On Group Codes Over Elementary Abelian Groups

Adnan A. Zain
Department of Electronics and Communications Engineering, Faculty of Engineering, University of Aden, P.O.Box 7409, Almansoora City, Aden Governorate, Republic of Yemen, Email: aazain@gmx.de.

عدنان عبدالله زين

$$
\begin{aligned}
& \text { خلاصة : تقتم الورقة تعريفا لكل من مصفوفة التوليد و مصفوفة فحص النكافؤ لانظمة التنفير المزمرة بواسطة الزمر الابتدائية من } \\
& \text { نوع (Abel) , و هذه المصفوفات عناصر ها تتنمي إلى الحققات المتبلورة للزمرة. باستخدام ذلك تم, في هذا البحث, تطوير النظرية } \\
& \text { التي تعطي العلاقة بين مصفوفة التوليد و مصفوفةً فصص التكافؤ لأنظمة النتشفير الخطية بو اسطة الحقول المتتاهية إلى نظرية جديدة } \\
& \text { لأنظمة النتشفير المزمرة بواسطة الزمر الابتدائية من نوع (Abel). يعرض البحث شفرات جديدة تمتلك خواص جيدة متل: أعلى } \\
& \text { قيمة للمسافة (Hamming) وقابلية الانفصال, ذاتية الازدو اجية, و الخاصية الحلقية. }
\end{aligned}
$$

Abstract

For group codes over elementary Abelian groups we present definitions of the generator and the parity check matrices, which are matrices over the ring of endomorphism of the group. We also lift the theorem that relates the parity check and the generator matrices of linear codes over finite fields to group codes over elementary Abelian groups. Some new codes that are MDS, self-dual, and cyclic over the Abelian group with four elements are given.

KEYWORDS: Codes Over Groups, Elementary Abelian Groups, Endomorphism Rings.

1. Introduction

Agroup code C of length n over an Abelian group A is a subgroup of A^{n}, the n-fold direct product of A. The rate $k(C)$ is defined by $k(C)=\log _{|A|}|C|$, where $|X|$ stands for cardinality. A group code C of length n with rate k and minimum Hamming distance d_{H} is called a $\left[n, k, d_{H}\right.$] code. A linear code C over a field F is also a group code over the additive group of F. It has been shown by Forney and Trott (1993) that many of the important structural properties of codes over F are associated with the additive and not the multiplicative group properties of F. For an information set supporting group codes (Forney, 1992) i.e. for group codes that are equivalent to systematic group codes over Abelian groups, the notion of generator and check matrices was introduced in Biglieri and Elia (1993). In this paper, following Biglieri and Elia (1993), we present the formal definitions of a generator and parity check matrices over the endomorphism ring of the elementary Abelian groups. Based on this we generalize the well known theorem that relates the generator and parity check matrices of linear codes over fields to group codes over elementary Abelian groups. Some new codes, MDS, Self-Dual, and Cyclic over the Abelian group with four elements, which cannot be obtained as linear codes over fields, are presented.

The paper is organized as follows. Section 2 contains the mathematical preliminaries. In section 3 the main theorem of the paper is proved. Table 2 contains the generator matrices and the listing of the code words of the new codes.

2. Preliminaries

An elementary abelian group, denoted by $A_{p^{m}}$, of order $q=p^{m}$, where p is a prime, is isomorphic to the direct sum of m cyclic groups, C_{p}, of order p, written as $A_{p^{m}} \equiv C_{p} \oplus \ldots \oplus C_{p}$ (m-times). Let g_{i} be a generator for the $i^{t h}$ cyclic group. An arbitrary element $x_{\beta} \in A_{p^{m}}$ can be written as

$$
\begin{equation*}
x_{\beta}=\oplus_{h=1}^{m} x_{\beta, h} g_{h}, \quad x_{\beta, i} \in Z_{p}, \quad i=1,2, \ldots, m \tag{1}
\end{equation*}
$$

Let $\psi: A_{p^{m}} \rightarrow A_{p^{m}}$ be an endomorphism of the group $A_{p^{m}}$ defined by the following

$$
\begin{equation*}
\psi\left(g_{i}\right)=\underset{j=1}{m} \alpha_{i, j} g_{j}, \alpha_{i, j} \in Z_{p}, i=1,2, \ldots, m \tag{2}
\end{equation*}
$$

Then ψ can be specified by the following $m \times m$ matrix over $Z_{p} \equiv G F(p)$

$$
[\psi]=\left[\begin{array}{cccc}
\alpha_{1,1} & \alpha_{1,2} & \ldots & \alpha_{1, m} \tag{3}\\
\alpha_{2,1} & \alpha_{2,2} & \ldots & \alpha_{2, m} \\
\vdots & \vdots & & \vdots \\
\alpha_{m, 1} & \alpha_{m, 2} & \ldots & \alpha_{m, m}
\end{array}\right]
$$

The action of ψ on any element $x_{\beta} \in A_{p^{m}}$, is given by the following expression

$$
\begin{equation*}
\psi\left(x_{\beta}\right)=x_{\beta, 1} \psi\left(g_{1}\right) \oplus \ldots \oplus x_{\beta, m} \psi\left(g_{m}\right)=\oplus_{h=1}^{m}\left[\sum_{i=1}^{m}\left\{x_{\beta, i} \alpha_{i, h} \bmod p\right\}\right] g_{h} \tag{4}
\end{equation*}
$$

The endomorphism ring of $A_{p^{m}}$ denoted by $\operatorname{End}\left(A_{p^{m}}\right)$ is isomorphic to the matrix ring $M_{m}\left(Z_{p}\right)$ consisting of $m \times m$ matrices over a finite field with p elements denoted by $G F(p)$ (McDonald, 1974).

Example 1: Consider the group $A_{2^{2}} \equiv C_{2} \oplus C_{2} . \operatorname{End}\left(A_{2^{2}}\right) \equiv M_{2}\left(Z_{2}\right)$.
$M_{2}\left(Z_{2}\right)=\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}{[} & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\}$
$G L_{2}\left(Z_{2}\right)=\left\{\left[\begin{array}{l}10 \\ 01\end{array}\right],\left[\begin{array}{l}01 \\ 10\end{array}\right],\left[\begin{array}{l}11 \\ 10\end{array}\right],\left[\begin{array}{l}01 \\ 11\end{array}\right],\left[\begin{array}{l}10 \\ 11\end{array}\right],\left[\begin{array}{l}11 \\ 01\end{array}\right]\right\}$
$F_{2^{2}}=\left\{\left[\begin{array}{l}00 \\ 00\end{array}\right],\left[\begin{array}{l}10 \\ 01\end{array}\right],\left[\begin{array}{l}01 \\ 11\end{array}\right],\left[\begin{array}{l}11 \\ 10\end{array}\right]\right\} \equiv G F\left(2^{2}\right)$

The set $M_{2}\left(Z_{2}\right)$, the set of endomorphisms, contains as a proper subset the set $G L_{2}\left(Z_{2}\right)$, the set of automorphisms, which contains a proper subset of the set $F_{2^{2}}$ that is isomorphic to the finite field with four elements, $G F(4)$. The action of every endomorphism on the group elements is shown in Table 1, where the first column contains the elements of the group against which are the images under the action of the underlying endomorphism.

GROUP CODES OVER ELEMENTARY ABELIAN GROUPS

Table 1. List of $\operatorname{End}\left(A_{2^{2}}\right) \equiv M_{2}\left(Z_{2}\right)$ and Their actions on the group elements.

	$\left[\begin{array}{l}00 \\ 00\end{array}\right]$	$\left[\begin{array}{l}10 \\ 00\end{array}\right]$	$\left[\begin{array}{l}01 \\ 00\end{array}\right]$	$\left[\begin{array}{l}00 \\ 10\end{array}\right]$	$\left[\begin{array}{l}00 \\ 01\end{array}\right]$	$\left[\begin{array}{l}11 \\ 00\end{array}\right]$	$\left[\begin{array}{l}10 \\ 10\end{array}\right]$	$\left[\begin{array}{l}10 \\ 01\end{array}\right]$	$\left[\begin{array}{l}01 \\ 10\end{array}\right]$	$\left[\begin{array}{l}01 \\ 01\end{array}\right]$	$\left[\begin{array}{c}00 \\ 11\end{array}\right]$	$\left[\begin{array}{c}01 \\ 11\end{array}\right]$	$\left[\begin{array}{l}10 \\ 11\end{array}\right]$	$\left[\begin{array}{l}11 \\ 01\end{array}\right]$	$\left[\begin{array}{l}11 \\ 10\end{array}\right]$	$\left[\begin{array}{l}11 \\ 11\end{array}\right]$
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
10	00	10	01	00	00	11	10	10	01	01	00	01	10	11	11	11
01	00	00	00	10	01	00	10	01	10	01	11	11	11	01	10	11
11	00	10	01	10	01	11	00	11	11	00	11	10	01	10	01	00

3. (n, k) Group Codes

A block of k message symbols $u=u_{1} u_{2} \ldots u_{k}$, where $u_{i} \in A_{p^{m}}, i=1,2, \ldots, k$, will be encoded into a codeword $x=x_{1} x_{2} \ldots x_{n}, x_{j} \in A_{p^{m}}$, where $n \geq k$, and these code words form a code. The first part of the codeword consists of the message itself: $x_{1}=u_{1}, x_{2}=u_{2}, \ldots, x_{k}=u_{k}$, followed by $n-k$ check symbols x_{k+1}, \ldots, x_{n}.

Following the definition of systematic group codes presented by Biglieri and Elia (1993), the check symbols can be obtained as

$$
\begin{equation*}
x_{k+l}=\underset{i=1}{k} \psi_{i l}\left(x_{i}\right), \quad l=1,2, \ldots,(n-k) . \tag{5}
\end{equation*}
$$

In matrix notation the above can be written as

$$
\begin{equation*}
x=u \Psi \tag{6}
\end{equation*}
$$

where Ψ is the generator matrix of the code given by

$$
\Psi=\left[\begin{array}{ccccc}
\psi_{I} & \psi_{0} & \ldots \psi_{0} \mid & \psi_{11} & \psi_{12} \tag{7}
\end{array} \ldots \psi_{1 s}\right)
$$

and ψ_{I} is the identity endomorphism that maps every element in the group onto itself while ψ_{0} is the zero endomorphism that maps every element on to the identity element of the group e.
The $(n-k) \times n$ parity check matrix H for the code can be obtained as follows

$$
\begin{gather*}
\mathrm{H}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\mathrm{H} x^{t r}=\left[\begin{array}{c}
e \\
e \\
\vdots \\
e
\end{array}\right] \tag{8}\\
\mathrm{H}=\left[\begin{array}{ccccc}
\psi_{11} \psi_{21} \ldots \psi_{k 1} \mid \psi_{i n v} \psi_{0} \ldots \psi_{0} \\
\psi_{12} \psi_{22} \ldots \psi_{k 2} & \psi_{0} & \psi_{i n v} & \ldots \psi_{0} \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
\psi_{1 s} & \ldots & \vdots \\
\psi_{2 s} & \ldots & \psi_{k s} \mid \psi_{0} & \psi_{0} & \ldots \psi_{i n v}
\end{array}\right] \tag{9}
\end{gather*}
$$

where $\psi_{i n v}$ is the endomorphism that maps every element on to its inverse. (This parity check matrix is different from the parity check matrix in Biglieri and Elia (1993)).

Now we are in a position to generalize the well-known result that relates the generator matrix and the parity check matrix for a (n, k) linear code over finite fields.
Theorem 1: For (n, k) codes over an elementary Abelian group $A_{p^{m}}$ the generator matrix Ψ and the parity check matrix H are related by $\Psi \circ H^{t r}=H \circ \Psi^{t r}=\left[O_{k \times s}\right]$, where $\left[O_{k \times s}\right]$ is the matrix with all entries equal to ψ_{0} i.e. the zero endomorphism, and \circ denotes a composition of endomorphisms.

Proof: From equation (8) that defines H , we have

$$
\mathrm{H}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\mathrm{H} x^{t r}=\left[\begin{array}{c}
e \\
e \\
\vdots \\
e
\end{array}\right]=[e]_{s \times 1}
$$

Use equation (6) to substitute for $x^{t r}$ in the above to obtain

$$
H \circ \Psi^{t r} u^{t r}=[e]_{s \times 1}
$$

Using (7) and (9) in the above matrix equation, we obtain

$$
\begin{aligned}
& {\left[\begin{array}{c}
v_{1} \oplus \psi_{i n v}\left(v_{1}\right) \\
\vdots \\
v_{s} \oplus \psi_{i n v}\left(v_{s}\right)
\end{array}\right]=\left[\begin{array}{l}
e \\
\vdots \\
e
\end{array}\right]}
\end{aligned}
$$

which yields

That is $H \circ \Psi^{t r}=\left[O_{k \times s}\right]$.
In a similar way it can be proved that $\Psi \circ H^{t r}=\left[O_{k \times s}\right]$, hence the result.
The class of codes over $A_{p^{m}}$ obtained using Ψ contains as a proper subclass the linear codes over $G F\left(p^{m}\right)$. This can be illustrated using the following example.
Example 2: (n, k) codes over $A_{2^{2}}$ and (n, k) codes over $G F(4)$.
The matrix Ψ with entries $\psi_{i j} \in \operatorname{End}\left(A_{2^{2}}\right) \equiv M_{2}\left(Z_{2}\right)$ generates (n, k) codes over $A_{2^{2}}$ denoted by the set P.
The matrix Ψ with entries $\psi_{i j} \in G L_{2}\left(Z_{2}\right) \subset \operatorname{End}\left(A_{2^{2}}\right)$ generates (n, k) codes over $A_{2^{2}}$ denoted by the set P^{\prime}.
The matrix Ψ with entries $\psi_{i j} \in F_{2^{2}} \subset G L_{2}\left(Z_{2}\right) \subset \operatorname{End}\left(A_{2^{2}}\right)$ generates (n, k) codes over $A_{2^{2}}$ denoted by the set $\mathrm{P}^{\prime \prime}$. This set coincides with (n, k) codes over $G F(4)$.

Clearly the following inclusion property holds, $\mathrm{P} \supset \mathrm{P}^{\prime} \supset \mathrm{P}^{\prime \prime}:$ Based on example 2 we present, in Table 2, three new $(4,2,3)$ group codes and their binary images, where the codes belong to the set P^{\prime}, and they do not belong to the set $\mathrm{P}^{\prime \prime}$; that means that they cannot be obtained as linear codes over $G F(4)$. We also observe that these codes are self-dual, MDS and two of them are also cyclic.

Table 2: New $(4,2,3)$ group codes over $A_{2^{2}} \equiv C_{2} \oplus C_{2} \equiv\{00,10,01,11\} \equiv\{0,1,2,3\}$

Generator Matrix	Code	Binary Image	Remarks
$\left[\begin{array}{l} \binom{10}{01}\binom{00}{00}\binom{11}{01}\binom{01}{11} \\ \binom{00}{00}\binom{10}{01}\binom{11}{10}\binom{10}{11} \end{array}\right.$	0000	00000000	$\begin{gathered} \text { MDS } \\ \text { SELF-DUAL } \end{gathered}$
	0123	00100111	
	0232	00011101	
	0311	00111010	
	1013	10001011	
	1130	10101100	
	1221	10010110	
	1302	10110001	
	2031	01001110	
	2112	01101001	
	2320	01110100	
	3022	11000101	
	3101	11100010	
	3210	11011000	
	3333	11111111	
$\left[\begin{array}{l}\binom{10}{01}\binom{00}{00}\binom{01}{11}\binom{11}{01} \\ \binom{00}{00}\binom{10}{01}\binom{10}{11}\binom{11}{10}\end{array}\right]$	0000	00000000	MDS SELF-DUAL CYCLIC
	0113	00101011	
	0231	00011110	
	0322	00110101	
	1023	10000111	
	1130	10101100	
	1212	10011001	
	1301	10110010	
	2032	01001101	
	2121	01100110	
	2203 2310	01010011 01111000	
	3011	11001010	
	3102	11100001	
	3220	11010100	
	3333	11111111	
$\left.\begin{array}{l}{\left[\binom{10}{01}\binom{00}{00}\binom{11}{10}\binom{10}{11}\right.} \\ \binom{00}{00}\binom{10}{01}\binom{11}{01}\binom{01}{11}\end{array}\right]$	0000	00000000	MDS SELF-DUAL CYCLIC
	0132	00101101	
	0223	00010111	
	0311	00111010	
	1031	10001110	
	1103	10100011	
	1212	10011001	
	1320	10110100	
	2013	01001011	
	2121	01100110	
	2230	01011100	
	2302	01110001	
	3022	11000101	
	3110	11101000	
	3201	11010010	
	3333	11111111	

4. Conclusion

In this paper, the formal definitions of a generator and parity check matrices over the endomorphism ring of the elementary Abelian groups have been presented. The well-known theorem that relates the generator and parity check matrices of linear codes over fields were generalized to group codes over elementary Abelian groups. New codes, MDS, Self-Dual, and Cyclic over the Abelian group with four elements, which cannot be obtained as linear codes over fields, were also given. The algebraic framework motivates us to a further study of the class of group codes that are cyclic over elementary Abelian groups especially over $A_{2^{2}}$ to cover the recently developed codes in Ran and Snyders (2000).

References

BIGLIERI, E. and ELIA, M. 1993 Construction of linear block codes over groups. IEEE International Symposium on Information Theory, San Antonio, Texas.
FORNEY, G.D. 1992 On the Hamming distance properties of group codes. IEEE Trans. Inform. Theory, IT-38: 1797-1801.
FORNEY, G.D. JR. and TROTT, M.D. 1993 The dynamics of group codes: state space, trellis diagram, and the canonical encoders. IEEE Trans. Inform. Theory, IT-39: 1491-1513.
McDONALD, B.R. 1974. Finite rings with identity. Marcel Dekker, New York, 1974.
RAN, M. and SNYDERS, J. 2000. On cyclic reversible self-dual additive codes with odd length over $Z_{2^{2}}$. IEEE Trans. Inform. Theory, IT-46: 1056-1059.

Received 5 February 2002
Accepted 3 September 2003

