Inequalities Concerning the Growth of Polynomials

Bashir A. Zargar* and Ahmad W. Manzoor

Department of Mathematics, University of Kashmir, Srinagar-190006, India. *Email: bazargar@gmail.com

ABSTRACT: In this paper we consider a polynomial P(z) having no zeros in the disk |z| < 1. We investigate the dependence of $max_{|z|=R>1} |P(z)|$ on $max_{|z|=1} |P(z)|$ and obtain a refinement of a famous result due to Rivilin ([5], [7]). Our results not only generalize some polynomial inequalities but also refine a result by Aziz [1].

Keywords: Growth of polynomials, Maximum modulus, Inequalities.

علاقة المتراجحات بتزايد الدوال

بشير أحمد زارجار و أحمد منزور

الملخص: نفترض في هذه الورقة الدالة P(z) التي ليس لها أصفار في القرص |z| < 1 . سنبحث عن علاقة المقدار |P(z)| | P(z) على $max_{|z|=R>1}$ المقدار $|P(z)| = max_{|z|=1}$ على الملخص: نفترض في هذه الورقة الدالة P(z) التي ليس لها أصفار في القرص $|P(z)| = max_{|z|=1}$. سنبحث عن علاقة المقدار P(z) الدوال فحسب ولكنها أيضا تنظيما لنتيجة عزيز [1].

الكلمات المفتاحية: تزايد الدوال ، نموذج الحد الأقصى، المتراجحات.

1. Introduction

t
$$P(z)$$
 be a polynomial of degree n . Then ([5] or [6], p. 347), for a fixed $R > 1$, we have

$$Max_{|z|=R} |P(z)| \le R^{n} Max_{|z|=1} |P(z)|.$$
(1)

Equality in (1) holds for the polynomial $P(z) = \alpha z^n$.

It was shown by Rivilin ([5], [7]) that if P(z) is a polynomial of degree n having no zeros on |z| < 1, then (1) can be replaced by

$$Max_{|z|=R} |P(z)| \leq \left(\frac{R^{n}+1}{2}\right) Max_{|z|=1} |P(z)|.$$
(2)

Inequality (2) is sharp and equality holds for $P(z) = \alpha + \beta z^n$, $|\alpha| = |\beta|$.

Aziz [1] has further improved and generalized inequality (2) by proving the following result:

Theorem A. If P(z) is a polynomial of degree *n* which does not vanish in the disk |z| < k where $k \ge 1$, then

$$Max_{|z|=R} |P(z)| \leq \left(\frac{R^{n}+1}{2}\right) Max_{|z|=1} |P(z)| - \left(\frac{R^{n}-1}{2}\right) Min_{|z|=1} |P(z)|.$$
(3)

The result is best possible and equality holds for the polynomial $P(z) = \alpha z^n + \beta k^n$, $|\alpha| = |\beta| = 1, k \ge 1$.

INEQUALITIES CONCERNING THE GROWTH OF POLYNOMIALS

As a generalization of inequality (2), Aziz [1] conjectured the following results.

Conjectured Results. If P(z) is a polynomial of degree *n* which does not vanish in the disk |z| < k, then

$$Max_{|z|=r} |P(z)| \ge \frac{r^{n} + k^{n}}{1 + k^{n}} Max_{|z|=1} |P(z)|, k^{2} < r < 1, k < 1$$
(4)

and

$$Max_{|z|=R} |P(z)| \leq \frac{R^{n} + k^{n}}{1 + k^{n}} Max_{|z|=1} |P(z)|, R > k^{2}, k > 1.$$
(5)

In an attempt to answer inequality (4), Dewan and Hans [4] proved the following partial results.

Theorem B. If P(z) is a polynomial of degree n, which does not vanish in |z| < k, k < 1, then for $0 < k < r < \lambda \le 1$,

$$M(p,r) \ge \frac{r^n + k^n}{\lambda^n + k^n} M(p,\lambda),$$

provided |p'(z)| and |q'(z)| attain the maximum at the same point on |z|=1, where

$$q(z) = z^n P(\frac{1}{z})$$
 and $Max_{|z|=r} | P(z)| = M(p,r), M(p,\lambda) = Max_{|z|=\lambda} | P(z)|$.

The result is best possible and equality holds for $p(z) = z^n + k^n$.

Theorem C. If P(z) is a polynomial of degree n, which does not vanish in |z| < k, k < 1, then for 0 < k < r < 1

$$M(p,r) \ge \left(\frac{r^{n} + k^{n}}{1 + k^{n}}\right) M(p,1) + \left(\frac{1 - r^{n}}{1 + k^{n}}\right) m(p,k)$$
(6)

provided |p'(z)| and |q'(z)| attain the maximum at the same point on |z|=1, where

$$q(z) = z^n P(\frac{1}{z})$$
 and $m(p,k) = Min_{|z|=k} |P(z)|$.

The result is best possible and equality in (6) holds for $P(z) = z^n + k^n$.

In this paper we shall first present the following interesting refinement of Theorem A.

Theorem 1. Let

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0,$$

be a polynomial of degree n which does not vanish in $|z| < k, k \ge 1$. Then for R > 1,

$$Max_{|z|=R} |P(z)| \leq \frac{\rho}{\rho+1} (R^{n}+1) Max_{|z|=1} |P(z)| - \frac{1}{\rho+1} (R^{n}-\rho) Min_{|z|=1} |P(z)|$$
(7)

where

$$\rho = \frac{|a_0| + R(|a_n| + m)}{|a_0| R + (|a_n| + m)}$$
(8)

and $m = Min_{|z|=1} |P(z)|$.

The result is sharp and equality in (7) holds for $P(z) = \frac{\alpha + \beta z^n}{2}$, $|\alpha| = |\beta| = 1$.

Remark 1.1. Here we have replaced k by ρ simply not to confuse it with the region for which P(z) does not vanish. Now

$$\rho = \frac{R(|a_n|+m) + |a_0|}{R|a_0| + |a_n|+m} < 1$$

It is easy to verify the above inquality for $\rho < 1$ if

 $\frac{|a_0|}{|a_n|+m} > 1.$

To show it holds, let $m = Min_{|z|=1} |P(z)|$ then $m \le |P(z)|$ for |z|=1, so that $m |\alpha z^n| \le |P(z)|$ where α is any real or complex number with $|\alpha| < 1$. Since P(z) does not vanish in |z| < 1 the polynomial

$$F(z) = P(z) + \alpha m z^n = (a_n + \alpha m) z^n + \dots + a_0$$

does not vanish in |z| < 1. Therefore, $\left| \frac{a_0}{a_n + \alpha m} \right| > 1$ or $\frac{|a_0|}{|a_n + \alpha m|} > 1$, for every α with $|\alpha| < 1$. Choosing

argument of α such that

$$|a_n + \alpha m| = |a_n| + |\alpha| m$$

we get

$$a_0 > |a_n| + |\alpha| m, |\alpha| < 1.$$

Letting $|\alpha| \rightarrow 1$ it follows that

$$|a_0| \geq |a_n| + m.$$

Now it is easy to verify that for $\rho < 1$,

$$\frac{\rho}{\rho+1} < \frac{1}{2}$$
 SO $(R^n+1)\frac{\rho}{\rho+1} < \frac{R^n+1}{2}$

and

$$\frac{R^n - 1}{2} = \frac{R^n}{2} - \frac{1}{2} < \frac{R^n}{\rho + 1} - \frac{\rho}{\rho + 1}$$

which is true. This shows Theorem 1 is an improvement of Theorem A.

As an application of Theorem 1, we next establish the following result which, in a way, is similar to inequality (6).

Theorem 2. If $P(z) = \sum_{j=0}^{n} a_j z^j$ is a polynomial of degree *n* which does not vanish in $|z| \le 1$, then for

 $0 \le r < 1$, we have

$$\frac{\rho}{\rho+1} \frac{(r^{n}+1)}{r^{n}} Max_{|z|=r} |P(z)| - \frac{1}{\rho+1} \frac{(1-\rho r^{n})}{r^{n}} Min_{|z|=r} |P(z)| \ge Max_{|z|=1} |P(z)|$$
(9)
$$\rho = \frac{|a_{0}| + R(|a_{n}| + m)}{|a_{0}|R + (|a_{n}| + m)}.$$

and

The result is best possible and equality in (9) holds for the polynomial $P(z) = \alpha z^n + \beta$, where $|\alpha| = |\beta| = 1$.

Lemmas

For the proof of Theorem 1, we need the following Lemmas. The first Lemma is due to Dubinin [3, Theorem 5].

Lemma 1. If

 $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0,$

is a polynomial of degree n which does not vanish in |z| < 1, then for every $R \ge 1$

$$|P(Rz)| = \frac{|a_0| + R|a_n|}{R|a_0| + |a_n|} |Q(Rz)|, |z| = 1$$
(10)

where

$$Q(z) = z^n \overline{p(1/\overline{z})}$$

Equality is attained for the polynomial P(z) whose zeros lie on the unit circle |z|=1. Our next lemma is due to Aziz and Mohammad [2].

Lemma 2. If P(z) is a polynomial of degree n, then for all $R \ge 1$ and $0 \le \theta < 2\pi$

$$|P(Re^{i\theta})| + |Q(Re^{i\theta})| \le (R^n + 1)Max_{|z|=1}|P(z)|$$

where

$$Q(z) = z^n P(\frac{1}{z}).$$

2. Proofs of Theorems

Proof of Theorem 1. Let $m = Min_{|z|=1} |P(z)|$. Then $m \le |P(z)|$ for |z|=1 so that $m |\alpha z^n| < |P(z)|$ for |z|=1, where α is any real or complex number with $|\alpha| < 1$. Since the polynomial

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0,$$

does not vanish in |z| < 1, an application of Rouches Theorem shows that the polynomial $P(z) + \alpha m z^n$ does not vanish in |z| < 1, so that the polynomial

$$F(z) = P(z) + \alpha m z^{n}$$

= $(a_{n} + \alpha m) z^{n} + a_{n-1} z^{n-1} + \dots + a_{1} z + a_{0},$

does not vanish in |z| < 1 for every α , $|\alpha| < 1$. Let

$$G(z) = z^{n} \overline{F(\frac{1}{z})} = z^{n} \overline{P(\frac{1}{z})} + \overline{\alpha}m = Q(z) + \overline{\alpha}m$$
$$Q(z) = z^{n} \overline{P(\frac{1}{z})}.$$

and

Using Lemma 1, it follows that

$$|F(z)| \le \frac{|a_0| + R|a_n + \alpha m|}{R|a_0| + |a_n + \alpha m|} |G(z)|, \quad \text{for } |z| \ge 1.$$

This implies

$$|P(z) + \alpha m z^{n}| \leq \frac{|a_{0}| + R|a_{n} + \alpha m|}{R|a_{0}| + |a_{n} + \alpha m|} |Q(z) + \alpha m|.$$

We now show that for $|\alpha| < 1$ and R > 1,

$$\frac{|a_0| + R|a_n + \alpha m|}{R|a_0| + |a_n + \alpha m|} < \frac{|a_0| + R(|a_n| + m)}{R|a_0| + (|a_n| + m)}$$
(11)

Inequality (11) holds if

$$|a_{0}|^{2} R + R^{2} |a_{0}| (|a_{n}| + \alpha m) + |a_{0}| (|a_{n}| + \alpha m) + R(a_{n} + \alpha m)(|a_{n}| + m)$$

$$\geq |a_{0}|^{2} R + R^{2} |a_{0}| |a_{n} + m| + |a_{0}| (|a_{n}| + \alpha m) + R |a_{n} + \alpha m| (|a_{n}| + m),$$

which after a simple calculation, yields

$$R^{2} |a_{0}| \{ (|a_{n}| + \alpha m) - |a_{n} + m| \} \ge |a_{0}| \{ (|a_{n}| + \alpha m) - (|a_{n}| + m) \}$$

This implies $R \ge 1$, which is true. Hence (11) is established.

Taking in particular
$$z = Re^{i\theta}$$
, where $R > 1$ and $0 \le \theta < 2\pi$, we get
 $|P(Re^{i\theta}) + \alpha m R^n e^{in\theta}| \le \rho |Q(Re^{i\theta}) + \overline{\alpha}m|$
(12)

for every α with $|\alpha| < 1$. Choosing the argument of α in (12) such that

$$|P(Re^{i\theta}) + \alpha m R^n e^{in\theta}| = |P(Re^{i\theta})| + |\alpha| m R^n,$$

we get

$$|P(Re^{i\theta})| + |\alpha| R^{n} m \le \rho |Q(Re^{i\theta})| + \rho |\alpha| m$$

This gives

$$P(Re^{i\theta})|+|\alpha|m(R^{n}-\rho) \le \rho |Q(Re^{i\theta})|, \quad 0 \le \theta < 2\pi.$$
(13)

Letting $|\alpha| \rightarrow 1$ in (13), we get

$$P(Re^{i\theta})|+(R^n-\rho)m \le \rho |Q(Re^{i\theta})|, \qquad 0 \le \theta < 2\pi.$$

Adding $\rho | P(Re^{i\theta}) |$ on both sides it follows that

$$(\rho+1) | P(Re^{i\theta})| + (R^n - \rho)m \le \rho\{|P(Re^{i\theta})| + |Q(Re^{i\theta})|\},\$$

for all θ , $0 \le \theta < 2\pi$.

This gives, with the help of Lemma 2, that

$$(\rho+1) | P(Re^{i\theta}) | + (R^{n} - \rho)m \le \rho(R^{n} + 1)Max_{|z|=1} | P(z) |$$
(14)

П

for all θ , $0 \le \theta < 2\pi$.

From (14), it follows that

$$|P(Re^{i\theta})| \leq \frac{\rho}{\rho+1} (R^{n}+1) Max_{|z|=1} |P(z)| - \frac{1}{\rho+1} (R^{n}-\rho) m$$

for all θ , $0 \le \theta < 2\pi$, which is equivalent to the desired result.

Proof of Theorem 2. All the zeros of P(z) lie in $|z| \ge 1$; therefore for $0 < r \le 1$, the polynomial P(rz) has all the zeros in $|z| \ge \frac{1}{r} > 1$. Applying Theorem 1 to the polynomial P(rz), we obtain

$$Max_{|z|=1} | P(rz) | \leq \frac{\rho}{\rho+1} (R^{n}+1) Max_{|z|=1} | P(rz) | -\frac{1}{\rho+1} (R^{n}-1)m.$$

Equivalently,

$$Max_{|z|=1} | P(Rz) | \leq \frac{\rho}{\rho+1} (R^{n}+1) Max_{|z|=r} | P(z) | -\frac{1}{\rho+1} (R^{n}-\rho) Min_{|z|=r} | P(z) |.$$

Taking $R = \frac{1}{r}$, then for $0 < r \le 1$, we obtain

$$\frac{\rho}{\rho+1} \frac{(r^{n}+1)}{r^{n}} Max_{|z|=r} |P(z)| - \frac{1}{\rho+1} \frac{(1-\rho r^{n})}{r^{n}} Min_{|z|=r} |P(z)| \ge Max_{|z|=1} |P(z)|,$$

Theorem 2.

which proves Theorem 2.

3. Conclusion

We generalize some polynomial inequalities and refine a previous result on the dependence of $max_{|z|=R>1} |P(z)|$ on $max_{|z|=1} |P(z)|$, where P(z) is a polynomial having no zeros in the disk |z| < 1.

References

- 1. Aziz, A. Growth of polynomials whose zeros are within or outside a circle. *Bulletin of the Australian Mathematical Society*, 1987, **35**, 247-256.
- 2. Aziz, A. and Mohammad, Q.G. Simple proof of a Theorem of Erdos and Lax. *Proceedings of the American Mathematical Society*, 1980, **80**, 119-122.
- 3. Dubinin, V.N. Applications of Schwarz Lemma to inequalities for entire functions with constraints on zeros, *Journal of Mathematical Sciences*, 2007, **143(3)**, 3069-3075.
- 4. Dewan, K.K. and Hans, S. Growth of polynomials whose zeros are outside a circle, *Annales Universitates Mariae Curie-Sklodowska Lublin-Polonia*, **LXII**, 2008, 61-65.
- 5. Rahman, Q.I. and Schmeisser, G. Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
- 6. Riesz, M. Über einen satz des Herrn Serge Bernstein, Acta Mathematica, 2007, 40(3), 3069-3075.
- 7. Rivilin, T.J. On the maximum modulus of polynomials, American Mathematical Monthly, 1960, 67, 251-253.

Received 22 January 2017 Accepted 26 September 2017