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 علاقة بسيطة لتقريب عمق وأبعاد بعض الأجسام الجيولوجية من التباينات للجاذبية الأرضية

 سيد العارفين

تقديم علاقة أو طريقة بسيطة لقياس عمق ونصف قطر بعض الأجسام الجيولوجية البسيطة مثل الكرة المصمتة                     :  خلاصة
إن العمق تحسب أو تقدر قيمته       . نات لحساب معاملات هذا الجسم    وهذه الطريقة تستخدم جميع نقاط البيا      . والاسطوانة الأفقية 

. باستخدام المتوسط للأعماق أو القيم لعدد من الأعماق والتي حسبت سابقاً من القيم التقريبية والعظمى وكذلك العرض التقريبي لها               
بالإضافة إلى ذلك، التماثل للتباين     نصف القطر لجسمين قد يحسب باستخدام المساحات تحت الخطوط الوهمية لتحديد الجاذبية               

ومن ذلك يحسب نصف القطر الذي لا يعتمد        . للجاذبية بسبب الكرة المصمته قد استخدم لحساب الكتلة الزائدة من خط وهمي واحد            
 إن هذه الطريقة لحساب أنصاف أقطار قد تكون أفضل من الناحية التقريبية عن طريقة حساب               . على العمق المقدر أو المحسوب    

 .  المساحة و هنا نسبة الخطأ في القياسات المعنية قد شرح بالتفصيل
 

ABSTRACT:  A simple method  for determining the depth and radius of some simple geological 
bodies such as a sphere and a horizontal cylinder  is presented. The method utilizes all of the data 
points to calculate the  body parameters.  The depth is estimated  from the mean of the depths 
determined from various fractions of the maximum anomaly and their corresponding widths. The radii 
of the two bodies are  calculated from the areas under the respective gravity profiles. Additionally , the 
radial symmetry of the gravity anomaly due to a sphere has been utilized to calculate the excess mass 
from a single profile. The radius determined from the excess mass is independent of depth estimate. 
This method of determining the radius is more robust than the one based on calculating the area.  An 
error analysis showing the effects of truncation and zero-level errors on the estimated radius  is  also 
discussed. 
 
KEYWORDS: Gravity Anomaly, Excess Mass, Characteristic Points, Sphere and Cylinder.  

1.  Introduction 

E arly papers on  quantitative gravity interpretation  found the in geophysical literature   are 
based on the method of characteristic points. The characteristic points are the points on a 

gravity or magnetic  profile which are easy to recognize. Such points are the maximum, minimum 
and inflection points ( points of maximum gradient) on the curve. Many authors including Pentz 
(1940), Kogbetliantz (1944), Hubert (1946), Skeels  and Watson (1949), Bott and Smith (1958), 
Smith (1959 ; 1960), Milcoveanu (1970) and many others have derived formulae for  geological 
bodies and interpreted those using characteristic curves and points. This method of interpretation is 
quick and useful in the field  to plan future field surveys. The advent of the laptop and its capability 
to deal with 2-D and 3-D software (Martyn-Antienza and Garcia-Abdeslem, 1999; Ruotoistenmaki, 
1992)  in the field has somewhat made the method less efficient. Besides academic interest    the 
method can  still be used in the field where  a laptop is either unavailable or cannot be used  for  
lack  of  electricity. 

71 



SAYYADUL ARAFIN 
 

In the present paper a simple method of finding depth  and radius of simple geological bodies 
such as spheres and horizontal cylinders  from their gravity anomalies  has been described . The 
method is basically similar to that described in standard geophysics text books such  as Dobrin 
(1970) and Nettleton (1976). The present method proposes depth determination at a number of 
points on the profile and utilizes the area  and volume (excess mass) under the gravity profile for 
the radius.  The method  has been applied on synthetic as well as field data.  

2.   Method 

2.1  Spherical  Body 
 The gravity anomaly caused by a spherical body (Figure 1) is given by :   

            

                                             

   

                                                                   R               

 
Figure 1.  Symbols for spherical and horizontal bodies. 

 
here ∆g(x) is the gravity anomaly due to the spherical body, x is the horizontal distance along the 

 amplitude at that point given by  

The maximum value of  gravity , 

shown that the depth  determined from the widths of the anomaly at  the corresponding 
m amplitude  is given by 
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gravity profile, G is the universal gravitational constant, ∆ρ  is the density  contrast of the body 
with respect to the surrounding rocks, R is the radius of the spherical / horizontal cylindrical body 
and z is the depth to the center of the spherical/cylindrical  body. 
The anomaly ∆g(x)  is symmetric  about x=0 and has its maximum

∆gmax  can be  divided into n equal fractions giving n-1 points on 
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the  y- axis. The distances on either side of x=0  at which these fractions occur are denoted by x j/n , 
where n = 2,3,4, …..  and  j = 1,2,3, …..n-1. Index j here is assumed to start from the bottom part of 
the anomaly. The distance  2xj/n is the full width of the anomaly at j/n th fraction of the maximum 
amplitude. The fractions of the maximum amplitude  at  the corresponding half-widths (x j/n ) are 
given by 

It can be 
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 It is to be noted  that for n = 2 and j =1 , the depth  z1 =  1.305 x1/2 , where x1/2  is the half-width of 
the anomaly  at half of  its maximum amplitude. This  particular depth formula obtained is 
described in  the  books by Nettleton (1976) and Dobrin (1970) .                  

The depths so determined  are the same for a noise free isolated anomaly. This is shown in 
Figures 2 and 3 for theoretical data. However, in practice the anomaly is always contaminated with 
noise. The estimated depth should be either the geometric or arithmetic mean  of the depths, zj , 
corresponding to different fractions of the maximum amplitude. For noisy data  more depth 
estimates  should be made within the noise free portion of the anomaly using equation  (4).  

Estimating the depths at different widths of the anomaly can sometimes  give useful  
information on the shape of the body. This is explained in Example 4.  

The dimension of the spherical body (i.e. the radius) can be estimated from the area under the 
anomaly curve. In doing so all the data points are taken into account.  This is done by integrating  
equation (1) 
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where   C =  4πG∆ρR3 / 3. The left hand side  of equation (5) is the area, A , under the gravity 
anomaly curve. Now changing the variable from  x to  θ   by the substitution of  x = z tanθ ,  the 
limits  of  integration become  -π/2  and  +π/2  and  the  right hand  side  of  equation (5)  takes the 
form   
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Substituting the value of the gravitational constant G  in the constant term C and considering  the 
distances in kilometers  and kilofeet we get respectively  : 
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In reality the limits of integration are finite because our gravity profiles are finite. The left hand 
side of equation (6), which is the area under the observed gravity anomaly curve, can be  calculated 
numerically by using a standard method such as the Simpson's Rule or simply by  dividing the 
curve into very small segments and adding the area under each segment. Following the second 
procedure the left hand side of equation (6) can be written in digital form  so that the final 
expression takes the form  
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∆xi 's  have to be very small in order to get an accurate value of the area under the anomaly curve. 
It is convenient to deal with computations if the gravity values are sampled at equal intervals  so 
that the  ∆xi 's  can be replaced with a common value ∆x. Assuming that the density contrast is 
known from other means of measurements , the radius R now can be calculated from equation  (8) 
or (9) depending on whether it is measured  in meters or kilofeet. The calculation of R in this case 
involves all the measured gravity values of the profile and not just a single characteristic point such 
as the maximum amplitude of the anomaly. The numerical value of the area under the anomaly 
curve  is usually   much larger than the maximum amplitude of the anomaly. This allows the 
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present method to tolerate  comparatively large absolute  errors in the calculated value of  the area. 
However the disadvantage of the method is that the radius depends on the estimated depth to the 
center of the sphere and  any error in depth estimate is propagated  to the  estimated value of the 
radius.  The dependence of  the radius on depth is due to the fact that a sphere is a  3-dimensional 
body but for  a horizontal cylinder the radius is independent of depth  because of its two 
dimensionality. 

Radius from Excess Mass 
The gravity method is the only geophysical method that can uniquely estimate the total 

anomalous mass or simply  the excess mass causing the anomaly. This is in fact  a corollary of 
Gauss' flux theory in potential field theory (Parasnis, 1997). It can be shown that the excess mass 
can be given as the surface integral of the gravity anomaly  

)10(∫∫= dsgKMassExcess ∆

where ∆g's are  the gravity anomaly values measured over the surface area of the Earth and ds is an 
element of that surface.  K is a constant depending on the units used. It is 2.39x109  metric ton when 
area is in kilometer square and anomaly in mgals , and  26.3 imperial tons (1 imperial ton =2000lb)  
when area is in meter square and anomaly in mgals. (Use of  non-SI units in exploration geophysics 
is sometimes unavoidable though unfortunate!).  

The alternative method utilizes two important facts about gravity anomaly of a spherical body. 
Firstly the excess mass of a sphere does not depend upon its depth and secondly its gravity 
anomaly  is  radially symmetric about  the centre point of the anomaly (i.e. maximum anomaly).  
Therefore the area  of the Earth's surface on which this anomaly exists can be determined  by 
integrating in radial coordinates. The excess mass is therefore given  by 
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The gravity anomaly of a sphere being  symmetric is  independent of  the  radial  angle φ  and  

a function of the radial distance r  from the center of the anomaly. Any profile that crosses over the 
center point  is the x-distance from the maximum point of the anomaly (i.e. maximum anomaly 
corresponds to the origin of the profile). Now substituting equation (1) in equation (11) and 
changing the variable from  x ( r is actually replaced by x now) to θ  by the same manner as in 
equation  (5)  one gets  

)12(milligal)in gravity  and kilometersin  distances(for 1097.41 38 aRExcessMass ρ∆×=

)12(milligal)in  gravity  andmeter  in   distances(for  62.4 3 bRρ∆×=
 

The excess mass can be computed either from equation (11) in the same way used in 
calculating the area from equation (8) or by calculating the volume of a cone fitted to the data. The 
computational  technique based on equation (8) has been followed in this study. 

2.2    Horizontal Cylinder  

The gravity effect of a long horizontal cylinder is the same as if its mass were concentrated on 
a line along its axis. The gravity anomaly of such a body at any point x (Figure 1) on the horizontal 
surface of the earth is given by 

( ) )13(]/[2)( 222 xzzRGxg +∆=∆ ρπ

and the maximum amplitude  as before occurs at x = 0 i.e., 
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If we consider  n  fractions of the maximum amplitude resulting in (n-1) number of points (Figure 
3) denoted by j on the y-axis, then it can be shown that the depth determined from the half-widths 
corresponding to these points  are given by : 
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For n =2 , j becomes 1 and z1 = x1/2 , the standard formula found in geophysics text books 
(Nettleton, 1976 ; Dobrin 1970). The radius , R of the cylinder can be calculated in the same 
fashion as for the sphere calculated above. The final  expressions for  R of the cylinder when the 
distances are measured in kilometers and kilofeet are respectively:  
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Figure  2.  Interpretation of the gravity anomaly due to a sphere by the present method. 

 
It is to be noted that  the radius of the horizontal cylinder determined from the area under the curve 
is independent of the depth to the centre, z. This is unlike the method which utilizes the total 
amplitude to determine the  radius from the formulae : R2  = ∆gmaxz/ (41.91 ∆ρ)    (distances in km)  
and  R2  = ∆gmaxz/ (12.78 ∆ρ)   (distances in kft) . 

3.    Results and Discussions 

Four examples are presented here in order to show the validity of the present method. Two of 
them deal with the theoretical data and two with the field data.   

Example  1, Synthetic Data 

The theoretical  gravity  anomaly  (Figure 2) for a spherical  body is calculated  by using  
equation (1). The assumed parameters of  the spherical body are such that  radius, R =3.0 km , 
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dept

  and its interpretation for a horizontal cylinder are shown in  Figure 
for the horizontal cylinder are the same as for the sphere. The area 

unde

h to the center, z = 5.0 km and density contrast, ∆ρ = 0.5 g cm-3. The depth and radius 
determined by using the present method of interpretation are 5.04 km and 3.00 km, respectively. 
The area under the curve is 149.71 mgal m. 

Example  2, Synthetic Data 
The theoretical  anomaly

3. The assumed parameters 
r the curve is 554.9 mgal m. The interpreted depth is 5.06   km and the radius is 2.9 km.  
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Figure 3. Interpretation of gravity anomaly due to a horizontal cylinder by the present  
       method. 
 

ing   the  radius  of   the   cylinder  accurately   the   gravity   values   should be 
easured over a longer distance compared to the sphere (Figure 4). The tail of the anomaly for a 

 applied to a known geological situation, which  involves anomaly due to 
ble Salt Dome Anomaly (Nettleton, 1976).Results of interpretations of 

this 

For  determin
m
horizontal cylinder  continues for  a much longer distance before it reduces to zero. This effect is 
due to contributions to gravity effects  from the ends of the horizontal cylinder. Unlike the sphere , 
the horizontal cylinder is a two dimensional body  the axial dimension of which is assumed to be 
infinitely long. The truncation error in the case of a horizontal cylinder  is more than  that of a 
sphere  (Figure 5). 

Example 3, Field Data  
The method has been

salt dome known as Hum
anomaly  and those of Example  4  obtained by Nettleton (1957, 1962) are presented in Table 1 

for a comparison with those obtained from the present method.  Like all salt dome anomalies this 
anomaly  is  negative indicating  mass deficiency in the subsurface. The  anomaly  has a total 
amplitude of -13.9 mgal at the centre of the profile  and tapers to about -0.56 mgal on  each  side of 
the centre covering a total distance of 75 kilofeet (kft). The anomaly is quite smooth  and 
symmetrical giving an impression of a spherical causative body. The depth determined from this 
anomaly by using the present method is 16.3 kft , which is the average of the depths ( z1 = 15.4,  z2 
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= 16.1,  z3 = 16.5,  z4 = 16.6 ,  z5 = 16.5,  z6 =  16.7  and  z7 = 16.6  kft )  determined at seven  
fractions of the  total amplitude. The area under the  anomaly curve is 407.91 mgal kft from which 
the radius, R = 10.92 kft ,  is calculated by using equation  (9). The depth and radius so determined 
are almost the same as those ( z = 16.3 and R = 11.3 kft) obtained by Nettleton.  Any  variation in 
the depths determined from the present method indicates deviation of  the  causative body from the 
assumed spherical model. 
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Figure 4.  Comparison of profile lengths of a sphere and a horizontal cylinder. 

 
 

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Ratio of Distance to Depth (X/Z)

Pe
rc

en
t E

rr
or

 
Figure 5.  Truncation error on radius estimated from area under the gravity profile of a sphere and  
 cylinder. 
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Figure 6.  Truncation error on radius estimated from excess mass of a sphere. 

 
xample  

ed Gulf of Mexico anomaly is interpreted by Nettleton (1957)  by a 
ical body instead of a sphere. The interpretation of the same anomaly 

with

 method. 

E 4, Field data   
The more complicat

mushroom-shaped geolog
 a spherical model is not meant for a comparison but to show that estimating the depth at 

different fractions of the maximum amplitude can give us information on the validity of the 
assumed spherical model. This anomaly has a total amplitude of about -9.0 mgal  and is distorted  
at the central part of the anomaly making the determination of the total amplitude a subjective 
matter. The distortion at the centre of the anomaly is believed to be due to higher density of the 
shallow  uppermost part of the dome relative to the density of the surrounding sediments. 

 
Table 1: Parameters of the geological bodies obtained by Nettleton (1957) and the present

 
Anomalies Nettleton  Present Method 

Humble S xample 2 R = 11.3 .3 kft R = 1  kft alt Dome, E  kft ; z = 16 0.92 kft; z = 16.3

Top radius : 15 kft, 
Bottom radius 7.5 kft 

z = 22.4 kft 
Gulf of Mexico, Example 3 Mushroom-shaped body R  is not determined 

 
his positive density contrast produces a positive anomaly at the centre which reduces the peak 
mplitude of the anomaly. Nettleton  has interpolated the observed amplitude to about  -10.0 mgal  

T
a
in his interpretation of the anomaly in terms of  a  mushroom-shaped body  the top of which has 
positive density contrast. The maximum horizontal dimension of the mushroom is about 30,000 ft 
at the top , minimum  about  15,000 ft at the bottom and the depth to the top of the dome is about 
1,300 ft. Depth estimates ( z1 = 21.2,  z2 = 20.1,  z3 = 21.9,  z4 = 23.1 ,  z5 = 24.4,  z6 =  24.9  and  z7 
= 26.1  kft )  for this anomaly show a wide range of values indicating that the causative body is  far 
from being spherical in shape.  z1   is the depth determined for the half-width closest to the 
minimum amplitude (i.e. bottom part of the anomaly)  and  z7   for the half-width closest to the 
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maximum amplitude ( i.e. top part of the anomaly).  Depth determination from equation  (4)  
depends upon the half-width of the anomaly. The gradual but fairly large increase in depths as one 
estimates depths from bottom to top  of the anomaly  indicates that the widths towards the top  of 
the anomaly are increasing more than expected. This in turn means that the causative body is  
widening towards its top shaping up something like an inverted pyramid. 
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Figure 7.  Combined truncation and zero-level error on radius estimated from excess mass of  a  
 sphere. 

 
 are two possible sources of error that will influence the radius estimate. The truncation 

rror arises because of the finite length of the gravity profiles. Therefore the computed areas under 
the 

ll place zero-level of the anomaly  (i.e. x-
axis

lusion 

enter of  geological bodies of simple geometrical shapes such as a sphere and a 
cylinder has been determined at a number of points along the gravity profile. The radius of the 

  

There
e

gravity profiles of a sphere and a cylinder and the computed  excess mass of a sphere  will  
always be less than what would have been obtained from a semi-infinite profile length. As a result 
the estimated value of the radius will be less than the actual value. The affects of this error are 
shown in Figure 5 and Figure 6. It can be seen from Figure 5  that the truncation error is more for a 
cylinder than a sphere. For example for a 10% error in the radius estimate,  the minimum x/z value 
is 1 in the case of a sphere and  about 3.3 in the case of a cylinder. For the same error the profile 
length, in the case of radius estimate from the  excess mass of  a sphere,  has to be about 3.5 times 
more than the profile length in the case of area estimate. 

The zero-level error is introduced when the regional gravity values are not properly removed 
from the data. The incorrect removal of the regional  wi

 )  either  above  or  below  the  true  level  thus  either  decreasing  or increasing the true 
gravity values respectively. The  combined affect of the truncation error and the zero-level error is 
shown in the case of excess mass estimate for a sphere in Figure  7. The curve above is obtained by 
under-subtracting the regional by  10% and the curve below  by  over-subtracting by the same 
amount.  
 
4.  Conc

Depth to the c
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