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SUMMARY
Canada produced 729 megatonnes of greenhouse gas (GHG) emissions in 2018 
and approximately 10 per cent of that came from the country’s agricultural sector. 
Different farming operations produce varying amounts of GHGs, whether they 
are small animal or crop farms, or large beef cattle operations. Besides field 
techniques, researchers are using models such as HOLOS – a Canadian whole-farm 
emissions model – and the Integrated Farm Systems Model, among others, to find 
ways to target emission sources without hampering a farm’s financial sustainability 
and production. Other models focus on simulating the productivity and impact 
of cropping systems on the environment, with the goal of estimating the level 
of emissions. Other models are used to derive management-driven soil carbon 
change factors.

Carbon footprints vary for every subsector of agriculture and assessing them is a 
complex effort that involves accounting for every process that occurs throughout 
production. Methane and nitrous oxide are the main GHGs that agriculture emits at 
38 and 36 per cent respectively, with carbon dioxide responsible for the remaining 
26 per cent. GHGs arise from enteric fermentation of cattle, the application of 
synthetic and organic fertilizer, biomass decomposition, soil cultivation and tillage, 
mineralization of soil organic matter and manure, among other sources.

There are many options available for reducing agricultural GHG emissions, 
depending on the type of farm operation. Soil carbon content can be increased and 
stored in the soil or in plants to cut CO2 losses to the atmosphere. Carbon storage 
can be achieved by using cover crops or mulches and switching from annual to 
perennial cropping, for example. No-till practices permit the soil to develop porosity 
with better moisture retention and organic matter buildup, creating a healthy 
environment for roots, microorganisms and fungi.

Manure emissions can be managed by capturing CH4 (methane) and using it to 
generate heat and electricity. Manure piles can also be aerated to reduce emissions. 
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Energy consumption from farm equipment can be reduced through sustainable 
practices such as reducing tillage, retaining residue and managing mixed-species 
forests, as well as reducing pesticide and fertilizer applications through diverse 
cropping systems. In addition to saving fuel consumption, sustainable practices 
minimize soil erosion. Other sustainable practices include avoiding clear-cutting, 
contour plowing and using mulches and compost to increase the soil’s carbon and 
nutrient content.

Consumers can make a significant difference in reducing agricultural GHG 
emissions by making informed choices when purchasing food. Eating a balanced 
diet that includes a variety of sources of protein can contribute to reducing 
emissions. Multi-product farm systems that integrate cropping, dairy and beef 
production have a lower carbon footprint and higher production efficiencies 
compared to single-product farm systems.
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INTRODUCTION
Greenhouse gases (GHG) absorb and emit infrared radiation and cause the warming 
of the planet’s surface. Although this warming is vital for life on Earth, accelerated 
surface temperature rises due to increased GHGs in the atmosphere result in 
increasing atmospheric energy and rates of evaporation. This causes unpredictable 
weather patterns such as heat waves, more intense and frequent droughts, wildfires 
and more intense precipitation events. Desertification and land degradation are 
putting global food security and terrestrial ecosystems at risk (IPCC 2019).

The main GHGs are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) 
and ozone (O3). These gases have different radiative forces and global warming 
potentials. To standardize the units, carbon dioxide equivalent (CO2-eq) is used 
by converting amounts of other gases to the equivalent amount of carbon 
dioxide with the same global warming potential over a 100-year time horizon. For 
example, methane and nitrous oxide have global warming potentials of 25 and 298, 
respectively. Thus, emitting one tonne of methane and nitrous oxide is equivalent 
to emitting 25 and 298 tonnes of carbon dioxide, respectively (Krey et al. 2014; 
Hausfather 2009).

Carbon is an essential ingredient to life on Earth and is found in animals, plants, 
soils, rocks, oceans and in the atmosphere (Giovannelli et al., 2017, Riebeek 2011). 
Humans use carbon in food systems, buildings, clothing and energy needs. The 
carbon cycle describes its movement between different pools and its constant 
transfer from one form to another: from rocks and fossilized carbon pools to 
the atmosphere, from plant material to the atmosphere and back, and so on 
(Harrison 2003). During photosynthesis, plants take up carbon (in the form of 
carbon dioxide) from the atmosphere to produce sugars and energy for biomass 
and grain production. Humans affect the carbon cycle by changing the speed at 
which carbon transfers from one pool to another; this in turn affects the amount 
of carbon in its different forms. Through harvesting fossilized carbon pools from 
deep rock formations, carbon is brought to the Earth’s surface and released into the 
atmosphere at a faster rate than through natural conditions. In addition, clearing 
forests reduces the ability of photosynthesis to remove carbon dioxide from the 
atmosphere and releases carbon stored in the living biomass. The atmosphere 
is a smaller carbon pool compared to oceans and terrestrial reservoirs, and its 
composition is being affected by increased carbon in the form of carbon dioxide 
(Harrison 2003; Falkowski 2000).

In Canada, total GHG emissions in 2018 reached 729 megatonnes of carbon 
dioxide equivalent (Mt CO2 eq) (ECCC 2018) with about 80 per cent emitted in the 
form of CO2 (Fig. 1). Methane (CH4) emissions consist mainly of fugitive emissions 
generated by oil and natural gas systems, coal mining, agriculture and animal waste 
management systems, landfills and wastewater. Nitrous oxide (N2O) emissions 
result from agricultural soil management, energy and fuel combustion, industrial 
processes and waste management. 
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Figure 1: The contribution of major GHGs to Canada’s total emissions (ECCC 2018)

The breakdown by sector (Fig. 2) shows that the majority of GHG emissions in 
Canada (approximately 84 per cent) are produced by oil and gas, transportation, 
buildings, heavy industry and electricity. Of the remaining 16 per cent, 
approximately 10 per cent of emissions are produced by the agricultural sector 
(ECCC 2018). 

Figure 2: GHG emissions by sector (ECCC 2018)

Agriculture is a major industry and a key driver of the Canadian economy. In 2016, 
agriculture and agri-food production generated $111.9 billion of the gross domestic 
product (GDP), accounting for 6.7 per cent of Canada’s total GDP (Agriculture and 
Agri-Food Canada 2017). More recently, the agricultural industry generated $48 
billion of GDP in March 2021 (Trading Economics 2021). Agricultural operations emit 
significant amounts of GHGs into the atmosphere and mitigation is part of many 
climate change response plans. 

The next sections will present GHG emission estimates from Canadian agriculture 
with an overview followed by estimates from specific subsectors. Current 
techniques, models and methods of estimation will also be discussed. Therefore, 
the aim of this paper is two-fold: 1) present current Canadian agricultural emission 
estimates in major agricultural sub-sectors, and 2) discuss current techniques, 
models and methods of GHG emission estimation.
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GHG EMISSION ESTIMATES FROM CANADIAN AGRICULTURE
Agriculture covers about five per cent of Canada’s land mass (Statistics Canada 
2017a), and about 80 per cent of the agricultural land is located in the Prairie 
Provinces: Manitoba, Saskatchewan and Alberta. Major agricultural land uses 
include cultivated lands (37.7 million ha) and grasslands (19.3 million ha) (Statistics 
Canada 2017a). Main crops include grains: wheat, rye, barley, corn and oats; 
oilseeds: canola, soybeans, flax and sunflower; pulses and specialty crops: lentils, 
peas, beans, potatoes and sugar beets; and forage crops: alfalfa. Livestock 
production in Canada includes 12.5 million cattle (Statistics Canada 2017b), 0.9 
million dairy cows (Statistics Canada 2017b), 14 million pigs (Statistics Canada 
2017c), 145.5 million hens and chickens (Statistics Canada 2017d) and one million 
sheep and lambs (Statistics Canada 2017e).

Every agricultural product emits GHGs as a result of its production. Agricultural 
subsectors vary in their carbon footprint and estimating their footprint requires 
accounting for every process that takes place during production.

Agricultural GHG emissions in Canada have increased since 1990 from 45 Mt CO2 
eq to 59 Mt in 2018 (Fig. 3) (FAOSTAT 2018) following an increase in agricultural 
gross domestic product reaching C$40 billion in 2018 (Trading Economics 2020). 
The increase in GHG emissions corresponds to 8.1 per cent of total GHG emissions 
in Canada (ECCC 2018). However, this does not include energy sources of emissions 
from production processes, transportation and fugitive emissions during the 
production of nitrogen fertilizers. Adding these energy emissions would increase 
the GHG emissions of Canadian agriculture to 87.4 Mt CO2 eq or 12 per cent of total 
GHG emissions in Canada (Desjardins et al. 2020).

Figure 3: Agricultural GHG emissions in Canada (Mt CO2 eq) between 1990 and 2017 
(FAOSTAT 2018)

Note: Data do not include energy sources of emission from production processes, transportation and 
fugitive emissions during the production of nitrogen fertilizers.

The main GHGs emitted by agricultural activities are nitrous oxide and methane. 
Carbon dioxide is emitted from soils and from the use of fossil fuels for machinery 
and farm transportation, electricity and heating needs. Carbon dioxide emissions 
account for approximately 26 per cent of agricultural emissions. Nitrous oxides 
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account for approximately 36 per cent of agricultural emissions (in CO2 eq) through 
direct release from soils and manure management. Methane emissions account for 
approximately 38 per cent of agricultural emissions (in CO2 eq) and occur through 
enteric fermentation and manure management (Fig. 4).

Figure 4: Relative magnitude of the main GHG emissions in Canadian agriculture in 
2015 (Desjardins et al. 2020)

Agricultural practices are both a source and a sink of GHGs. The removal of 
atmospheric CO2 by soils, also known as soil carbon sequestration, resulted in a 
decline in net GHG emissions (emissions minus removal by soil) between 1981 when 
the soils were a source and 2011. This was evident in the Canadian prairies after the 
widespread adoption of beneficial management practices (BMPs) such as reduced 
tillage, decreased summer fallow, more cover crops and an increase in perennial 
instead of annual cropping systems (Ahmed et al. 2020; Fan et al. 2019; Worth et al. 
2016). Net GHG emissions per hectare are generally higher in Eastern Canada than 
in Western Canada (Fig. 5) which is mainly a result of the adoption of BMPs in the 
West that enhance soil carbon sequestration. The wetter climate in Eastern Canada 
frequently causes higher emissions of N2O, especially with crops that are more 
demanding in nitrogen fertilizers such as corn.
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Figure 5: Net agricultural GHG emissions per hectare of land (kg CO2 eq ha-1) in 
Canada in 2011 (Worth et al. 2016)

1. GHG EMISSIONS IN CANADIAN LIVESTOCK PRODUCTION

According to the National Inventory Report (NIR), current GHG emissions from 
Canadian livestock production are estimated at 32 Mt CO2 eq or 53 per cent of total 
agricultural emissions (ECCC 2020).

GHG emission intensities from Canadian livestock production decreased between 
1981 and 2006, especially for beef and pork production (Fig. 6). This decrease 
is mainly the result of improved management practices, better crop yields and 
livestock feed and more productive livestock breeds (Desjardins et al. 2020). These 
estimated emissions did not include changes in soil carbon.
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Figure 6: GHG emissions per kg of milk or live weight or dozen eggs in Canada in 
1981–2006 (Desjardins et al. 2020)

Legesse et al. (2016) used the Holos model, a Canadian whole-farm emissions 
model, to compare emissions from the production of Canadian beef cattle between 
1981 and 2011. They found that total GHG emissions were 28 per cent higher in 2011 
than in 1981 (28.3 teragrams (Tg) of CO2 eq vs. 22.1 Tg CO2 eq). On an intensity 
basis, however, CO2 eq per kg of liveweight (excluding culled dairy cows) decreased 
in 2011 by 18 per cent to 12.0 kg CO2 eq compared to 14.0 in 1981. This decline 
resulted from a drop in CH4 (18 per cent), N2O (19 per cent) and CO2 (16 per cent) 
emissions.

For comparison, Rotz et al. (2019) used the Integrated Farm Systems Model, a 
whole-farm systems model, to estimate annual GHG emissions for beef cattle 
production in the U.S. They found an emission intensity of 21.3 ± 2.3 CO2 eq per 
kg carcass weight from field to farm gate. In Brazil, Cardoso et al. (2016) used 
a life-cycle analysis approach and estimated an annual GHG emission intensity 
ranging from 29.4 to 58.3 kg CO2 eq per kg carcass weight, depending on various 
production scenarios.

Desjardins et al. (2020) estimated CH4 emissions per cow and GHG emissions per 
litre of milk production in Canada and found that CH4 emissions per cow increased 
between 1981 and 2006 while the GHG emissions per litre of milk decreased (Fig. 
7) due to the increased milk production per animal. This means that the number 
of cows needed to produce the same amount of milk has declined over time 
(Desjardins et al. 2020).
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Figure 7: CH4 emissions per cow and GHG emissions per litre of milk production in 
Canada in 1981–2006 (Desjardins et al. 2020)

2. GHG EMISSIONS IN CANADIAN CROP PRODUCTION

Whether in kg of CO2 eq per hectare or in kg of CO2 eq per kg of dry matter 
produced, GHG emissions from cropping systems can be estimated for the 
major crops produced in Canada (Fig. 8). These emissions were estimated using 
production and fertilizer data from Statistics Canada, and the changes in soil 
carbon were accounted for (Desjardins et al. 2020). Low values show that some 
crops require lower fertilizer inputs (alfalfa, lentils, chickpeas) than crops with 
higher GHG emission intensities (corn, potatoes). Crops with low GHG emission 
intensities are usually legumes such as alfalfa and soybeans which can fix nitrogen 
and have high soil carbon sequestration. 
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Figure 8: Average estimates of GHG emissions per hectare and per kg of dry matter 
for major Canadian crops in 2011 (Desjardins et al. 2020)

Conditions vary across Canada and crop emission estimates differ in each 
province as shown in Table 1. Weather condition and humidity levels affect soil 
water contents and plants’ water and nutrient uptake as well as nutrient leaching, 
affecting fertilizer inputs and nitrous oxide emissions. In addition, the increased 
adoption of best management practices favouring carbon sequestration (no-till, 
reduced summer fallow) in the Prairie Provinces, combined with drier weather 
conditions resulting in lower nitrous oxide emissions, contribute to reducing the 
agricultural carbon footprint in that region. In addition, large farm fields on the 
prairies allow more efficient use of fossil fuels than smaller field sizes in Eastern 
Canada.
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Table 1: Average GHG emission estimates in kg CO2 eq per hectare for major Canadian 
crops by province (Desjardins et al. 2020)

Vegetable and fruit crops also emit GHGs in the form of CO2 and N2O. Dyer and 
Desjardins (2018) estimated these emissions by province, assuming these crops 
were irrigated field-grown crops with the exception of potatoes. GHG emissions are 
presented by area and by kg fresh weight in Table 2.
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Table 2: Average GHG emission estimates for major field-grown Canadian vegetables 
and fruits per unit area and weight in 2007–2016 (Desjardins et al. 2020)

The above GHG emission intensities from livestock and crop production were 
gathered into Table 3 below. Production data and production areas were sourced 
from Statistics Canada, and GHG emission estimates were calculated by multiplying 
the intensities by total production for each commodity. Total calculated GHG 
emissions (71 Mt) did not differ significantly from the estimated total value of 59 Mt 
reported in the National Inventory Report (ECCC 2020).
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Table 3: Summary of GHG emission intensity estimates, total production, estimated total 
emissions and contribution to overall production for livestock and crop production in 
Canada. (Sources: Desjardins et al. 2020; ECCC 2020; Statistics Canada 2016a-j)

Canadian Product / GHG Source 
Category

GHG Emission Intensity Year 2016 Production
Production 

Area

2016 Estimated GHG 
Emissions 

(Calculated)

Contribution to 
Overall 

Emissions

2018 Estimated GHG 
Emissions (NIR)

kg CO2 eq / kg liveweight, 
or L, or dozen eggs

kg liveweight, L 
or dozen eggs

Ha in 2016 kg CO2 eq % kt CO2 eq

Enteric Fermentation (CH4) 24,000

Manure Management 7,900

Agricultural Soils (N2O) 25,000

Crop Residue Burning (CH4 and 

N2O)
50

Lime and Urea Application (CO2) 2,600

Cattle 12 2011 1,868,300,000  - 22,419,600,000 31.66  -
Hogs 2 2006 3,522,259,000  - 7,044,518,000 9.95  -
Poultry 1.00 2006 436,558,698  - 436,558,698 0.62  -
Milk 0.96 2006 8,440,863,000  - 8,103,228,480 11.44  -
Eggs 1.90 2006 746,389,000  - 1,418,139,100 2.00  -

kg CO2 eq / ha ha kg of CO2 eq %

Spring Wheat 550  - 6,422,500 3,532,375,000 4.99  - 
Winter Wheat 1,900  - 733,100 1,392,890,000 1.97  - 
Durum Wheat 160  - 2,469,200 395,072,000 0.56  - 
Fall Rye 600  - 186,000 111,600,000 0.16  - 
Canola 750  - 8,410,900 6,308,175,000 8.91  - 
Barley 600  - 2,701,800 1,621,080,000 2.29  - 
Oats 650  - 1,232,300 800,995,000 1.13  - 
Corn for Grain 3,450  - 1,452,200 5,010,090,000 7.07
Mixed Grain 1,500  - 177,000 265,500,000 0.37  - 
Sunflower Seed 960  - 28,300 27,168,000 0.04  - 
Soybeans 1,100  - 2,269,200 2,496,120,000 3.52  - 
Flaxseed 370  - 381,000 140,970,000 0.20  - 
Lentils 60  - 2,253,600 135,216,000 0.19  - 
Beans 980  - 122,000 119,560,000 0.17  - 
Dry Peas 350  - 1,732,600 606,410,000 0.86  - 
Chickpeas 60  - 57,800 3,468,000 0.00  - 
Sugar Beets 1,150  - 11,500 13,225,000 0.02  - 
Corn for Silage 2,800  - 364,200 1,019,760,000 1.44  - 
Tame Hay 760  - 5,882,600 4,470,776,000 6.31  - 
Alfalfa  -  -  -  -  -  - 

kg CO2 eq / ha ha kg of CO2 eq %

Carrots 12,600 2016  - 8,940 112,644,000 0.16  - 
Sweet corn 10,400 2016  - 19,248 200,179,200 0.28  - 
Tomatoes 18,900 2016  - 6,938 131,128,200 0.19  - 
Peas 5,700 2016  - 12,782 72,857,400 0.10  - 
Lettuce 12,300 2016  - 4,140 50,922,000 0.07  - 
Cabbage 16,000 2016  - 5,578 89,248,000 0.13  - 
Potatoes 10,800 2016  - 140,187 1,514,022,000 2.14  - 

Blueberries 6,300 2016  - 79,329 499,772,700 0.71  - 
Peaches 6,200 2016  - 2,664 16,516,800 0.02  - 
Apples 6,600 2016  - 17,676 116,661,600 0.16  - 
Strawberries 8,500 2016  - 4,110 34,935,000 0.05  - 
Grapes 6,800 2016  - 12,627 85,863,600 0.12  - 

Sum of 
Emissions 70,817,244,778 kg

Calculated NIR
kt 70,817 59,550

Mt 70.82 59.55

Livestock and Livestock-Related Products

Crop Production

Vegetable and Fruit Production
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METHODOLOGIES FOR ESTIMATING GHG EMISSIONS
Methods used to estimate GHG emissions include all phases of production 
from seeding to farm gate. Emissions reported in the NIR are estimated using 
mass balance and chemical reaction calculations (stoichiometry) under average 
conditions. Emission factors are also used in combination with specific activity 
data to produce estimates at a larger scale, such as either by sector or by province 
(ECCC 2018). These regional estimates are usually the result of measuring 
spatially diffuse sources of emissions such as transportation and agricultural land 
management. However, calculating long-term GHG emissions from such sources 
often requires the use of simulation models.

Some agricultural practices can also remove GHGs from the atmosphere, such 
as crop growth and soil carbon sequestration. These are complex, long-term, 
natural and anthropogenic systems which vary over space and time and require 
a combination of repeated data collection and modelling for best emissions 
estimates. 

1. FIELD MEASUREMENTS

Researchers have conducted long-term in-situ measurements of soil organic 
carbon change and GHG fluxes from agricultural soils while comparing land uses 
and managements. Desjardins et al. (2020) describe these methods in detail. They 
include soil cores, chamber techniques that quantify CO2, CH4 and N2O soil uptake 
and release from soil, and meteorological techniques such as mass balance and 
inverse modelling. Other methods include tower-based flux systems which measure 
N2O emissions and aircraft-based N2O and CH4 flux measurements. These can be 
combined with modelling to scale up to the regional level of emissions estimation. 
Desjardins et al. (2018) address the challenges of regional measurements of 
agricultural CH4 emissions.

2. MODELS

Modelling GHG emissions and carbon change in Canada has been conducted with 
both process and empirical models (Table 4). Process models are detailed models 
that attempt to represent any known process through representative algorithms, 
while empirical models use a shortcut from an input to the desired output by 
using a factor (or fraction) approach. The choice is primarily driven by the data 
requirements for the respective models (site-specific simulations are more suited 
to process models), as well as by the scope of the simulation and the capabilities of 
the model, the intended output. The prospective model user plays a determining 
role in making this choice.
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Table 4: Summary of current models used to estimate GHG emissions for the National 
Inventory Report, their strengths and limitations

Process models such as DayCent (Parton et al. 1998), DNDC (Li et al. 1992a, 
1992b), as well as STICS (Brisson et al. 1998) have been used over the past two 
decades to simulate Canadian cropping systems, their productivity and impact on 
the environment (Guest et al. 2017; Jing et al. 2017; Grant et al. 2016; Morissette 
et al. 2016; Smith et al. 2013). One of the main objectives of these models is to 
estimate N2O emissions from cropping systems, starting with the local scale 
(Smith et al. 2002, 2008), but with the goal to upscale to regional and national 
assessments (Smith et al. 2013; Grant et al. 2004). However, testing and developing 
N2O algorithms in these models are a work in progress (Pattey et al. 2018; 
Kariyapperuma et al. 2011), thus potentially making previous assessments obsolete 
and requiring new and updated assessments.

The same models are also being used to estimate soil carbon change (Grant et 
al. 2016; Congreves et al. 2015; Smith et al. 2012), but there is a tendency to use 
different models for this particular purpose. Soil carbon change signifies the 
additional storage or loss of carbon in (or from) agricultural soils by altering the 
balance of carbon inputs (e.g., crop residues, manure) and carbon outputs (e.g., 
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soil respiration). Calculating soil carbon change is important since in order to 
minimize climate change there is an incentive to promote gains in soil carbon. In 
some jurisdictions, soil carbon gains can be used as offsets for GHG emissions. 
Both Century (Parton et al. 1994) and ICBM (Andrén and Kätterer 1997) have been 
tested for use in Canada and have been upscaled to national assessments (Bolinder 
et al. 2006, 2008; Smith et al. 1997, 2001a), but the results of this research are 
meant for a rather scientific audience. In order to translate these scientific results 
to local, regional and national policy measures, process models have been used to 
establish applicable factors and indicators in policy assessments. For instance, the 
Century model was used to derive management-driven soil carbon change factors 
(Smith et al. 2001b) which were subsequently incorporated into the NIR, and the 
DNDC model was used to derive soil management changes to control levels of N2O 
emissions (Smith et al. 2010).

Despite these successful applications, process models are still under development 
for different model components, as seen with DNDC (He et al. 2019; Congreves et 
al. 2016; Dutta et al. 2016; Kröbel et al. 2011) and STICS models (Jing et al. 2017; 
Morissette et al. 2016; Jégo et al. 2012). Complications arise when different versions 
of the same model are developed with updated model components and it is not 
always clear which model version was used. Additionally, all models presented 
so far focus on annual crops, with DNDC and STICS being now developed for 
perennial crops. Nevertheless, these models do not represent livestock production 
and its management practices.

This is different in the Integrated Farm Systems Model (Rotz et al. 2018) which 
was developed to simulate whole farm systems in the U.S., including cattle and 
dairy farms. This model has been applied multiple times in the Canadian context 
(Cordeiro et al. 2019; Duchemin et al. 2019; Thivierge et al. 2017; Alemu et al. 2015), 
but its application in the Canadian prairies (where approximately 80 per cent of 
Canadian agricultural land is located) is still outstanding; no upscaling work has 
been attempted and other livestock types have yet to be included. 

The Holos model (Little et al. 2008) does include all livestock and major crop types 
by using algorithms (Tier 1 and Tier 2) developed by the Intergovernmental Panel 
on Climate Change (IPCC). This model aims to cover the vast majority of Canadian 
agriculture by using internationally acknowledged emission factors and easily 
obtainable input parameters. It does not provide estimates of productivity (such as 
crop yield and animal weight gain) but does account for productivity changes. The 
model further incorporates upstream emission estimates (emissions associated with 
the production of agricultural inputs), thus permitting the calculation of production 
system emission intensities and efficiencies (McGeough et al. 2012; Beauchemin 
et al. 2010). The easily obtainable input parameters permit upscaling to national 
scale while maintaining regional specifics (Legesse et al. 2016). Moreover, the 
model results can directly be related to changes in management practices (Alemu 
et al. 2017, Guyader et al. 2017), which emphasizes the intent for the model to be 
applicable to farmers and policy-makers alongside scientists. 
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It is worthwhile noting, however, that each model can be used in the context of 
other assessments (see, for instance, Sanscartier et al. 2014), depending on the 
assessment’s purpose and data requirements. Most regional and nationwide 
assessments are hindered by the lack of detailed farm activity data rather than the 
lack of applicable models, even though the input parameters requirements of some 
models are not easily populated outside the setting of scientific experiments.

SUMMARY AND CONCLUSIONS
Of the 729 Mt of CO2 eq emitted by GHGs in Canada in 2018, 59 Mt were emitted 
that year by the Canadian agricultural sector in the form of CO2, N2O and CH4. The 
largest GHG emissions come from CH4 through enteric fermentation (24 Mt of CO2 
eq) of beef and dairy cattle. Most N2O emissions come from agricultural soils (25 Mt 
of CO2 eq) through direct and indirect releases into the atmosphere. Major direct 
N2O emissions occur during synthetic and organic nitrogen fertilizer applications, 
biomass decomposition, soil cultivation and conservation tillage, mineralization 
of soil organic matter, summer fallow, irrigation and manure on pasture, range or 
paddock. Handling and storing livestock manure emits indirect CH4 and N2O, and 
the amounts vary depending on the quantity of manure handled, its characteristics 
and the type of manure management system used. In 2018, manure management 
was the source of 7.9 Mt of CO2 eq emitted as both CH4 and N2O. Carbon dioxide 
was also emitted after lime and urea applications as well as with the use of fossil 
fuel combustion machinery.

Field techniques and empirical and process models have been developed to 
estimate and validate GHG emissions for different farm scenarios. The process 
is complicated as these models aim to simulate every component of a farming 
system, whether a large beef cattle operation or a small animal and crop farm. 
Consequently, the models are constantly being assessed and revised as more data 
are available and methodologies are improved. 

As we gain better understanding of GHG emission estimates for different farm 
scenarios and the largest sources of GHG emissions, the next step is to target these 
sources and find ways to decrease them while maintaining or improving the farm’s 
financial sustainability. Changes will not be made if they are not cost effective and 
if they do not bring a positive change to a farmer’s busy life. Policies to reduce GHG 
emissions are being introduced across Canada, but are they being adopted? Are 
they adequate? How do farmers find out about them? What are the incentives? 
These questions will be discussed in a follow-up article.
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APPENDIX

I. INDIVIDUAL LOCAL MEASURES: ON-FARM MANAGEMENT

1. CROPPING SYSTEMS AND CARBON SEQUESTRATION

Increasing soil carbon content and storing it either in the soil or in plants is one 
measure to reduce CO2 losses to the atmosphere. This is achieved by keeping the 
soil covered using either cover crops or mulches, converting annual cropping to 
perennial cropping (VandenBygaart et al. 2010) and minimizing traffic on the soil 
surface. No-till practices allow the soil structure to develop its natural porosity, soil 
moisture retention, crop residue retention and the buildup of organic matter which 
stores carbon and creates a healthy and nutritious environment for plant roots, 
thereby improving productivity (Liang et al. 2020, May et al. 2020).

Gan et al. (2014) found that improved farm practices in a semi-arid environment 
lowered the carbon footprint of wheat, reaching an average of -256 kg CO2 eq ha-1 
per year. The main changes consisted in applying fertilizers on the basis of soil 
tests, reducing the frequency of summer-fallow rotations and rotating cereals with 
legumes. This enabled the wheat crop to take up more CO2 from the atmosphere 
than it emitted during its production.

To achieve a decline in the intensity of GHG emissions in Canadian agriculture, 
Agriculture and Agri-Food Canada is developing an emission-intensity metric that 
will represent emissions from the growth, transportation and processing of one unit 
of a given product such as a tonne of grain or a kg of beef (Agriculture and Agri-
Food Canada 2020).

2. LIVESTOCK AND MANURE MANAGEMENT

Intensively managed grazing land is likely to be a net GHG source, including CH4 
emissions from grazing beef and dairy cattle and N2O emissions from manure or 
fertilized pastures (Carbutt et al. 2017). Global methane emissions have been rising 
rapidly since 2007 and about half of this rise comes from increasing numbers 
of ruminant livestock (Nisbet et al. 2019). However, in Canada, declining animal 
populations have resulted in declining CH4 emissions between 2006 and 2011. Dairy 
cow populations in Canada declined from 1.8 to one million head, and this did not 
affect total milk production. Beef cattle populations decreased about 14 per cent 
since 2006 due to a challenging economic environment such as diseases (bovine 
spongiform encephalopathy crisis in 2003–2004), country-of-origin labelling and 
a high Canadian dollar that made exports to the U.S. more expensive (Agriculture 
and Agri-Food Canada 2020).

For large livestock operations, managing manure emissions by capturing CH4 to 
generate heat and electricity is a viable option. The energy produced through 
biogas generation systems and trading of renewable energy certificates render this 
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a profitable solution (Green 2020). Another solution addresses manure piles: by 
aerating them, denitrification is stalled and N2O emissions are reduced. In addition, 
adding urease inhibitors to manure piles reduces the conversion rate from urea to 
N2O (Government of Western Australia 2020).

3. FARM EQUIPMENT MANAGEMENT

Numerous options exist to create synergies between management of agriculture, 
vegetation and soils to reverse degradation. Sustainable land management 
practices include reduced tillage, residue retention, use of nitrogen-fixing cover 
crops or intercropping, and managing mixed-species and uneven-aged forests. 
These practices aim to halt erosion and include avoiding clear-cutting, contour 
plowing and strip cropping, along with the use of organic amendments such as 
mulches, compost and biochar to increase soil carbon and nutrient content (Olsson 
et al. 2019). These practices also allow a safer management of agricultural lands by 
reducing energy consumption from agricultural equipment and thereby reducing 
CO2 emissions.

4. OTHER METHODS

There are various options for reducing GHG emissions from agricultural practices. 
Kroebel et al. (2013) describe in detail the workings of the HOLOS model which 
aims to consider every aspect of a whole-farm system and the associated GHG 
emissions. It allows producers to explore different soil, crop, fertilizer/manure and 
pest management options for reducing on-farm GHG emissions.

II. INDIVIDUAL LOCAL MEASURES: HOME FOOD CHOICES
It is complicated to estimate and compare GHG emissions from livestock operations 
that produce different products (beef, pork, dairy, poultry and sheep) using 
different production systems. Using protein as a common denominator creates 
comparable measurements from each livestock commodity. Dyer and Desjardins 
coined the term “GHG-protein indicator” as a tool for comparison in 2010 and 
emissions per kg of protein were calculated using data for 2001 (Fig. 8).
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Figure 9: GHG emissions per kg of protein for livestock products in Canada in 2001 
(Dyer et al. 2010)

Protein produced from sheep and beef production had higher GHG emissions than 
from other livestock commodities in Canada in 2001 (Fig. 9). Both sheep and beef 
have lower fecundity rates and produce higher CH4 emissions during digestion 
than other livestock commodities. Using the protein indicator, Dyer and Desjardins 
(2020) investigated the impact of reducing red meat consumption on GHG 
emissions in Canada. They state that by eating less red meat and diversifying meat 
choices, consumers “could significantly reduce GHG emissions from agriculture.” 

Vergé et al. (2018) argue that using an integrated approach that considers multiple 
agricultural sectors as complementary will reduce environmental impacts and 
render agricultural production more sustainable. For instance, considering the dairy 
and beef industries as complementary meat-production sectors, they evaluated the 
Western Canada beef industry (mainly beef production) and the Eastern Canada 
combined beef and dairy industry (about 50/50) using the Unified Livestock 
Industry and Crop Emissions Estimation System. They found that integrating both 
dairy and beef production within one system resulted in a 22 per cent lower carbon 
footprint of meat compared to meat only being produced by the beef industry. A 
simulation in which Western Canadian beef production was integrated with equal 
size dairy populations resulted in a 31 per cent fewer emissions than current levels 
in Western Canada. According to this study, there is an opportunity to reduce the 
environmental impacts of agricultural production systems by increasing production 
efficiencies through multi-product production systems compared to single-product 
systems.
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