using the relationship ( ) ( )k .X k B Z k= .  Hence it is necessary to compute 

the matrix kB . 
Step 3: Compute ( ) ( )k .X k B Z k= , namely, the transformation from Z-space to X-space for 

each k . 
Step 4: Compute all possible costs (or performance indices) at each stage k. 
Step 5: Store all the computed costs in the matrix ( )CM ,I J  as shown in Table 4. 
Step 6: Find the final running cost on each path by adding up the costs of all the previous stages. 
Step 7: Given the rank, ( )J , of the minimum running cost, a binary representation is generated to get 

the optimal control sequence ( ){ }and, 0,1,..., 1 1,..., .iU k k N i M= − =   
The above algorithm not only makes the computations tractable, but it also facilitates the way to get 

the optimal control sequence to reach the final target for the problem. Therefore, given an initial state of the 
system 0X , a target state TX , and a number of steps N , the algorithm will give us the optimal state and 

its corresponding sequence ( ){ }and, 0,1,..., 1 1,..., .iU k k N i M= − =  
Without loss of generality, the dynamic programming approach and the overall running costs criteria 

are used for the two methods given in the previous section. The computations are carried out for the 
following bilinear example: 

Example 4.1 

The same example used in Benmerzouga (1997) is to be used here. Let 1P  and 2P  be 2 × 2 matrices, 

X0 and TX  be  2 × 1 vectors, and the number of stages, N , equals to 3. 
 

.  = X   ,= X     , = P   , = P T21 






−















 −








−− 1

1
1
1

01
10

11
01

0  

 
4.2    Method 3: The Dynamic Programming Technique Applied to the Conventional Problem 

Now we need to use the dynamic programming approach to the conventional problem by minimizing 
the cost-to-go function given in (4.1) and not only the terminal cost. In order to compute the intermediate 
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running cost, a complete enumeration and computation of all costs for all the possible states at all stages has 
to be performed as it is shown in Table 1.  

By using the recurrent formula given by Equation (4.1), the costs-to-go from one stage to the next 
one, namely, F[U(2), X(2)], F[U(1), X(1)] and F[U(0), X(0)], will lead to the optimal solution for 
this case and its optimal control sequence. The results of the different computations are summarized in 
Table 2 (a)-(c). The sequence that generates the optimal path when using dynamic programming is unique 
and it is equal to (U1(0), U1 (1), U1 (2)) = (0, 1, 1). Since we are using a bilinear system the other 
control sequence is just the complement to this one, i.e., (U2 (0), U2 (1), U2 (2)) = (1, 0, 0). As we can 
see from Table 2 (c), we have just one single optimal path with a minimum running cost of 5. 

4.3    Method 4: The Dynamic Programming Technique Applied to the New Approach 

Given the data obtained using subsection 4.2 and by using the dynamic programming technique, the 
minimum distance is found to be equal to 1 through a unique control sequence (0, 1, 1) with a minimal 
overall running cost of 5. Knowing the structure of the new approach and how the data and the 
computations are to be handled and stored, a useful new data is obtained and stored. This data is used to 
find the corresponding value of ( )Z k  in our original X-space as shown in Table 3. The latter one is 

going to be used to compute the running costs. This is done by using just one extra matrix, namely, B , 
until an initial state is obtained. This can be done without any extra storage, except for a matrix 

( ),CM I J  that is used to store different distances at each stage, where I  is the number of paths and J  

is the number of stages. The matrix ( ),CM I J  is given in Table 4. 
 

           Table 1.  The Complete Computational and Sequence Picture, when  N = 3. 
 

XT ─ 
X(0) 

f[U(0), 
X(0)] 

XT ─ 
X(1) 

f[U(1), 
X(1)] 

XT ─ 
X(2) 

f[U(2), 
X(2)] 

XT ─ 
X(3) 

g[X(3)
] 

      -2 
  3 

 
13 

        0 
 0 

 
0 

  -2 
 3 

 
13 

-2 
  0 

 
4 

-3 
  4 

 
25 

-1 
 1 

 
4 

 
 

 
 

 0 
 1 

 
1 

  0 
-1 

 
1 

  0 
0 

 
0 

-3 
  0 

 
9 

 0 
 0 

 
0 

    0 
2 

 
4 

-1 
 2 

 
5 

       0 
-1 

 
1 

      -2 
  2 

 
8 

 
By localizing the rank of the minimum final running cost in the matrix ( ),CM I J , a binary 

representation is given to that rank in order to find the optimal control sequence ( )iU k . As we can see 
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from Table 4 the final cost is equal to 1 and its rank in the ( ),CM I J  matrix is 3. The only thing left is to 

get the binary representation of rank 3J =  to get the optimal control sequence ( )iU k , which is equal to 
(0,1,1) and of course it is unique. 

 
                           Table 2 (a).   The Different Paths, Gaps, Combinations of  ( )iU k ,  

                 and Minimum Gaps when  N = 3. 
 

X(2) f [U(2), X(2)] V2 U(2) 
1 
1 

 
4 

 
4 

 
0 

2 
1 

  
9 

 
10 

 
0 

-1 
0 

 
1 

 
1 

 
1 

-1 
-1 

  
4 

 
5 

 
1 

 
                           Table 2 (b).   The Different Paths, Gaps, Combinations of   ( )iU k , 

                and Minimum Gaps when  N = 3. 
  

X(1) f [U(1), X(1)] V1 U(1) 
1 
-2 

 
13 

 
17 

 
1 

-1 
1 

  
0 

 
1 

 
1 

 
                                             Table 2 (c).    The Minimum Running Cost. 
  

X(0) g[U(0), X(0)] V U(0) 
1 
1 

 
4 

 
5 

 
0 

By using the dynamic programming approach, the following is observed: (i) in methods 3 and 4 we 
ended up with the same final results, namely, the minimum distance is unique, equal to 1 and obtained 
through the unique control sequence (0, 1, 1), (ii) when applying the dynamic programming approach 
directly to the original problem, all the states have to be computed and stored and (iii) when applying the 
dynamic programming to the new approach that is devised in Benmerzouga (1997), just half of the states 
have to be computed and stored and the optimal control sequence is obtained by using a very simple 
combinatorial approach. 

4.4    The Complexity of the Modified Algorithm 

The complexity of the modified algorithm can be traced back to the continuous system given by Equation 
(1.1). The parameter n , which is the state space of the system and k , which is the number of stages desired, 
and all types of computations and comparisons done at each stage must be fully taken into account and used to 
find the complexity of the whole procedure. 
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 Table 3.   The Different Values of ( )Z N  and  ( )X N , their Corresponding Ranks and the Minimum  

   Gaps When  N = 3 and M =2. 
 

Z(3) X(3) g[X(3)] Rank 
1 
1 

 1 
-1 

 
8 

 
0 

-2 
-1 

-1 
 2 

 
1 

 
1 

1 
0 

 0 
-1 

 
5 

 
2 

-1 
-1 

-1 
 1 

 
0* 

 
3 

-2 
-1 

-1 
 2 

 
1 

 
4 

3 
2 

 2 
-3 

 
25 

 
5 

-1 
-1 

-1 
 1 

 
0* 

 
6 

2 
1 

 1 
-2 

 
13 

 
7 

Proposition 4.1: 

The complexity of the above procedure is of order 32k n , where n  is the state space of the system and k 
is the number of stages involved. 

Proof: 

First of all, the transition matrix given in Equation (1.1) is found by using the eigenvalue and eigenvector 
methods for both state matrices ( ), 1, 2iA i = . This is a very classical method used in diagonalizing matrices. 

For more details see Gerald and Wheatley (1994).  This step requires  ( )3 210 2n n+  number of 

computations. The next step involves propositions 4.2 and 4.3 given in Benmerzouga (1997).  Secondly, the 
computations of different states for every stage requires ( )32kn n+  number of computations for computing 

the matrices ( )Q k  for all stages and ( )( )32 1k n n− +  number of computations to find all states at all 

stages. For more details about the complexity of this step see Gerald and Wheatley (1994). Thirdly, we go from 
the new Z-space to the old X-space ( ) 3 21 2kk n n − +   computations are required. Fourthly, the number 

of computations needed to get the performance index ( )g X N    is ( )2 3 1k n −  and finally the number of 

comparisons involved to find the smallest distance  is 2k . 
In summary, to obtain the complete complexity figure, all of the above has to be taken into account. 

Hence the complexity of the above procedure is equal to 
 

( ) ( )3 2 12 3 8 2 2 2 .k k kk n n n++ + + + +  
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Therefore the complexity of our optimal control problem is of order ( )32k n . This number is quite large 

when both  k and n  are large. 
 

          Table 4.   ( ),CM I J  Matrix : All the Different Distances Using the Running Cost 
 

||XT –X(1)||2 ||XT –X(2)||2 ||XT –X(3)||2 Rank J Final Cost 

0 4 8 0 12 
0 4 1 1 5 
0 1 5 2 6 
0 1 0 3 1 ** 

13 9 1 4 23 
13 9 25 5 47 
13 4 0 6 17 
13 4 13 7 30 

5.    Concluding Remarks 

This work presents two new ways of solving a switching control problem for discrete time systems, 
namely, a dynamic programming technique applied to the original problem and a dynamic programming 
technique applied to the new approach. The discrete time system is obtained by sampling (or discretizing) 
the continuous time system. 

The same restrictions are maintained as in Benmerzouga (1997). The same results were obtained when 
applying the dynamic programming technique to both the conventional enumeration and the new approach 
when solving Example 4.1. But when using the conventional enumeration approach and the dynamic 
programming approach applied to the conventional enumeration approach, all the states at each stage have 
to be computed and stored. On the other hand just half of the states have to be computed and stored with the 
new approach and the dynamic programming applied to the new approach. 

 The nice thing about the dynamic programming technique when applied to both the original problem 
and the new approach, it manages to optimally steer the system from the initial state 0X  to the target state 

TX  and gives us the cheapest path possible. On the other hand, when solving the original problem directly 
or by using the new approach, there was no concern on how much it would cost us in order to reach a pre-
specified target TX  or to be as close as possible. 

Also, all the good properties about the new approach mentioned in Benmerzouga (1997) are kept 
untouched and are added to all the nice and powerful characteristics known about the dynamic 
programming approach. Economically speaking, the savings are huge when adopting this modified 
algorithm. The savings are made in the number of computations, the storage required and in the overall cost 
to go from the initial state 0X  to the target state TX . All of these put together, have made this work much 
more efficient than the work given in Benmerzouga (1997). When the number of steps is small the 
procedure is not computationally difficult. 

Finally, when applying the dynamic programming technique to the original problem and to the new 
approach the performance is basically the same for a small number of steps. But when the number of steps 
increases applying dynamic programming to the new approach will take over all the way. In other words, 
the computations and storage involved in the procedure will be cut down by at least 50 % as shown in 
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Benmerzouga (1997). In addition to the above, another important ingredient that improves the efficiency of 
the algorithm when applied using the dynamic programming approach to the new approach is the hassle-
free way to determine the control sequence ( ){ }, 0,..., 1 ,U k k N= −  which is complicated and not 
easy when finding it in the conventional enumeration approach. 

A modified algorithm, corresponding to the dynamic programming approach when applied to the new 
approach that is given in Benmerzouga (1997) was developed. The computer simulations showed that the 
obtained modified algorithm performed successfully in computing the optimal control sequences 

( ){ }, 0,..., 1 ,U k k N= −  . The modified algorithm was shown to perform adequately when the 
number of steps increases. 
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