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ABSTRACT: We propose a generalized theory to construct higher order Grünwald type approximations for fractional 

derivatives. We use this generalization to simplify the proofs of orders for existing approximation forms for the 

fractional derivative.  We also construct a set of higher order Grünwald type approximations for fractional derivatives 

in terms of a general real sequence and its generating function. From this, a second order approximation with shift is 

shown to be useful in approximating steady state problems and time dependent fractional diffusion problems. Stability 

and convergence for a Crank-Nicolson type scheme for this second order approximation are analyzed and are 

supported by numerical results. 
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 تطبيقاتها معمن الدرجة الثانية للمشتقات الكسرية  تقريب جديد

   كمال نافعو  *حنيفة محمد ناصر 

 درجاتاللمشتقات الكسرية. نستخدم هذا التعميم لتبسيط براهين ل يةلتقريبالد اجرنومن نوع درجة عالية بناء  ةنظريلنقترح في هذا البحث تعميما  :صالملخ

متتالية  استخدامكسرية بالمشتقات لل يةلتقريبالد اجرنونوع بدرجة عالية  لمشتقات الكسرية. كما نقوم ببناء مجموعةلالمعروفة ات تقريبال المتعلقة بأنواع من

 الانتشار الكسريومسائل ثابتة مسائل الحالة اللتقريب من الدرجة الثانية مع الانسحاب  مفيد في تقريب حقيقية عامة والدالة المولدة لها. وبهذا تم برهان أن ا

 . نكلسن لتقريبات من الدرجة الثانية ودعمهما بنتائج عددية-كرانك وتم تحليل الاستقرار والتقارب لطريقة من نوع المرتبطة بالزمن.
 

 نكلسن، الاستقرار والتقارب.-، معادلة الانتشار الكسري، الحالة الثابتة للمعادلة الكسرية، طريقة كرانكالدالة المولدة ،لداجرنوتقريبات  :مفتاحيةالكلمات ال
 

1. Introduction 

ractional calculus has a history that goes back to L’Hospital, Leibniz and Euler [1,2]. A historical account of early 

works on fractional calculus can be found, for example, in [3]. Fractional integral and fractional derivative are 

extensions of the integer order integrals and derivatives to a real or complex order. Various definitions of fractional 

derivatives have been proposed in the past, among which the Riemann-Liouville, Grünwald-Letnikov and Caputo 

derivative are common and established. Each definition characterizes certain properties of the integer order derivatives. 

Recently, fractional calculus found its way into the application domain in science and engineering. The field of 

application includes, but is not limited to, oscillation phenomena [4], visco-elasticity [5], control theory [6] and 

transport problems [7]. Fractional derivatives are also found to be suitable to describe anomalous transport in an 

external field derived from the continuous time random walk [8], resulting in a fractional diffusion equation. The 

fractional diffusion equation involves fractional derivative either in time, in space or in both variables. 

Fractional derivative is approximated by the Grünwald approximation obtained from the equivalent Grünwald-

Letnikov formula of the Riemann-Liouville fractional derivative. Numerical experience and theoretical justifications 

have shown that application of this approximation  as it is in the space fractional diffusion equation results in unstable 

solutions when explicit, implicit and even when the Crank-Nicolson (CN) type schemes are used [9].  
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The latter two schemes are popular for their unconditional stability for classical diffusion equations. This peculiar 

phenomenon for the implicit and CN type schemes is corrected and the stability is restored when a shifted form of the 

Grünwald approximation is used [9,10]. 

The Grünwald approximation is known to be of first order with the space discretization size h  in the shifted and 

non-shifted form and is, therefore, useful only in first order schemes such as explicit Euler (forward) and implicit Euler 

(backward) for the fractional diffusion equation.  

Since the CN approximation scheme is of second order in time step  , Tadjeran et al. [11] used extrapolation 

improvement for the space discretization to obtain a second order accuracy. Subsequently, second order 

approximations for the space fractional derivatives were obtained through some manipulations on the Grünwald 

approximation. Nasir et al. [12] obtained a second order accuracy through a non-integer shift in the Grünwald 

approximation, displaying super convergence. Convex combinations of various shifts of the shifted Grünwald 

approximation were used to obtain higher order approximations in Chinese schools [13, 14, 15, 16, 17], some of which 

are unconditionally stable for the space fractional diffusion equation with CN type schemes. Zhao and Deng [18] 

extended the concept of super convergence to derive a series of higher order approximations. 

Earlier, Lubich [19] obtained some higher order approximations for the fractional derivative without shift for orders up 

to 6. Numerical experiments show that these approximations are also unstable for the fractional diffusion equation 

when the methods mentioned above are used. Shifted forms of these higher order approximations diminish the order to 

one, making them unusable as Chen and Deng [20,21] noted. 

In this paper, we construct a new second order Grünwald type approximation which can be used with shifts 

without reducing its order. We apply this second order approximation in steady state problems and time dependent 

fractional diffusion problems. A CN type scheme is devised for this approximation and a justification for stability and 

convergence is given. 

The rest of the paper is organized as follows. In Section 2, definitions and notations are introduced. In Section 3, 

the main results of generalization are presented. In Section 4, approximations of order one and two with shifts are 

constructed. In Section 5 the constructed second order approximation is applied to devise numerical schemes for steady 

state and time dependant space fractional diffusion equations. Stability and convergence for the scheme of fractional 

diffusion equations are analysed in Section 6. Supporting numerical results are presented in Section 7 and conclusions 

are drawn in Section 8. 

2.  Definitions and notations 

Denote by R),(1L , the space of Lebesgue integrable functions:    <|)(||=)(1 dxxffL . Let 

)()( 1 RLxf   and assume that it is sufficiently differentiable so that the following definitions hold. The left and right 

Riemann-Liouville fractional derivatives of order R  are defined respectively as  
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where =n  is an integer with nn <1   and )(  denotes the Gamma function. 

The corresponding left and right Grünwald-Letnikov (GL) fractional derivatives are given respectively by 
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It is known that the Riemann-Liouville and Grünwald-Letnikov definitions are equivalent [22]. Hence, from now 

onwards, we denote the left and right fractional derivatives as )(xfDx



  and )(xfDx



  respectively. 
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The Fourier transform (FT) and inverse FT of an integrable function )()( 1 Lxf  are given by 

dxexffxf xi 


 )(=)(ˆ=:)))(((F  and )(=)(ˆ=)))((ˆ(1 xfdefxf xi  






F  respectively. The FT is 

linear: ).(ˆ)(ˆ=)))(()((  gfxgxf F  For a function f  at a point R,  x , the FT is given 

by ).(ˆ=)))(((   fexf xiF  

 

If )(),( xfDxf x


  and )()( 1  LxfDx


, the FTs of the left and right fractional derivatives are given by 

)(ˆ)(=)))(((   fixfDxF  and )(ˆ)(=)))(((   fixfDx F  respectively [22]. 

For a fixed h , the Grünwald approximations for the fractional derivatives in (1) and (2) are obtained by simply 

dropping the limit in the GL definitions (3) and (4) as  
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When )(xf  is defined in the intervals ],[ ba , it is zero-extended outside the interval to adopt the definitions of 

fractional derivatives and their approximations. The sums are restricted to a finite up to N  which grows to infinity as 

0h . Often, N  is chosen to be =
x a

N
h

 
  

 and =
b x

N
h

 
  

 for the left and right fractional derivatives 

respectively, to cover the sum up to the boundary of these domain intervals, where ][ y  is the integer part of y . The 

left and right fractional derivatives, in this case, are denoted by )(xfDxa


 and )(xfDbx


 respectively. 

The Grünwald approximations are of first order accuracy and display unstable solutions in the approximation of 

fractional diffusion equation by implicit and CN type schemes [9]. As a remedy, a shifted form of Grünwald formula 

with shift r  is used:  
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where the upper limits of the summations have been adjusted to cover the shift r . 

Meerchaert et al. [9] showed that for a shift 1=r , the shifted approximations )(1, xfh

   are also first order 

approximations with unconditional stability restored in implicit Euler and CN type schemes for space fractional 

diffusion equations. 

As for higher order approximations, Nasir et al.[12] derived a second order approximation with a non-integer 

shift, /2=r , displaying super convergence.  

 ).()(=)( 2

/2, hOxfDxf xah 


  (7) 

Tian et al. [13] used convex combinations of different shifted Grünwald forms to obtain two second order 

approximations:  
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  for 1)(1,(1,0),=),( qp . 

Hao et al. [14] obtained an quasi-compact order 4 approximation. 

All the above approximations are based on the shifted Grünwald approximations rh , . The weights 
)(

kg  are 

the coefficients of the Taylor series expansion of the power function 
)(1 z . 
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Higher order approximations were also obtained earlier by Lubich [19], establishing a connection with the 

characteristic polynomials of multistep methods for ordinary differential equations. Specifically, if )(),( zz   are 

the characteristic polynomial [23] of a multistep method of order p  , then 
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z
 gives the weights for the  

Grünwald type approximation of the same order for the fractional derivative of order  . From the backward 

multistep methods, Lubich [19] derived higher order approximations of up to order six in the form 
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zW  . The generating functions )(zW  given in Table 1 are of order   for 61  . 

 

Table 1.  Lubich approximation generating functions. 
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3.  Generalization of Grünwald approximation 

In this section, we generalize the concept of shifted Grunwald approximation to an arbitrary sequence of weights 

and analyse its properties. This generalization is then used to construct higher order approximations for fractional 

derivatives. 

For a sufficiently smooth function )(xf , denote the left Grünwald type operator with shift r  and weights rkw ,  

as  
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Definition 1  A sequence  rkw ,  of real numbers is said to approximate the fractional derivative )(xfDx


  at x  

with shift r  in the sense of Grünwald if  
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Definition 2  A sequence  rkw ,  of real numbers is said to approximate the fractional derivative )(xfDx


  at x  

with shift r  and order 1p  if  

 ).()(=)( ,

p
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 (10) 

We consider the generating function 
k

rkk
zwzW ,0=

=)( 


 of the weights rkw ,  which will play a central role in 

constructing approximations. 

Remark 1    

1.  Analogous definitions hold for the right fractional derivative with the same weights rkw , . We denote the right 

Grünwald approximation as )(, xfrh


 . 
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2.  The property (10) is the consistency condition for the Grünwald type approximation operator 


rh  ,  to the 

fractional differential operator. This consistency condition tells that the order of approximation is at least one. 

3.  For convenience, we do not distinguish the sequence of weights rkw ,  and its generating function )(zW  in the 

above definitions, and in the discussions and results that follow.  

The following theorem establishes an equivalent characterization of the generator )(zW  for an approximation 

of fractional differential operator with order 1p  and shift r . 

Theorem 1  Let mnn ,<1    be a non-negative integer, )()( 1 R nmCxf  and )()( 1 RLxfDk

x   for 

10  nmk . Then, the generating function )(zW  of a real sequence }{ ,rkw  approximates the left fractional 

differential operator for )(xf  with order p  and shift r , mp 1 , if and only if  
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 )))()(((
1

=)))((( ,

0=

, 


 hrkxfw
h

xf rk

k

rh  


 FF  

 )(ˆ1
= )(

,

0=




few

h

ihrk

rk

k




  

 )(ˆ)(
)(

= ,

0=










fiew
ih

e kih

rk

k

rih




  

 )(ˆ)()(= ,

0=

 


fiew

z

e kz

rk

k

rz








 


  

 )(ˆ))((=)(ˆ))((=  


fizGfieW

z

e
r

z
rz


 

 ),(ˆ)()(=)(ˆ)()(=
0=0=

  fihrafizra ll

l

l

l

l

l




  

 where we have used hiz = . Taking the inverse FT, we have  
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Now, (11) holds if and only if 0=)(1,=)(0 rara l , for 1,1,2,= pl  . Equation (12) holds immediately.     □ 

Remark 2 The equivalent condition (11) for order p  approximation in Theorem 1 holds for the right fractional 

derivative as well. In fact, the condition on the generating function )(zW  for the right fractional derivative is  
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which is equivalent to (11).  

One of the consequences of Theorem 1 is the following consistency condition. 

Corollary 1  If the generating function )(zW  gives a consistent approximation of the left and right fractional 

differential operators, then  
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 Proof. By Remark 1 and 2, the order p  is at least one. When 0z , the condition (11) becomes 

))((1=)( przz zOzeeW  
. Take the limit as 0z .  
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Using Theorem 1, one can check algebraically the following propositions for the generating function of 

approximation operators known previously in [12, 13, 19, 20]. 

Proposition 1 The approximation given by (7) is of second order.  

 Proof. The coefficients 
)(

kg  have the generating function 
)(1 z . Since the shift of the approximation is 

= / 2,r   it is enough to check the function 



)(1

1
=)( /2 zz ee

z
zG  . Taylor series expansion gives that 
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24

1=)( 42
2
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 which confirms the second order.                                                                                      □ 

Proposition 2 The approximation given by (8) is of second order accuracy.  

Proof.  Since ph ,  and qh ,  have the same generating function 
)(1 z  with shifts p  and q  respectively, check  

the Taylor series of 
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.                                                                                          □ 

Proposition 3 The Lubich generating functions ,6,1,2,=),( pzWp  in Table 1 are of order p  accurate without 

shift. Moreover, if a non-zero shift r  is introduced to the approximation, the orders reduce to one.  

 Proof. When there is no shift ( 0=r ), Taylor expansion gives )(1=)/( pz

p zOzeW  
. When 0r , the order 

is determined by ),(1=))())(1((1=)/( zOzOzOzeWe pz

p

rz  
 for 61  p  reducing the orders to 1. □ 

4.  Construction of higher order approximation 

We construct higher order approximation generating functions for fractional derivatives with shifts by the use of 

Theorem 1. The importance of Theorem 1 is that the construction process is entirely confined to algebraic manipulation 

with the aid of Taylor series expansion. 

In this paper, we choose the form 
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for the generators. 

Consider the Taylor series expansion  
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For an order p  approximation, we set the first p  coefficients )(ral  to satisfy (11) in Theorem 1. That is, we impose 

conditions 0=)(1,=)(0 rara k  for = 1, 2, , 1k p  . 

First and second order shifted Grünwald approximations have been constructed by the above algebraic method 

and we have the following. 

Theorem 2 The first and second order shifted Grünwald approximations with shift r  are given respectively by 
)(1=)(1, zzW r   and  
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The generating function )(1, zW r  corresponds to the shifted Grunwald formula )(, xfrh   in (5) and (6) for the 

left and right fractional derivatives respectively, and is independent of the shift r . 

)(2, zW r  gives the second order Grünwald type approximations given by (9) with coefficients rkw ,  obtained from the 

Taylor series expansion of )(2, zW r . 

Note that when there is no shift )(2,0 zW  gives the Lubich approximation )(2 zW  in Table 1. 

We denote the Grünwald approximation of order p  by , 1, 2,( ), =p ru x p  for left and right fractional 

derivatives respectively. 
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The Grünwald weights rkw ,  can be computed by a recurrence formula [24,25]. 

Lemma 1 Let 
j
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. Then, the coefficients 

mw  satisfy the recurrence form  
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For the generating function )(2, zW r , being the power of a polynomial of degree 2 , the upper limit of the 

summation in (17) goes up to only 2=,2)(min m  for 2m . 

5.  Applications to fractional differential equations 

In this section, we apply the fourth order Grünwald type approximation derived in the previous section to 

fractional differential equations. 

5.1  Steady state problems 

Consider the steady state problem  

 ,),(=)( bxaxfxuDxa 
                                                       (18) 

.=)(,=)( 21  buau  

 

Consider a uniform partition bxxxxa N =<<<<= 210   of the problem domain ],[ ba  with subinterval 

size 1,0,1,2,=,= 1  Nixxh ii  . Problem (18) at 
ix  is approximated by  

 ,,0,1,2,=),(= 2

2, NihOfu iir  


 

where )(= ii xuu  and Nixff ii ,0,1,2,=),(=  . 

In order to keep the discrete values 
iu  within the computational domain, we choose the shift 1=r . 

Neglecting the )( 2hO  remainder term, we get the approximation scheme  

 ,0,1,2,=,=ˆ
12, Nifu ii 

  (19) 

 where iû  are the solutions of (19) and hence the approximation of the exact solution iu  for 1,1,2,= Ni  . 

Let 
T

NN uuuuuU ],ˆ,,ˆ,ˆ,[= 1210  , 
T

NffffF ],,,,[= 210   with the boundary conditions incorporated in 

U  as )(= 10 au   and )(= 2 buN  . Then, the matrix formulation of (19) is given by ,=2,1 FUA  where 2,1A  is an 

1)(1)(  NN  Toeplitz matrix given by  
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2,1
elsewhere

jiw
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ji
 

where 1,1 jiw  are the coefficients of the Taylor series expansion of the generating function )(2,1 zW . 

After imposing boundary conditions, we obtain the ready-to-solve second order scheme as  

 ,ˆ=ˆˆ
002,1 NNuAuAFUA   

where 2,1Â  is the reduced matrix of size 1)(1)(  NN  obtained from 2,1A  by deleting the first and last rows 

and columns, FU ˆ,ˆ  are obtained from FU ,  respectively by deleting their first and last boundary entries. NAA ,0  

are the first and last column vectors of the matrix 2,1A  reduced at both ends as above. 

5.2  Approximation of fractional diffusion equation 

We consider the numerical approximation of the space fractional diffusion equation defined in the domain 

][0,],[ Tba  :  

 ),,(),(),(=
),(

21 txftxuDKtxuDK
t

txu
bxxa 



 
 (20) 

 with the initial and boundary conditions  
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],[),(=,0)( 0 baxxsxu   

],[0,),(=),(),(=),( 21 Ttttbuttau   

where ).( txu  is the unknown function to be determined; 
21, KK  are non-negative constant diffusion coefficients 

with 021 KK , i.e, not both are simultaneously zero, and ),( txf  is a known source term. The boundary 

conditions are set as follows: If 01 K , then 0)(1 t  and if 02 K , then 0)(2 t . We assume that the 

diffusion problem has a unique solution. 

The space domain ],[ ba  is partitioned into a uniform mesh of size N  with subintervals of length 

Nabh )/(=  , and the time domain ][0,T  into a uniform partition of size M  with subintervals of length 

MT/= . These two partitions form a uniform partition of the 2-D domain ][0,],[ Tba   with grid points ),( mi tx , 

where ihaxi =  and MmNimtm  0,0,=  . We use the following notations for conciseness: 

),(= mi

m

i txuu  , )(
2

1
= 11/2 mmm ttt   and ),(= 1/2

1/2
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m

i txff . 

We present the CN type scheme with the order 2 approximation in space using 2,1 . 

Using the approximations 


12,212,12,1 ='   KK  of order 2, the Crank-Nicolson type scheme at 

1,0),0,(  MmNitx mi  is  
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Let 
mU  be the solution of (21) after neglecting the )( 22 hO   terms with  
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iû  becomes the approximation of the exact values 
m

iu  with 
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and 
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Thus, the Crank-Nicolson type scheme in matrix form reads  

 1,,0)(=)( 1/211   MmFUUBUU mmmmm   (22) 

where 
Tm

N

mmm fffF ],,,[= 1/2

1

1/2

1

1/2

0

1/2 



  . 

The matrix B  corresponding to the operator '2,1  is given by ).(
2

= 2,122,11

TAKAKB 


  Re-arranging for 

1mU  and 
mU , we have  

 1.,0,1,2,=,)(=)( 1/21   MmFUBIUBI mmm   (23) 

Let B̂  be the reduced matrix from B  and 
1/2ˆ mF  be the reduced vector from 

1/2mF  as was in Section 5.1. 

After imposing the boundary conditions, equation (23) reduces to the ready-to-solve form  

 1,,0,1,2,=,ˆˆˆ)ˆ(=ˆ)ˆ( 1/21   MmbFUBIUBI mmmm   

where )()(=ˆ 1

0

1

00

m

N

m

NN

mmm uuBuuBb  
 and NBB ,0  are the first(

th0 ) and last(
thN ) column vectors of the 

matrix B  reduced again as before, and I  is the unit matrix of appropriate size. 

6.  Stability and convergence 

We establish the stability of the Crank-Nicolson type scheme (23). We closely follow the analysis in [14] and 

present some required results. 

Let 0}==,),,,,(=|{= 010 NiNh vvvvvvvvV R  be the space of grid functions in the computational 

domain in the space interval ],[ ba . 

For any hVvu , , define the discrete inner product and its corresponding norm respectively as  
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.),(=||a=),(
1

1=

uuundvuhvu ii

N

i

||


 

Then, we have the following: 

Lemma 2  Let 


 0=}{ kkt  be a double sided real sequence such that  

(i) 0 kk tt  for 0,k  (ii) 0
=

  j

N

Nj
t  for 0N . 

Then, the Toeplitz matrix ][= jiN tT   of size 1N  is negative definite for 0N .  

Proof. For 0=N , 00 t . This matrix of size 1 is negative definite. For any positive integer N  and for any non-

zero 1)( N -dimensional vector 
T

Nvvvvv ],,,,[= 210  , consider the quadratic form 

jiij

N

j

N

iN

T vvtvTv  0=0=
= . Summing the terms diagonally, we have 
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j
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j
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k

N
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 0||=||)(|| 2

=

2

1=

2

0  


 |||||| vtvttvt k
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which completes the proof.                                                                                                                                                 □ 

Lemma 3  The matrices 
2,1Â  and 

TA2,1
ˆ  and hence their corresponding operators 


12,  and 


12,  respectively are 

negative definite for 2.1    

Proof. The matrix 
2,1Â  of size 1)(1)(  NN  has the form  

 .
1

=ˆ

1,12,13,12,11,1

0,11,14,13,12,1

0,11,12,13,1

0,11,12,1

0,11,1

2,1































wwwww
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wwww

www

ww

h
A

NNN

NNN






 

 

By virtue of Lemma 2, it is enough to prove that the coefficients ,1kw  of the generator 
k

kk
zwzW ,10=2,1 =)( 


 

satisfy the following properties for 21  .  
1

0,1 0,1 2,1 ,1 ,1

=0

0, 0, = 0 for 3 and 0 for all 2.
N

m m m k

k

w w w t t w m w N


         

Let 







)(=
1

2

12
2

1

2

3
=)( 2

210

2

2,1 zzzzzW 

































 . 

Then, 0
1

2

3
=0 


 ,  0

2
2=1 


   and  0

1

2

1
=2 


  for 21  . 

Now,                                 0= 00,1 w  and 0= 1

1

01,1   w . Also,  

   20

2

1

2

002,10,1 21)(
2

1
=    ww  

                       )(21)(
2

1
= 020

2

1

2

0  
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                     0,
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2)1)((
21)(
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1
= 0

2

1

2
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                 0.62)(1
6

1
= 20

2

11

3

03,1  w  

 We show that 0,1 mw  for all 4m  inductively.  

    0,122)12(3)2)((1
4!

1
= 2

2

2

02

2

10

4

1

4

04,1  w  

   0.60)204)3)(((
5!

2)1)((
= 2

2

2

02

2

10

4

1
1

5

0
5,1 

 


 

w  

 

Assuming that 
kw  is non negative for 13  mk , we have for 6m , 

0))2(2)1((
1

= 22,111,1

0

,1   


mmm wmwm
m

w  for 21  , since 2,11,1,  mm ww , 

1),2(2),1(  mm   and 
2  are all non-positive for 6m . 

From Corollary 1, we have the consistency condition 0=
0= kk
w


 in general which is true for )(2,1 zW  as well. 

Since 0,1=




kNk
w  for 3N , the last inequality follows from the consistency condition.                                      □ 

Lemma 4  The approximation operator '2,1  is negative definite.  

Proof. For any 
hVv  , since the diffusion coefficients 

21, KK  are non-negative, we have 

0),(),(=),'( 12,212,12,1   vvKvvKvv 
.                                                                                                         □ 

Theorem 3  If ),,,(= 121

m

N

mmm vvvv   be the solution of the problem  

 101,1,=' 1/2

2,1

1/2   MmNiSvv m

i

m

i

m

it  (24) 

 0=0,=0

m

M

m vv  

 .0),(= 0

0 Nixvv ii   

 Then,  

 .||||||
1

0=

0








 



|||||| l
m

l

m Svv   

Proof. Taking the inner product of (24) with 
1/2mv , we have  

 ).,(=),(),( 1/21/21/2

2

1/21/2   m

i

m

i

m

i

m

i

m

i

m

it vSvvvv  

 Since 0),'( 1/21/2

2,1   m

i

m

i vv  from Lemma 4, we get  

 ).,(),( 1/21/21/2   m
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m

i

m

i

m

i vSvv  

 Since )(
1

= 11/2 m

i

mm vvv 


  and )(

2

1
= 11/2 mmm vvv 

, we have  
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 ||||),()||||(
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1
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2

1 1 |||||| mmm vvS  
 

 The inequality in the last two lines reduces to  
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 1.0,|||||| 1  MmSvv mmm ||||||   

Summing this for the first m  inequalities, we have  

 .0,||||||
1

0=

0 MmSvv l
m

l

m  


||||||   

From the above estimates, we have the following stability result.                                                                                     □ 

Theorem 4.  The CN type difference scheme (23) of order 2 is unconditionally stable for 21  .  

For the convergence of the approximate solution from the CN type scheme, we have the following.  

Theorem 5.  The approximate solutions of the CN type scheme (23) with the given initial and boundary conditions are 

convergent for 21  .  

Proof. Let 
mmm Uue ˆ=   be the error vector of the exact and approximate solutions 

mm Uu ˆ,  of the diffusion 

problem (20) respectively. Then the error of the internal grid values 
mê  satisfy the system  

1,01,1,=' 1/2

2,1

1/2   MmNiRee m

i

m

i

m

it  

0,=0,=0

m

M

m ee  

1,10,=0  Niei  

where 
m

iR  are the remainder terms in (21) with )(|| 22 hcRm

i  ||  for some constatnt 0>c . Theorem 3 gives the 

estimate  

 ).(|||| 22
1

0=

hNcRe l
m

l

m  


 ||||  

The convergence is then established as 0, h .                                                                                                          □ 

7.  Numerical results 

We test the approximation scheme devised in Subsection 5.1 using the steady state test problem  

 1,0,
)1(

1)(10
=)(0 



  xx
n

n
xuD n

x




 

 10=(1)0,=(0) uu  

 with the exact solution 
nxxu 10=)( . We set 8=n  and test for values of the parameter   with 1.1,1.5=  and 

1.9 . 

The number of grid subintervals N  corresponding to the discretization size = (1 0) /h N  was considered for 

values =16,32, ,1024N . The maximum error 
 PP Uu  and the computed convergence orders are listed in 

Table 2. 

  

Table  2.  Second order approximation with shift 1=r  using )(2,1 zW . 

 

   =1.1      =1.5      =1.9   

N   
 |||| Uu    Order  

 |||| Uu   Order  
 |||| Uu   Order 

16      4.8893e-01   —-   2.5141e-01   —-   1.3365e-01   —-  

32   1.1592e-01   2.08   6.4851e-02   1.95   3.3951e-02   1.98  

64   2.7227e-02   2.09   1.6450e-02   1.98   8.5491e-03   1.99  

128   6.3685e-03   2.10   4.1396e-03   1.99   2.1446e-03   2.00  

256   1.4873e-03   2.10   1.0383e-03   2.00   5.3703e-04   2.00  

512   3.5020e-04   2.09   2.5997e-04   2.00   1.3437e-04   2.00  

1024   8.7574e-05   2.00   6.5044e-05   2.00   3.3606e-05   2.00  

   

This test confirms the theoretical justification of second order for the approximation )(2,1 zW . We consider the 

following test example for the fractional diffusion problem (20).   
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Let ))(1(
)1(

1)(
=),,( 


  



 mm xx
m

m
mxG  and 

55

0 )(1=)( xxxs  .  

1 2Diffusion coefficients: =1, =1.K K  

0Source function: ( , ) = ( ( ) ( ,5, ) 5 ( ,6, )tf x t e s x G x G x     

 )).,10,(),9,(5),8,(10),7,(10  xGxGxGxG   

0Initial condition: ( ,0) = ( ).u x s x  

Boundary conditions: (0, ) = 0, (1, ) = 0.u t u t  

0Exact solution: ( , ) = ( ) .tu x t s x e 
 

 

The test problem was applied to the CN type numerical scheme developed in Subsection 5.2. 

All computations were performed using Python Language with Scipy libraries [26] on an i7 notebook computer with 

2.7Ghz speed and 12Gb memory and Windows operating system. 

The second order approximation )(2,1 zW  was tested for =1.1,1.5  and 1.9 . Table 3 lists the maximum error and 

the order of convergence for grid sizes = =16,32, ,1024N M . The partition subinterval sizes are then 

=1/ M  and =1/h N  for time and space, respectively. 

 

 Table  3. Second order of convergence for CN type scheme with )(2,1 zW . 

 

   1.1=      1.5=      1.9=   

hN 1/=    
 |||| Uu    Order   

 |||| Uu    Order   
 |||| Uu    Order 

16      1.0544e-05   —   9.0719e-06  —   5.6905e-06   — 

32   2.8172e-06   1.90   2.3208e-06   1.97   1.4309e-06   1.99  

64   7.3008e-07   1.95   5.8863e-07   1.98   3.5731e-07   2.00  

128   1.8606e-07   1.97   1.4836e-07   1.99   8.9332e-08   2.00  

256   4.6984e-08   1.99   3.7252e-08   1.99   2.2338e-08   2.00  

512   1.1806e-08   1.99   9.3341e-09   2.00   5.5852e-09   2.00  

1024   2.9592e-09   2.00   2.3362e-09   2.00   1.3964e-09   2.00  

  

The test results show that the second order approximation with )(2,1 zW  is justified for its order of convergence 

and unconditional stability with the CN type scheme. 

8.  Conclusion 

A new second order Grünwald type approximation for fractional derivative with shift is constructed algebraically 

from a generalization of the Grünwald approximation for the left and right fractional derivatives in terms of generating 

functions. Numerical schemes for this approximation to solve steady state problems and time dependent fractional 

diffusion problems were devised with proof of stability and convergence. The approach of generating functions could 

be a useful tool for constructing difference approximation formulas for fractional derivatives. 
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