Characterizations of K- Semimetric Spaces

Abdul M. Mohamad

Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, Al Khod 123, Muscat, Sultanate of Oman, Email: mohamad@squ.edu.om.

Κ

K

ABSTRACT: In this paper, we prove, for a space *X*, the following are equivalent:

- 1. *X* is a $\omega \Delta_1$ space with a regular- G_{δ} -diagonal,
- 2. *X* is a $\omega \Delta_2$ space with a regular- G_{δ} -diagonal,
- 3. *X* is a semi-developable space with G_{δ} (3) -diagonal,
- 4. *X* is a $\omega \Delta_1$ -space with a $G_{\delta}(3)$ -diagonal,
- 5. *X* is a $\omega \Delta_2$ -space with a $G_{\delta}(3)$ -diagonal,
- 6. *X* is a *q*, β -space with a $G^*_{\delta}(2)$ -diagonal,
- 7. *X* is a semi-developable space with $G^*_{\delta}(2)$ -diagonal,
- 8. X is a semimetrizable, c-stratifiable space,
- 9. *X* is a *c*-Nagata β -space,
- 10. X is a K-semimetrizable.

KEYWORDS: $\omega \Delta$ - space, sSemi- developable space, K -semimetrizable space, β -space, $G_{\delta}^{*}(2)$ -diagonal, $G_{\delta}(3)$ - diagonal, regular- G_{δ} -diagonal, semi-stratifiable, c -semi-stratifiable.

1. Introduction

space X is semimetrizable if there exists a real valued function d on $X \times X$ such that

1. $d(x, y) = d(y, x) \ge 0$.

2. d(x, y) = 0 if and only if x = y...

3. for $M \subset X, x \in \overline{M}$ if and only if $d(x, M) = \inf \{ d(x, y) : y \in M \} = 0$. If in addition, d satisfies.

4. d(H,K) > 0 whenever H and K are disjoint compact subsets of X, then X is said to be K – semimetrizable (Arhangel'skii, 1966).

Let $\{G_n\}_{n \in \mathbb{N}}$ be a sequence of covers of a space X.

1. Suppose $\{G_n\}_{n \in \mathbb{N}}$ satisfies the following property: if, $x_n \in st(x, G_n)$, then the sequence $\langle x_n \rangle$ has a cluster point.

(a) If, for each $n \in \mathbb{N}$, G_n is an open cover of X, then X is called a $\omega \Delta$ -space (Borges, 1968). (b) If, for each $n \in \mathbb{N}$, $st(x, G_n)$ is an open subset of X, then X is called a $\omega \Delta_1$ -space (Gittings, 1975).

(c) If, for each $n \in \mathbb{N}$, $x \in \text{Int } st(x, G_n)$, then X is called a $\omega \Delta_2$ -space (Gittings, 1975).

2. If for each $x \in X$, $\{st(x, G_n)\}_{n \in \mathbb{N}}$ is a local base at x, then X is called a semi-developable space. If in addition, for each $n \in \mathbb{N}$, $st(x, G_n)$ is an open subset of X, then X is called a semi-developable space.

3. If, for each $n \in \mathbb{N}$, G_n is an open cover of X and for each $x \in X$, $\bigcap_n st^3(x, G_n) = \{x\}$, then X has a $G_{\delta}(3)$ -diagonal.

4. If, for each $n \in \mathbb{N}$, G_n is an open cover of X and for each $x \in X$, $\bigcap_n \overline{st^2(x, G_n)} = \{x\}$, then X has a $G_{\delta}^*(2)$ -diagonal.

5. If, for each $n \in \mathbb{N}$, $st(x, G_n)$ is an open subset of X and for each $x \in X$, $\bigcap_n \overline{st(x, G_n)} = \{x\}$, then X has a S_2 – diagonal.

6. If, for each $n \in \mathbb{N}$, $x \in \text{Int } st(x,G_n)$ and for each $x \in X$, $\bigcap_n \overline{st(x,G_n)} = \{x\}$, then X has a α_2 -diagonal.

7. If, for each $n \in \mathbb{N}$, G_n is an open cover of X and for any pair of distinct points $x, y \in X$, there exist neighborhoods U and V of x and y, respectively, and $n \in \mathbb{N}$, such that $st(U,G_n) \cap V = \phi$, equivalently, $st(V,G_n) \cap U = \phi$, then X has a regular- G_{δ} -diagonal.

A COC-map (= countable open covering map) for a topological space X is a function from $N \times X$ into the topology of X such that for every $x \in X$, and $n \in N$, $x \in g(n, x)$ and $g(n + 1, x) \subseteq g(n, x)$. A space X is called β -space if X has a COC-map g such that if $x \in g(n, x_n)$ for every $n \in N$, then the sequence $\langle x_n \rangle$ has a cluster point.

A space X is called q-space if X has a COC-map g such that if $x_n \in g(n,x)$ for every $n \in \mathbb{N}$, then the sequence $\langle x_n \rangle$ has a cluster point.

A space X is called c-semi-stratifiable (Martin, 1973) (c-stratifiable) if there is a sequence $\langle g(n,x) \rangle$ of open neighborhoods of x such that for each compact set $K \subset X$, if $g(n,K) = \bigcup \{ g(n,x) : x \in K \}$, then $\bigcap \{ g(n,K) : n \ge 1 \} = K \left(\bigcap \overline{\{ g(n,K) : n \ge 1 \}} = K \right)$. The *COC*-map $g : \mathbb{N} \times X \to \tau$ is called a c-semi-stratification (c-stratification) of X. A space X

Throughout this paper, all spaces are assumed to be T_2 -spaces unless otherwise stated explicitly. The letter N always denotes the set of all positive integers.

2. Main results

Lemma 1 : Every space with a $G_{\delta}(3)$ - diagonal has a $G_{\delta}^{*}(2)$ - diagonal.

is called *c*-Nagata if it is first countable, *c*- stratifiable space.

Proof. Let $\{G_n\}_{n \in \mathbb{N}}$ be a $G_{\delta}(3)$ -diagonal sequence for X. We want to prove that $\bigcap_{n \in \mathbb{N}} st^2(x, G_n) = \{x\}$ for every $x \in X$. Suppose we have $q \in \bigcap_n \overline{st^2(x, G_n)}$. For every open set U such that $q \in U$ and for each $n \in \mathbb{N}$

$$st^{2}(x,G_{n})\cap U\neq\phi.$$

In particular, if $G \in G_n$ is such that $q \in G$ then $st^2(x,G_n) \cap G \neq \phi$. So, $q \in st^3(x,G_n)$. As this holds for all n, it follows that x = q.

Lemma 2: Any space with a G_{δ}^* (2)-diagonal is a c-stratifiable space. *Proof.* Let $\langle G_n \rangle$ be a sequence of open covers of a space X such that $\bigcap_{n \in \mathbb{N}} \overline{st^2(x, G_n)} = \{x\}$. Define a *COC*-map g by

$$g(n,x) = st(x,G_n)$$

We must prove that $\bigcap \overline{g(n,K)} = K$ for any compact subset of X.

Let $p \notin K$. Then, for each $k \in K$, there exists an integer n(k) such that $p \notin st^2(k, G_{n(k)})$. Therefore there is an open set U(k) containing p such that $U(k) \cap st^2(k, G_{n(k)}) = \phi$. Since K is compact, we can find a finite number of points $k_1, k_2, ..., k_r$ of K such that $\{st(k_i, G_{n(k)}): i = 1, 2, ..., r\}$ covers K. Let $n = \max\{n(k_i): i = 1, 2, ..., r\}$, and $U = \bigcap_{i=1} U(k_i)$. Then

$$U \cap st(k,G_n) = \phi$$

That is, $U \cap g(n, K) = \phi$. This implies $p \notin \overline{g(n, K)}$.

Theorem 1: Every $\omega \Delta_1$ -space with S₂-diagonal is an o-semidevelopable space.

Proof. Let $\{G_n\}_{n\in\mathbb{N}}$ be a countable family of covers of a space X illustrating that X is a $\omega \Delta_1$ -space. Since X has an S₂-diagonal, there exists a sequence $\langle v_n : n \in N \rangle$ of covers of X such that, for each $x \in X$ and $n \in \mathbb{N}$, $st(x, v_n)$ is an open subset of X and $\bigcap_{n\in\mathbb{N}} \overline{st(x, v_n)} = \{x\}$. For each $n \in \mathbb{N}$, let

$$u_{n} = \left\{ U : U = \left(\bigcap_{i=1}^{n} G_{i} \right) \cap \left(\bigcap_{i=1}^{n} V_{i} \right), G_{i} \in G_{i}, V_{i} \in V_{i}, i = 1, 2, ..., n \right\}.$$

It is easy to see that u_{n+1} refines u_n for all $n \in \mathbb{N}$ and that, for each $x \in X$, $\bigcap_{n \in \mathbb{N}} \overline{st(x, u_n)} = \{x\}$. Furthermore, for each $x \in X$ and $n \in \mathbb{N}$

 $st(x, u_n) = \left(\bigcap_{i=1}^n st(x, G_i)\right) \cap \left(\bigcap_{i=1}^n st(x, v_i)\right)$

and thus $st(x, u_n)$ is an open subset of X. Also it is easy to check that $\langle u_n : n \in \mathbb{N} \rangle$ is a $\omega \Delta_1$ -sequence for X.

It remains to show that $\langle u_n : n \in \mathbb{N} \rangle$ is a semi-development for X. Suppose instead that $\langle u_n : n \in \mathbb{N} \rangle$ is not a semi-development for X. Then there is a point x, an open neighborhood W of x, and a sequence $\langle x_n \rangle$ such that for all n, $x_n \in st(x, u_n)$ and $x_n \notin W$. Since $\langle u_n : n \in \mathbb{N} \rangle$ is a $\omega \Delta_1$ -sequence for X, the sequence $\langle x_n \rangle$ has a cluster point p. Clearly $p \notin W$ so $p \neq x$. By

choice of $\langle v_n : n \in N \rangle$, there are k in N and a neighborhood V of p such that $V \cap st(x, v_k) = \phi$. Now for $n \ge k$, $x_n \in st(x, u_n) \subset st(x, u_k) \subset st(x, v_k)$ so $x_n \notin V$. This contradicts the fact that p is a cluster point of $\langle x_n \rangle$. Thus $\langle u_n : n \in N \rangle$ is a semi-development for X.

Theorem 2: The following are equivalent for a regular $\omega \Delta_2$ -space X :

- (1) X is semimetrizable;
- (2) X is semi-stratifiable;
- (3) X is θ -refinable and has a G_{δ}-diagonal;
- (4) X has a G^*_{δ} -diagonal;

ADBUL M. MOHAMAD

(5) X has α_2 -diagonal.

(6) X is semidevelopable.

Proof. The only implications requiring comment are (5) \Rightarrow (6) and (6) \Rightarrow (1). To prove (5) \Rightarrow (6), let $\{G_n\}$ be a countable family of covers of X illustrating that X is a $\omega \Delta_2$ -space. Let $\langle v_n : n \in \mathbb{N} \rangle$ be an α_2 -sequence for X. Let the sequence $\langle u_n : n \in \mathbb{N} \rangle$ be defined as in the proof of Theorem 2.3. Since for each $x \in X$ and $n \in \mathbb{N}$, Intst $(x, u_n) = (\bigcap_{i=1}^n Inst(x, G_i)) \cap (\bigcap_{i=1}^n Inst(x, v_i)),$

we have $x \in Inst(x, u_n)$. It follows, exactly as before, that $\langle u_n : n \in N \rangle$ is a semi-development for X. The implication (6) \Rightarrow (1) follows from (Alexander, 1971), Theorem 1.3.

Theorem 3:

For a space X, the following are equivalent:

- 1. X is a $\omega \Delta_1$ -space with a regular -G_{δ}-diagonal,
- 2. *X* is a $\omega \Delta_2$ -space with a regular-G_{δ}-diagonal,
- 3. X is a semi-developable space with G_{δ} (3)-diagonal,
- 4. *X* is a $\omega \Delta_1$ -space with a G_{δ} (3)-diagonal,
- 5. *X* is a $\omega \Delta_2$ -space with a G_{δ} (3)-diagonal,
- 6. X is a q, β -space with a G^{*}_{δ} (2)-diagonal,
- 7. X is a semi-developable space with $G_{\delta}^{*}(2)$ -diagonal,
- 8. X is a semimetrizable, c-stratifiable space,
- 9. X is a c-Nagata β -space,
- 10. X is a K-semimetrizable.

Proof. It is clear that $1 \Rightarrow 2, 3 \Rightarrow 4, 4 \Rightarrow 5, 8 \Rightarrow 9$.

The implication $5 \Rightarrow 6$ follows by Lemma 2.5 and since every $\omega \Delta_2$ -space is a q, β -space. The implication $6 \Rightarrow 7$ follows by facts every β -space with a G^*_{δ} -diagonal is a semi-stratifiable space, every q-space with a G^*_{δ} -diagonal is first countable and every first countable, semi-stratifiable space is a semimetrizable.

The implication $7 \Rightarrow 8$ follows by Lemma 2.2 and since every T_0 semi-developable space is a semimetrizable.

The implication $9 \Rightarrow 8$ follows by facts every *c*-stratifiable, β -space is semi-stratifiable and every first countable, semi-stratifiable space is a semimetrizable.

 $1 \Rightarrow 8$ follows by Lemma 2.2, Theorem 2.3.

For $2 \Rightarrow 3$. Suppose that X is a $\omega \Delta_2$ -space with a regular- G_{δ} -diagonal. Every space with a regular- G_{δ} -diagonal has a G_{δ}^* -diagonal. By Theorem 2.4, X is a semi-developable space. Let $\{G_n\}$ be a semi-development and regular- G_{δ} -diagonal-sequence. To see that G_n satisfies the $G_{\delta}(3)$ -diagonal-sequence, let $x \neq y$ points in X, U and V open sets containing x and y respectively, and n_0 an integer such that if $n > n_0$, then no member of G_n meets both U and V. Let n_1 and n_2 be integers such that $st(x, G_{n_1}) \subset U$ and $st(y, G_{n_2}) \subset V$. $N = \max\{n_0, n_1, n_2\}$. Then no member of G_n meets both $st(x, G_n)$ and $st(y, G_n)$. Thus $y \notin st^3(y, G_n)$.

For $10 \Leftrightarrow 3$. Let $G_n = \{1/n \text{ sphere centered at } x\}$. It is clear that $\langle G_n \rangle$ is a sequence of covers of X and $y \in st(x,G_n)$ if and only if d(x,y) < 1/n. Therefore $\langle G_n \rangle$ is a semidevelopment for X. Now let $G_n = \{\text{interior of } 1/n \text{ sphere centered at } x\}$. It is clear that $\langle G_n \rangle$ is a sequence of open covers of X and if $y \in st(x,G_n)$ then d(x,y) < 1/n. If there exist distinct points x and y such that $y \in st^3(x,G_n)$ for all $n \in \mathbb{N}$, then there are sequences $\langle x_n \rangle$ and $\langle y_n \rangle$ such that $x_n \in st(x,G_n), y_n \in st(y,G_n)$ and $y_n \in st(x_n,G_n)$. Let $K_1 = \{x\} \cup \{x_n : n \in \omega\}$ and $K_2 = \{y\} \cup \{y_n : n \in \omega\}$. We may assume $K_1 \cap K_2 = \phi$ with both sets compact. But $d(K_1,K_2) = 0$, a contradiction.

Conversely, let G_n be a semi-development and $G_{\delta}(3)$ -diagonal-sequence for X. Define a semimetric d on X by $d(x,y) = 1/\inf \{j \in \mathbb{N} : x \notin st(y,G_i)\}$. From the definition $x \in st(y,G_n)$ if and only if d(x,y) < 1/n. Assume there exist disjoint compacta K and H such that d(K,H) = 0. We can find two sequences $\langle x_n \rangle$ and $\langle y_n \rangle$ in K and H respectively, such that $d(x_n,y_n) < 1/n$. Note that X is sequential and T_2 so that $\langle x_n \rangle$ and $\langle y_n \rangle$ have convergent subsequences. Let $\langle x_{n_i} \rangle$ and $\langle y_{n_i} \rangle$ be subsequences of $\langle x_n \rangle$ and $\langle y_n \rangle$ converging to x and y, respectively. Without loss of generality, we may assume $d(x,x_{n_i}) < 1/i$ and $d(y,y_{n_i}) < 1/i$ for each $i \in \mathbb{N}$. Since $d(x_{n_i}, y_{n_i}) < 1/i$, it follows that there is no k such that $y \notin st^3(x,G_k)$. This contradiction completes the proof.

References

ALEXANDER, C.1971. Semi-developable space and quotient images of metric spaces, Pacific J. Math 37: 277-293.

ARHANGEL'SKII, A. 1966. Mappings and spaces, Russian Math. Surveys, 21:115-162.
BORGES, C. 1968. On metrizability of topological spaces, Canad. J. Math. 20:795-804.
GITTINGS, R. 1975. On o-semimetrizable space, Studies in topology, Academic Press, New York, 179-188.

GRUENHAGE, G. 1984. *Generalized metric spaces*, Handbook of Set-theoretic Topology 423-501.

MARTIN, H.W.1973. Metrizability of M-spaces, Canad. J. Math., 25:840-841.

Received 15 May 2001 Accepted 20 February 2003