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 نحو نظام للأرقام المركبة الثنائية  

 طارق جميل ، ديفيد بلست وعامر الحبسي 

تعامل بشي من عدم الالفة نسبة الى الأرقام الحقيقة بغض النظر عن            ) المعقدة(لسنوات عديدة ما زالت الأرقام المركبة       : خلاصة  
في هذه الأيام عمليات الحاسوب التي تشمل أرقام . الحاسوبيةانتشار استعمالاتها في تطبيقات عديدة في مجالات الهندسة الكهربائية و

تنفذ في كثير من الأحيان بواسطة تطبيق طريقة تقسيم أجزاء الرقم المركب إلى مكوناته وتنفيذ العمليات الحسابية                  ) معقدة(مركبة  
لعمليات الحسابية على كل جزء ثم      فالجزء الحقيقي والخيالي من الرقم المركب يفصلوا عن بعض وتنفذ ا          . على كل جزء على حدى    

هذه الطريقة في تعقيد العمليات الحسابية على الأرقام المركبة تحث          . تجمع النتائج لكل جزء لتركيب النتيجة النهائية للعملية المركبة        
يذ العمليات الحسابية   على إيجاد طريقة لمعاملة الأرقام المركبة تحث على إيجاد طريقة لمعاملة الأرقام المركبة كوحدة واحدة وتنف                

ناقشنا العمليات الحسابية    . j-1-)(في هذا البحث قمنا بتحليل واقتراح النظام الرقمي الثنائي المركب بأساس            . عليها بطريقة مباشرة  
  .على عددين في هذا النظام واوضحنا الدراسات القائمة حاليا في مجال الحاسوب

 
ABSTRACT:  For years complex numbers have been treated as distant relatives of real numbers 
despite their widespread applications in the fields of electrical and computer engineering. These days 
computer operations involving complex numbers are most commonly performed by applying divide-
and-conquer technique whereby each complex number is separated into its real and imaginary parts, 
operations are carried out on each group of real and imaginary components, and then the final result of 
the operation is obtained by accumulating the individual results of the real and imaginary components. 
This technique forsakes the advantages of using complex numbers in computer arithmetic and there 
exists a need, at least for some problems, to treat a complex number as one unit and to carry out all 
operations in this form. In this paper, we have analyzed and proposed a (–1–j)-base binary number 
system for complex numbers. We have discussed the arithmetic operations of two such binary numbers 
and outlined work which is currently underway in this area of computer arithmetic. 
 
KEYWORDS: Complex Binary Number, Addition, Subtraction, Multiplication, Division.  

1.  Introduction  

T he use of complex numbers in mathematics can be traced as far back as 1545 when Cardano 
used the notation √–1 during investigation of the roots of polynomials. Later, Euler in 1777 

introduced the abbreviation i for √–1 and originated the a + ib notation to represent complex 
numbers (in electrical and computer engineering, we tend to replace the symbol i with j because it 
is easier to distinguish between the number 1 and j than 1 and i). Since then, complex numbers 
have played a truly unique role in the development and research of modern science and 
engineering. In the fields of electrical and computer engineering, the application of Fast Fourier 
Transform in most digital signal processing algorithms, and the geometric analysis of pixels in 
graphics and image processing owe their advantage to the use of complex numbers. Despite their 
widespread applications, complex number operations have, to a large extent, been treated as just an 
add-on patch to the basic operations of real arithmetic. Today, even with the availability of over 
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100-million transistors on a single IC-chip (Geppert, 1999), virtually the entire complex arithmetic 
involves the application of “divide-and-conquer” technique, whereby a complex number is broken-
up into its real and imaginary parts and then operations are carried out on each part as if it were a 
part of the real arithmetic. Finally, the overall result of the complex operation is obtained by 
accumulation of the individual results. For instance, addition of two complex numbers (a + jb) and 
(c + jd) requires two separate additions (a + c) and (b + d) while multiplication of the same two 
complex numbers requires four multiplications (ac), (ad), (bc), (bd), one subtraction (j2bd = – bd), 
and one addition (ac + j(ad + bc) + (– bd)).  This can be effectively reduced to just one complex 
addition or only one multiplication and addition respectively for the given cases if each complex 
number is represented as one unit instead of two individual units. 
 

The pursuance of providing equal opportunity representation to complex numbers has resulted 
in some efforts of defining binary numbers with bases other than 2. In 1960, Donald E. Knuth 
described a “quater-imaginary” number system with base 2j and analyzed the arithmetic operations 
of numbers using this imaginary base (Knuth, 1960). However, he was unsuccessful in providing a 
division algorithm and considered it as a main obstacle towards hardware implementation of any 
imaginary-base number system. 

 
Walter Penney, in 1964, attempted to define a complex number system, first by using a 

negative base of – 4 (Penney, 1964) and then by using a complex number   (–1+j) as the base 
(Penney, 1965). However, the main problem encountered with using these bases was again the 
inability to formulate an efficient divison process. Stepanenko (1996) utilizes the base j√2 in which 
the even powers of the base yield real numbers and the odd powers of the base result in imaginary 
numbers. Although partly successful in resolving the division problem as an “all-in-one” operation, 
in his algorithm “…everything…reduces to good choice of an initial approximation…” in a 
Newton-Raphson iteration which may or may not converge. 

 
In an earlier paper (Jamil et al 2000), we revisited Penney’s number system of base (–1+j) and 

extended his work by providing algorithms for converting integers, imaginary, fractional, and 
floating point numbers into (–1+j)-base binary number system, including description of the basic 
arithmetic operations based on this new number system. 

 
In this paper, we concentrate our efforts on providing algorithms and arithmetic operations for 

(–1–j)-base binary number system. In addition to this, we have provided algorithms for obtaining 
conjugate and magnitude of the given (–1–j)-base complex binary number. This will help conclude 
the fact that both (–1+j) and (–1–j) are excellent bases for facilitation of complex numbers’ 
representation as a single entity. This paper is organized as follows: In Section 2 we present an 
analysis of (–1–j)-base binary number system. In Section 3, we present algorithms for converting 
various types of numbers into the proposed (–1–j)-base binary number system. This is followed by 
an analysis of arithmetic operations in Section 4. In Section 5 we present algorithms for obtaining 
conjugate and magnitude of a given (–1–j)-base complex binary number. Finally, in Section 6 we 
present conclusion and a synopsis of the ongoing work being done by us in this area. 

2.  The Base –1–j 

The value of an n-bit binary number with base (–1–j) can be written in the form of a power 
series as follows: 

 
an-1(-1-j)n-1 + an-2(-1-j)n-2 + an-3(-1-j)n-3 + … + a2(-1-j)2 +a1(-1-j)1 +a0 (-1-j)0                    (1) 

 
where the coefficients an-1,an-2,an-3,…,a2,a1,a0 are binary (either 0 or 1). Table 1 gives some real and 
imaginary numbers along with their complex binary representations  (base –1–j). 
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Table 1: Binary representations for some real and imaginary numbers (base –1–j). 
 

Real No. Complex  
Binary Number 

Imaginary No. Complex 
Binary Number 

–5 1100 1101 –j5 111 0011 
–4 1 0000 –j4 111 0000 
–3 1 0001 –j3 111 0111 
–2 1 1100 –j2 111 0100 
–1 1 1101 –j1 0011 
0 0000  j0 0000 
1 0001 j1 0111 
2  1100 j2 0100 
3  1101 j3 11 0011 
4 1 1101 0000 j4 11 0000 
5 1 1101 0001 j5 11 0111 

 
3.  Binary representation for complex numbers 

3.1   Conversion algorithm for real integers1 
Let’s first begin with the case of positive integers N.  To represent N in the proposed (–1–j)-

base binary number system, we express N in terms of powers of 4 using the division process. Thus  
 

Nbase 4 = ∑ qi 4i                                    (2)                
 

This “normalized” representation is unique when 0≤ qi< 4. In that case the non-zero ‘digits’ 
…, q5, q4, q3, q2, q1,q0 are called the base 4 representation of N.  If the constraint on the qi is 
removed, then we call it an un-normalized base 4 representation of N, which is not unique.  Now 
convert the base 4 number …, q5, q4, q3, q2, q1,q0 to base – 4 by replacing each digit in odd location 
q1, q3, q5, … with its negative to get 
 

(…, q5, q4, q3, q2, q1, q0)base 4 = (…, -q5, q4,- q3, q2, -q1, q0) base – 4 (un-normalized) 

We normalize the new number (i.e. get each digit in the range 0 to 3) by repeatedly using the 
operation of adding four to the negative digits and adding a one to the digit on its left. This 
operation will get rid of the negative numbers, but might create some digits with a value of 4 
after the addition of a 1. To normalize this, we replace the four by a zero and subtract a one 
from the digit on its left. Of course this subtraction might once again introduce negative digits 
which will be normalized by the previous method, but this  process will terminate! What is 
interesting is that with negative bases, all integers, positive or negative have a unique positive 
representation.  As an example 
 

55base10   =  (3,1,3)base 4  =  (3,–1,3) base – 4  =  (4,3,3) base – 4  =  (–1,0,3,3) base – 4 
        = (1,3,0,3,3) base –4      (normalized) 

 
To represent the given number in the base (–1–j), we replace each digit in base – 4 
representation with a four bit sequence according to Table 2, which yields: 
 

55base10 = (1,3,0,3,3) base – 4 =  0001 1101 0000 1101 1101 base –1–j 

                                                 
1 See Figure 1 for a program in C language to convert real integers into (–1–j)-base complex binary number system.  
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To convert a negative integer into (–1–j)-base representation, we simply multiply the representation 
of the corresponding positive integer with 11101 (equivalent to –1base–1–-j) according to the 
multiplication algorithm given in Section 4.3.  
Thus       – 55base10   =  (0001 1101 0000 1101 1101) x (11101)   

= 0000 0001 1100 1101 1101 0001 base –1–j 

Figure 1: A program in C language for conversion of real and imaginary integers to (–1–j)-base 
complex binary number system. 

/* Program for Real and 
Imaginary     */ 
/* Integers Conversion 
to (–1–j)-base  */ 
/* Complex Binary Number 
System        */ 
/* Author: Amer Al-Habsi               
*/ 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include "base1j.h" 
int clear(int *a, int n) 
{ int i; 
 for(i=0; i<n-1; 
i++) 
 a[i]=0; 
 a[n-1]=1; 
/*Length = 1*/ 
 return 0;} 
int print(int *a) 
{ int i; 
 for(i=MAX-1; i>=0; 
i--) 
 printf("%i 
",a[i]); 
 return 0;} 
int print_bits(int *a, 
int n) 
{ int i, digits; 
 i=n-1; 
 while(a[--i]==0) ; 
digits=i; 
 for(i=digits; 
i>=0; i--) 
 printf("%i",a[i]); 
 return 0; } 
int sprint_bits(int *a, 
int n, char *s) 
{ int i, digits; 
 i=n-1; 
 while(a[--i]==0 && 
i>=0);  

digits=i; 
     if(digits==-1){ 
            
sprintf(s++,"0"); 
            return 0; } 
 for(i=digits; 
i>=0; i--) 
  
sprintf(s++,"%i",a[i]); 
 return 0;} 
int int2basen(int x, int 
n, int a[]) 
{ int i, remainder, 
dividend; 
 i=0; 
 do { 
  dividend=x/n; 

  remainder=x%n; 
  a[i++]=remainder; 
  if(i==MAX-1) 
return -1;  

 x=dividend;} 
 while(dividend!=0)
; 
 a[MAX-1]=i; return 
0;} 
int basenegative(int 
a[]) 
{ int i; 
 for(i=1; i<MAX-1; 
i+=2) 
 a[i]=-a[i]; 
 return 0;} 
int done(int a[], int n, 
int size) 
{ int i; 
 for(i=0; i<size-1; 
i++) 
 if((a[i]>=n) || 
(a[i]<0)) 

return 0; 
 return 1;} 
int normalize(int a[], 
int n) 
{ int i; 
 do{for(i=0; i<MAX-
1; i++) 
 if(a[i]<0){ 

 a[i]+=n; 
++a[i+1];} 
 for(i=0; i<MAX-1; 
i++) 
  if(a[i]==n){ 
  a[i]=0; --
a[i+1];} 

while(!done(a,4,MA
X));  

 return 0;} 
int normalized2bits(int 
bits[], int a[]) 
{ int i, digits; 
 i=MAX-1; 
 while(a[--i]==0) ; 
digits=++i; 
 for(i=0; 
i<digits;i++){ 
  if(a[i]==0){ 
    bits[i*4]=0; 
bits[i*4+1]=0; 
    bits[i*4+2]=0;  

   bits[i*4+3]=0;} 
  else if(a[i]==1){ 
    bits[i*4]=1; 
bits[i*4+1]=0; 
    bits[i*4+2]=0;  

   bits[i*4+3]=0;} 
  else if(a[i]==2){ 

    bits[i*4]=0; 
bits[i*4+1]=0; 
    bits[i*4+2]=1; 

   bits[i*4+3]=1;}
  else if(a[i]==3){
    bits[i*4]=1; 
bits[i*4+1]=0; 
    bits[i*4+2]=1; 

   
bits[i*4+3]=1;}} 
  i=4*MAX-1; 
  while(bits[--
i]==0) ; digits=++i;
  bits[MAX*4-
1]=digits; 
             return 
(digits);} 
int 
normalized2string(char 
*s, int a[]) 
{ int i, digits; 

char  *lut[]= 
{"0000","1000","00
11","1011"}; 

 char *temp, c; 
temp=s; 
 i=MAX-1; 
 while(a[--i]==0) 
digits=++i; 
 for(i=0; i<digits; 
i++){ 
  
sprintf(s,"%s",lut[a[i]]
);  

 s+=4;} 
 *s='\0';  

s=temp; 
 for(i=0;i<digits*2
;i++) { 
  c=s[i];  

 s[i]=s[digits*4-
i-1]; 
  s[digits*4-i-
1]=c; } 
  return digits;} 
int int2base1j(int 
bits[], int r) 
{ int temp[MAX*4]; 
 int i; 
 int 
minus1[]={1,0,1,1,1};  
    int a[MAX]; 
    clear(a, MAX); 
     if(r==0){ 
clear(bits,MAX*4); 
            return 0; } 
 if(r>0){int2basen(
r, 4, a); 
 
 basenegative(a); 

; 
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Table 2: Equivalence between base –4 and base (–1–j) representations. 
 

base –4 base (–1–j) 
0 0000 
1 0001 
2 1100 
3 1101 

 
3.2  Conversion algorithm for imaginary integers2 

To obtain binary representation of a given positive or negative imaginary number, we simply 
multiply (according to algorithm in Section 4.3) the corresponding (–1–j)-base representation of 
positive or negative integer with 111 (equivalent to jbase10) or 11 (equivalent to –jbase 10), as required.  
 
Thus 
 
j55base10 = (0001 1101 0000 1101 1101) x (111)  
                  = 0000 0001 0001 0000 0100 0011 base –1–j 
– j55base10 = (0001 1101 0000 1101 1101) x (11)  
                  = 0000 0111 0111 0100 0111 base –1–j 
 

3.3   Conversion algorithm for decimal fractions3 

The procedure for finding the binary equivalent for fractions in base (–1–j) is based on the 
usual approach to obtaining ordinary binary representations. Any fraction F can be expressed 
uniquely in terms of powers of  ½ = 2–1 such that F = r0 = f1.2–1 + f2. 2–2 + f3. 2–3 + f4. 2–4+ … up to 
machine limit. Then the coefficients fi and remainders ri are given as follows: 
Initially if  2r0 – 1 < 0  then f1 = 0 and set r1 = 2r0  or if  2r0 – 1 ≥ 0  then f1 = 1 and set r1 = 2r0 – 1. 
Then  if  2ri – 1 < 0  then fi+1 = 0 and ri+1 = 2ri   or if 2ri – 1 ≥ 0  then fi+1 = 1 and ri+1 = 2ri –1 

We continue this process until ri = 0 or the machine limit has been reached. Then, for ∀fi = 1, 
we replace its associated  2–i according to Table 3 (only the first four values of i are listed in this 
table; for i>4, refer to Table 4). 
 

Table 3: Equivalence between fractional coefficients and base (–1–j) representations. 
 

i 2–i base  (–1–j) 
1 2–1 1.11 
2 2–2 1.1101 
3 2–3 0.000011 
4 2–4 0.00000001 

 
 
As an example, let F = r0  = 0.6875base10    
Initially  2r0 – 1 = 2(0.6875) – 1 = 0.375 > 0  ⇒ f1 = 1, r1 = 2r0  - 1 = 2(0.6875) – 1 = 0.375.  
Then   2r1 – 1 = 2(0.375) – 1 = – 0.250 < 0 ⇒ f2 = 0, r2 = 2r1  =2(0.375) = 0.750 
 

                                                 
2 See Figure 1 for a program in C language to convert imaginary integers into (–1–j)-base complex binary number 
system. 
3 See Figure 2 for a program in C language to convert real/imaginary fractions into (–1–j)-base complex binary number 
system.  
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Figure 2: A program in C language for conversion of real and imaginary fractions to (–1–j)-base 
complex binary number system. 
 

/* Program for Real 
and Imaginary      
*/ 
/* Fractions 
Conversion to              
*/ 
/* (–1–j)-base Complex 
Binary Number    */ /* 
System                               
*/ 
/* Author: Amer Al-
Habsi                
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include "base1j.h" 
#define FRACPART 80  
#define INTPART (MAX-
FRACPART) 
#define ARBIT 0 
 
void print_frac(int 
bits[], int left, int 
right) 
{  int i, j; 
   
for(i=FRACPART+left-1; 
i>=FRACPART;i--) 
    printf("%i", 
bits[i]); 
    printf("."); 
 for(i=FRACPART-1, 
j=0; j<right; i--, 
j++) 
    printf("%i", 
bits[i]);} 
void neg_frac(int 
bits[]) 
{  int temp[MAX*4]; 
   int i; 
int 
minus1[]={1,0,1,1,1,0,
0,0,0,0,0,0}; 
   clear(temp,MAX*4); 
   
mult(minus1,bits,12,MA
X,temp); 
   for(i=0; 
i<MAX*4;i++) 
    bits[i]=temp[i];} 
int frac(double F, int 
accumulator[]) 
{  int i, j; 

   double r, 
doublerm1;  
   double save_F; 
   int temp[MAX*4], 
tempsum[MAX*4]; 
   int t, s, k; 
   int f[FRACPART/4]; 
   save_F=F; 
   if(F<0) F=-F; 
   
clear(accumulator,4*MA
X); 
 clear(temp,4*MAX
); 
   
clear(tempsum,4*MAX); 
   for(i=0; 
i<FRACPART/4; i++) 
f[i]=0; 
   r=F; 
   for(i=1; 
i<FRACPART/4 && 
r!=0.0; i++){ 
      doublerm1=2.0*r-
1.0; 
   
 if(doublerm1<0.0
){f[i]=0;   
 r=doublerm1+1;} 
      else{ f[i]=1; 
r=doublerm1;}} 
 
  clear(accumulator, 
MAX); 
  
if(f[1]==1){clear(temp
, MAX); 
  
temp[FRACPART]=temp[FR
ACPART-
1]=temp[FRACPART-2]=1; 
  add(accumulator, 
temp, tempsum, MAX-
ARBIT); 
  for(j=0; j<MAX; j++) 
    
accumulator[j]=tempsum
[j];} 
  
if(f[2]==1){clear(temp
, MAX); 
    
temp[FRACPART]=temp[FR
ACPART-

1]=temp[FRACPART-
2]=temp[FRACPART-4]=1;
    add(accumulator, 
temp, tempsum, 100); 
  for(j=0; j<MAX; j++)
    
accumulator[j]=tempsum
[j];} 
  
if(f[3]==1){clear(temp
, MAX); 
    temp[FRACPART-
5]=temp[FRACPART-6]=1;
    add(accumulator, 
temp, tempsum, MAX-
ARBIT); 
  for(j=0; j<MAX; j++)
    
accumulator[j]=tempsum
[j];} 
  for(i=4; 
i<FRACPART/4; i++){ 
   if(f[i]==1){t=i%4; 

s=i/4; 
         k=8*s; 
clear(temp, MAX); 
         switch (t) { 
    case 0: 
temp[FRACPART-k]=1; 
            break; 
    case 
1:temp[FRACPART-
k]=temp[FRACPART-k-
1]=temp[FRACPART-k-
2]=1; break; 
    case 2:  
temp[FRACPART-
k]=temp[FRACPART-k-
1]=temp[FRACPART-k-
2]=temp[FRACPART-k-
4]=1; break; 
    case 
3:temp[FRACPART-k-
5]=temp[FRACPART-k-
6]=1; break;} 
     add(accumulator, 
temp, tempsum, MAX-
ARBIT); 
     for(j=0; j<MAX; 
j++) 
     
accumulator[j]=tempsum
[j];}} 

 
 

Continuing according to the algorithm, we have 
2r2 – 1 = 2(0.750) – 1 = 0.5 > 0 ⇒ f3 = 1, r3 = 2r2 -1 = 2(0.750) – 1 = 0.5 
2r3 – 1 = 2(0.5) – 1 = 0 (STOP) ⇒ f4= 1, r4 = 0  
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Thus  0.6875base 10       = 1.2–1 + 0. 2–2 + 1. 2–3  + 1. 2–4  

                       = 1(1.11) + 0(1.1101) + 1(0.000011) + 1(0.00000001)  
= 1.11001101base (-1-j)  

 (addition according to algorithm in Section 4.1) 
 
It is likely that most fractions will not terminate (as our example) until the machine limit is 
reached.  For example  0.351base 10  =1.110111001100110000011100110…base –1–j  

In that case, it is up to the user to terminate the process when certain degree of accuracy has 
been achieved.  

In general, to find binary representation of any 2–i, express i as  4s + t where s is an integer and 
0≤t<4. Then, depending upon value of t, 2–i can be expressed as given in Table 4. All rules for 
obtaining negative integer and positive/negative imaginary number representations in base (–1–j), 
as discussed in previous sections, are equally applicable for obtaining negative fractional and 
positive/negative imaginary fractional representations in the proposed new base. 

 
Table 4: Equivalence between value of “t” and base (–1–j) representations. 

 

t base  (–1–j) 
0 0.0…(8s–1)zeroes followed by 1 
1 0.0…(8s–1)zeroes followed by 111 
2 0.0…(8s–1)zeroes followed by 11101 
3 0.0…(8s+4)zeroes followed by 11 

 
3.4  Conversion algorithm for floating point numbers 

To represent a floating point positive number in the new base, we add the integer and 
fractional representations according to the addition rules given in Section 4.1. Once again, all rules 
for obtaining negative integer and positive/negative imaginary number representations in base (–1–
j), as discussed in previous sections, are equally applicable for obtaining negative floating point 
and positive/negative imaginary floating point representations in the proposed new base. 
For example  
55.6875base 10   = 0001 1101 0000 1101 1101 + 1.11001101  

= 0001 1101 0000 1100 0000.1100 1101base –1–j 
And  
j55.6875base 10    = 0001 1101 0000 1100 0000.1100 1101 x 111 
    = 11000001000000.01110011base –1–j 
Knowing the conversion algorithms, as described in the previous sections, the binary representation 
for any given complex number can be easily obtained, as shown by the following example: 
(55.6875 + j55.6875)base10  =  0001 1101 0000 1100 0000.1100 1101base –1–j 

+ 11000001000000.01110011base –1–j 
= 0010 0011 1000 0011.1010 0010base –1–j 

 
This can be verified to be equivalent to the given complex number by calculating: 
 
(–1–j)13 + (–1–j)9 + (–1–j)8 + (–1–j)7 +(–1–j)1 +(–1–j)0 +(–1–j)–1 +(–1–j)–3 + (–1–j)–7 

4. Arithmetic operations for complex numbers 

4.1  Addition 
The binary addition of two complex numbers follows these rules: 0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 

1; 1 + 1 = 1100. These rules are very similar to the traditional binary arithmetic except for the last 
case where when two 1s are added, the sum is zero and (instead of just one carry) two carries are 
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generated which propagate towards the two adjoining positions after skipping the immediate 
neighbor of the sum column. That is, if two numbers with 1s in position n are added, this will result 
in 1s in positions n+3 and n+2 and 0s in positions n+1 and n in the sum. Similar to the ordinary 
computer rule where 1+111 … (to limit of machine) =0, we have 11 + 111 = 0 [zero rule]. (See 
Section 4.3 for an example of addition). 

4.2   Subtraction 
The binary subtraction of two complex numbers follows these rules: 0 - 0 = 0 ; 0 - 1 = * ;   1 - 

0 = 1; 1 - 1 = 0. Three of the four conditions listed in these rules are the same as for subtraction in 
ordinary binary system. For the case where 1 is subtracted from 0 (* case in the rules), the 
following algorithm applies: 
Assuming our minuend is anan-1an-2…ak+4ak+3ak+2ak+1ak0ak-1….a3a2a1a0   and subtrahend is bnbn-1bn-

2…bk+4bk+3bk+2bk+11bk-1….b3b2b1b0. Then, the result of subtracting 1 from 0 is obtained by 
changing ak →ak+1 ,ak+1 →ak+1 (unchanged) , a k+2→ a k+2 + 1 , a k+3→a k+3 + 1 , a k+4→ a k+4 +1  
and bk →0. 
Example: Subtract (2–3j) from 3 
Solution:  In base (–1–j) notation, we have  
3 – (2–3j)  = 1101 – (1100 – 0111 0111) ≡ 1101 – 1011  (by algorithm) = 0100 – 0010 

= (0100 + 111010) – 0000 (by algorithm)  
= 111110 = (1+3j) 

4.3   Multiplication 
The multiplication process of two complex binary numbers is similar to multiplication of two 

ordinary binary numbers except that while adding the intermediate results of multiplication, the 
new rules for addition, as given in Section 4.1, should be followed. The zero rule plays an 
important role in reducing the number of summands resulting from intermediate multiplications. 
Example: Multiply (2–j3)(1+j3)  
Solution: The binary representations of the given complex numbers in base (–1–j) are: (using Table 1) 

 2–j3 = 1100 + (1110111) = 1011base –1–j 
 1+j3 = 0001 + 110011 = 111110base–1–j 
Now (2–j3)(1+j3) = 1011 x 111110 
 
                                       111110 
                     1011 
          ========================= 
                                       111110 
                                     111110 
                                   000000 
                                 111110 
    ========================== 
            111100010 
 
Bold-faced 1s help us in recognising the pattern 111 + 11 which results in 0 (zero rule). 
For verificaton 

111100010  = (–1–j)8 + (–1–j)7 + (–1–j)6 + (–1–j)5 + (–1–j)1 = 11 + j3 

4.4   Division 
The division algorithm is based on determining the reciprocal of the divisor (denominator) and 

then multiplying it with the dividend (numerator) according to the multiplication algorithm given in 
Section 4.3.   
Thus 
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(a + jb) ÷ (c + jd)  =  (a+jb)(c+jd)–1  =  (a+jb)z              (3) 
 
where z = w–1  and  w = c + jd 
 
We start with our initial approximation of z setting z0 = (–1–j)–k where k is obtained from the 
representation of w such that  
                                       

                         w ≡  (–1–j)∑
∞=

k

- i
ia –i         (4) 

                                     
in which ak ≡ 1 and ai ≡ 0 for i>k. 
 
The successive approximations are then obtained by zi+1 = zi (2 – wzi). If the values of z do not 
converge, we correct our intial approximation to z0 = –j(–1–j)–k which will definitely converge 
(Blest and Jamil, 2001). Having calculated the value of z,  we just multiply it with (a+jb) to obtain 
the result of the division.  In the following examples, for the sake of clarity, we have used decimal 
numbers to explain the converging process of the division algorithm.  
 
Let (a+jb) = 1 + j2, and w = 1+j3. Our calculations for approximation of z = w–1  then begin as 
follows:  
1 + j3  = 0001 + 110011 = 111110base–1–j   

= 1.(–1–j)5 + 1.(–1–j)4 + 1.(–1–j)3  + 1.(–1–j)2 + 1.(–1–j)1 + 0.(–1–j)0 ⇒ k = 5 
 
Therefore 
z0 = (–1–j)–5 = 0.125–j0.125 
z1 = 0.15625 –j0.21875 
z2 = 0.100208989 –j0.299802410  
z3 = 0.1000000024 –j0.3000000010 
z4 = 0.10000000 –j0.30000000  
z5 = 0.1 – j0.3 
z6 = 0.1 – j0.3  (converging) 
 
Now  
0.1 – j0.3  = 0.0111111111111111…base –1–j 
So  (1+j2) ÷ (1+j3) = (1+j2) x (1+j3)–1 

= 0101base –1+j   x 0.0111111111111111…base –1–j 
= 1.0001001001001…base –1–j = 0.7 – j0.1 

 
As another example, let w = –28–j15, then 
–28–j15   = 111100010111base –1–j  
      = 1.(–1–j) 11 + 1.(–1–j) 10 + 1.(–1–j) 9 + 1.(–1–j)8  + 0.(–1–j)7 + 0.(–1–j)6  

    + 0.(–1–j)5 + 1.(–1–j)4 + 0.(–1–j)3 + 1.(–1–j)2 + 1.(–1–j)1 + 1.(–1–j)0 ⇒ k = 11 
 
We begin by choosing  
z0  = (–1–j)–11 = 0.15625 + j0.15625  
z1 := 0.239 + j0.0449 
z2 := –0.249 + j0.128 
z3 := –0.398 – j0.160 
z4 := 1.014 + j5.235 
z5   = –895 – j87.9 
        (not converging) 
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So we correct our initial approximation to: 
z0 = –j(–1–j)–11 = –0.015625 +j0.015625  
z1 := –0.02393 + j0.0176 
z2 := –0.0279 + j0.01556  
z3 := –0.0278 + j0.01486  
z4 := –0.02775 + j0.014866  
  (converging) 
 
The converging value of z4 can be represented in base (–1–j) and then multiplied with any given 
complex number to obtain the result of dividing the given complex number by –28–j15, as in 
previous example. 

5.  Conjugate and magnitude of complex numbers 

Beyond the rules for real arithmetic, complex numbers arithmetic may require the 
calculation of conjugates and magnitudes as well. Thus, if  

 
        

wbase –1–j = (c + jd)base –1–j =   a∑
∞=

k

-i
i (–1–j)i           (5) 

                                            
then, since –j(–1–j) = –1+j, the complex conjugate of w is given by 
                                         

w~
base –1–j  = (c – jd)base –1–j = a∑

∞=

k

-i
i (–j)i(–1+ j)i          (6) 

which gives c =   a∑
∞=

k

-i
i
~(–1–j)i   

                      
where ai

~ = ½ (1–ji) ai and for i = 0 (mod 4), ai
~ = ai ;  i = 1 (mod 4), ai

~ = 1110.1ai ; i = 2 (mod 4), 
ai

~ = 0 ; and for i = 3 (mod 4), ai
~ = 1.1ai 

 
The imaginary part of the conjugate d can be calculated as j (c – w).  
As an example, let w = 1 + j3, then its conjugate w~ will be of the form c – jd, where c and d are 
calculated as follows: 
 
In base (–1–j), w = 1+j3 = a5a4a3a2a1a0 = 111110base –1–j   then 
a0

~ = a0 = 0 
a1

~ = 1110.1a1 = 1110.1 x 1 = 1110.1 
a2

~ = 0 
a3

~ = 1.1a3 = 1.1 x 1 = 1.1 
a4

~ = a4 = 1 
a5

~ = 1110.1a5 = 1110.1 x 1 = 1110.1 
 
Thus  
c  = a5

~(–1–j)5 + a4
~(–1–j)4 + a3

~(–1–j)3  + a2
~(–1–j)2 + a1

~(–1–j)1 + a0
~(–1–j)0 

  = 1110.1(–1–j)5 + 1(–1–j)4 + 1.1(–1–j)3 + 0(–1–j)2 + 1110.1(–1–j)1 + 0(–1–j)0  
= 000000001base –1–j 

And  
d = j(c – w)  = 111(000000001 – 111110)  
     = 01101base –1–j 
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Now –jd = 11 x 1101 = 1110111 
Thus w~ = c – jd  = 1 + 1110111  = 1010base –1–j = 1 – j3 
To calculate the square of magnitude of w, we have 
|w|2 = ww~ = 111110 x 1010 = 111001100base –1–j 
To verify (1+j3)(1–j3) = 10base 10 = 111001100base –1–j 

6.  Summary and Conclusion 

We have described conversion algorithms and arithmetic procedures for a (–1–j)-base binary 
number system which allows given complex numbers to be represented as one unit. This is 
expected to facilitate equal opportunity representation to complex numbers and, hence, simplify 
their operations in today’s microprocessors. Currently, work is underway to design a hardware 
arithmetic unit based on algorithms presented in this paper and then it will be implemented using 
Field Programmable Gate Arrays. 
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