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Introduction

Ants and plants interact in a variety of ways, 
from parasitism to mutualism (Beattie, 1985), including 
interactions with diaspores (i.e.: dispersal unit) that can result 
in seed dispersal (Anjos et al., 2020; Luna et al., 2021). Seed 
dispersal is a fundamental process for plant fitness because it 
determines the location in which seeds arrive and whether they 
will be able to develop and reach future stages in that location 
(Wenny, 2001). Ants can interact with non-myrmecochorous 
diaspores (without elaiosomes), in which the pulp and aryl 

Abstract  
Ants are able to interact with fruits and seeds that are not adapted for ant seed 
dispersal. In Brazil, several studies show interactions of ants with non-myrmecochorous 
diaspores; however, few of them have studied the structure of ant-fruit networks. The 
use of the network approach allows visualising multiple interactions between partners 
and how they are shaped by the community context. Our study aims to investigate 
ant-fruit networks as well as quantitative and qualitative dispersal components in a 
fragment of the Brazilian Atlantic Forest. We investigated the structure of interaction 
networks, diaspore removal rates, diaspore destination and dispersal distance over two 
years of observation. We constructed three interaction networks: dry season, rainy 
season and total, with the latter comprising the two formers. The diaspore removal 
rate, dispersal distance and diaspore destination experiments were performed for 
the plant species Miconia calvescens, Miconia prasina, Psychotria leiocarpa and Inga 
edulis. We recorded a large number of interactions, with diaspore cleaning being more 
frequent than removal. Ant-diaspore networks were nested, non-modular and little 
specialized. M. calvescens, M. prasina and I. edulis showed higher diaspore removal 
rates. Diaspore removal distances were the same among M. calvescens, M. prasina and 
I. edulis. In M. calvescens and I. edulis, the main diaspore destination was the ant’s 
nest. Our study shows that diaspore cleaning is the most common behavior in ant-
diaspore interactions and there are no differences in the organization of interaction 
networks over the seasons. These results have implications for the future structure of 
plant communities, considering that a small part of the diaspores is removed, and that 
most of them are cleaned, favouring germination at the deposition site. 

Sociobiology
An international journal on social insects

Bianca F S Laviski, Antonio J Mayhé-Nunes, André F Nunes-Freitas

Article History

Edited by
Wesley Dáttilo, Instituto de Ecología 
A.C., Mexico
Received                        29 March 2021
Initial acceptance         16 April 2021
Final acceptance           03 July 2021
Publication date           13 August 2021  

Keywords 
Ant-fruit interactions, secondary 
dispersal, seed cleaning, seed 
removal, mutualistic networks.

Corresponding author 
Bianca Ferreira da Silva Laviski
Universidade Federal Rural do Rio 
de Janeiro – UFRRJ
Km 07, Zona Rural, BR-465 
Seropédica - CEP: 23890-000 
Seropédica, Rio de Janeiro, Brasil.
E-Mail: biancalaviski@gmail.com

work as an attraction for them (Rico-Gray & Oliveira, 2007). 
Several ant species have already been reported to disperse 
non-myrmecochorous diaspores across the globe (Anjos et 
al., 2020). Pizo and Oliveira (2000), for instance, observed 
more than 800 interactions between 56 species of non-
myrmecochorous plants and 36 species of ants from monthly 
samplings in the Atlantic Forest over two years. 

The interactions between several ant and plant species 
can be represented by complex ecological networks at the 
community level, in which species are represented as nodes, 
and interactions, as links. The use of the network approach 
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allows visualizing multiple interactions between partners and 
how they are shaped by the community context, in addition 
to joining different research fields (Bascompte, 2007). Most 
studies on ant-plant networks have focused on the interactions 
between ants and plants with extrafloral nectaries (EFN), 
and only 6% have studied ant-seed networks (Del-Claro et 
al., 2018). Furthermore, the majority of such studies have 
been performed in a few regions, such as the Amazon and 
Neotropical Savanna, both in Brazil, and on the coast of 
the Gulf of Mexico (Del-Claro et al., 2018). In interactions 
between ants and EFN-bearing plants, studies show nested 
networks (Del-Claro et al., 2018), in which interactions are 
organised around a central core, and the interactions of less 
central species are a sub-set of the most generalist species 
(Bascompte et al., 2003). Studies on mutualistic and predation 
networks between diaspores and ants also have networks 
with a nested pattern (Guimarães et al., 2007; Anjos et al., 
2018, 2019; Luna et al., 2018), showing that species do not 
interact randomly. In addition, Anjos et al. (2018) showed 
that removal and consumption networks are not modular in 
the Brazilian savanna. Network specialization, vulnerability 
and robustness were network metrics that were not affected 
by habitat and exclusion of the main disperser under study in 
the Mediterranean landscape (Timóteo et al., 2016). Several 
factors have been pointed out to explain the origin and 
maintenance of structural patterns of ant-plant networks, such 
as temperature and precipitation (Rico-Gray et al., 2012), soil 
characteristics (Dáttilo et al., 2013b) and plant phenology 
(Lange et al., 2013; Anjos et al., 2018). Regarding the latter, 
as fruiting is seasonal, dry and rainy periods show differences 
in fruiting plant species, and this can affect the organization 
of interaction networks.

In addition to a network approach, in order to 
understand whether plants gain advantages in interactions 
with ants – such as escape from areas with a high mortality 
rate, colonization of new areas, and deposition in suitable 
areas for development (Wenny, 2001; Rico-Gray et al., 2007) –, 
approaches at the plant-population level are necessary. These 
approaches allow learning about the effective dispersers, 
which maximize the number of new adult plants by their 
dispersal activity, considering the quantitative and qualitative 
components (Schupp et al., 2010). The number of seeds 
dispersed represents the quantitative component, and the 
distance and removal destination represent the qualitative 
component. Diaspore removal rates by ants – quantitative 
component – may differ among different plant species, due to 
diaspore mass and chemical content (Pizo & Oliveira, 2000; 
Pizo & Oliveira, 2001). The lipid content of diaspores plays 
an important role in attracting ants for interaction. Small, 
lipid-rich diaspores (>60%) are highly attended by ants, 
quickly removed and moved over long distances (>10m) 
(Rico-Gray et al., 2007). However, ants can also consume 
diaspore resources locally or remove parts and take them to 
the nest, which promotes diaspore cleaning (Christianini et al., 
2007; Christianini & Oliveira, 2010; Gallegos et al., 2014). 

Diaspore cleaning ensures germination rates approximately 20 
to 60% higher than control tests (Leal & Oliveira, 1998; Pizo & 
Oliveira, 1998; Silva et al., 2019), but not for all plant species 
(Christianini et al., 2007). In addition, diaspore cleaning 
can increase the germination speed of some species (Pizo & 
Oliveira, 1998; Silva et al., 2019). Therefore, even without 
removal, diaspores have an advantage in interacting with ants.

Apart from the number of diaspores removed, the 
destination and removal distance are important to ensure 
that seeds are reaching places with improved conditions 
for seedling establishment and growth. Thus, destination 
and dispersal distance are part of the qualitative dispersal 
component (Schupp et al., 2010). The destination of ant-
removed diaspores is frequently the ants’ nest (Rico-Gray 
et al., 2007), where they are cleaned and deposited in ant 
dumps, which are located in subterranean chambers or on 
the surface (Farji-Brener & Medina, 2000; Giladi, 2006; 
Luna et al., 2018). Outer dumps are potentially important for 
plants, as the soil around the nest has different edaphic and 
microclimatic conditions from those in regular soil, as well 
as higher nutrient content (Farji-Brener & Medina, 2000). 
These conditions favour germination in ants’ nesting soils for 
some plant species (Passos & Oliveira et al., 2002; Leal et al., 
2007). Diaspore removal generally occurs at short distances, 
with a global mean dispersal distance of 2.39 m for non-
myrmecochorous diaspores (Anjos et al., 2020). Removal 
distance depends on ants’ nest density and on diaspore 
disposition in relation to the nests. Furthermore, rainforest 
ecosystems have shorter removal distances than do savanna 
ecosystems (Anjos et al., 2020). Longer distances and the 
nest as a destination are more advantageous results for plants 
(Anjos et al., 2020; Ortiz et al., 2021).

Considering the different behaviors of ant species 
when interacting with diaspores, the aim of our study was to 
describe the network structure of ant-diaspore interactions and 
their temporal variation in the Atlantic Forest in south-eastern 
Brazil, seeking to understand several aspects of ants’ role in 
the interactions. In order to do so, we attempted to answer 
the following questions: (1) what is the structure of the ant-
diaspore network in the study area? And does this network 
structure vary between dry and rainy seasons? We expected 
nested and non-modular networks to be observed, since they 
seem to be a pattern in mutualistic networks and a variation 
in this structure according to the season, due to the direct and 
indirect effect via plant phenology; (2) which ant behavior 
(removal or cleaning) is more common with diaspores in the 
community? As cleaning is a behavior with lower energy cost 
and performed by a wide variety of ant species, we expected 
it to be more common than removal; (3) what are the removal 
rates, distances and destinations of the diaspores carried 
by ants?  Finally, we used a series of experiments to study 
various aspects of the ant-diaspore interaction in four species 
of plants. Our goal was to learn about the food preference of 
ants that remove diaspores in the study area, thus revealing 
their diaspore preferences and the role played by ants in the 
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quantitative and qualitative components of dispersal. We 
expected to find different removal rates, removal distances 
and destinations for different plant species. 

Methods

Study Area

We carried out the present study in a secondary forest 
located on Marambaia Island (23º 02’ S; 43º 35’ W), on a 
part of the area known as Restinga de Marambaia and 
located within the municipalities of Rio de Janeiro, Itaguaí, 
and Mangaratiba, in the Sepetiba Bay, south-eastern Brazil. 
Although it is called an island, the area corresponds to an 
enlarged portion of land (ca. 6 km) connected to the continent 
by a narrow sand strip. The northern part of the island faces 
the Sepetiba Bay and the southern part faces the Atlantic 
Ocean (Conde et al., 2005).

Marambaia Island shelters different vegetation types. 
This diversity of vegetation types is related to the geological 
processes that formed the island and originated soils with 
different levels of water saturation (Menezes & Araújo, 2005). 
Among the most common vegetation types are mangrove, 
restinga (coastal shrub land on sandy soils), and the sloped 
Atlantic Forest (Conde et al., 2005). The area was farmed 
from the 17th to the 19th centuries and had most of its 
forest removed, which is now under secondary succession 
(Goés et al., 2005). The soil has high leaf deposition, slow 
decomposition and higher nutrient levels on the surface layer 
(Pereira et al., 2008). 

The regional climate is classified as Aw (Tropical 
Rainy Climate), according to the Köppen system, with average 
monthly temperatures above 20 ºC. The coldest period occurs 
from June to August (average minimum temperature around 
18 ºC), and the warmest period occurs from December to 
March (average maximum temperature around 30 ºC; (Mattos, 
2005). Rainfall has an annual average above 1,000 mm. The 
rainy season consists of November to March, when rainfall 
indices are above 100 mm (Mattos, 2005). 

Ant-plant interactions

This study was conducted in a transect with 0.5 km 
in length, in a secondary rainforest, and the procedures were 
performed monthly, from January 2012 to December 2013. We 
established 50 observation stations every 10 m. This distance 
is sufficient to preserve independence between ant colonies 
(Byrne & Levey, 1993; Kaspari, 1993). Each observation 
station consisted of diaspores on filter paper (10 × 10cm) to 
facilitate ant visualizing. We collected mature diaspores from 
trees or which just fallen on the ground. We provided diaspores 
monthly according to their availability and abundance, ranging 
from one to 10 diaspores of a single plant species per station. 
The diaspores made available each month, as well as the 
total number and stations are presented in supplementary 
material (Table S1). The diaspores were intercalated among 

stations in cases of availability of more than one species on 
the same day. We set up the stations at 8 a.m. and observed the 
interactions between diaspores and ants from 9 a.m. to 5 p.m., 
with two-hour intervals. The lack of nocturnal observations 
limits this experiment’s results, because there are species with 
nocturnal activity, such as Odontomachus chelifer, which are 
known to remove diaspores (Raimundo et al., 2009). Thus, 
some species may appear less important in the networks when 
the interactions actually occur at another time. We recorded 
the date, time, ant behavior (removal or cleaning) and plant 
species, as well as collected worker ants for identification. We 
considered the visualization of any ant species in contact with 
the surface of the diaspore to be an interaction, as long as 
the ant was not only walking on the diaspore or touching it 
with its antennae. Ants of the same species found in the same 
station at different times of the same day were considered to 
be the same interaction. The ant specimens were deposited in 
the Costa Lima Entomological Collection, of Universidade 
Federal Rural do Rio de Janeiro (UFRRJ). The plant exsiccates 
were included in the herbarium collection of the Botany 
Department of UFRRJ (herbarium RBR).

Network Analysis 

Considering all observed interactions (removal and 
cleaning), we constructed interaction matrices A, where aij = 1 
when ant species i was observed interacting with diaspore 
species j, and using aij = 0 where there was no interaction. 
We built three matrices: one for the whole observation 
time (referred to here as total network); one for only the 
dry months (April to October), and one for only the rainy 
months (November to March). We analyzed the connectance, 
nestedness, modularity and specialization network metrics. 
Connectance is the proportion of links made by the total 
number of possible links in the network (Jordano, 1987). 
Connectance was obtained by the number of observed 
connections divided by the number of possible connections, 
calculated by the formula: C = I / AP, where C is connectance; 
I is the number of observed interactions; A is the number of 
ant species, and P is the number of plant species (Mello et 
al., 2011). Nestedness evaluates whether species with few 
interactions tend to interact with highly interactive species 
(i.e., generalist species) (Bascompte et al., 2003; Almeida-
Neto et al., 2007). We estimated the nestedness value by the 
NODF index in the ANINHADO software (Guimarães-Jr & 
Guimarães, 2006). NODF values range from 0 (non-nested) to 
100 (perfectly nested). We tested nestedness with 1,000 networks 
generated by the null model II (Bascompte et al., 2003). Such 
null model assumes that the probability of an interaction to 
occur is proportional to the observed number of interactions 
of both ant and plant species (Bascompte et al., 2003). 

In addition, we also evaluated modularity. Modular 
networks are those in which species interact more frequently 
with a group than with species outside that group. We estimated 
modularity in the network by the M index in the MODULAR 
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software (Marquitti et al., 2013), based on a simulated annealing 
algorithm (Guimerá & Amaral, 2005). The M Index ranges 
from 0 (no modules) to 1 (totally separated modules). We 
used 1,000 randomized networks by the null model II with 
fixed total margins (Bascompte et al., 2003).

Aiming at a more conservative approach (Dáttilo et al., 
2016), and counting on the availability of more data in the 
literature for comparison, we used binary data. Also, it was 
considered that quantitative and binary data, with the latter 
defining the fundamental niche of species (Fründ et al., 2016), 
can answer different questions. However, in order to measure 
specialization at the network level, we used quantitative data, 
where each cell in matrix A was filled with the frequency 
of interaction between the ant species i and the diaspore 
species j. We used the H2’ index, which ranged from 0 
(completely generalist network, total overlap of interactions) 
to 1 (completely specialized network, without overlap of 
interactions). This index is robust to changes in sampling 
effort and network size (Blüthgen et al., 2006). We simulated 
1,000 null networks from each network, using Patefield’s 
algorithm (Patefield, 1981) to evaluate the significance of 
the H2’ index. We estimated 1,000 H2’values from the null 
networks, and then we compared if the observed H2’ value 
differed from those of the null model.

To test the differences between the dry and rainy 
periods, we calculated the absolute difference of the H2’ index 
between the dry and rainy networks, and then compared 
it with the absolute difference of the same metric for the 
networks generated by the null models. For NODF and M, 
which are metrics affected by the network size, we used the 
methodology adopted by Carvalho et al. (2021), where the 
observed and randomized values   were standardized using 
z-scores. The transformed Z-score is defined: Z = [x - μ] / 
σ, where x is the observed index value, μ is the mean of the 
values from the null networks, and σ is the standard deviation 
of the values from the null networks (Almeida-Neto et al., 
2008). We used the calculated values of NODF and M   for 
the null networks obtained on ANINHADO and MODULAR, 
respectively. We estimated the significance of the difference in 
the metrics between the dry and rainy networks using z-scores 
with values   greater than 2 (Dormann & Strauss, 2014).

Moreover, we defined whether the species were central 
or peripheral in the networks by the formula: Gc = (ki – Kmean) / σk, 
where ki is the mean number of connections for a given ant or 
diaspore species; Kmean is the mean number of connections for 
all ant or diaspore species (connectance), and σk is the standard 
deviation of the number of connections for ant or diaspore 
species (Dáttilo et al., 2013a).  Gc > 1 values indicated central 
species in the network, with a large number of connections. 
Gc < 1 values indicated peripheral species in the network, 
with few connections. With the exception of nestedness and 
modularity, all other analyses cited were performed using the 
‘bipartite’ package (Dormman et al., 2019) implemented in R 
v.4.0.2 (R Development Core Team, 2020).

Diaspore removal rate

We selected four species of plants with high abundance 
of individuals and a large number of fruits in the study area: 
Inga edulis Mart., Miconia calvescens DC., M. prasina (Sw.) 
DC. And Psychotria leiocarpa Cham. & Schltdl. (Table 1). 
From June to October 2013, we picked 15 stations at random 
where we placed diaspores protected by screen fences (20 × 
20 × 12 cm; 2-cm gap) fixed on the ground by 2-cm wires, so 
as to allow ant access and prevent disturbance by vertebrates. 
We then placed four diaspores of a single species in each 
station. We marked the diaspores with a small dot using a 
marker pen to identify the fruits utilized in the experiment. We 
set up the experiment at 07:00 a.m. and then checked it after 24 
h, when we recounted the number of diaspores. We considered 
a diaspore removed if we did not find it in a radius of 30 cm 
around the cage (Passos & Oliveira, 2002). We repeated the 
experiment during the fruiting period of each evaluated diaspore 
species and while there were enough diaspores to perform the 
experiment. We used GLMM with the Poisson family to test for 
differences in the number of removals between diaspore species. 
We considered the number of removals to be the dependent 
variable; diaspore species, the fixed factor; and stations, a random 
factor. The analyses were performed using the ‘lme4’ (Bates 
et al., 2019) and ‘multcomp’ (Hothorn et al., 2008) packages 
implemented in R v.4.0.2 (R Development Core Team, 2020).

Destination and distance of diaspore removal

From June to October 2013, we selected one fruiting 
individual of each plant species selected in the previous 
experiment (Table 1), and established three radial stations 
underneath it at approximately 1 m from each other, in which 
we assessed the diaspore destination and distance. Each 
station was composed of filter paper (10 × 12 cm) used as 
substrate, and received two diaspores. Thus, each observed 
plant had a total of six diaspores. We monitored the stations 
for ant removal from 8:00 a.m. to 5:00 p.m. with one-hour 
pauses between observations, for a total of 5 observation 
hours per day. Observations were suspended during rain. The 
total hours observed in each species are shown in Table 1.  
When a removal event took place, we followed the ants to 
their nests or until they disappeared in the leaf litter, and then 
measured the removal distance with a measuring tape. We 
replaced each diaspore after removal. 

We used GLMM with the Binomial family to test 
for differences in destination between diaspore species. We 
considered the destination the dependent variable; diaspore 
species, the fixed factor; and data and time, random factors. 
To test differences in removal distance between diaspore 
species, we used GLMM with the Gaussian family. We 
considered the removal distance the dependent variable; 
diaspore species, the fixed factor; and data and time, random 
factors. The analyses were performed using the ‘lme4’ (Bates 
et al., 2019) and ‘multcomp’ (Hothorn et al., 2008) packages 
implemented in R v.4.0.2 (R Development Core Team, 2020).
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Results

Ant-plant interactions

We recorded a total of 1,032 interactions among 49 ant 
species (22 genera belonging to six subfamilies) (Table 2) and 25 
plant species belonging to 17 families (Table 3).  Myrmicinae 
was the subfamily of ants with the largest number of species 
(S = 36 spp.; 73.47%), followed by Ponerinae (S = 4 spp.; 

Table 1. Plant species used in the removal-rate, destination and 
removal-distance experiments. Observation hours refer to the total 
time of removal-distance experiments.

Plant species Diaspore size (cm) Observation 
hours

Inga edulis Mart. 1.20 ± 0.17 × 0.77 ± 0.13 5 

Miconia calvescens DC. 0.42 ± 0.05 × 0.37 ± 0.04 25 

Miconia prasina (Sw.) DC. 0.51 ± 0.04 × 0.42 ± 0.04 25 

Psychotria leiocarpa 
Cham. & Schltdl. 0.57 ± 0.09 × 0.49 ± 0.06 26.5 

Sub-family / Species Code
Dolichoderinae

1. Linepithema sp. 1 Linep1
Ectatomminae

2. Ectatomma edentatum Roger, 1863 E_ede
3. Ectatomma permagnum Forel, 1908 E_per

Formicinae
4. Brachymyrmex sp. 1 Brach1
5. Brachymyrmex sp. 2 Brach2
6. Camponotus sp. 1 Campo1
7. Myrmelachista sp. 1 Myrme1

Myrmicinae
8. Acromyrmex subterraneus Forel, 1893 A_sub
9. Atta sexdens rubropilosa Forel, 1908 A_sex

10. Carebara urichi (Wheeler, 1922) C_uri
11. Carebarella bicolor  Emery, 1906 Careb1
12. Crematogaster sp. 1 Crema1
13. Cyphomyrmex sp. 1 Cypho1
14. Mycocepurus sp. 1 Mycoc1
15. Octostruma rugifera (Mayr, 1887) O_rug
16. Pheidole diligens (Smith, 1858) Ph_dil
17. Pheidole sigillata Wilson, 2003 Ph_sig
18. Pheidole sp. 3 Pheid3
19. Pheidole transversostriata Mayr, 1887 Ph_tra
20. Pheidole pedana Wilson, 2003 Ph_ped
21. Pheidole subarmata Mayr, 1884 Ph_sub
22. Pheidole sp. 7 Pheid7
23. Pheidole tijucana Borgmeier, 1927 Ph_tij
24. Pheidole sp. 9 Pheid9

Table 2. Ant species recorded in this study on Marambaia Island (RJ) interacting with diaspore species. 

25. Pheidole sp. 10 Pheid10
26. Pheidole puttemansi Forel, 1911 Ph_put
27. Pheidole lucaris Wilson, 2003 Ph_luc
28. Pheidole sp. 13 Pheid13
29. Pheidole sp. 14 Pheid14
30. Pheidole sensitiva Borgmeier, 1959 Ph_sen
31. Pheidole sp. 16 Pheid16
32. Pheidole sp. 17 Pheid17
33. Sericomyrmex sp. 1 Seric1
34. Solenopsis sp. 1 Solen1
35. Solenopsis sp. 2 Solen2
36. Solenopsis sp. 3 Solen3
37. Solenopsis sp. 4 Solen4
38. Solenopsis sp. 5 Solen5
39. Solenopsis sp. 6 Solen6
40. Trachymyrmex sp. 1 Trach1
41. Trachymyrmex sp. 2 Trach2
42. Wasmannia auropunctata (Roger, 1863) W_aur
43. Wasmannia sp. 2 Wasm2

Ponerinae
44. Odontomachus chelifer (Latreille, 1802) O_che
45. Odontomachus meinerti Forel, 1905 O_mei
46. Neoponera apicalis (Latreille, 1802) N_api
47. Pachycondyla striata Fr. Smith, 1858 P_str

Pseudomyrmecinae
48. Pseudomyrmex sp. 1 Pseud1
49. Pseudomyrmex sp. 2 Pseud2

Sub-family / Species Code
Myrmicinae (Continuation)

8.16%) and Formicinae (S = 4 spp.; 8.16%). For plants, the 
Melastomataceae, Meliaceae and Rubiaceae families equated 
to over 50% of the interactions. 

We observed 1,016 diaspore cleaning interactions 
(98.45%) versus 16 diaspore removal interactions (1.55%). 
However, 275 diaspores disappeared from the observation area 
and may have been removed by the ants. We have included 
these diaspores as removals in Table 3, which, therefore, 
has a different total number of removals from that shown 
here. Considering these disappearances to be removals, the 
total number of removals was 291 (22.26% of interactions). 
The inclusion of such data overestimates removal by ants; 
however, the specific removal experiments (results in the 
topic below) showed that the removal was greater than 
1.55%. The true percentage of diaspore removal by ants in 
the community must be between these two values (1.55% 
and 22.26%). Ants that removed diaspores were Acromyrmex 
subterraneus, Atta sexdens rubropilosa, Cyphomyrmex sp. 1, 
Ectatomma edentatum, E. permagnum, Neoponera apicalis, 
Pachycondyla striata, Pheidole sigillata and Sericomyrmex sp. 1. 
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Table 3. Diaspore species explored by ants in this study on Marambaia Island (RJ) with the total number of interactions recorded and ant 
species with which they interacted (see code in Table 2).

Family / Species Unit of 
dispersal

Number of 
interactions

Number of 
removals Ant species

Araceae

50. Monstera adansonii var klotzschiana 
(Schott) Madison Fruit 4 1 18-19; 34; 38

Burseraceae
51. Protium brasiliense Engl. Seed 61 41 3; 16-21; 25-26; 33-38; 42; 44; 47
Erythroxylaceae
52. Erythroxylum pulchrum A. St.-Hil. Fruit 74 19 12; 16-21; 25-27; 29-30; 34-36; 38-42; 47
Fabaceae
53. Inga edulis Mart. Seed 23 2 1; 3; 12; 16-19; 25; 40-41; 46-47
Lauraceae
54. Ocotea schottii (Meisn.) Mez Fruit 89 1 1-2; 4-5; 14; 16-22; 25; 33-35; 38-40; 42; 48
Malpighiaceae
55. Niedenzuella acutifolia (Cav.) W.R. Anderson Fruit 1 1 42
Melastomataceae
56. Clidemia hirta (L.) D. Don Fruit 26 17 16-21; 35; 40; 42-43; 47
57. Miconia calvescens DC. Fruit 70 30 1; 4; 8; 12; 16-21; 23; 25; 34; 38; 42

58. Miconia prasina (Sw.) DC. Fruit 193 93 1; 3-4; 12; 16-21; 23; 25; 28; 33; 35; 38; 
40-41; 43; 46; 49

Meliaceae
59. Guarea guidonia (L.) Sleumer Seed 132 35 2-3; 10; 12; 16-27; 34; 36-38; 42-43; 45-47
Moraceae
60. Ficus insipida Willd. Fruit 78 0 1; 3; 7; 10; 12; 16-21; 25; 33-38; 40; 42-44; 47
Nyctaginaceae
61. Guapira opposita (Vell.) Reitz Fruit 7 0 16; 18-19; 25; 36; 47
Passifloraceae
62. Passiflora edulis Sims Seed 18 1 14; 16-20; 35-36; 42
Piperaceae
63. Piper amplum Kunth Fruit 2 0 6; 19
64. Piper anisum (Spreng.) Angely Fruit 3 0 16; 40; 42
65. Piper caldense C. DC. Fruit 5 0 9; 13; 19; 43
Rubiaceae

66. Coccocypselum cordifolium  
Nees & Mart. Fruit 17 0 16-22; 36; 42

67. Psychotria cf. hoffmannseggiana (Schult.)  
Müll. Arg. Fruit 14 1 1; 16-22; 31

68. Psychotria deflexa DC. Fruit 37 10 11-12; 16-20; 36; 40; 42-43; 47

69. Psychotria leiocarpa Cham.  
& Schltdl. Fruit 58 14 16-22; 28; 32; 34; 36; 40-43

Sapindaceae
70. Paulinia micrantha Cambess. Seed 33 6 9; 11; 16-21; 25; 33; 36; 40; 42
71. Urvillea sp. Fruit 3 0 18; 20
Siparunaceae
72. Siparuna guianensis Aubl. Seed 17 17 16-19; 29; 42
Solanaceae
73. Solanum pseudochina Spreng. Fruit 21 0 10; 16-20; 22; 36; 40; 47
Verbenaceae
74. Citharexylum myrianthum Cham. Fruit 46 2 1; 15-21; 25; 34-36; 40; 42-43; 47 
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Fig 1. Network of interactions between diaspores and ant species. Plants are represented by triangles, and ants by circles. Lines represent 
ant-diaspore interactions. (a) Dry-season network. (b) Rainy-season network. (c) Total network. The ant codes are in Table 2. Cmyr = 
Citharexylum myrianthum; Chir = Clidemia hirta; Ccor = Coccocypselum cordifolium; Epul = Erythroxylum pulchrum; Fins = Ficus insipida; 
Gopp = Guapira opposita; Ggui = Guarea Guidonia; Iedu = Inga edulis; Mcal = Miconia calvescens; Mpra = Miconia prasina; Mada = 
Monstera adansonii;  Nacu = Niedenzuella acutifolia; Osch = Ocotea schottii; Pedu = Passiflora edulis; Pmic = Paulinia micrantha; Pamp 
= Piper amplum; Pani = Piper anisum; Pcal = Piper caldense; Pbra = Protium brasiliense; Phof = Psychotria cf. hoffmannseggiana; Pdef = 
Psychotria deflexa; Plei = Psychotria leiocarpa; Sgui = Siparuna guianensis; Spse = Solanum pseudochina; Urv1 = Urvillea sp.  

Network analysis

The complete network between ants and diaspores 
(removal and cleaning interactions) showed a connectance of 
0.237; it was significantly nested (NODF = 33.74; p < 0.001), 
not significantly modular (M = 0.23; p = 1.00; Fig 1), and it had a 
higher level of specialization than the null models (H2’ = 0.099; 

p < 0.001). Pheidole species (Species 16-21 – Table 2), Solenopsis 
sp. 3, Trachymyrmex sp. 1 and Wasmannia auropunctata 
species were present in the core ant species. In plants, the 
species observed in the central core were Erythroxylum pulchrum 
(Erythroxylaceae), Ocotea schottii (Lauraceae), Miconia prasina 
(Melastomataceae), Guarea guidonia (Meliaceae) and Ficus 
insipida (Moraceae). 
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Fig 2. (a) Diaspores removal frequency of the plant species studied. 
(b) Destination of diaspore removals (nest = black hatched bar, litter = 
grey bar). 

The network of only dry months showed a connectance 
of 0.271; it was significantly nested (NODF = 34.34; p < 0.001), 
not significantly modular (M = 0.25; p = 0.99), and it had a 
higher level of specialization than the null models (H2’ = 0.123; 
p < 0.001). The ant species in the central core were Pheidole 
species (Species 16-20 – Table 2) and W. auropunctata. The 
diaspores in the central core were O. schottii (Lauraceae), M. 
prasina (Melastomataceae) and G. Guidonia (Meliaceae). 
The network of only rainy months showed a connectance of 
0.279; it was significantly nested (NODF = 36.03; p < 0.001), 
not significantly modular (M = 0.25; p = 0.99), and it had 
no higher level of specialization than the null models (H2’ = 
0.118; p = 0.086). The ant species in the central core were 
Pheidole species (Species 16-21 – Table 2), Solenopsis sp. 3, 
W. auropunctata and P. striata. The diaspores in the central 
core were Protium Guidonia brasiliense (Burseraceae), E. 
pulchrum (Erythroxylaceae) and G. guidonia (Meliaceae). 

Diaspore removal rate, destination and distance of diaspore 
removal

Miconia calvescens, M. prasina and Inga edulis 
showed the highest removal rates (65.8%, 58.3% and 40.0%, 
respectively), whereas P. leiocarpa showed a low removal 
rate (2.1%; deviance = 310.03; d.f = 3; p < 0.001, Fig 2a). 

In the experiments on destination and distance 
of diaspore removal, we observed 137 removals for M. 
calvescens, 14 for M. prasina and 17 for I. edulis. No removals 
were observed for P. leiocarpa. The ants that removed 
diaspores were A. sexdens rubropilosa and poneromorph 
species (Pachycondyla and Ectatomma species). The A. 
sexdens rubropilosa species removed the most diaspores of 
M. calvescens (95.62%; n = 131), whereas the poneromorph 
species removed the most diaspores of M. prasina (92.86%; 
n = 13). The A. sexdens rubropilosa species removed all the 
diaspores of I. edulis. The removal distance varied between 
5 and 473 cm. The average removal was 107.50 cm for M. 
calvescens, 104.57 cm for M. prasina and 300.55 cm for I. 
edulis. The diaspores of I. edulis were removed farther than 
Miconia diaspores (deviance = 1945.3; d.f = 3; p < 0.001). 
Ants carried most of the diaspores of M. calvescens and I. 
edulis to their nests (83.94% and 94.12%, respectively; Fig 2b). 
In most M. prasina removals, ants did not reach the nests and 
abandoned the diaspores in the leaf litter (92.86%; deviance = 
134.02; d.f = 2; p < 0.001; Fig 2b). We observed pieces of M. 
calvescens fall to the ground along the path of A. sexdens. We 
did not observe any subsequent discards by A. sexdens for any 
plant species after they entered the nest.

Discussion

This study recorded a large number of interactions 
in an   Atlantic Forest area on Marambaia Island, with 
diaspore cleaning being the main interaction. The networks 
analysed cleaning and removal interactions together, and 

they were nested and without modules for the total, dry and 
rainy seasons networks. The total and dry season networks 
were more specialized than the null models, but with low 
specialization values. The rainy season network did not show 
higher specialization than the null models. The central core 
ant species were virtually the same in the dry and rainy 
seasons. Removal rates were high and equal for the Miconia 
and Inga edulis species, but low for Psychotria leiocarpa. The 
removal distance was the same for the Miconia species and I. 
edulis. However, the destination of M. calvescens and I. edulis 
was mostly the nest, while for M. prasina the destination was 
the leaf litter.

Ant-plant interactions

Diaspore cleaning was the most common ant behavior 
in the recorded interactions, being 3.5 times more frequent 
than diaspore removal. This result opposes to that found in 
ant-fruit interaction networks in the Brazilian Cerrado, where 
diaspore removal was more common than diaspore cleaning 
(Anjos et al., 2018). Despite not presenting values for 
comparison, Pizo and Oliveira (2000) report that the behavior 
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of removing pieces and collecting liquids is more common 
than removing diaspores in the Atlantic Forest. In addition, 
Passos and Oliveira (2003) justify their systematic sampling in 
a restinga area by pointing the high speed of diaspore removal 
by large ponerines, which makes it difficult for them to be 
seen during active search. Moreover, ants remove diaspores 
at longer distances in savanna areas than in rainforests (Anjos 
et al., 2020). In addition to the distance, the removal rate 
may also be lower in rainforests. Moreover, impacted areas 
of the Atlantic Forest and in secondary succession had lower 
removal rates when compared to undisturbed areas (Zwiener 
et al., 2012; Almeida et al., 2013; Bieber et al., 2014). 
Poneromorph species are the ant species that most remove 
in Atlantic Forest areas, and they are less often observed in 
impacted areas than in undisturbed areas (Almeida et al., 
2013; Bieber et al., 2014). The fact that the study area was in 
the process of secondary succession explains the low removal 
rate. In addition, most interacting ant species were small and 
did not remove diaspores. An ant’s body size is also a key trait 
for removal (Camargo et al., 2019). 

Diaspore cleaning plays an important role in plant 
recruitment, since it increases germination rates in most plant 
species whose diaspores are cleaned by ants (Christianini et 
al., 2007; Camargo et al., 2016), and it may also decrease 
germination time (Lima et al., 2013). In addition, diaspore 
cleaning decreases the chances of attacks by pathogens such 
as fungi, providing conditions for germination and seedling 
development (Pizo & Oliveira, 1998; Passos & Oliveira, 
2002). For example, Guarea guidonia, whose diaspores are 
cleaned by ants, is benefited by this interaction (Silva et al., 
2019). Therefore, although there is no removal, diaspore 
cleaning brings benefits to the plants.

 The M. prasina species was the most frequent in the 
interaction records, followed by G. guidonia. Miconia species 
are classified as ornitochoric and usually have high water 
and sugar content (Silveira et al., 2012). The compounds 
present in these fruits serve as a resource for the ants and 
should promote the high number of interactions found for that 
species. Guarea guidonia is an ornitochoric species whose 
seeds are covered with a red sarcotesta, a similar compound to 
aryl, usually rich in lipids (Van Der Pijl, 1972). The presence 
of resources such as pulp is important for ant attraction (Rico-
Gray & Oliveira, 2007). 

Network analysis 

The networks showed low connectance, a nested pattern, 
absence of significant modules and low specialization. These 
results indicate low interaction between diaspores and ants 
and with some species of plants and ants dominating most 
interactions. Other studies have shown that mutualistic 
networks between ants and diaspores were also nested 
(Guimarães et al., 2007; Anjos et al., 2018). In our study, we 
observed that some species of ants (e.g., Pheidole species) 
and plants (e.g., G. guidonia, M. prasina) concentrated most 

of the interactions. This result agrees with those by Palacio 
et al. (2016), which showed that generalist species play a 
central role in highly diverse plant-frugivorous networks. 
In addition, the specialization values of the networks were 
very low (although the total and dry season networks were 
more specialized than the null models). This indicates that 
ants that explore diaspores are generalists and interacting 
with any diaspore type, just as plant species (diaspores) 
interact with several ant species. This is probably the result of 
opportunistic interactions (Anjos et al., 2018), and it is common 
in relationships with frugivorous insects (Passos & Oliveira, 
2003), where most frugivorous species have generalist and 
opportunistic behavior and whose spectrum of fruits visited 
by different ant species commonly overlaps (Blüthgen, 2011). 
In the case of frugivorous vertebrates, specialization varies 
among dispersal groups and it is influenced by fruit 
characteristics (Donatti et al., 2011; García et al., 2018). The 
absence of differences in the values of nestedness, modularity 
and specialization between the rainy and dry networks 
indicates that ant-diaspore interactions remain stable despite 
differences in climate in our study area. Thus, species of ants 
and plants interact throughout the year, regardless of seasonal 
variation. In line with our results, Ruzi et al. (2017) found that 
the removal rate by ants for 12 species of neotropical pioneer 
trees was not affected by seasonality.

The core of generalist species was stable throughout 
the years. The Pheidole transversostriata, Pheidole sp3, P. 
diligens, P. sigillata, P. pedana and Wasmannia auropunctata 
species are almost always present in the generalist core, which 
makes them important species in the general structure of the 
network and within the community because they promote 
diaspore cleaning and removal. Core species are known to 
be competitively superior and to monopolize resources in 
interactions between ants and EFN-bearing plants (Dáttilo et 
al., 2013a; Dáttilo et al., 2014a, 2014c). A stable core appears 
to be robust to annual fluctuations, and core species tend to 
belong to lineages that are less volatile and/or generate multiple 
species in a short time span (Burin et al., 2021). Regarding the 
ant species in the core species in this study, Pheidole species 
are extremely competitive, and they monopolize the resources 
that they explore, being considered dominant omnivores 
(Silvestre et al., 2003), and W. auropunctata shows massive 
recruitment, which facilitates the control of the diaspore 
stations (Delabie et al., 2003; Silvestre et al., 2003). Species 
of the Pheidole and Wasmannia genera can remove seeds, 
although that is not frequent (Christianini et al., 2010). Thus, 
a core of interactions composed by such species may indicate 
high diaspore cleaning rates, which corroborates our results, 
as well as potential for removing diaspores. The presence of 
P. striata in the core of central species in the rainy season 
network may indicate an increase in removal by that species 
during rainy period, since it removes seeds (Christianini et al., 
2010; Christianini et al., 2012). This idea should be evaluated 
in future studies.
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Diaspore removal rate, destination and distance of diaspore 
removal

We observed high removal rates for two Miconia 
species and I. edulis, but not for P. leiocarpa. Differences in 
secondary removal rates occur among plant species (Christianini 
et al., 2012; Ruzi et al., 2017; Ortiz et al., 2021). The presence 
of several attractive resources for ants is one of the causes 
for such differences (Christianini et al., 2012; Ruzi et al., 
2017; Clemente & Whitehead, 2019; Ortiz et al., 2021). The 
presence of secondary compounds, as occurs in Psychotria 
fruits, can reduce the ant recruitment and result in low 
removal rates (Cazetta et al., 2008; Santana et al., 2013). As 
a result, diaspores ‘preferred’ by ants have greater removal 
(e.g., M. calvescens = 65.8% of removal), and ‘non-preferred’ 
diaspores are rarely or not removed (e.g., P. leiocarpa = 2.1% 
of removal). This had already been observed in granivory by 
ants (Willot et al., 2000).

The studied ants removed diaspores to short distances. 
Removal distances are in accordance with data reported by 
Anjos et al. (2020), in which rainforests ecosystems show 
shorter removal distances by ants than savanna ecosystems. 
Hence, even at short distances diaspore removal decreases 
diaspore aggregation and helps the local plant population 
(Gorb & Gorb, 2000), as it may promote recruitment through 
a reduction in competition among seeds and a decrease in 
attacks by predators (Guimarães-Jr & Cogni, 2002). Despite 
their larger sizes (Table 1), I. edulis diaspores were removed 
for longer distances than those of Miconia. Diaspore size is 
also a key trait influencing removal rates (Pizo & Oliveira, 
2001). Therefore, the high rates of removal of a large diaspore 
must have occurred due to the chemical composition of the 
fleshy portion. It is known that ants look for more fleshy fruits 
(Passos & Oliveira, 2003; Rico-Gray & Oliveira, 2007), and 
the composition of these fruits can also be an important factor 
(Pizo & Oliveira, 2001; Christianini et al., 2012). 

 Most of the removals of I. edulis and M. calvescens 
were to the nest, which is advantageous for seedling 
development (Farji-Brener & Medina, 2000). However, the 
arrival of many seeds in the nest can increase competition 
(Spiegel & Nathan, 2012). Therefore, behaviors in which ant 
species take some diaspores to the nest and abandons others 
can be advantageous for plants (Ortiz et al., 2021). In removals 
by Atta sexdens, nest deposition without subsequent seed discard 
may indicate that the diaspores serve as a substrate for the 
fungus and, therefore, dispersal does not occur. In the case 
of M. calvescens, in which the dispersal unit is the fruit with 
multiple seeds, some of them are abandoned along the way 
and can benefit from the removal distance. However, in I. 
edulis, in which the dispersal unit is the seed, A. sexdens may 
be acting as a predator.

General conclusions

In the Atlantic Forest, interactions between ants and 
diaspores are frequent and generalised, with ants playing an 

important role in dispersal stages. In general, ants interact with 
diaspores by cleaning them, and some species also remove 
them. Ant-diaspore networks are generalist, nested and remain 
stable throughout the seasons. Thus, we can conclude that 
diaspore cleaning and removal occur continuously. The 
removal distance and final destination of diaspores depend 
on the diaspore species and on the ant species that remove 
them. Ants are good secondary dispersers for only some plant 
species, depending on their behavior and the identity of the 
ant species (Christianini et al., 2012; Clemente & Whitehead, 
2019). For most plants, ants would play a more important role 
in cleaning and promoting germination (Pizo & Oliveira, 1998). 
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