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  مراجعة وتحليل: ة نماذج حركة المياه و النقل في مناطق التهوية في الأوساط المسامي

 حمدى البرواني، محمد اللواتيا، اسوارن بلاكرشنان ، انتون برناما

ذل كل جهد لفهم الطرق و الوسائل الممكنة للاستفادة     يجب أن نب  المياه الجوفية مورد طبيعي و حيوي و         :خلاصـة 
 التي تحد من أعلى بالسطح اليابس و من اسفل           هي تلك  منطقة التهوية .  فـيها بكفاءة عالية   مـنها و التصـرف      
هي المنطقة التي من خلالها ترشح المياه مع المياه الملوثة لتصل إلى المياه الجوفية، و عليه                وبالطاولـة المائـية     

 تحديد كل من كمية و نوع المياه التي         فالعملـيات المختلفة التي تحدث داخل منطقة التهوية تلعب دوراً أساسيا في           
ير غ بتدفق المياه و نقل المياه الملوثة في الوسط المسامي           تنبؤللالطرق التقليدية   .  ترشـح داخـل المـياه الجوفية      

 الطبيعة و ذلك نسبة لوجود مسامات كبيرة و عناصر          على حالات مشـبع بصورة عامة غير وافية عند تطبيقها         ال
مخططات النقل الملوث تحتاج إلى حل متزامن لمعادلات        .  عند المواقع المختلفة   ص التربة منظمة و تغيرات لخوا   

قد ازداد كثيرا استعمال الحلول العددية و المحاكات     في الآونة الأخيرة     مشـبع ومعادلات النقل و    الالـتدفق غـير     
جازه و آخر ما تم التوصل و في هذا البحث سوف نستعرض ما تم إن. الحاسـوبية المبنية علي المخططات العددية  

إلـيه فـي مخططـات التدفق المائي و النقل الملوث في منطقة التهوية و سوف نؤكد علي ما يجب التركيز عليه                      
   .مستقبلا و خاصة ما له علاقة بسلطنة عمان

 
ABSTRACT: Underground water is a vital natural resource and every effort should be 
made to understand ways and means of efficiently using and managing it. The 
unsaturated zone, bounded at its top by the land surface and below by the water table, is 
the region through which water, together with pollutant carried by the water, infiltrates to 
reach the groundwater. Therefore, various processes occurring within the unsaturated 
zone play a major role in determining both the quality and quantity of water recharging 
into the groundwater. Classical methods of predicting water flow and contaminant 
transport processes in unsaturated porous media are generally inadequate when applied to 
natural soils under field conditions, due to the occurrence of macropores, structured 
elements and spatial variability of soil properties. Contaminant transport models also 
require the simultaneous solution of the unsaturated flow and transport equations. For 
applications to field conditions, numerical solutions and computer simulations based on 
numerical models have been increasingly used. Advances and progress in modeling water 
flow and contaminant transport in the unsaturated zones are reviewed, and specific 
research areas in need of future investigation especially relevant to Oman are outlined. 
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1. Introduction 

Oman is an arid country with limited natural water resources. The rainfall is unreliable and records              
indicate periods of several consecutive dry years. There are few perennial streams; surface flow is 

usually confined to periods of a few days or even a few hours after storms. Infiltration through streambeds 
of surface run off from the mountains is the main source of recharge to the groundwater. The main user of 
water in Oman is agriculture. The climate will support very little rainfed agriculture and irrigation is 
essential. Water for domestic use is traditionally obtained from aflaj, springs or shallow wells. 

In most traditional communities in Oman, groundwater has long been extracted and directly utilised 
through the falaj (plural aflaj). It may consist of simple conduits conveying water from wadi channels to 
domestic use and irrigation systems, or consist of tunnels constructed at the water table to exploit the 
groundwater resource. The falaj is self-regulating; discharge declines as the upstream storage in the aquifer 
falls during droughts, and rises after the aquifer is recharged. In coastal regions, water is extracted from 
shallow wells for various purposes. 

Desalination plants have also been established to provide domestic supplies for some coastal areas; 
but agriculture, which is responsible for more than 95% of freshwater consumption, is almost entirely 
reliant upon groundwater. Since the Sultanate’s water resources are fully utilised, any pollution may have 
immediate and serious consequences. Therefore, every effort should be made to ensure that all valuable 
aquifers are not contaminated.  

Increased public awareness and concern over many environmental problems is, at least partly, 
attributed to the fact that these problems are so visible. However, the situation is quite different for 
groundwater, which is hidden from sight, and renders the characterization of impacts on its quality and 
availability extremely difficult. Consequently, problems of over-use, pollution or saltwater intrusion may 
develop to a critical level before being noticed. In the absence of any reliable scientific knowledge 
applicable to groundwater, this valuable resource cannot be effectively protected, conserved and managed.  

A quantitative study of water flow and contaminant transport in the unsaturated zone is a key factor in 
the improvement and protection of the quality of groundwater supplies. This is the region bounded above by 
the land surface and below by the ground water table. It is the region through which water derived from 
precipitation and irrigation infiltrates and transports contaminants to reach the groundwater. Over-pumping 
of groundwater for domestic, agricultural and industrial consumption will lower the water table and can 
accelerate the movement of pollutant-laden surface water into the groundwater.  

In unsaturated soil, the water content is less than the soil porosity, and the soil water pressure  head 
(matric potential) is negative, being less than that of free water at the same location. The unsaturated zone is 
inextricably involved in many aspect of hydrology: infiltration, evaporation, groundwater recharge, soil 
moisture storage, and soil erosion. It also contributes to the spatial and temporal distributions of plant 
communities under naturally occurring rainfed conditions and serves as a modifying influence on the 
production of cultivated crop species. Thus the unsaturated zone represents the conduit through which 
liquid and gaseous constituents are attenuated and transformed as they are exchanged in both directions 
between the ground surface and the ground water table. 
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Traditional deterministic modeling approaches to determine downward movement of contaminants, 
based upon the convection-dispersion equation for contaminant transport and the Richards equation for 
water flow, work relatively well for homogeneous field soils and laboratory soil columns. Experimental 
investigations, however, have shown that flow and transport processes in most fields are heterogeneous. 
Thus, to use classical approaches for describing transport processes in natural soils under field conditions 
would be a misapplication of the methods. Soil heterogeneity, occurring in structured, cracked or 
macroporous soils, and due to the inherent spatial variability of soil properties, has a distinct effect on the 
water flow and contaminant transport processes. Since macropores act as preferential flow paths, 
occurrences of macropores at the field scale may increase the risk of leaching of pollutants to the 
groundwater. Therefore, a quantitative prediction of contaminant transport in macroporous, heterogeneous 
soils at field or regional scales is an important matter in dealing with environmental problems. 

This review is an attempt to summarize some aspects of the main scientific advances and progresses in 
modeling water flow and contaminant transport in unsaturated porous media. Although water flow and 
contaminant transport phenomena should be treated simultaneously, for convenience, we first discuss water 
flow and then deal more specifically with contaminant transport processes. We focus primarily on 
conceptual and mathematical, deterministic aspects of unsaturated zone flow and transport processes. 

The review starts with the basic physical concepts that are classically used to describe water flow and 
solute transport processes in unsaturated porous media. Existing analytical and numerical solutions of the 
unsaturated water flow and contaminant equations will be discussed. For applications to field conditions, 
numerical solutions and computer simulations based on numerical models have been increasingly used. 
Thus recent progress in numerical methods employed for these purposes will be examined. 

Oman has extensive areas of active and fossil karst. The complex geological structure of Oman 
consists of well-developed fracture systems in the rocks forming the northern mountain aquifers. The 
highest average annual rainfall for the Sultanate is in the mountainous region with more than 300mm. 
Perennial spring discharge from the limestones in the northern mountains can maintain surface flow over a 
substantial distance. The essence of fractured aquifers is the existence of an interconnected set of voids 
capable of conveying water and contaminants at speeds much higher than the typical Darcian flow rate. As 
classical representations are not intended to describe flow and transport processes in natural soils under 
field conditions where the occurrence of macropores, fractures, karstic conduits and spatial variability of 
soil properties is dominant, more research is still needed for a quantitative prediction of water flow and 
contaminant transport in the unsaturated porous media. 

2. Mathematical Equations of Water and Transport in Unsaturated Soils 

In this section, the general classical deterministic forms of the water flow and contaminant transport 
equations in the unsaturated zone are described. A comprehensive derivation is provided by Bear (1972), 
Pinder and Gray (1977), and Freeze and Cherry (1979). Note that there is considerable skepticism as to the 
validity of these equations, and Gray and Hassanizadeh (1991) proposed a new set of equations to describe 
the unsaturated flow processes obtained from averaging theory coupled with an interface thermodynamic 
analysis. However, this set of equations contains many more unknowns than that of classical equations. 

The liquid in the unsaturated zone consists of a solution of water and dissolved solid and gaseous 
constituents. Therefore, the forces acting on the liquid cannot be restricted merely due to the earth’s 
gravitational field (Nielsen et al., 1986). However, since direct measurement or calculation of other forces 
still remains undeveloped, most studies to date assumed that the net force acting on the liquid is the matrix 
potential and gravitational force. Thus, the rate at which water moves through the unsaturated zone is 
according to the Darcy’s velocity,  

z
Kq

∂
Ψ∂

−=        ,                                                              (1) 
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K
zh + h

where  is the hydraulic conductivity, Ψ  the (hydraulic head) total potential which can be written as 
 in which  is the (pressure) matric potential head, and z is the gravitational potential head, 

measured positively upward. In unsaturated flow, the void space is partly filled by air and partly by water. 
As air is infinitely mobile, it is generally assumed that the trapped air in the void space is at constant 
atmospheric pressure.  

=Ψ

Combining the Darcy’s velocity with the conservation of mass equation 
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leads to Richards equation for water flow in the unsaturated zone. In the mixed form, the unsaturated flow 
equation is written as 
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where θ  is the volumetric water content, t is time, z is the (positively upward) vertical distance, and G 
represents sources and sinks of water in the system. Other two alternative forms of Richards equation are 
the pressure head h-based equation 
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where the specific moisture capacity C is the slope of the soil water retention curve ( )hθ ; and the moisture 
content θ -based equation  
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where it is customary to define the coefficient of moisture diffusivity as CK=D . Although these three 
forms are mathematically equivalent, some give better results when numerical approximation methods are 
applied. 

Note that these equations show that the soil water retention curve ( )hθ  and the unsaturated hydraulic 
conductivity K  are essential components for predicting water flow in unsaturated zones. Retention curves 
show how much is retained in the soil against gravity; its shape depends on the soil pore-size distribution 
and pore shapes of the porous medium. However, its derivation ignores soil matrix and fluid 
compressibilities and assumes that the fluid density ρ  is a function of the pressure only, and is independent 
of concentration. Equation (3) also assumes that Darcy’s law is valid for unsaturated flow.  

The hysteretic nature of the measured soil water retention curve ( )hθ  implies that the soil water 
content is not a unique function of h, but depends on the previous history of the soil (Parlange, 1980). The 
effects are more pronounced by the presence of entrapped air, and by alternate rates of wetting and drying 
(Bear, 1972). This effect introduces a nonlinearity into the Richards equation (3); and hence, it is necessary 
to state whether a drying or wetting process is taking place along the boundary of the system (Hills et al., 
1989a and 1989b). Hysteresis is rarely considered under field situation, due to the difficulties in 
measurement.  

Numerous methods have been developed to determine the soil water retention and hydraulic 
conductivity functions of unsaturated soils using both in situ field and laboratory procedures (van 
Genuchten and Nielsen, 1985; Bird et al., 1996, Assouline et al., 1998). While in situ field measurements 
are the most representative of actual flow conditions, current methods are likely to remain approximate in 
nature (Kool et al., 1987). This is due to simplifying assumptions inherent in the methods, and to problems 
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of obtaining undisturbed samples. Kool et al. (1985) developed a method to determine water retention and 
hydraulic conductivity functions simultaneously from transient flow data by parameter estimation. The 
methodology appears promising, although problems of computational efficiency, convergence, and 
parameter uniqueness remain unresolved (Eching et al., 1994; Wildenschild et al., 1997). 

Direct field methods to determine the unsaturated hydraulic conductivity are time consuming, 
expensive, and usually subject to simplifying assumptions. An alternative method is the theoretical 
calculation from more easily measured field or laboratory soil water retention data (Childs and Collis-
George, 1950; Mualem, 1976; Arya and Paris, 1981; van Genuchten and Nielsen, 1985; Assouline et al., 
1998). This method produces analytical (non-tabular) functions that are particularly useful for inclusion in 
simulation models and also for a rapid comparison or scaling of the hydraulic properties of different soils. 
Among the retention equations that have realistic shapes is the equation proposed by van Genuchten (1980) 

 

( )mn
rsr hαθθθθ +−+= 1/)(  ,                                                     (6) 

 
where rθ  and  are residual and field-saturated volumetric water contents, respectively, and  , n, and m 
are empirical constants. For the hydraulic conductivity functions, Mualem’s (1976) formulation has more 
potential than other models as it is more applicable to a wider variety of soils (van Genuchten and Nielsen, 
1985).                  

αsθ

The physical processes that control the solute distribution in the unsaturated zone are advection by 
water flow and dispersion by mixing and molecular diffusion. Other processes have been noted by Nielsen 
et al. (1986), but only summarily known, if understood at all. The classical equation that is thought to 
describe solute transport  
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where c and s are solute concentrations associated with the solution and solid phases of the soil, D is the 
dispersion coefficient, and P is the rate of solute removal or supply not specifically included in s. Loss and 
gain of solute mass can occur as a result of chemical reactions or radioactive decay. 

The first term of the equation (7) describes the rate at which the solute interacts or exchanges with the 
solid matrix. Both equilibrium and kinetic rate laws have been used to describe adsorption-exchange 
processes (Nielsen et al., 1986), which are traditionally represented by the retardation coefficient, R. In 
practice,  is used as an empirical parameter that includes all of the solute spreading mechanisms. 
However, in concept, the coefficient is commonly assumed to include only the effect of mechanical 
dispersion and molecular diffusion (Bear, 1972).  

D

The flow and transport equations previously described are found not adequate to describe field-scale 
spreading of contaminants transported in unsaturated soils due to the occurrence of macropores and spatial 
variability of soil hydraulic properties. Results from field experiments (Richards and Steenhuis, 1988) have 
indicated that groundwater contamination may not be associated with the unsaturated flow. Pollutant could 
be transported very expeditiously through certain pathways in unsaturated soils into the groundwater (Ju 
and Kung, 1997). Nevertheless, the scope and impact of this preferential flow on contaminant transport 
under field conditions have not yet been fully characterized (Flury, 1996). This is mainly because it is 
difficult to obtain representative patterns of preferential flow with soil coring methods (Ghodrati and Jury, 
1990).  

The irregular and erratic character of hydraulic conductivity and dispersion coefficient distributions 
observed in natural soils has led to the development of a stochastic framework for transport modeling. In 
this stochastic-convective approach, contaminant is assumed to move at different velocities in isolated 
stream tubes without any mixing of contaminant between the tubes (Dagan and Bresler, 1979). 
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In light of the uncertainty in the preferential flow mechanism and hence inadequate deterministic 
predictions, Jury and Gruber (1989) developed a stochastic approach to assess the groundwater 
contamination. This model estimates the probability of a contaminant reaching groundwater, using the same 
deterministic equations that are used in the homogeneous unsaturated soils, but assuming the parameters of 
the equations and the variables are stochastic functions (Yeh, 1992; Feyen et al., 1998). Another approach 
involves extrapolation techniques to get large scale effective parameters from the small-scale measurements 
(Wagner and Gorelick, 1986; Vanderborght et al., 1996).  

A different approach involves the dual-porosity model proposed by Gerke and van Genuchten (1993), 
which is gaining widespread acceptance for modeling preferential water flow and solute transport. The two 
domains consist of the soil matrix and macropores. Flow and solute transport equations for each domain are 
then coupled by means of exchange term accounting for the mass transfer of water and solutes between both 
regions (van Genuchten and Wierenga, 1976; Gaudet et al., 1977; Feyen et al., 1998).   

Other approaches, which account for the presence of macropores that form a separate network, 
consider the soil as a collection of stream tubes (Toride and Leij, 1996). Within each stream tube, the water 
and solute transport equations are used. It is assumed that there is no exchange of water and solute between 
these tubes and that within each tube, the parameters determining water flow and solute transport are 
deterministic, but vary between tubes. It is worth noting that in this approach neither the spatial structure of 
the heterogeneity of soil properties nor hydraulic conductivity and dispersion coefficient are considered 
(Feyen et al., 1998). 

3. Unsaturated Flow Models 

Analytical solutions, when available, provide better insight into the physics behind the transport 
phenomena and are computationally efficient and simple to use. However, analytical approaches are for the 
most part limited to situations of simple geometry domains, linear governing equations, and homogeneous 
systems. Along with efficient numerical methods and rapidly updated computer hardware a large number of 
numerical models have been developed. However, the numerical technique cannot replace the analytical 
approaches completely, since numerical methods themselves need verification against analytical solutions 
because of discretization errors and convergence and stability problems that may be especially troublesome 
for advection-dominated and nonlinear adsorption processes. Some models are intense in computational 
demand when modeling a heterogeneous porous medium system with uncertainties in physical properties 
and distributions using stochastic approaches. 

Analytical solutions to the Richards equation for unsaturated flow under various boundary and initial 
conditions are difficult to obtain because of the nonlinearity in soil hydraulic parameters. This difficulty is 
exaggerated in the case where soil is heterogeneous. Generally, one has to rely on numerical approaches for 
predicting moisture movement in unsaturated soils, even for homogeneous soils. However, numerical 
approaches often suffer from convergence and mass balance problems (Celia et al., 1990). Numerous 
analytical and numerical solutions of the unsaturated flow equation have been developed (Narasimhan et 
al., 1978; van der Heijde et al., 1985; Warrick et al., 1991; Parlange et al., 1997; Rockhold et al., 1997; 
Miller et al., 1998). Only a brief review of the modeling work is given here.  
 Exact analytical solutions typically require specialized forms of the hydraulic conductivity and 
diffusivity functions. The exponential hydraulic conductivity function (Gardner, 1958) has been widely 
used, but it is known to have a limited range of application to many real soils. Note that other functions, 
such as those developed by Brooks and Corey (1964) and van Genuchten (1980) are more firmly 
established for practical applications. Such special forms of the hydraulic functions make it possible to 
linearize the governing flow equations, and hence solve them analytically. Solutions to the linearized 
unsaturated flow equations are generally limited to steady state flow in semi-infinite, homogeneous soils 
(Broadbridge and White, 1988; Warrick and Yeh, 1990), and to transient flow in homogeneous and layered 
soils (Srivastava and Yeh, 1991).  



 AL-BARWANI, AL-LAWATIA, BALAKRISHNAN, and PURNAMA 
 

 271

Exact or quasi-analytical solutions have been derived for simplified unsaturated flow equations and 
mostly used for verification of numerical solutions (Philip, 1955 and 1957; Warrick, 1974; Knight, 1983). 
The method of characteristics has also been applied to gravity-dominated flow in the unsaturated zone 
(Charbeneau, 1984). As it neglects the role of capillary pressure gradients, the hydraulic conductivity is set 
equal to the Darcy (volume) flux. This approach is also useful for estimating the unsaturated hydraulic 
conductivity. 
 Analytical solutions are only applicable to highly simplified systems, and are not well suited for 
situations normally encountered in the field. Initially, finite difference methods were mainly developed to 
predict unsaturated flow only (Brandt et al., 1971; Freeze, 1971); but finite element solution techniques also 
became available later (Huyakorn et al., 1984; Sudicky, 1989; Paniconi et al., 1991; Segol, 1993). The 
nonlinearity of Richards equation is usually solved using an iterative procedure such as Newton or Picard 
methods (Kirkland et al., 1992). Perhaps the most important advantage of finite element techniques over 
standard finite difference methods is the ability to describe irregular system boundaries in simulations more 
accurately, as well as easily including nonhomogeneous medium properties. For one-dimensional 
simulations, finite difference methods are just as good as finite element schemes (Moridis and Reddel, 
1991). However, several authors suggest that finite element methods lead to more stable and accurate 
solutions, thus permitting larger timesteps and/or coarser grid systems, and hence leading to 
computationally more efficient numerical schemes.  
 One of the most successful finite difference schemes is the block centered approach, in which the 
spatial domain is discretized into blocks and the solutions are found at the center of these blocks. In two 
spatial dimensions, the scheme couples block center to only its 4 direct neighbours; therefore it is called a 5-
point scheme (7-point scheme in three spatial dimensions). The generated system is regularly structured (5 
bands), symmetric and can be solved efficiently. This scheme was also shown to be equivalent to the lowest 
order mixed finite element method (Ewing, 1983).   
 To numerically solve coupled systems of equations, the solution process requires some manipulation 
at each timestep so that the dependence of one equation on the solution of the other is dealt with accurately. 
One way to overcome this is to use a fully implicit approach to solve the equations simultaneously. Any 
nonlinearity of the generated system can be handled by Newton’s method. The implicit nature of this 
scheme allows for larger timesteps in the simulation to find stable solutions as compared to the timesteps 
for explicit schemes. However, this algorithm requires solving a system of equations of order equal to twice 
the number of grid points for each Newton iteration within each timestep. 
 An alternative to the fully implicit scheme is to use the mixed implicit-explicit scheme. However, the 
explicit part of the scheme means that this algorithm is now subject to a stability constraint which severely 
restricts the size of the timestep and introduces numerical artifacts. 
 Another approach is to decouple the two equations, and then solve both equations by implicit 
schemes, where different methods and space-time grids can be used on each one. The procedure is to solve 
the first equation using an extrapolated approximation of the other solution, and then solve the second 
equation. 

Infiltration and flow through structured soils can be substantially different from the infiltration and 
flow in relatively homogenous materials (Beven and Germann, 1982) because the structured soils contain 
relatively large voids, such as inter-aggregate pores, drying cracks in clay soils, decayed root channels, and 
other type of “macropores”. Attempts to describe flow in structured soils have generally centred on two-
region approaches. One region consists of the soil matrix in which the flow is described by the 
conventional, Darcian-based unsaturated flow equation, and the other region consists of either a single 
macropore or of a statistical network of macropores through which water flows primarily under the 
influence of gravity. The two regions are connected through some common boundary conditions, or by 
means of a simple source-sink term (Davidson, 1985). Other approaches include the use of kinematic wave 
theory (Charbeneau, 1984; Germann and Beven, 1985 and 1986), where the self-sharpening wave (pulse) 
corresponds to an isolated wetting front drained to field capacity. 
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In order to apply the unsaturated flow model to a field situation, the hydraulic conductivity of the site 
has to be specified. However, the field hydraulic conductivity distribution commonly exhibits a high degree 
of spatial variability (Sudicky, 1986; Yeh, 1992). In addition, the spatial variability also varies with the 
scale of the problem (Dagan, 1986; Gelhar, 1986). The classical deterministic approach implies that 
hydraulic conductivity values in a model are known and specified at all points in the solution domain. To 
acquire such a detailed hydraulic conductivity distribution at the scale of tens of kilometers is generally 
considered impractical and unfeasible. The alternative is to utilize a small number of samples to estimate 
the variability of hydraulic conductivity in a statistical framework. That is, the spatial variability of the 
hydraulic conductivity is characterized by its probability distribution estimated from samples. However, 
analyses of field data show that although the conductivity values vary significantly in space, the variation is 
not entirely random, but correlated in space (Bakr et al., 1978; Yeh, 1992). Such a correlated nature implies 
that the values are not statistically independent in space and they must be treated as a stochastic process, 
instead of a single random variable (Zhang et al., 1998). Note that the stochastic approach does not provide 
information about the values of hydraulic conductivity at a specific location, but it provides a way to 
quantify its spatial variability. That is, it determines where the mean value lies and how widely the values 
spread around the mean value. However, in a numerical model it is required to estimate the values at certain 
points; in this case, the ordinary kriging is used to incorporate spatial correlation structure obtained from 
site measurements (de Marsily, 1986). 

Many stochastic approaches are available including the geostatistics method, the effective parameter 
approach, the Monte Carlo simulation, and the conditional simulation (Yeh, 1992). Although each of these 
methods has limitations, one should bear in mind, as already mentioned above, that the uncertainty 
estimates afforded by the stochastic models are themselves uncertain (de Marsily, 1986). 

For heterogeneous soils that contain macropores, a different modeling approach is needed, as the 
presence of macropores in these soils may form a separate network for water flow (Beven and Germann, 
1982). The common approach is to introduce two-region flow domain, one for macropores and the other for 
the soil matrix. In each flow domain, hydraulic conductivity is prescribed separately (Feyen et al., 1998). 

Another approach is to consider the heterogeneous soil as a collection of stream tubes (Toride and 
Leij, 1996). It is assumed that there is no exchange of water between these tubes, and that within each tube, 
the hydraulic conductivity is defined, but varies between tubes (Feyen et al., 1998).  

4. Solute Transport Models 

Transport of dissolved solutes in soils is commonly described by the advection-dispersion equation. 
Analytical solutions have been derived for a variety of boundary and initial conditions (Starr and Parlange, 
1976; Barry and Sposito, 1989; Tang and Aral, 1992a, 1992b; Segol, 1993; Leij and Toride, 1995, 1998; 
Wu et al., 1997). Although these solutions are obtained for narrowly defined conditions, they have many 
applications such as the verification of computer codes, prediction of solute movement for large times or 
distances where the use of numerical models become impractical, and the determination of transport 
parameters from soil column studies. The majority of analytical solutions pertain to semi-infinite and 
infinite media. Solutions are obtained by a variety of mathematical techniques including Green’s functions 
(Lindstorm and Boersma, 1989), separation of variables (Bruch and Street, 1967), characteristics method 
(Wilson and Gelhar, 1981; Charbeneau, 1984; Illangasekare and Doll, 1989), Laplace transforms (Leij et 
al., 1991) and Fourier transforms (Cleary and Adrian, 1973). 

Prediction of solute migration under field conditions requires the simultaneous solution of the 
unsaturated flow and solute transport equations (Warrick et al., 1971;  Bresler, 1973). Numerical solutions 
of the combined unsaturated flow and solute transport equations have been studied by Pickens and Gillham 
(1980); van Genuchten (1982); and Huyakorn et al. (1985) among others. First approximations involve or 
assume steady flow and constant water contents. 
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The common approach for modeling the sorption is to assume instantaneous adsorption or exchange 
reactions as well as simple linearity between s and c, the solute concentrations associated with the solid and 
the solution phases of the soil, respectively:  
 

cks = ,                                                                               (8) 
 
where k is often referred to as the distribution coefficient . The source-sink term of equation (7) is 

often approximated by 
dK

γµ +−= cP . Assuming steady state flow, the solute transport equation (7) 
simplifies to the classical linear convection-dispersion equation 
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where the retardation factor R is given by θρ kR +=1 , µ  is first-order solute decay rate, and γ  is the 
zero-order solute production rate. Application of this equation to transport through disturbed soil columns in 
the laboratory and in relatively uniform field soils involving nonreactive or only weakly reactive solutes has 
been fairly successful.   

Chemically controlled kinetic rate reactions of the form ( )csfts ,=∂∂  have been examined. The 
simplest first-order linear kinetics is commonly assumed; and ignoring the degradation terms, it leads to the 
coupled system 
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where α  is a first-order rate coefficient. Success of this model has generally been limited (van Genuchten 
et al., 1974), thus suggesting that other than linear first-order kinetic processes dominate the sorption 
process during water movement. 

An alternative approach is to partition soil water into mobile (flowing) and stagnant (immobile or 
nonmoving) phases (Gaudet et al., 1977). That is, convective-dispersive transport is confined to only a 
fraction of the liquid-filled pores, and the remainder of the pores contain stagnant water. This stagnant water 
has been visualized as thin films around soil particles, as dead-end pores, or as relatively isolated regions 
associated with unsaturated flow. Van Genuchten and Wierenga (1986) extended the concepts of mobile-
immobile water to include adsorption-desorption processes 
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where the subscripts m and i refer to mobile and immobile regions, respectively. The success of this model 
for a variety of solutes in laboratory scale transport processes has been clearly demonstrated (Nkedi-Kizza 
et al., 1983). Adsorption-exchange inside aggregate is an important and often overlooked phenomenon in 
transport studies involving reactive tracers (Gvirtzmann et al., 1988). Sorption and exchange sites are often 
not located along the main fluid flow lines, but along dead-end pores, or inside clusters of particles that 
have larger internal surface areas. Even with a small amount of stagnant water in the system, an uneven 
distribution of sorption sites can lead to significant preferential transport. 
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Since the two-region modeling approach is conceptually pleasing and has resulted in improved 
prediction capabilities, it has then been extended to simulate transport in soils that contain well-defined 
macropores or that are made up of relatively large, uniformly sized and shaped aggregates. It is commonly 
assumed that the solute is transported through a single, well-defined pore or crack of known geometry, or 
through the voids between well-defined, uniformly sized aggregates. In addition, diffusion-type equations 
are used to describe the transport of solute from the larger pores into the micropores of the soil matrix (Tang 
et al., 1981; Sudicky and Frind, 1982; Goltz and Robert, 1986; Gerke and van Genuchten, 1993).   

Because of the natural complexity of unsaturated flow, methods of predicting solute transport have 
relied largely on finite difference or finite element approximations of the governing equations (Galeati and 
Gambolati, 1989). Since advection-diffusion transport equations normally have no closed form analytical 
solutions, it is important to have accurate numerical approximations. When diffusion dominates the physical 
process, standard finite difference and element methods work well in solving these equations. However, 
when advection is the dominant process, these equations may present many numerical difficulties. In fact, 
any standard finite difference or element method will produce a solution, which exhibits non-physical 
oscillations (Johnson, 1987). A class of Eulerian methods has been developed to overcome these 
difficulties. The scheme uses Eulerian fixed grid and improved techniques, such as upstream weighting, to 
generate more accurate approximations (Celia et al., 1989). Although it is simple to formulate and to 
implement the scheme, these solutions suffer from excessive time truncation errors, as the scheme requires 
small timesteps to generate stable solutions (Eriksson and Johnson, 1993; Al-Lawatia et al., 1999). 

Another class of characteristic methods can also overcome the effect of advection dominated 
problems. The method uses a combination of Eulerian fixed grids to treat the diffusive component and 
Lagrangian coordinates by tracking particles along the characteristics to treat the advective component. It 
has the advantage of greatly reducing the time truncation errors, thus allowing for large timestep, but the 
scheme has difficulty in conserving mass and treating general boundary conditions. 

The Eulerian-Lagrangian Localized Adjoint Method (ELLAM), which was first proposed by Celia et 
al. (1990), provides a consistent framework for solving advection-dominated equations with general 
boundary conditions in a mass conservative manner. The ELLAM formulation was based on definition test 
functions that satisfy the homogeneous space-time adjoint equation locally, on elements that have 
boundaries defined by space-time characteristic curves of the equation. A second-order Runge-Kutta 
approximation of the characteristics within the framework of ELLAM has been developed by Al-Lawatia et 
al. (1999) for advection-diffusion equations and compared to other widely used and well known methods. 
ELLAM techniques have been extended to simulate contaminant transport in groundwater (Ewing and 
Wang, 1995). 

One of the distinctive features of the porous media on the field scale is the spatial heterogeneity of 
transport properties (Vanderborght et al., 1997). These features have a distinct effect on the spatial 
distribution of contaminant concentration, as has been observed in field experiments (Roth et al., 1991; 
Ellsworth et al., 1991, 1996) and demonstrated by simulation of contaminant transport in unsaturated, 
heterogeneous soil (Russo et al., 1998).  Description of the mixing process due to spatial variability of the 
unsaturated hydraulic conductivity has been advanced with the development of numerical solutions, which 
assume spatially variable soil properties (Hills et al., 1991; Ellsworth and Boast, 1996); stochastic models 
(Bresler and Dagan, 1981; Bresler, 1987; Russo, 1993, 1995); and stochastic stream tube models, which 
decompose the field into a set of independent vertical soil columns (Jury and Roth, 1990; Toride and Leij, 
1996). Note that the predictions of these stochastic models on contaminant spreading are based on ensemble 
mean statistics, and hence, they may not be appropriate for particular site-specific applications. The stream 
tube models are distinguished by the degree of lateral mixing, which do not allow horizontal mixing; and 
the concentration for each tube represents a discrete value in the horizontal plane. This model is not popular 
due to the limited discussion of its theoretical foundation and a lack of procedures for its application (Toride 
and Leij, 1996).  
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5. Concluding Remarks 

Groundwater is of crucial importance because it provides the source for most of the Sultanate’s 
irrigation and domestic supplies. Every effort should be made to understand ways and means of efficiently 
using and managing it. The unsaturated zone is the region through which water, together with pollutant 
carried by the water, must pass to reach the groundwater. Therefore various processes occurring within the 
unsaturated zone play a major role in determining both the quality and quantity of water recharging into the 
groundwater.  

In this review we have attempted to illustrate the advances made towards the progress in the  
understanding of the flow and contaminant transport processes in the unsaturated zone as our soil and 
groundwater resources are increasingly subjected to the dangers of long-term pollution. We concentrated 
initially on conceptual aspects of various deterministic-mathematical approaches for modeling flow and 
contaminant transport in the unsaturated zone, and also on various stochastic and statistical approaches 
geared toward field scale variability and heterogeneity. Unsaturated flow in the porous media is classically 
modeled using Richards equation, which is often solved using numerical approximation methods, such as 
finite difference or finite element methods.  

Predicting water flow and contaminant transport on a field-scale based on the current monitoring and 
modeling techniques is a difficult task. There are large uncertainties in predictions mainly due to our 
inability to depict detailed spatial distributions of soil hydraulic properties on the field-scale. Due to the 
high costs of data acquisition, few field measurements are usually available for the characterization of flow 
and contaminant transport, even though the spatial distribution of a contaminant plume may be highly 
irregular. Thus the quantitative methods used for predicting the fate of a contaminant and its potential threat 
to groundwater quality must provide descriptions of transport based on statistical information, which can 
realistically be extracted from the data.  

 Classical, deterministic representations are generally not adequate to describe flow and transport in 
natural soils under field conditions, due to the occurrence of macropores and structured elements. Stochastic 
methods are simply mathematical tools used to overcome uncertainties in acquiring detailed spatial 
distributions of flow parameters in field scale aquifers. That is, instead of dealing with physical flow 
parameters, models dealt with the mean value, variance and correlation scales of the flow parameters. 
Quantitative descriptions of water flow and contaminant transport rely mainly upon model simulations in 
which, due to difficulty in obtaining its input parameters, hypothetical parameters are often used. Therefore, 
extensive validation of the models is required before the stochastic models can be widely accepted. 

Oman has extensive areas of active and fossil karst. As aquifers are inherently heterogeneous at 
various observation scales, the complex geological structure of Oman reflects well-developed fracture 
systems in the rocks forming the northern mountain aquifers. The essence of fractured aquifers is the 
existence of an interconnected set of voids capable of conveying water and contaminants at speeds much 
higher than the typical Darcian flow rate. Therefore, more research associated with water flow and 
contaminant transport in the unsaturated zone of aquifers containing fractures and karstic conduits is needed 
for future investigations. 
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