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 Kة من الصنف لفضاءات شبه المترياتمييز 

 عبدالعظيم مؤات محمد

   .  بطرق مختلفة ومتكافئةKنقوم في هذا البحث بكتابة الفضاءات شبه المترية من الصنف  : خلاصة
 

ABSTRACT:  In this paper, we prove, for a space X, the following are equivalent: 
1. X is a ω ∆1 space with a regular-Gδ-diagonal,  
2. X is a ω ∆2 space with a regular-Gδ-diagonal, 
3. X is a semi-developable space with Gδ (3) -diagonal, 
4. X is a ω ∆1-space with a Gδ(3)-diagonal, 
5. X is a ω ∆2 -space with a Gδ(3)-diagonal, 
6. X is a q, β -space with a G*δ (2)-diagonal, 
7. X is a semi-developable space with G*δ (2)-diagonal, 
8. X is a semimetrizable, c-stratifiable space, 
9. X is a c-Nagata β -space, 
10. X is a K-semimetrizable. 
 
KEYWORDS: ω ∆ - space,sSemi- developable space, -semimetrizable space, K β -space, G *

δ (2)-diagonal, Gδ (3)-

diagonal, regular-Gδ -diagonal, semi-stratifiable, c -semi-stratifiable.  

1. Introduction 

A  space X  is semimetrizable if there exists a real valued function d on    X X× such that  
 

1. d x  ( ) ( ), = ,  0.y d y x ≥  

0 2. d x if and only if ( ), y = .x y= . 

3. for ,M X x M⊂ ∈  if and only if ( ) ( ){ },  inf , :    M d x y y M= ∈ 0.=

0 

d x If in addition, d  
satisfies. 
4. d H whenever and K  are disjoint compact subsets of ( ), K > H X , then X is said to be  

semimetrizable (Arhangel'skii, 1966) .   
Let {
K −

} Nn n
G

∈
 be a sequence of covers of a space X . 

1. Suppose { } Nn n
G

∈
 satisfies the following property: if, ( ), ,nx st x G∈  n then the sequence 

nx  

has a cluster point. 
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(a) If, for each  , G  is an open cover of Nn ∈ n X , then  X  is called a ω ∆ -space (Borges, 1968). 
(b) If, for each  , is an open subset of  Nn ∈ (st , )nx G X , then  X is called a 1ω ∆ -space (Gittings, 
1975). 
(c) If, for each  , Nn ∈ x ∈  Int , then X is called a ( , nx G )st ω ∆2–space (Gittings, 1975). 
 . 
2. If for each  x X∈ , ( ){ } Nn∈

,  nx Gst is a local base at x , then X is called a semi-developable 

space. If in addition, for each  , Nn ∈ ( )n,Gst  is an open subset of x X , then X is called a semi- 
developable space.  
3. If, for each  , GNn ∈ n   is an open cover of X  and for each  x X∈ , ( ) { }3 , ,n nst x G x=∩  then  

X  has a G diagonal.  ( )3 −δ

4. If, for each , Nn ∈ nG  is an open cover of X and for each x X∈ , ( ) { }2 ,n nst x G x=∩ , then 

X  has a G diagonal.  * (2δ )-

5. If, for each , st is an open subset of Nn ∈ ( , ) nx G  X and for each  x X∈ , ( ) { },n nst x G x=∩ , 
then  X has a S diagonal.   2 −

6. If, for each  , Nn ∈ x ∈  Int st  and for each  ( , nx G ) x X∈ , { }( , ) ,n nst x G x=∩ then X  has a 

2α -diagonal.  
7. If, for each , GNn ∈ n  is an open cover of X and for any pair of distinct points , ,  x y X∈ there 
exist neighborhoods U and of V x and , respectively, and , such that y Nn ∈

(st , )nU G V =  , φ∩ equivalently, ( , nst V G ) =  ,  U φ∩ then X has a regular- Gδ -diagonal. 
A COC-map (= countable open covering map) for a topological space X is a function from 

N X× into the topology of X  such that for every x X∈ , and  n N∈ ,  x∈g(n, x) and g(n + 1, x) 
 g(n,x). A space ⊆ X is called β -space if X  has a COC-map  g such that if ( ), nx g n x∈ for 

every , then the sequence N∈n nx  has a cluster point.  

A space X is called q space if − X has a COC-map g such that if  ( ,n )x g n x∈  for every 

 then the sequence N,n ∈ nx  has a cluster point.    
A space X  is called  c-semi-stratifiable (Martin, 1973) (c-stratifiable) if there is a sequence 

( ),g n x of open neighborhoods of x  such that for each compact set  

( ){ }, if ( , )= , : ,g n K g n x x K⊂ ∈∪K X then ( ){ } ( ){ }( ), : 1 , : 1g n K n K g n K n K≥ = ≥ =∩ ∩ . 

The COC-map : Ng X τ× →  is called a c-semi-stratification (c-stratification) of X . A space X  
is called  c-Nagata if it is first countable, c- stratifiable space. 

Throughout this paper, all spaces are assumed to be T 2 − spaces unless otherwise stated 
explicitly. The letter  always denotes the set of all positive integers.  N

2.    Main results 

Lemma 1 : Every space with a G diagonal has a G diagonal. (3) -δ
* (2) -δ

Proof. Let { } Nn n
G

∈   be a G diagonal sequence for (3) -δ X . We want to prove that 

( ) { }2
Nn st x∈∩ , nG x=  for every x X∈ . Suppose we have  ( )2 ,n t x G∈ nq s . For every open set 

such that  q  and for each     
∩

U U∈ Nn ∈
2 ( , ) .nst x G U φ≠∩  
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In particular, if G nG∈  is such that  q G∈  then 2 ( , ) .nst x G G φ≠∩   So, q s As 
this holds for all , it follows that 

3( , ).  nt x G∈
n x q= . 

Lemma 2:  Any  space with a  Gδ* (2)-diagonal is a c-stratifiable space. 
Proof. Let nG  be a sequence of open covers of a space X such that ( )2

N , {n nst x G x∈ =∩ }.  
Define a COC-map by  g

( ) ( ), , ng n x st x G= .  

We must prove that ( ),g n K K=∩  for any compact subset of X .   

Let p K∉ . Then, for each , there exists an integer k K∈ ( )n k  such that  ( )( )2 , .n kp st k G∉  

Therefore there is an open set U(k) containing  p such that ( ) ( )( ), .2
n kst k GU k φ= K

K

∩

,k k

 Since  is 

compact, we can find a finite number of points  of such that 1 2 ,..., rk

( )( ){ },i n kk G : 1, 2,...,st i r= covers . Let K ( ){ }maxn n= : 1,k i 2,..., ,i r= and  ( )1 .i iU U k== ∩  

Then  
( ), .nU st k G φ∩ =  

That is,U g ( ),n K φ=∩ . This implies ( ), .p g n K∉   
Theorem 1: Every 1ω ∆ -space with S2-diagonal is an o-semidevelopable space.  
Proof. Let  { } Nn n

G
∈

 be a countable family of covers of a space X  illustrating that X  is a ω ∆ 1-

space. Since X has an -diagonal, there exists a sequence 2S :n Nν n ∈  of covers of X  such that, 

for each  x X∈ and (N, , nn st x )ν∈ is an open subset of X and ( ) {n x}N ,n st x ν∈ =∩ .  For each 
, let  Nn ∈

( ) ( ){ }1 1: , , , 1, 2,..., .n n
n i i i i i i i iu U U G V G G V i nν= == = ∩ ∈ ∈ =∩ ∩  

It is easy to see that  u  refines  u  for all  1n+ n Nn ∈  and that, for each x X∈ , 

( ) { }N ,n nst x u x∈ =∩ .  Furthermore, for each x X∈  and  Nn ∈   

( ) ( )( ) ( )( )1 1, ,n n
n i i i ist x u st x G st x ,ν= == ∩ ∩ ∩  

and thus st  is an open subset of ( , nx u ) X . Also it is easy to check that : Nnu n ∈  is a ω ∆ 1- 
sequence for X .  
It remains to show that : Nnu n ∈  is a semi-development for X . Suppose instead that 

: Nnu n ∈  is not a semi-development for X . Then there is a point x , an open neighborhood W  

of x , and a sequence nx  such that for all , n ( ),n nx st x u∈  and  nx W∉ . Since :nu n ∈N   is 

a 1ω ∆ -sequence for  X , the sequence nx  has a cluster point p . Clearly p W∉  so p x≠ . By 

choice of :n nν ∈N , there are  in  and a neighborhood  V  of  k N p  such that 

( ), kx .V st ν φ=∩  Now for n , k≥ ( ) ( ) ( ), k, ,n nt x u st x k sx us t x ν∈ ⊂ ⊂  so .nx V∉  This 

contradicts the fact that p is a cluster point of 
nx . Thus : ∈Nnu n  is a semi-development for 

X .  
Theorem 2: The following are equivalent for a regular 2ω ∆ -space X  : 
(1) X  is semimetrizable;      
(2) X is semi-stratifiable; 
(3) X is θ -refinable and has a Gδ-diagonal; 
(4) X has a G*δ-diagonal; 
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(5) X has 2α -diagonal. 
(6) X  is semidevelopable.   
Proof. The only implications requiring comment are (5) ⇒  (6) and (6)  (1). To prove (5) ⇒  
(6), let {

⇒
}nG  be a countable family of covers of X illustrating that X  is a 2ω ∆ -space. Let 

: n Nnν ∈  be an 2α -sequence for X . Let the sequence :nu n N∈  be defined as in the proof 
of Theorem 2.3. Since for each  x X∈  and  Nn ∈ , 

( ) )( ) ( )x∩1 1
n n
= = , ,i∩ ∩x u I

(
ν

x x u∈ : ∈N

X ω ∆
X ω ∆
X
X ω ∆
X ω ∆
X
X
X
X β
X

2∆

β

⇒
ω ∆

n

x

0n 0n n>

) U⊂ ( 2
, nGy V { }0 1 2,nxN n ,

n x ( ,y G )st (3 , .

⇔ sphere ered at

X ( ,x ), y < / .n

{ }i= 1/ spher center .

( nG,t x ( <

( ( ), ,n i i iIntst nst x G Inst=

), .n

  

we have  Inst  It follows, exactly as before, that nu n  is a semi-development for 
X . The implication (6) (1) follows from (Alexander, 1971), Theorem 1.3.  ⇒

Theorem 3:   

For a space X, the following are equivalent: 
1. is a 1-space with a regular -Gδ-diagonal, 
2. is a 2-space with a regular-Gδ-diagonal, 
3. is a semi-developable space with Gδ (3)-diagonal, 
4. is a 1-space with a G δ (3)-diagonal, 
5. is a 2-space with a G δ (3)-diagonal, 
6. is a q, β -space with a G 

*
δ (2)-diagonal, 

7. is a semi-developable space with G 
*
δ (2)-diagonal, 

8. is a semimetrizable, c-stratifiable space, 
9. is a c-Nagata -space, 
10. is a K-semimetrizable. 
 
Proof. It is clear that  1⇒2, 3⇒4, 4⇒5, 8⇒9. 
The implication 5⇒6 follows by Lemma 2.5 and since every ω -space is  a  q, β -space. The 
implication 6⇒7 follows by facts every β -space with a G 

*
δ -diagonal is a semi-stratifiable space, 

every  q-space with a G 
*
δ -diagonal is first countable and every first countable,  semi-stratifiable 

space is a semimetrizable.     
The implication 7 8  follows by Lemma 2.2 and since every T⇒ 0  semi-developable space is a 

semimetrizable. 
The implication 9⇒8 follows by facts every c-stratifiable, -space is semi-stratifiable and 

every first countable, semi-stratifiable space is a semimetrizable.   
1 8  follows by Lemma 2.2, Theorem 2.3.  
For 2⇒3. Suppose that X is a 2 -space with a regular-Gδ-diagonal. Every space with a 

regular-Gδ-diagonal has a G 
*
δ -diagonal. By Theorem 2.4, X is a semi-developable space. Let { }nG  

be a semi-development and regular- Gδ-diagonal-sequence. To see that G satisfies the Gδ(3)-
diagonal-sequence, let  x y≠  points in X , U  and V open sets containing  and  respectively, 
and an integer such that if , then no member of G meets both U and V . Let  and  

be integers such that st and 

y

n 1n 2n

( 1
, nx G ) ⊂st . ma= n . Then no member 

of G meets both st  and  . Thus ( ), nG n )nGy s∉ t y  

For 10 3. Let { }1/ cent .n =G n  It is clear that x nG  is a sequence of covers 

of and   if and only if  )nGy st∈ ( 1d x  Therefore nG  is a semidevelopment for 

X .  Now let nterior of e ed atnG n  It is clear that nG  is a sequence of 

open covers of X and if   then )y s∈ ), y 1/ n.d x  If there exist distinct points x  and  

x
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y  such that  ( )3 , ny st x G∈  for all n N∈ , then there are sequences nx  and ny  such that  

( ) ( )n n, , ,n nx st x G∈ y st y G∈  and  ( ),nt x Gny s∈ n .  Let { } { }1 :nK x x n ω= ∈∪  and { }2K y=  

{ }:ny n ω∈∪ 1 2K K φ=∩ ( )1 2, 0K ,=

n X
d X ( ) ( ){ }, 1y / inf j= ∈ : , ist y G∉

( , n )x st y G∈

( , H
( ), .y 1/ n< H

) 0.= nx ny K H

( ),n nd x y <1/ n X nx ny

inx x y

( ) 1/ i<

( ), kx G,

. We may assume  with both sets compact. But d K  a 
contradiction.  

Conversely, let G be a semi-development and Gδ(3)-diagonal-sequence for . Define a 
semimetric on  by N xd x . From the definition  

 if and only if d x  Assume there exist disjoint compacta K and such 

that  d K  We can find two sequences  and  in and respectively, such that 

. Note that is sequential and T  so that 2  and  have convergent 

subsequences. Let  and 
iny  be subsequences of  nx  and ny  converging to  and , 

respectively. Without loss of generality, we may assume  ( ),
inx <

k

1/ id x and  for 

each  Since d x  it follows that there is no such that . This 
contradiction completes the proof.   

,
iny

3t

d y

y sN.i ∈ ( , 1/
i in ny i) < ∉
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