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 إقرار معادلة موجة بنظام تحكم حدي مخمد 

 بومدين شنتوف ومحمد صالح بودليوة 

 يهتم هذا البحث بدراسة مسألة إقرار نظام مكون من معادلة موجة في مجال محدود مع شروط حدية :خلاصة 
كانه أن حتى تتم عملية الاقرار نقترح نظام تحكم مخمد ونبرهن أن هذا النوع من التحكم بإم .من نوع نومان

وبالإضافة إلى ذلك ، نبرهن أن موضع الاستقرار . يجعل حلول معادلة الموجة تتقارب نحو موضع إستقرار
 .    يتعلق بالشروط  الأساسية فقط

 
ABSTRACT: This paper deals with boundary feedback stabilization of a system, which 
consists of a wave equation in a bounded domain of n , with Neumann boundary 
conditions. To stabilize the system, we propose a boundary feedback law involving only 
a damping term. Then using a new energy function, we show that the solutions of the 
system asymptotically converge to a stationary position, which depends on the initial 
data. Similar results were announced without proof in (Chentouf and Boudellioua, 
2004).  
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1.   Introduction 

et Ω  be a bounded open connected set in n  having a smooth boundary Γ = ∂Ω  of class 2C . 
Given a partition ( )0 1,Γ Γ  of Γ , consider the following wave equation:  

 

( ) ( ) ( ), , 0, in 0,tty x t y x t−∆ = Ω× ∞                                       (1.1) 
 with Neumann boundary conditions and initial conditions 

L 
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                 (1.2) 

 
where υ  is the unit normal of Γ  pointing towards the exterior of Ω  and U  is a feedback law to be 
determined. Note that 1Γ  is supposed to be nonempty whereas 0Γ  may be empty.  

As in Chentouf and Boudellioua (2004), we propose a feedback depending only on a damping term, 
that is,  

( ) ( ) ( ) ( ) ( )1, , , 0,tU t a x y x t x t= − ∈Γ × ∞                              (1.3)  

where ( )1a L∞∈ Γ  satisfies ( ) 0 0a x a≥ >  for any 1x ∈Γ . Then, it is proved that the solutions of the 

closed loop system asymptotically tend towards a constant depending on the initial data 0 0andy z .  
There is a rich literature concerning the stabilization problem of the wave equation (see for instance 

Bardos et al. (1992), Chen (1979a, 1979b, 1981a, 1981b), Komornik (1994), Lax et al. (1963), Lagnese 
(1988), Lions (1988a, 1988b), Morawetz (1975), Quinn and Russell (1977), Triggiani (1975) and the 
references therein). In all references cited above, at least one of the following conditions is assumed to be 
satisfied:  
• The equation (1.1) involves also the displacement term y.  
• The stabilizing feedback law ( )U t  contains not only a boundary dissipation term ty  but also the 

boundary displacement y .  
• The first boundary condition in (1.2) involves the displacement term y  (the boundary condition (1.2) is 

replaced for instance by 0 or 0yy y
υ
∂

= + =
∂

 on ( )0 0,Γ × ∞ . 

  
The main contribution of this paper is to provide an alternative proof of Lagnese's result (1983) by means of 
a simple and direct method. The key idea of the proof is to introduce a new energy norm (see Chentouf and 
Boudellioua (2004) for similar systems and Conrad et al. (2002) for one-dimensional wave equation).  

2.     Preliminaries and Well-posedness of the Problem  

In this section, we study the existence and uniqueness of the solutions of the closed-loop system (1.1)-
(1.3). Assume, without loss of generality, that for any ( )1,x a x a∈Γ = , where a  is a positive constant. 
Then, consider the state space  

( ) ( )1 2 ,H H L= Ω × Ω                                                               (2) 
equipped with the inner product  
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( )( ) ( )

( )( )
1 1

, ,

  σ  σ ,

H
y z y z y y zz dx

z dx ay d zdx ay dε

Ω

Ω Γ Ω Γ

= ∇ ∇ +

+ + +

∫

∫ ∫ ∫ ∫
                  (2.1)  

where 0ε >  is a constant to be determined.  
The first result is stated in the following proposition:  
Proposition 1. The state space ( ) ( )1 2H H L= Ω × Ω  endowed with the inner product (2.1) is a Hilbert 
space provided that ε  is small enough.  
Proof of Proposition 1. It suffices to show that the norm 

H
⋅ induced by the inner product (2.1) is 

equivalent to the usual one ( ) ( )1 2H LΩ × Ω
⋅ , that is, the existence of two positive constants K  and K such 

that  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, , ,
H L H H L

K y z y z K y z
Ω × Ω Ω × Ω

≤ ≤ .                      (2.2)  

Applying Holder's inequality and using trace Theorem Adams (1976)  (see also Mikhaïlov (1980)) yield:  

( ) ( )( )
( ) ( )( )( )

2 2 2

2 22
1 1

, 1 2  

2 1 2  ,

H
y z y mes z dx

a C mes y y dx

ε

ε ε

Ω

Ω

≤ ∇ + + Ω  

+ Γ ∇ + +

∫

∫
 

where 1C  is a positive constant depending on Ω  (see Adams (1976) or Mikhaïlov (1980)). Therefore (2.2) 

holds for a positive constant K depending on ( ) ( )1 and, ,a mes mesε Γ Ω .  
For the reverse inequality, we proceed as follows:  

 
( ) ( ) ( ) ( )

( )( )
1

1

222 2 2,    σ

2 σ .

H
y z y z dx z dx ay d

ay d z dx

ε ε

ε

Ω Ω Γ

Γ Ω

= ∇ + + +

+

∫ ∫ ∫

∫ ∫
                  (2.3)  

Obviously for any 0,δ > , Young's inequality yields  

( )( ) ( ) ( )
1 1

22
12 σ σ .ay d z dx a z dx a y dδ δ−

Γ Ω Ω Γ
≥ − −∫ ∫ ∫ ∫                    (2.4)  

Combining (2.4) and (2.3), we get  

( ) ( ) ( )( ) ( )( )
1

222 2 2 1,  1 σ .
H

y z y z dx a z dx a a y dε δ ε δ−

Ω Ω Γ
≥ ∇ + + − + −∫ ∫ ∫        (2.5)  

Furthermore, using a classical compactness argument, one can show the following generalized Poincaré 
inequality:  

( )
1

2
2 2

2 σ ,y dx C y dx y d
Ω Ω Γ

 
≤ ∇ + 

 ∫ ∫ ∫  

where 2 0C >  depends on Ω . This, together with (2.5), implies that  
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( ) ( ) ( ){ }
( ) ( )

2 2 2 21
2
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,
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y z a a C y a a y z dx

a z dx

ε δ ε δ

ε δ δ

−

Ω

−

Ω

 ≥ − + − − ∇ +   

+ −

∫

∫
       (2.6)  

for any aδ < . Finally, applying again Holder's inequality to the last term in (2.6), one can show the 
existence of a positive constant K  depending on ,a δ  and ( )mes Ω  such that the second inequality in 

(2.2) holds, provided that aδ <  and ε  satisfies the following condition  
 

( ) ( ) ( )
1min , .

a a a mes
δε

δ δ
 

<   − − Ω 
 

This concludes the proof of Proposition 1.                                                                                                       ■ 
 
 We turn now to the formulation of the closed-loop system (1.1)-(1.3) in an abstract form on .H  Let 

( ) ( ) ( ) ( ) ( )( ), , and , , , .tz t y t t y t z t⋅ = ⋅ Φ = ⋅ ⋅  Then, the closed loop system can be written as 
follows  

 
( ) ( )
( ) ( )0 0 0

,

0 , ,
t t t

y z

ΑΦ = Φ

Φ = Φ =

                                           (2.7) 

where A  is an unbounded linear operator defined by 
  

( )
( ) ( ) ( ) ( )1 1 2

0 1

, ;  ;
,

     0 on ;  0 on

y z H H y L
D A y y az

υ υ

 ∈ Ω × Ω ∆ ∈ Ω
 =  ∂ ∂

= Γ + = Γ ∂ ∂ 

                 (2.8)  

and for any ( ) ( ), ,y z D A∈   

( ) ( ), , .A y z z y= ∆                                                 (2.9)  

It is a simple task to check that the operator ,A−  defined by (2.8)-(2.9), is maximal monotone. Therefore, 
it follows from semigroups theory Pazy (1983) (see also Brezis (1992)) that:  

Lemma 1.  (i) The linear operator A  generates a 0C  semigroup of contractions ( )S t  on ( ).H D A=  

(ii) For any initial data ( ) ( )0 0 0, ,y z D AΦ = ∈  the system (2.7) has a unique strong solution 

( ) ( ) ( )( ) ( ) ( )0, , ,tt y t y t S t D AΦ = ⋅ ⋅ = Φ ∈  for all 0t ≥  such that ( ) ( ), ty yΦ ⋅ = ∈  

( ) ( )( )1 ; ;C H C D A+ +∩ . Moreover,  the function ( )
H

t A tΦ  is decreasing.  

(iii) For any initial data ( )0 0 0,y z HΦ = ∈ , the system (2.7) has a unique weak solution 

( ) ( ) ( )( ) ( ) 0, , ,tt y t y t S t HΦ = ⋅ ⋅ = Φ ∈  such that ( ) ( ) ( )0, ;ty y C H+Φ ⋅ = ∈ .  
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3.    Asymptotic Behavior  

In this section, we will show an asymptotic behavior result for the unique solution of (2.7) in the state 
space  ( ) ( )1 2H H L= Ω × Ω . To do so, we shall first show the following lemma:  

Lemma 2. The resolvent operator ( ) 1 :I A H Hλ −− →  is compact for any 0λ >  and hence the 

canonical embedding ( ):i D A H→ is compact, where  is equipped with the graph norm.  

Proof of Lemma 2.  Let ( ), ,f g H∈ . We seek ( ) ( ),y z D A∈  such that ( )( ) ( ), ,I A y z f g− = . 
Equivalently,  

( )

( ) ( )

0

1

1 2

,
,

0,             on ,

,             on ,

;  .

z y f
y y f g
y

y ay af

y H y L

υ

υ


 = −

∆ − = − +
∂ = Γ∂
∂ + = Γ∂
∈ Ω ∆ ∈ Ω

  

 
Using Lax-Milgram Theorem (see Brezis (1992)), one can readily show that the above system has a unique 

solution and thus the operator ( ) 1I A −− exists and maps ( )intoH D A . Finally, by using Sobolev 

embedding, we deduce that ( ) 1I A −−  is compact. The proof of Lemma 2 follows then from the well-
known result of Kato (1976).                                                                                                                           ■            
 
 
The main result of this paper is:  
 
Theorem 1 .  For any initial data, ( )0 0 0, ,y z HΦ = ∈  the solution ( ) ( ) ( )( ), , ,tt y t y tΦ = ⋅ ⋅  of 

(2.7) tends in H to ( ),0 ,C as t →+∞  where  

( ){ } ( )
1

1
1 0 0  σC a mes z dx ay d

−

Ω Γ
= Γ +∫ ∫  . 

 
Proof of Theorem 1. By a standard argument of density of ( )2D A  in H and the contraction of the 

semigroup ( ) ,S t  it suffices to prove Theorem 1 for smooth initial data ( ) ( )2
0 0 0,y z D AΦ = ∈ . Let 

( ) ( ) ( )( ) ( ) 0, , ,tt y t y t S tΦ = ⋅ ⋅ = Φ  be the solution of (2.7). It follows from (ii) of Lemma 1 that the 

trajectory of solution ( ){ } 0t
t

≥
Φ  is a bounded set for the graph norm and thus precompact in H  by virtue 
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of Lemma 2. Applying LaSalle's principle, we deduce that ( )0ω Φ  is non-empty, compact, invariant under 

the semigroup ( )S t  and ( ) ( ) [ ]0 0 as 10S t tωΦ → Φ →∞ . In order to prove the strong stability, it 

suffices to show that ( )0ω Φ  reduces to ( ),0C . To this end, let ( ) ( ) ( )0 0 0 0,y z D AωΦ = ∈ Φ ⊂  

and ( ) ( ) ( )( ) ( ) ( )0, , ,tt y t y t S t D AΦ = ⋅ ⋅ = Φ ∈ the unique strong solution of (2.7). Recall that it is 

well-known that ( )
H

tΦ  is constant Haraux (1991) and thus ( )( )2
0,

H

d t
dt

Φ =  i.e.,  

1

2, σ 0.HA a z d
Γ

< Φ Φ > = − =∫                                            (3.1)  

This implies that 0tz y= =  on 1Γ  and therefore y  is solution of the system  
 System: 

( )
( ) ( )

0

1

0 0

1 2

0,

0,      on ,

0,      on ,

0 ;  ,

;  ,

tt

t

t

y y
y

yy

y y y z

y H y L

υ

υ

−∆ =
∂ = Γ
∂

 ∂ = = Γ ∂
 = =


∈ Ω ∆ ∈ Ω


                                      (3.2) 

whereas tz y=  is solution of the system 

( ) ( )

0

1

0 0

0,

0,        on ,

0,         on ,

0 ;  0 .

tt

t

z z
z

zz

z z z y

υ

υ

−∆ =
∂ = Γ
∂

 ∂ = = Γ
 ∂
 = = ∆

                                                   (3.3) 

 
Obviously, to deduce the desired result, it suffices to show that y = constant is the only solution of (3.2). 
To do so, we first use the standard Holmgren's uniqueness theorem (see John (1982)) for the system (3.3) to 
conclude that 0z ≡ . Thus the system (3.2) is reduced to the elliptic problem:  

0,

0, on ,

y
y
υ

∆ =

∂

= Γ∂

 

 
which clearly yields that y ≡  constant. This, together with (3.1), implies the desired result.                       ■                    
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Remark 1.  Integrating with respect to x  and t and using Green formula for the closed loop system (1.1)-
(1.3), we obtain the following identity:  
 

1 1
0 0σ  σ.ty dx ay d z dx ay d

Ω Γ Ω Γ
+ = +∫ ∫ ∫ ∫  

Furthermore, if the initial data ( )0 0,y z  satisfies the additional condition  

1
0 0 σ 0,z dx ay d

Ω Γ
+ =∫ ∫  

then the constant C  of Theorem 1 is zero, i.e., ( ) ( )( ) ( ), , , 0,0ty t y t in H as t⋅ ⋅ → → +∞ . 
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