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 )FUZZY- LOGIC(معتمد على الخوارزم المنطقي المشوش التحكم الطولي المكين بالطائرة ال 

 عبداللطيف الشافعي

لدراسة رد الطائرة إلى مناورة سريعة ، يمكن اعتبار النموذج الطولي للطائرة لفترة زمنية قصيرة ، هذا النموذج غير  :  خلاصة
 نموذج قوي معتمد على الخوارزم المنطقي       تقترح هذه الورقة استخدام   . خطي  بدرجة كبيرة ويتضمن شكوك في قيم المعاملات          

عن نجاح النموذج   " F16"المشوش ، تم تنفيذ نظامان معتمدين على هذا الخوارزم وقد كشفت نتائج المحاكاة على نموذج طائرة                 
 .المستخدم

 
ِِِABSTRACT: To study the aircraft response to a fast pull-up manoeuvre, a short period 
approximation of the longitudinal model is considered. The model is highly nonlinear and includes 
parametric uncertainties. To cope with a wide range of command signals, a robust adaptive fuzzy 
logic controller is proposed. The proposed controller adopts a dynamic inversion approach. Since 
feedback linearization is practically imperfect, robustifying and adaptive components are included in 
the control law to compensate for modeling errors and achieve acceptable tracking errors. Two fuzzy 
systems are implemented. The first system models the nominal values of the system’s nonlinearity. 
The second system is an adaptive one that compensates for modeling errors. The derivation of the 
control law based on a dynamic game approach is given in detail. Stability of the closed-loop control 
system is also verified. Simulation results based on an F16-model illustrate a successful tracking 
performance of the proposed controller.   
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1. Introduction 

H istorically, the trend in the flight control industry has been to use classical techniques for 
control design (Nelson 1998). Acceptable performance, simple control structure, and 

moderate computational burden are the reasons for adopting classical control techniques. The 
approach is to design several point controllers throughout the operating region and connect them 
using gain scheduling (Adams, et al 1994). Interpolation or blending point controllers we often use 
trial and error with little theoretical guidance. Any performance and robustness guarantees in the 
individual operating regions are lost in the transition region between point controllers (Spillman 
2000). Dynamic inversion methods avoid the scheduling problem via feedback linearization 
(Adams, et al 1994). Like gain scheduling, dynamic inversion does not guarantee performance and 
robustness since cancellation is practically imperfect. 

To enhance the robustness of the inverse flight controller, a design based on µ  synthesis is 
proposed by Reiner et al (1995). The design utilizes a linearized model of the aircraft. Therefore, it 
is useful for small uncertainty in the system parameters. A fixed controller is proposed by 
Chaing et al (1990) for a fighter aircraft with multiple control efforts. One condition along the 
manoeuvre trajectory is chosen as nominal and several other conditions along the manoeuvre 
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trajectory represent the uncertainty for which the robust controller is designed. Sliding mode 
control is another approach that is suggested by Hedrick and Gopalswamy (1990) to achieve a high 
g −command and satisfy flying quality specifications. However, control saturation significantly 
alters the performance for a high g −command. 

µ

g −

−=

To take into account the relation between real-time parameter variations and performance 
requirements, linear parameter varying (LPV) control is examined by Spillman (2000) to determine 
whether it is practical for large envelop flight control designs. The approach is combined with 

synthesis to ease conservatism. The method is based on linear matrix inequalities and can be 
solved using the interior point method (Boyd et al 1994). The proposed controller does not allow 
parameters’ rates to be modeled nor does it allow the locations of the controller poles to be 
constrained. 

A robust adaptive controller is proposed by Singh and Steinberg (1996) as an alternative 
approach that ensures stability in the presence of parametric uncertainty. To derive the control law, 
a hypersurface is designed such that for any trajectory evolving on this surface, the system tracking 
error tends to zero. The objective of the control law is to drive the system error to the required 
hyper-surface. However, the derivation assumes that the unknown nonlinear terms depend linearly 
on the parameters to be estimated. Recently, an adaptive fuzzy logic algorithm was proposed for 
flight control systems (Wilson, 2000). An inner loop controller is designed based on a linearized 
aircraft model. Then, an outer-loop controller is employed based on fuzzy logic. 

We propose here a robust adaptive fuzzy-logic algorithm for flight control during a fast pull-
up manoeavre. The control law is based on feedback linearization. Since feedback linearization can 
hardly be exact, the control law is augmented to include adaptive and robustifying components so 
that the system can cope with modeling uncertainties and achieve acceptable tracking. In section 2, 
an F-16 short-period approximation of the longitudinal model is introduced. The need for a robust 
adaptive fuzzy-logic controller is discussed. In section 3, adaptive fuzzy-logic control is reviewed. 
Although it does not guarantee robustness, it is used to develop a fuzzy model for the nominal 
nonlinearity of the system. The estimate of the nominal nonlinearity is used in the control law of 
section 4 for feedback linearization. A complete derivation of the proposed control law is presented 
in section 4. In section 5, the implementation details and simulation results are depicted. Section 6 
concludes the paper. 

2.   Modeling equations and design objectives 

The aircraft motions can be classified as lateral and longitudinal motion (Nelson 1998). The 
rolling and yawing of the aircraft characterize the lateral motion. In the longitudinal mode, one 
assumes that the motion is confined in the vertical plane. Our interest here is directed to the 

command, a fast pull-up manoeavre that takes place in the vertical plane. Hence, we focus on 
the longitudinal dynamics. The phugoid and the short period modes characterize the longitudinal 
dynamics of an aircraft. The phugoid period is an order or two longer than the short period mode. 
To study the aircraft response to the g −command, it is sufficient to consider a short period 
approximation of the longitudinal dynamics. The required model is derived by assuming that the 
aircraft horizontal velocity U remains constant and by dropping the pitch angle from the states. 

The short-period approximation of the longitudinal model, referred to the aircraft body frame, is 
summarized in Lee and Hedrick (1994) as 

 
( ) ααααα 22 coscossincos q

mU
DL

+
+

&                     (1)                       

yyI
Mq =&                                                (2) 

ukeke ee +−= δδ &                                      (3) 
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α is the angle of attack, is the pitch rate, q eδ is the elevator angle, and u is the control signal. The 

angle of attack is defined as
U
W

=αtan , where W is the velocity along the axis of the aircraft 

body frame, U is the velocity along the 

−z

−x axis of the aircraft body frame and  is the pitch 
moment of inertia. The aerodynamic forces and moments  are defined as 

yyI
LMD  and ,,

 
( )eccsqD edd δα δα +=                                 (4) 
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tV is the aircraft speed, q is the dynamic pressure, and the coefficients are responsible for 

the lift, drag, and pitch moment of the aircraft. The definitions and typical numerical values of the 
variables and parameters used in (1)-(6) are given in Appendix 1. 

iic

 The output y  is the normal acceleration felt at the pilot’s position. ( )t

( ) q
g
l

Aty x
n &+=                                      (7) 

mg
DLAn

αα sincos +
=                          (8) 

Anis the acceleration at the center of gravity of the aircraft. Equations (1), (2), (3), and (7) can be 
written as 

( ) ubxfx +=&                              (9) 
( ) ( )xhty =                        (10) 

 
where [ ] 3Reqx T ∈= δα , u , R∈ Ry∈ , and [ ]Tekb 00=  
Differentiating (10) once yields 

( ) ( ) ( )uxxty β+∆=&              (11) 
Define ( )x∆ and ( )xβ to be 

( ) ( ) ( )xf
x
xhx

∂
∂

=∆                            (12) 

( ) ( )b
x
xhx

∂
∂

=β                (13) 

It is straightforward to show that ( )xβ  is given by 

( ) [ ] em
yy

x
eedeLe c

I
scq

g
l

kcc
mg

sqkx δδδ ααβ ++= sincos       (14) 

As shown in Lee and Hedrick (1994), ( )xβ  is non-zero. Hence, the nonlinear system (9)-(10) has a 
relative degree equal to one and admits feedback linearization. Choose the control law as  
 

( ) ( )[ ]vx
x

u +∆−=
β

1            (15) 

We select v  such that the output  would track a reference trajectory . This is achieved by  ( )ty dy
keyv d −= &              (16) 
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In the ideal case, the positive constant k determines the location of the closed loop pole of the error 
model. The error signal is defined as 

dyye −=            (17) 
The reference signal  is assumed to be smooth such that its derivative exists.  dy dy&

To adapt to various flying conditions, the nonlinear functions ( )x∆ and ( )xβ can be estimated 
on-line. Fuzzy logic provides an attractive technique to represent such non-linearity. The power of 
fuzzy models stems from the universal approximation theorem (Kosko 1997).  From the 
implementation point of view, adaptive fuzzy systems are attractive since they depend linearly on 
the parameters to be estimated. In section 3, an adaptive fuzzy-logic controller is derived. The 
control law becomes 

( )
( )[ ]vx

x
u +∆−= ˆ

ˆ
1

β
               (18)   

( ) ( )xx
T
ζθ ∆=∆ ˆˆ                     (19) 

( ) ( )xx
T
ζθβ β

ˆˆ =        (20) 

where ζ  is the vector of fuzzy basis functions to be defined later, ∆θ̂ is the vector of estimated 

parameters used to model ( )x∆ , and  βθ̂  is the vector of estimated parameters used to model ( )xβ . 
According to the universal approximation theorem (Wang 1994), there exist fuzzy systems that 
approximate the functions ( )x∆  and ( )xβ  with arbitrary accuracy. However, to avoid the rule 
explosion phenomenon, the size of ζ  is kept small. This helps in reducing the rule base and 
lightening the computational burden but introduces modeling errors and raises the robustness 
issues. In section 4, we redesign the control law such that the effect of modeling error is 
accommodated and compensated for.  

3.  Adaptive fuzzy-logic control of the longitudinal motion 

In this section, we design an indirect adaptive algorithm to control the aircraft acceleration so 
that it tracks a given g −command. The control law is given in (18). As pointed out earlier, the 
estimates  will have modeling errors when they are compared with their true values β̂ and ∆̂

β and ∆ . In Wang (1994), a supervisory controller is added to the control law to ensure robustness. 
The supervisory controller utilizes a sign function and may lead to chattering so it is not used here. 
In this paper, we will use the estimates ∆  as nominal values of β̂ and ˆ

oo β and ∆ . In the coming 
section, a robust adaptive controller is redesigned based on oo β and ∆ .  

Consider the T-S fuzzy system with center average defuzzification. The fuzzy systems are 
used to model the nonlinear functions β and ∆ . Assume for example that ∆  is modeled using M  
rules that are denoted as .  The iMRRR ,,, 21 L th rule takes the form iR if  is and  is  and 

 is  then  is 
1x iF1 2x iF2

3x iF3 ∆ iθ . 
The linguistic variables , , and  correspond to the state variables 1x 2x 3x α , , and q eδ , 

respectively. Each linguistic variable  is assigned a fuzzy set  that is defined using a guassian 
membership function 

jx i
jF

i
jF

µ ;  Let  belong to the universe of discourse U . The 

membership function 

.3,2,j 1= jx R⊂j

i
jF

µ maps  to the set jU 0 1, . The consequent of the ith rule is assigned the 

singleton value iθ . The function ∆  is modeled as 
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where iµ  is the strength of the ith  rule when it is fired and is calculated as 

∏
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It is assumed that the fuzzy system is constructed such that 0 1≤≤ iµ  and  for all 

. Equation (21) can be written as 
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The functions ,,,1, Mii L=ζ  are called the fuzzy basis functions. In an adaptive system, the 
values ,, ML,1, ii =θ , are tuned on-line to ensure the fuzzy model is close enough to match the 
actual system. An expression similar to (23) can model the nonlinear function β . 

It follows from (11) and (17) that 
( ) ( ) dd yuxxyye &&&& −+∆=−= β       (24)  

Using (16) and (18), it is possible to write as dy&

( ) ( ) keuxxyd ++∆= β̂ˆ&        (25) 
Substituting (25) into (24), the error model can be expressed as 

( ) ( ) keuxxe −+∆= β~~
&        (26) 

The error functions ∆~ and β~ are defined as  

βββ θθθ
θθθ
ˆ~
ˆ~

−=
−= ∆∆∆  

Based on the universal approximation theorem, there are fuzzy systems and that can 
approximate ∆ and 

∗∆ ∗β
β  with arbitrary degree of accuracy. Hence, it is possible to write  

( ) ( ) ( )xxx T ζθ ∆
∗ =∆≈∆                  (27) 

( ) ( ) ( )xxx T ζθββ β=≈ ∗                           (28) 
Using (19), (20), (27), and (28), the error model (26) becomes 

( ) ( ) kexxe
TT

−+= ∆ ζθζθ β
~~

&                (29) 

The estimation errors, ∆θ~ and βθ~ , are defined as 

βββ θθθ
θθθ
ˆ~
ˆ~

−=
−= ∆∆∆  

 
To derive the adaptation laws of ∆θ~ and βθ~ , consider the candidate Lyapunov function 
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βββ θθθθ ~~
2
1~~

2
1

2
1 2 Γ+Γ+= ∆∆∆peV       (30) 

The weighting factor, p, and the weighting matrices, ∆Γ and βΓ , are positive definite. The time 
derivative of (30) along the trajectory (29) is 

( ) ( ) ββββ θθθθζθζθ &&& ~~~~~~2 Γ+Γ+++−= ∆∆∆∆

TTTT
peuxpexpkeV      (31) 

The adaptation laws are chosen as 
( )pexζθ 1~ −

∆∆ Γ−=&                    (32) 

( )peuxζθ ββ
1~ −Γ−=&                  (33) 

 
Equations (32) and (33) force the right hand side of (31) to be negative definite. Hence, equation 
(30) becomes a true Lyapunov function and the error model (29) is asymptotically stable. Although 
it is possible to argue that adaptive fuzzy logic control ensures that ( )te  will converge to zero, we 
have to remember that the above discussion overlooks the modeling errors ( )∗∆−∆ and ( )∗− ββ . 
These modeling errors are inherent in fuzzy models because of the limitations on the sizes of the 
rule bases. In Wang (1994), a supervisory control signal is added to the adaptive fuzzy controller to 
ensure stability. However, the supervisory control signal is implemented using a  function 
and may lead to the well-known chattering phenomenon. This observation motivates the use of the 
robust adaptive fuzzy controller that is derived in section 4.  

( ).sgn

4.  Robust adaptive fuzzy-logic control 

Consider the input-output differential equation (11). Assume that the nominal values 
( )xo∆ and ( )xoβ are available. For example, they could be provided by an expert or estimated 

based on an adaptive algorithm. The control law is selected as 

( ) ( )[ ]oo
o

x
x

u ν
β

+∆−=
1            (34) 

The control signal oν  is defined below. Its objectives are to ensure tracking of the desired output 
trajectory and robustness in the presence of modeling errors. Substituting (34) into (11) leads to 

( ) ( )
( )

( )
( ) ( )x
x
x

x
xxy o

o
oo

o

∆−+







−+∆=

β
βνν

β
β 1&       (35) 

Define oν  and γ as follows 

odo ukey +−= &ν                (36) 
 

( ) ( )
( )

( )
( ) ( )x
x
x

x
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o
o

o
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−+∆=

β
βν

β
βγ 1       (37) 

 
The control signalu , defined below, consists of two components; an adaptive fuzzy component 
and a robustifying component. Substituting (36) and (37) into (35), it is possible to write the system 
error model as 

o

oukee ++−= γ&                       (38) 
Let  be a fuzzy system that would approximate ∗γ γ with an acceptable accuracyε , i.e. 
 

εεγγε γγ <−= ∗ ,        (39) 

The fuzzy system is defined as ∗γ
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( )dd
T yyx &,,ζθγ γ
∗∗ =                 (40) 

 
where ∗

γθ is the optimal parameter vector that satisfies (39) and ( ).
γ

ζ is the vector of fuzzy basis 

functions. The dependency of 
γ

ζ on ,, dyx  and follows from (36), (37), and (49). In the special 

case where
dy&

ββ =o , the basis functions 
γ

ζ depend on x  only; see (37). It is possible to rewrite (38) 

as 
∗+++−= γεγ oukee&        (41) 

The control component u  is designed such that it cancels the effect of the modeling error and 
ensures robustness in the presence of 

o
∗γ

γε . Let be ou

( ) edd

T

o uyyxu +−= &,,ˆ
γγ ζθ       (42) 

where γθ̂  is the estimate of ∗
γθ  and u  is the robustifying component to be defined below. 

Equation (41) can be rewritten as 
e

γγγ εζθ +++−= e
T

ukee ~
&                    (43) 

where γγγ θθθ ˆ~
−= ∗  

Noting that γε  acts as a disturbance applied to the error model (43), the calculations of γθ̂  and 
 will be based on a dynamic game approach (Chen et al 1998). The objective is to find the 

optimal control law u  that minimizes a performance index,
eu

e J , in the presence of the worst-case 
disturbance [ ]ft,0L2∈γε .  Consider the following minimax problem 

[ ] [ ]
( )∫ γ

∈ε∈
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222
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Define the performance index as J

(∫ −+=
ft

e dtruqeJ
0

2222
γερ )                  (44) 

where  ,q ,r  and ρ  are positive weighting  factors to be chosen by the designer and they have a 
standard interpretation in the optimal control literature. Equation (44) can be rewritten as 

                        ( ) ( ) ( ) ( ) ( ) ( )ff

TT

f tttpepeJ γγγγ θθ
σ

θθ
σ

~~10~0~10 22 −+−=  

( ) ( ) ( ) ( ) ( ) ( )∫ 





 ++−++
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T
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dttrutqe

0

22222 ~~1
γγγ θθ

σ
ερ       (45) 

Carrying out the derivative inside the integral sign and substituting for  from (43), we can 
rewrite (45) as 

( )te&

( ) ( ) ( ) ( ) ( ) ( )ff

TT

f tttpepeJ γγγγ θθ
σ

θθ
σ

~~10~0~10 22 −+−=  

                             ( ) ( ) ( ) ( ) ( ) ( )∫ +−+−+
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ee tetputtrutepkq
0

2222 22 γερ

( ) ( ) ( ) ( ) ( ) ( ) ( )dttttettptetp
TT

γγγγγ θθ
σ

ζθε &~~2~22 +++            (46) 

 
By completing the squares, it is possible to rearrange (46) as 
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The minimax problem is achieved by selecting  

0112 2
2 =








−+−
ρr
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r
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( ) ( )tetp
γγ ζσθ −=&~        (50) 

 
The optimal control law (49) guarantees the worst-case error to be 
 

( ) ( )t
p

te γε
ρ 2

=                               (51) 

 
It follows from (39) and (51) that e  is finite since ( )t ( )tγε  is bounded by ε . The error, , can 

be made smaller by decreasing 

( )te

ρ . On the other hand, r  must be chosen such that 2

1
ρ

1
≥

r
to 

ensure that (48) has a positive definite solution, p  Hence, if ρ  is decreased, r  must also be 
decreased which may lead to excessive control actions. 

In order to further investigate the stability of the closed-loop control system, consider the 
following candidate Lyapunov function 

γγ θθ
σ

~~
2

1
2
1 2 T

p
eV +=            (52) 

The time derivative of (52) along the trajectory (43) is 
 

                                                      γγ θθ
σ

&&& ~~1 T

p
ee +=V   

γγγγγ θθ
σ

εζθ &~~1~2 T

e

T

p
eeueke ++++−=      (53) 

Using (49)-(51), it is possible to rewrite (53) as 









−+−= 2

2
4 11

ρ
ερ
γ rp

k
p

V&              (54) 

 
It is clear that the right hand side of (54) is negative definite provided that  and ,0>k ,0>p

2

11
ρ

≥
r

. All the previous conditions can be satisfied since ρ and ,,, rpk  are the designer’s choice. 

So, we conclude that the proposed control algorithm stabilizes the aircraft error model (43). The 
implementation details and some simulation results of the proposed controller are given in section 
5. 
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5.  Implementation of the proposed controller 

In this section, we illustrate via simulation the performance of the proposed controller. The 
implementation steps can be summarized as follows: 
1- Obtain the nominal values o and βo∆ . This can be done based on an expert’s knowledge or on 

an identification algorithm. In the present aircraft model, we assume that oβ  is given by (14) 
and  is estimated based on the adaptive technique described in section 3.  o∆

2- Select positive values for the controller’s parameters σρ  and ,,,, qrk . Then, solve (48) for p . 

Note that we must select 2

11
ρ

≥
r

 to ensure that the solution of (48) yields a positive definite 

answer. 
3- Assume ∗

γθ  to be locally constant and use the adaptation law (50) to calculate the estimate γθ̂ . 
Practically, the projection algorithm is implemented, instead of (51), to guarantee a bounded 
estimate γθ̂ (Wang 1994). 

4- Calculate the control signal u . It follows from (34), (36), (42), and (49), that u is given by 
 

( ) ( ) 



 −−−+∆−= e

r
pkeyx

x
u

T

do
o

γγ ζθ
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ˆ1
&                   (55) 
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Figure 1. Tracking error performance of the proposed controller for different attenuation factors 

 .2 r=ρ
 

Two fuzzy systems are included to implement (55). The first fuzzy system calculates the 
nominal value∆ . The second fuzzy system is an adaptive one and is meant to compensate the 
function ; see (41) and (42). The input to the first fuzzy system is the state vector

o
∗γ x . Each state is 

assigned three Guassian membership functions corresponding to the linguistic values positive, zero, 
and negative. All membership functions are normalized and have standard deviations 0.33. The 
centers of the membership functions are placed at 1, 0, and –1, respectively. The normalization 
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factors of α , q , and δe are selected to be 0.667, 0.1, and 2, respectively. The second fuzzy system 
has two additional inputs; namely  and . The membership functions are similar to those used 
for 

dy dy&
x  with the normalization factors adjusted according to the command signal. It is assumed that 

the nominal value (xo )β  is 20% off the true value ( )xβ . The controller parameters are selected as 

  ,500=p , =2= ρr ,2σ  and . The initial values of 1=k γθ̂ are initialized with random numbers 
in the range . The reference trajectory, , is generated via a first order system with a 
one-second time constant. Figure 1 depicts the performance of the proposed controller for a 

[ , ]05.005.0− dy

5g command signal for different values of r . As expected, as r  decreases, the tracking error 
decreases. However, Figure 2 shows that the cost of a very small tracking error is an unacceptably 
active control signal.  

0 1 3
-0.4

-0.2

0

0.2

0.4

secs.

 3.33

 u
 

2
-0.4

-0.2

0

0.2

0.4

 u
 

1 3
secs.

 0.5

 u
 

-0.4

-0.2

0

0.2

0.4

 u
 

 

2 4 5

r =

0 1 3 4 5
secs.

r = 1

0 2 4 5
-0.4

-0.2

0

0.2

0.4
r =

0 1 2 3 4 5
secs.

r = 0.1

 
Figure 2.  Control activities of the proposed controller for different attenuation factors ρ2 = r.  

 

6.   Conclusions 

The short-period approximation of the aircraft longitudinal model is highly nonlinear.  Fuzzy 
logic has been used to compute the nominal values of such non-linearity. Based on the nominal 
values of the non-linearity, conventional feedback linearization has been modified to ensure 
robustness and acceptable performance. Adaptive and robustifying components have been added to 
the feedback linearization control law. The derivation of the proposed controller has been given in 
detail. It has been also shown that the tracking error has remained finite and made small using a 
certain tuning parameter. The stability of the proposed control system has been verified using the 
second method of Lyapunov.  Simulation results have confirmed our theoretical analysis and 
demonstrated the capability of the system in tracking a high g-command with acceptable error and 
control activity.  
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Appendix 1: Variables definitions and values at Mach 0.9 and 6096 m altitude. 
 

Variable Definition Value 
aρ  Air density 0.65381 kg/m3 

q  Dynamic pressure 25.0 taVq ρ= N/m2 

s  Surface area 27.87899 m2 

c  Mean aerodynamic cord 3.450336 m 
xI  Distance from cg to pilot 4.244645 m 

m  Mass 9530.302 kg 
g  g-acceleration 9.8 m/sec.2 

U  Horizontal velocity 284.4 m/sec. 
yyI  Moment of inertia 73046.53 kg m2 

ke  Elevator gain  20.0 
αLc  Aerodynamic force due to α  4.0 /degree 

Lqc  Aerodynamic force due to q 3.162 (unitless) 

eLc δ  Aerodynamic force due to eδ  0.55 (unitless) 

αmc  Aerodynamic moment due to α  0.1146 (unitless) 

mqc  Aerodynamic moment due to q -2.382 (unitless) 

emc δ  Aerodynamic moment due to eδ  -0.6933 (unitless) 

αdc  Aerodynamic force due to α  0.151261 (unitless) 

edc δ  Aerodynamic force due to eδ  0.009912 (unitless) 
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